
HAL Id: hal-02885815
https://hal.science/hal-02885815

Submitted on 19 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A two-way trust management system for fog computing
Esubalew Alemneh, Sidi-Mohammed Senouci, Philippe Brunet, Tesfa Tegegne

To cite this version:
Esubalew Alemneh, Sidi-Mohammed Senouci, Philippe Brunet, Tesfa Tegegne. A two-way trust man-
agement system for fog computing. Future Generation Computer Systems, 2020, 106, pp.206-220.
�10.1016/j.future.2019.12.045�. �hal-02885815�

https://hal.science/hal-02885815
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A two-way trustmanagement system for fog computing

Esubalew Alemneh a,b,∗, Sidi-Mohammed Senouci a, Philippe Brunet a, Tesfa Tegegne b

a DRIVE EA1859, Univ. Bourgogne Franche-Comt, F58000, Nevers, France
b Bahir Dar University, Bahir Dar Institute of Technology, Faculty of Computing, P.O. Box 26, Bahir Dar, Ethiopia

Fog computing is the next frontier of cloud computing since it can compute and store a massive amount of data generated by IoT devices 
near their sources. Indeed, transmitting all these data to the cloud will take up a huge amount of bandwidth. However, its features and flexibility 
of deployment make fog computing vulnerable to security and privacy attacks. The high-mobility support, dynamic environment, geographical 
distribution, location awareness, proximity to end users, and lack of redundancy are among these features that make the existing schemes not 
adequate to fog computing. Therefore, since trust management ensures security and privacy, we propose a two-way subjective logic-based trust 
management system that enables a service requester to verify whether a service provider can give reliable and secure services and lets the 
service provider check the trustworthiness of the service requester. Extensive evaluation of the system shows that the trust value of a node is 
accurate and converges in a very few trust computation cycles. The solution is also resilient to a large population of misbehaving nodes and it is 
able to thwart trust-based attacks successfully. Moreover, comparative analysis is made with different modification of the system and two 
baseline schemes, PeerTrust and EigenTrust. The comparison depicts that the two-way trust management proposals have lower overhead, allow a 
balanced load distribution, are effective in selecting the right service providers and are more accurate than the conventional one-way trust 
management systems.

1. Introduction

An immense number of physical devices all over the world

are connected to the Internet creating the Internet of Things (IoT)
paradigm. According to McKinsey [1], one trillion IoT devices are

expected to be deployed by 2025. McKinsey also estimated the

potential economic impact of IoT to dash to 11 trillion USD per

year accounting 11% of the world economy by the same year. The

IoT devices generate an unheard-of volume and variety of data re-

sulting in big data. For instance, an electronic health track record

system of a patient contains various wearable devices and sensors
that produce an ocean of distinct types of data. Cloud computing’s

high-performance and storage capacity leverage processing and

reposition of these data. However, transporting the data to far-

situated cloud servers takes up large bandwidth. Hence, cloud

computing is not suitable for real-time analytics and decision

making. The aforementioned problems are alleviated by bringing

data processing and storage down to the proximity of data pro-
duction sites. The viability of the solution is founded on the fact

that present-day edge devices processing, storage and networking

∗ Corresponding author at: DRIVE EA1859, Univ. Bourgogne Franche-Comt,

F58000, Nevers, France.

E-mail address: esubalew@gmail.com (E. Alemneh).

capacity improves from time to time. One of such solutions is fog

computing aka fogging.

Fog computing is a distributed computing paradigm that

stretches computing, storage, communication, and networking

services down to the fringes of the network to reduce latency,

decrease bandwidth, and increase reliability [2]. The main com-

ponents of a fog computing architecture are fog nodes which

may be fog servers (service providers) or fog clients (service

requesters) [3,4]. Fog servers can be set-top-boxes, access points,

road-side units, cellular base stations, gateways, routers etc.,

while end devices like smartphones, sensors, smart watches, ve-

hicles, cameras, etc., represent the fog clients [3]. Fog computing,

which complements cloud computing rather than replacing it,

supports mobility, geographical distribution, location awareness,

heterogeneity, interoperability, and federation. By exploiting the

characteristics of fog computing, many novel IoT applications

and services have been suggested. Traffic safety [5], e-Health [6],

web content delivery [7], augmented reality [8], and big data

analysis [9] are some of the applications that suits fog computing.

Moreover, establishment of consortiums like OpenFog [10] by

hi-tech giant companies and renowned academic institutions to

define an architecture for fog computing and build operational

models and testbeds indicates wide acceptance of the computing

paradigm.

1



However, due to its features and flexibility of deployment, fog
computing is highly susceptible to information security and user
privacy violations [3,11–14]. High mobility support, dynamic en-
vironment, geographical distribution, location awareness, prox-
imity to end users, and lack of redundancy are among characteris-
tics of fog computing which have negative impacts on its security
and privacy despite their proven merits. Fog computing confronts
new privacy and security challenges in addition to those assumed
from cloud computing [3]. Existing privacy and security remedies
for cloud computing cannot be applied directly to fog comput-
ing as the architectures of the two computing paradigms are
quite dissimilar [11,14]. Cloud computing is centralized where
imposing security is relatively simpler because of the centralized
component in comparison with distributed architectures like fog
computing. Apt measures need to be taken on security and pri-
vacy issues of fog computing to maintain its pace of development
and acceptance in academia and industry.

Another challenge on the dynamic fog computing environ-
ment, which is much related to security and privacy, is trust
management. Trust is defined as the level of assurance that an
object will behave satisfactorily [15]. The behavior pertains to
the Quality of Service (QoS) or the security policies that the
object has to possess. Thus, a trustworthy object conforms to
QoS requirements without violating any security policy. The level
of assurance depends on the deployment environment, the type
of network application and the required level of security. For
distributed environments like fog computing and for safety and
security critical network application like traffic safety or health
applications, a high degree of trust is needed. On the contrary,
a low level of trust is demanded for centralized architectures
for which other security mechanisms can be easily imposed and
for applications whose reliability is not a priority [16]. Devices
may encounter other strange devices in the network and the
interaction with them should be carried out in caution since there
is uncertainty on their behavior. The purpose of trust manage-
ment systems in fog computing is to detect and deter bad fog
servers and bad fog clients. A bad fog node is any malicious or
rogue fog node which acts like a legitimate node nevertheless
it is a compromised or replaced with fake one by intruders or
malicious users [3]. A bad fog server may surreptitiously gather
user data, provide wrong services to the clients and/or launch
attacks. In case of fog clients, once such nodes get connected to
the server, they may collude with other nodes to have high trust
value (enabling it be accepted by any server) or may generate
different types of attacks [17]. To predict the future trustiness
of an entity and avoid any uncertainty or risk about an entity,
trust management systems gather information about the entity
from direct observations and recommendations of other entities.
That is why Jin-Hee Cho et al. formulated trust management
as one way of risk mitigation techniques which involves trust
establishment, trust update and trust revocation tasks [18].

There are two entities in trust management: trustor and
trustee. The trustor is an entity that puts faith on the other entity
i.e., trustee. Trust can be delineated as trustors belief in trustees
capabilities, honesty, reliability etc., [19]. Trust is directional in
that trustfulness of trustee does not depict whether the trustor
itself is trusty or not. Moreover, trust is subjective meaning that
what is trustworthy for one entity may not be trustworthy for
the other [20]. Trust management enables objects in a network
to determine the level of trustworthiness of another object. In
other words, it provides a mechanism to decide whether to
put faith in an entity to which a communication is going to
be established. It allows detection of damaged or misbehaving
nodes and enables autonomous communication among entities in
a network [16,21]. Trust is crucial for creating interaction in an
uncertain environment [22]. Trust ensures information security

and user privacy and it is also related to reliability, integrity,

dependability, and the ability to provide the right services [21].

In this research, we have proposed a subjective logic based two-

way trust management (TTM) system where trustor and trustee

evaluate each other by exchanging their trust computation role

to create a trusted data communication. The direct trust acquired

from self-observation and indirect trust obtained from recom-

mendations of neighboring nodes are used to determine the final

trust value.

Trust computation enables to calculate trust value of a tar-

get entity dynamically. An effective trust computation method

has five design dimensions: trust composition, trust propagation,

trust aggregation, trust update, and trust formation [23]. Trust

composition determines the information required for trust com-

putation. This information can be QoS and/or social relationship

information [24]. QoS trust refers to the belief of the trustor that

the trustee can provide a service with the desired quality [25].

Since, social relationships among human beings are also reflected

by devices they own [26,27], it can be used for trust computation.

Trust propagation determines how trust values are stored and

calculated. It can be either centralized or distributed. Trust update

decides how often will the trust values of entities be updated.

Trusts can be updated in event-driven and/or time-driven fashion.

Trust formation describes how to combine the trust properties

determined by trust composition. Trust can be formed from ei-

ther a single trust property or multiple trust properties. Trust

aggregation decides how to integrate trust evidences from dif-

ferent recommenders and from own experience. Weighted sum,

Bayesian inference, fuzzy logic, subjective logic, and regression

analysis are some examples of trust aggregation techniques. The

proposed subjective logic-based bidirectional trust management

system is distributed and event-driven trust management which

uses both QoS and social trust information to calculate the trust

values of fog nodes.

Even though trust management is a crucial and hot topic, due

to flexibility of deployment fog nodes it is a challenging problem

to enforce in fog environment. Fog nodes can be from differ-

ent providers, they may be owned, operated and maintained by

different individuals or providers independently and new nodes

can join or leave the network anytime [3]. Geo-distribution and

proximity of fogging to end users imply that the nodes are easily

accessible making them susceptible to corruption and rogue node

built up by adversaries. Lack of redundancy, dynamicity, high

mobility support, and low processing power of nodes [12] are

among other properties of fog computing that adds complication

to trust management in fog computing. Due to these reasons, fog

servers are potential threats to not only fog clients but also to

other fog servers. The same is true from fog clients perspective.

In this paper, we present a novel two-way scalable and ef-

ficient trust management solution which aggregates trust using

a specific version of belief theory called subjective logic [28].

Subjective logic is a kind of probabilistic logic that explicitly takes

uncertainty and source trust into account. In general, subjective

logic is suitable for modeling and analyzing situations or proposi-

tions involving uncertainty and relatively unreliable sources. The

proposition is expressed as a probability in the range of 0 to

1. Besides its power to express uncertainty, subjective logic is

helpful to aggregate the truth values of propositions that form

a general and objective belief [29]. Section 4 deals with details

of subjective logic concept. In fog networks trust should work in

two-ways so that fog clients can verify fog servers that they can

provide the right, reliable and secure services. On the reverse, fog

servers must be able to check the legitimacy and roguery of fog

clients. The contributions of this work are:

2



• We proposed a peer-to-peer two-way subjective logic-based
trust management system that allows service requesters to
check the trustworthiness of service providers and service
providers to verify service requesters are the genuine ones.
The distributed and event-driven trust management system
considers both QoS and social trust metrics to determine the
trust of a fog node. Final trust value is calculated by dynami-
cally combining information obtained from self-observation
and recommendations of neighboring nodes.

• We demonstrate the accuracy, convergence, and resilience
of the solution by conducting an extensive evaluation using
a simulation tool developed for this purpose. The evalua-
tions made include the effect of the weight of direct and
indirect trust values on the final trust values and the effect
of the number of malicious or bad nodes in the network.

• We produced different derivatives of the trust manage-
ment system and made a comparative analysis on the ef-
fectiveness of selecting the right service providers among
a set of good and bad servers. We have also demonstrated
through experiment that two-directional trust management
surpasses one-way trust management systems in opting
more trusted service providers. Moreover, we have com-
pared our trust management systems with two baseline
schemes, PeerTrust and EigenTrust. The result shows that
the two-way trust management systems have superiority in
terms of trust convergence and accuracy.

The remainder of the paper is organized as follows. Section 2
discusses related works in trust management in fog computing
and other related computing environments. The system model
considered and trust metrics comprised in the trust manage-
ment system are discussed in Section 3. The proposed subjective
logic-based trust management system is explained in Section 4.
Performance evaluations conducted are presented in Section 5.
Finally, Section 6 concludes the paper.

2. Related work

Because of limited works on trust management in fog comput-
ing and similarities of the computing paradigm to IoT systems and
cloud computing, selected related researches in these domains
are reviewed. Many trust management mechanisms are intro-
duced for IoT systems [21,23,30–36], and cloud computing [37–
44]. These mechanisms allow to select trusted nodes for reliable
and secure communications and take single or multiple QoS and
social trust metrics [30,31]; the QoS trust metrics being more
studied than social trust metrics [23].

In [34] a fuzzy reputation-based trust management system
that considers only QoS trust metrics is presented. The final
trust is computed from trust information obtained from direct
observation and from recommended indirect trusts. The main
drawback of this work is ignorance of social relationships among
devices in the Internet. A series of works by Bao et al. [30–33]
emphasized on social relationships among IoT devices to define
trust management systems for IoT applications. Trusts are calcu-
lated from information obtained from both direct observation and
opinions of other nodes based on trust metrics like honesty, co-
operativeness, Community of Interest (COI), friendship etc. Their
solutions are evaluated mainly for trust assessment accuracy and
convergence. [33] focuses on addressing the problem of misbe-
having nodes whose characters may change over time. A scalable,
adaptive and survivable trust management system is presented
in [32]. Scalability of the trust management system is achieved
by keeping trust information of the subset of nodes encountered
using a storage strategy defined by them. The main contribution
of [30] is the introduction of a novel adaptive filtering technique

to determine the best way to combine direct and indirect trusts so
that convergence time and trust estimation bias are minimized.
More recent works on trust management on Social Internet of
Things (SIoT) include [35,36]. A recommendation and reputation-
based trust computation model for distributed SIoT networks
which is able to converge in few iterations is discussed in [35].
However, the method depends solely on social trust metrics and
final trust scores do not include knowledge from direct observa-
tion in the trust computation. A context-aware trust management
system for SIoT is proposed in [35] to prevent attacks of ma-
licious nodes which acts dishonestly based on a context. Three
trust contexts are identified using context-aware QoS and social
similarity-based trust metrics are used to identify honest and
dishonest devices effectively.

Trust in cloud computing enables service consumers to select
a cloud service provider with desired reliability, quality, and
performance. If the service consumer has no prior experience
with a cloud service provider, it is challenging to put faith in the
service offered [37]. Trust is vital for fast adaption and growth
of cloud computing [36,38]. However, non-transparent nature of
cloud services has made trust management in a cloud environ-
ment challenging [36]. Yet there are many published works on
recommendation, prediction, reputation and policy-based trust
management in cloud computing [40]. Most of these works rely
on verification of Service Level Agreement (SLA) [41] and QoS at-
tribute information [42]. There are also some works that consider
identity and interaction history in trust computation. A behavior
graph and service grouping based trust evaluation method that
encompasses relationship parameters such as identity, and inter-
action evolution and service quality attributes such as availability
and reliability are proposed in [43]. Other trust metrics that
depict social relationships like honesty and sincerity can also be
used in trust computation for a cloud computing environment.
Ing-Ray Chen et al. proposed a scalable trust protocol which
depends on social trust metrics for mobile cloud IoT systems [44].
The protocol named IoT-HiTrust allows IoT devices report their
experiences and query the service trustworthiness of other IoT
device through cloudlets.

Trust management in fog environment is different from trust
management in cloud environment in various ways from their
architecture to ways of deployment. The distributed nature of fog
architecture complicates trust computation because of lack of a
global centralized entity that enables to impose traditional secu-
rity mechanisms like authentication and access control to allow
secure and trusted communication [11,45]. Secondly, mobility
support, location awareness, a huge number of nodes, the low
processing power of nodes are among the features of fog com-
puting that pushes to strive for dynamic, scalable, and computa-
tionally efficient trust management system. Thirdly, the flexibility
of deployment of fog computing makes fog environments more
vulnerable to trust-based attacks [3]. Trust in cloud environments
is more-or-less unidirectional. In contrary, the two-way require-
ment of trust is another issue that makes trust issue a formidable
challenge in fog computing [11]. Fog nodes that provide services
must be able to evaluate the trust level of nodes that request
services and service requestors must also able to check whether
to depend on service providers.

Hence, trust is one of the issues that have to be addressed
to boost the acceptance of fog computing in industries [46].
However, little work is done on trust management in fog com-
puting [47]. Most of the works that deal with trust in fog com-
puting merely affirm imperativeness of trust management in the
environment. We found only a handful of works that suggest
particular methods for trust computation in fog computing till
end of 2018. Rahman et al. in [45] identified a fuzzy logic config-
uration that affects trust values of a fog node. Distance, latency,

3



Fig. 1. System model of the two-way trust management system.

and reliability are trust metrics considered in the configuration.
The work provides some insights to the definitions of trust and
advantage of fuzzy logic for trust evaluation for fog computing.
The same authors as in [45] extended their work to propose a
broker-based trust evaluation framework for fog service alloca-
tion [48]. However, the proposed work conceives only QoS trust
metrics and it is unidirectional. In addendum usage of broker
implies malfunctioning of the broker results in a complete ces-
sation of the trust evaluation framework. A summary of some
related trust management works in IoT, cloud computing and fog
computing research domains from the five trust dimensions of
trust computation perspective are presented in Table 1.

Our work is different from the aforementioned ones. Firstly,
it is a two-way trust computation where fog server checks trust-
worthiness of fog clients and fog clients checks back if the server
is fit to provide the services. Secondly, we have considered QoS
trust information besides considering social relationship infor-
mation among nodes. The trust management system relies on
both self-observations and recommendations from neighboring
nodes which are combined adaptively. Thirdly, our bidirectional
trust management solution does not depend on any third-party
component. Moreover, multiple recommendation trusts are as-
sembled using a trust aggregation technique called subjective
logic. It is a kind of a belief theory and suggested to be most
appropriate for fog computing [16,23].

3. System model

The two-way trust management system is based on a simpli-
fied fog computing environment whose system model is shown
in Fig. 1.

Though multi-layered fog environment can be considered [49],
without losing generality we have conceived single-layered one.
We assume a fog node is a single static device though it may
comprise of multiple devices integrated as one fog node [4].
Fog server can communicate with neighboring 1-hop fog nodes
i.e., fog servers and fog clients. A fog client in fog computing can
be user carried devices like smartphones, laptop, other computers
or non-user accompanied devices like smart lighting, smart wash-
ing machine, CCTV etc. [50]. This research is about the first group
of devices. Fog clients are mobile on a predefined trajectory. Fog
clients can communicate with other neighboring fog servers. Each
fog node has an owner and a person may own more than one

node. The high-level description on how the proposed system

works, deployment example and trust-related information con-

sidered to compute trust levels of fog nodes are presented in what

follows.

3.1. How it works?

A fog client intending to get a service, requests a fog server

for a connection. The fog server then wants to ensure that it

is connected to a trusted (non-rogue) fog client. Therefore, to

capture a malicious or bad fog client, the server calculates the

trust value of the client by consulting neighboring servers and

from its direct observation. Detected fraudulent clients will then

be refused for the service and its trust value will be stored to

monitor the node in the future. The value will also be sent to

servers that request for trust level of the client as recommenda-

tions. A fog client which is allowed to connect to the server, in its

turn wants to make sure that the fog server is trustable and can

give the right service. A malicious fog server may give wrong or

incorrect service. The fog client consults neighboring fog servers

and adaptively combines with its direct observation to determine

the final trust status of the server. Just like fog servers, fog clients

also propagate their experience about the server to other nearby

servers. Trust management systems do not require disseminating

trust information over the entire network [51]. Therefore, nodes

only keep and exchange trust information about neighboring

nodes within the radio range for computational efficiency.

The sequence of communication between fog client and fog

server in order to create a trusted connection is depicted in Fig. 2.

The conversation is summarized as follows. A fog client sends

a connection request to a fog server. The server evaluates the

trust value of the client and allows the connection if the client is

trustworthy; otherwise, it refuses the connection. If the client is

granted connection, it evaluates the trust value of the server and

establishes connection if the server is trustworthy. If the server

refuses the connection or the server is found to be untrustworthy

the client sends a connection request to another server. This

conversation continues until a trusted service provider is found

among neighboring fog servers.

4



Table 1

Summary of related trust management systems from the five dimensions of trust computation.

Research domain IOT Cloud computing Fog computing

Trust composition Social trust [30–32,35], QoS trust

[34] and both [33,36]

QoS trust [42,43], QoS from SLA

[41]

QoS including mobility and

distance [48]

Trust propagation Distributed [30–36] Centralized [41–43] Distributed [48]

Trust update Time-driven [30,33,34] &

event-driven [30,32]

Event-driven [41–43] Event-driven [48]

Trust formation Multi-trust [30–33] & single-trust

[34,35]

Multi-trust [41–43] Multi-trust [48]

Trust aggregation Bayesian systems [30,32],

weighted sum [30,33,35,36],

fuzzy-logic [34]

Weighted sum [41–43] Fuzzy-logic [48]

Fig. 2. Dialog between fog clients and fog servers.

Fig. 3. Trust management in fog computing architecture.

5



3.2. Deployment example

In the reference architecture proposed by OpenFog [52] and
other fog computing architectures [53], the proposed trust man-
agement system is deployed on top of resource management
layer in application support layer which encompasses security
services, see Fig. 3. Predominance of wireless connection in fog
environment means security problems are very crucial in fogging.
That is why security is considered as one of the main components
of fog computing architecture [53]. Apart from trust management
issues all security-related matters including encryption, privacy,
authentication, intrusion detection and prevention, etc. are han-
dled by this component. Trust management systems enables to
establish trusted connections among nodes in fog environment.

The proposed trust management algorithm runs under appli-
cations that require trusted communications. For instance, let us
take a traffic safety application for Vulnerable Road Users (VRU)
proposed in [5]. In this application drivers and VRUs, which could
be pedestrians, cyclists and powered two-wheelers send their
geolocation and other associated data periodically to fog servers
for collision risk prediction. The server predicts any imminent
collisions and sends warning messages to both drivers and VRUs.
In this type of systems, a bad fog server may provide wrong traffic
accident prediction and a bad fog client may send wrong locations
of VRUs to the servers [54]. In both cases, the road users will
be in the jeopardy of traffic accidents. The trust management
algorithms can be used to identify trusted fog servers and clients.
Once the fog nodes are found to be trusted, VRUs and drivers
can send cooperative awareness messages data for collision risk
prediction to the servers. The servers also entertain clients which
are identified as trustworthy by the trust management algorithm.
Hence, the trust management system helps nodes check their
trustworthiness each other before the actual service provisions.

3.3. Trust metrics

A trust metric or property is information needed to calculate
the trust level of a node. In the trust management system, more
than one trust properties are used to evaluate the trust of fog
servers and clients. Choice of trust property depends on the issue
the trustor is interested in [22,25,37]. QoS trust evaluates the
capability of a fog server to successfully complete a requested
mission. Since fog clients interest is to select a server that can
provide the service properly more QoS are used and selection
of clients by servers largely relies on social relationships. In the
two-way trust management system proposed, the metrics used
by fog servers to evaluate trustiness of fog clients are friendship,
honesty, and ownership, while fog clients use latency, Packet
Delivery Ratio (PDR) and ownership to evaluate trust value of a
server. The definition of the metrics and how they are calculated
are explained underneath:

• Latency: is the time required by a fog server to provide a
service to a fog client. High latency and irregularities in
response time predict possible intrusions in the system [55].
The value is returned from the latency response-time model
produced using log-normal distribution [56] with the mean
and standard deviation of 60 ms and 20 ms, respectively.
The mean and standard deviation is taken from our previous
work on fog computing-based traffic safety architecture for
VRUs [5].

• Packet Delivery Ratio: is the ratio of packets successfully
received to the total sent. It is the ratio between the number
of packets received by the application layer of destination
nodes to the number of packets sent by the application
layer of the source node. In our solution, PDR is modeled

using a well-known packet loss model called Gilbert–Elliott
model [57]. The parameters of the model are obtained from
packet loss observation of links of a good and bad node [58].
Hence, the probability of transferring from good state to the
bad state, and the probability of transferring from the bad
state to the good state are generated based on the PDR result
of fog computing environment as experimented in [5].

• Ownership: each fog node has an owner. This metric is
included with the assumption that devices owned by the
same person are trustable each other [26]. Therefore, if a
node encounters another node owned by the same person,
the trust value is set to one; otherwise, it is zero.

• Friendship: refers degree of closeness of a node in com-
parison with other nodes. Instead of defining it initially in
friendship matrix like [30,59], calculation of friendship in
our case relies on interaction history. It follows the maturity
model proposed in [51] in that the more positive interaction
experiences between two nodes implies more trust and con-
fidence between them. Friendship is calculated as the ratio
of the number of successful connection requests of a client
to the maximum connection of all requests. A connection
request is said to be successful if the request is accepted
by the server. A server accepts clients connection request if
the clients trust is above the required application dependent
threshold value.

• Honesty: evaluates the belief that a node is dependable
based on another nodes direct observation over a given
period of time [30,33,59]. It is calculated by keeping a count
of suspicious dishonest experiences of a trustee node as
observed by trustor node during a time period using a set
of anomaly detection rules such as a high discrepancy in
recommendation, as well as interval, retransmission, rep-
etition, and delay rules. Hence, we figured out honesty as
the ratio of valid trust propagations and realized connection
requests. Realized connection requests are those resulted in
a trusted connection between trustor and trustee. Exagger-
ated fog clients recommendations are conceived as invalid
propagations and connection requests from nodes of low
trust values are rejected.

4. Subjective logic-based trust management system

Trust computation enables to calculate trust value of a target
entity dynamically. If the trust value is acceptable, then trusted
data communication follows; otherwise, entities abstain from
untrusted interaction to other entities. To establish trust values,
an effective trust computation method has five design dimen-
sions [23]. As stated earlier, TTM system uses QoS and social
trust metrics and it is distributed, event-driven, and multi-trust
system. In this section, we discuss subjective logic and its appli-
cation for trust aggregation, how final trust values of fog nodes
are calculated from direct and indirect trusts, the detail of TTM
algorithm and the justification for the resilience of the proposed
system in thwarting trust-based attacks.

4.1. Subjective logic and trust computation

The TTM system staged in this paper uses subjective logic
to aggregate recommendations from neighboring fog servers.
Though subjective logic has the ability to defend trust-based
attacks because of its discounting step, it is less explored [23]. In
this section, we briefly introduce subjective logic and show how
it is used in the trust management system proposed.

Standard logic is designed for an idealized world where propo-
sitions can be evidently either true or false [29]. However, in the

6



Fig. 4. (a) Discounting and (b) Consensus operators.

real world, nobody can be absolutely certain whether a propo-
sition is true or false and the assessment of the proposition is
individual i.e., not general and objective [60]. Therefore, many
calculi and logic-based methods which consider uncertainty and
ignorance have been proposed. These methods allow drawing
conclusions about a proposition with insufficient evidence. Trust
is one of such propositions since it is a statement or assertion
that expresses a judgment or opinion about an object. Subjective
logic which is a special form of belief theory builds on the belief
that trust is subjective and it is differently experienced by ev-
eryone [61]. It is not practical for recommenders to consider all
pertinent trust metrics to evaluate the trust value of a node. This
implies that trust is computed with insufficient evidence and each
node in a fog computing environment computes its own trust
value subjectively for each node it encounters.

In subjective logic uncertain probabilities are represented with
belief model as opinion. Opinion or degree of trust of a node x,
ωx, is defined with 4-tuples [28] as:

ωx = (bx, dx, ux, ax) (1)

where bx is the belief that the node is trustable, disbelief dx
denotes the doubt that the node is trustable, ux is uncertainty
to conclude that a node is trustable or not, and atomicity ax is
the prior probability of x without any evidence. If the value of
atomicity is 0.5, an opinion has an equal probability of giving
true or false output. Note that the sum of belief, disbelief, and
uncertainty must be equal to 1. The degree of trust represented
as a 4-tuple opinion can be converted into a single-valued trust
value using the equation:

P(x) = bx + ax ∗ ux (2)

To illustrate this using an example, suppose the probability of
rain falling in Paris on 28 February 2018 is 0.4, the chance of no
rain is 0.3, and the uncertainty of raining is 0.3. Assuming equal
chance of giving a true or false output, this can be represented
as opinion in the form ωx = (0.4, 0.3, 0.3, 0.5) and uncertain
probability is 0.4 + 0.5*0.3 = 0.55.

Now the challenge is how to get the values of the tuples of
subjective trust from the interaction among fog nodes. To calcu-
late the degree of trust of nodes in fog networking, the values of
belief (bx), disbelief (bx) and uncertainty (ux) of a node x can be
obtained from its positive and negative experience [29]. If positive
and negative experiences are denoted by p and n respectively,
then the three variables can be calculated using the following set
of equations:

bx =
p

n + p + 1

dx =
n

n + p + 1

ux =
1

n + p + 1

(3)

Fog nodes count good and bad experiences of nodes they come
across and forward these values as a subjective trust when they

are asked for recommendations. Recommended trusts have to
be weighted and combined to get the final trust values. There
are two ways of combining trust recommendations in subjective
logic; discounting and consensus. They are described hereafter.

Discounting. A node computing trust value of another node scales
the recommendations it received using discounting (denoted by
the operator ⊕) with the trust values the node has about the
recommenders. Hence, trust values from trusted recommenders
will have more weight than the less trusted ones. This is es-
sential to defend trust-based attacks. Testimonial requester has
trust values of the recommenders from previous communica-
tions. Suppose a trustor node i has a subjective trust value of
a recommender node k as Ti,k = (bi,k, di,k, ui,k, ai,k) and the
recommender has trust value of trustee node j as subjective
trust Tk,j = (bk,j, dk,j, uk,j, ak,j). See the visual representation of
the statement in Fig. 4(a). Then the indirect trust of node j as
evaluated by i based on ks recommendation is calculated as:

Ti,j = (bi,kbk,j, bi,kdk,j, di,k + ui,k + bi,kuk,j, ak,j) (4)

Consensus. Recommendations from several recommenders are
combined using consensus (denoted by operator ⊗). Suppose
node i and k have recommendations about node j as Ti,j =

(bi,j, di,j, ui,j, ai,j) and Tk,j = (bk,j, dk,j, uk,j, ak,j), respectively, see
Fig. 4(b). The combined recommendation for j is given by the
following equation:

Tik,j = (
bi,j ∗ uk,j + bk,j ∗ ui,j

k
,
di,j ∗ uk,j + dk,j ∗ ui,j

k
,
ui,j ∗ uk,i

k
, aik,j)

(5)

where, k = ui,j + uk,j − ui,j ∗ uk,j and

aik,j =
a(i,j)∗uk,j+ak,j∗ui,j−(ai,j+ak,j)∗ui,j∗uk,j

ui,j+uk,j−2ui,j∗uk,j
.

Overall indirect trust is calculated by applying discounting

and consensus together on the recommendations obtained from
all neighboring 1-hop nodes as subjective trust. So as to get
more reliable recommendations and to be more resistant to
trust-based attacks, recommendations can be taken only from
trusted recommenders by applying threshold-based filtering [25].
However, in the case of the proposed solution, as the number
of neighboring nodes is limited all recommendations are taken
and trust-based attacks are taken care of by the trust aggregation
method. Suppose a node i has trust value of recommenders
r1, r2, . . . , rk at time t as Ti,r1(t), Ti,r2(t), . . . , Ti,rk(t) respectively,
and the recommenders have trust towards node j at time t as
Tr1,j(t), Tr2,j(t), . . . , Trk,k(t), see Fig. 5, then by applying discount-
ing and consensus operations the final cumulative indirect trust
of node j as evaluated by i is calculated using Eq. (6).

T Indirect
i,j (t) = (Ti,r1(t) ⊗ Tr1,j(t))

⊕ (Ti,r2(t) ⊗ Tr2,j(t)) ⊕ · · · ⊕ (Ti,rk(t) ⊗ Trk,j(t)) (6)

The trust management system relies on the trust value of a
node calculated from direct observation in addition to recommen-
dations. Trust metrics defined in Section 3.3 are used to calculate

7



Table 2

List of important notations for the algorithm.

Notation Description

Clients = C1, C2, . . . , Cn List of fog clients

Servers = S1, S2, . . . , Sm List of fog servers

Ti,j Trust of node j as evaluated by node i

T x
i,j Trust of node j as evaluated by node i with respect to trust metrics or trust type X

I[2][Ci] Storage of interactions between a server and client Ci

R[2][Ci] Storage of interactions realized by client Ci

P[2][Ci] Storage of propagations made by client Ci

STi Subjective trust of a node defined as belief, disbelief, uncertainty and atomicity

α1, β1, µ1, γ 1 Adaptively calculated weighting factors for trust computation of clients

α2, β2, µ2, γ 2 Adaptively calculated weighting factors for trust computation of Servers

Fig. 5. Computation of overall indirect trust.

direct trust. Direct trust value of a node j as it is evaluated by

node i at time t is calculated using the following formula:

TDirect
i,j (t) = α ∗ T x

i,j(t) + β ∗ T
y

i,j(t) + µ ∗ T z
i,j(t) (7)

where x, y, and z are trust metrics and α, β , and µ are weighting

factors of individual trust metrics. For fog servers x, y, and z are

latency, PDR and ownership, respectively, while for fog clients

they are friendship, honesty, and ownership, respectively. The

weighting factors of the QoS and social trust metrics are adjusted

adaptively based on belongingness of trustor and trustee to an

owner and reputation of the trustee. Reputation in this case

refers overall trust value of a node in previous encounters. If the

trustor and trustee are owned by the same person or reputation

of trustee is above threshold trust value that splits complete

trust and distrust, average values of the existing trust metrics

are taken. Otherwise, half the weight provided for the other trust

metrics is assigned to ownership metrics. This simple weighting

procedure encourages nodes with good reputations and penalizes

bad ones. Furthermore, the procedure is suitable to resource

constrained fog clients.

Calculating direct and indirect trust values paves a way to

compute the overall final trust level of a node. It is calculated

using the succeeding formula:

Ti,j(t) = γ ∗ TDirect
i,j (t) + (1 − γ ) ∗ T Indirect

i,j (t) (8)

γ is the factor that specifies the contribution of direct and

indirect trusts on the overall trust value. The contribution of

indirect trust value (γIndirect = 1−γ ) to overall trust is adaptively

decided based on the trust value of trustee in preceding trust

computation (Ti,j(t − △t)), number of recommenders (n(rec)),

and maximum possible recommenders the configuration allows

(max(rec)), see formula (9).

γIndirect =
(n(rec) ∗ Ti,j(t − △t))

(max(rec) + n(rec) ∗ Ti,i(t − △t))
(9)

The indirect trust weighting factor is normalized to past ex-

perience and current number of recommenders relative to maxi-

mum possible number of recommenders a fog node can have in

the setup. The formula ensures that the contributions of indirect

trust do not exceed more than half of the overall trust and

an increase of the contribution proportionally with number of

recommenders. Providing more weight to direct trust and using

more recommendations leads to accurate and fast converging

trust values [33].

4.2. Two-way trust computation algorithm

The detailed steps of the two-way trust computation algo-

rithm are described in Algorithm 1. The final trust value is in

the range of [0, 1], where 0 implies complete distrust and 1 is

complete trust [14]. The ignorance or threshold point at which

trust and distrust are dissected depends on the application on

hand. For most applications, it is 0.5 but for safety-critical and

health applications the value is usually higher. Table 2 displays

important notations used in the algorithm.

Fog clients initiate trust computation by sending a connection

request to a nearby fog server. The fog server checks the trustwor-

thiness of the client by computing direct trust from friendship,

honesty and ownership trust metrics, steps 4–11, and by consult-

ing and aggregating recommendations from neighboring servers

using subjective logic, steps 12–17 of Algorithm 1. At step 18

direct and indirect trusts are combined based on their respective

weights to determine the final trust value of the client. If the final

trust is greater than or equal to the minimum threshold trust

value the server expects, it allows the connection. In this case,

it is fog clients turn to assure if the fog server is a trusted service

provider. Hence, it executes steps 19–33 to find out the trust

value of the server. Two QoS trust information, latency and PDR,

and a social relationship trust information, ownership, are used to

calculate the direct trust value of the server. Recommendations

are collected from neighboring servers and aggregated to form

the indirect trust value. Next, the last trust value of the server

is decided from the weighted sum of direct and indirect trusts.

If the server has acceptable trust value, a trusted connection is

established between the fog server and fog client. If either fog

server or fog client is untrustworthy, then the client sends a

connection request to another server and the steps described

above are repeated. The name two-way trust management is

given because of trust computation from fog server to fog client

and from fog client to fog server.

8



4.3. Resistance to trust-based attacks

Service requesters must have the desired level of trust value
since service providers entertain only trusted requesters. Service
providers want to be profitable by serving as many service re-
questers as possible. Hence, nodes related in trust computation
and sharing may be involved in trust-based attacks. A bad or a
malicious node may transmit wrong information about another
entity or itself, collude with others to control service or may also
act incorrectly to mischief those in trust relation [14]. An inex-
haustive list of trust-based attack models [23,24] with definitions
and how effective is the TTM algorithm to thwart those attacks is
presented in this section.

• Self-Promotion Attack (SPA): if a malicious object is requested
about its trust value it provides good recommendation and
once it is selected, it may provide poor service or abuse the
network. The trust management system presented is fully
resilient to SPA since a node cant recommend for itself.

• Ballot-Stuffing Attack (BSA): a type of collusion attack where
malicious recommender gives exaggerated trust value about
a bad object to trust information requester with an intention
of increasing reputation of the object. In the proposed trust
management system, a bad fog server may send incorrect
recommendations about a fog node and a bad fog client

Table 3

List of simulation parameters.

Parameters Values

Number of fog servers 40

Number of fog clients 200

Number owners 20

% of bad nodes (PD) 20%

Simulation period (Cycle) 25

may also propagate false trust information to neighboring
servers. The problem is addressed by the selected trust
aggregation method. In the method, recommendations are
weighted based on the trust level of recommenders. Conse-
quently, a recommendation of a bad node will have a very
small contribution to the overall indirect trust. The second
solution applied to fight back BSA is ignoring exaggerated
recommendations from recommendations list.

• Bad-Mouthing Attack (BMA): despite the fact that an object
is trustable, colluding recommenders provide a false trust
value to vituperate false information about the object. When
malicious nodes are selected because of false information,
they get access to resources posing security threats to the
entire system. This kind of attack is viable to happen but
solutions applied for BSA also address the attack.

• Opportunistic-Service Attack (OSA): trust management sys-
tems decrease the reputation of malicious nodes from time
to time. When the node notices that its reputation is drop-
ping, it performs good service and when its reputation is
high it starts giving bad service. OSA is dealt with monitor-
ing the behavior of a node and removing it from the network
if its behavior is fluctuating over a certain period of time.

• On-Off Attack (OOA): with this attack, a malicious object
performs good and bad services randomly to level itself as a
normal or good object. To foil this attack, the same solution
proposed for OSA is used.

5. Trust management algorithm performance

The trust management system discussed is evaluated in a
simulated environment. Evaluation setup and the results of the
evaluations are presented in this section.

There are some simulation tools for fog computing; iFogSim
[62] for measuring the impact of resource management tech-
niques, Discrete Event System Specification (DEVS) based tool
[63] for evaluating impact of deploying fogging, EmuFog [64]
is extensible emulation framework for fog computing environ-
ments without mobility feature, and FogTorch [65] for QoS-aware
deployment of multi-component IoT applications to fog infras-
tructures. However, there is no full-fledged simulation tool for the
new computing paradigm. Therefore, we developed our own Java-
based simulation tool for the scenario explained in the system
model section. The tool contains classes like fog node, topology
manager, mobility manager and trust computer as the most im-
portant components and other many miscellaneous components.
Reporting detail of the tool is beyond the scope of this report. The
list of parameters used and their default values are indicated in
Table 3. We considered a fog environment where there are 200
fog clients and 40 fog servers randomly distributed over 20 own-
ers. Maximum number of 1-hop neighboring nodes that could
send recommendation is six. At the beginning of the simulation,
fog clients which are placed on a walkway are connected to fog
server. While fog servers are assumed to be static, the clients are
mobile. The clients travel in the direction they are originally set
with a pedestrian speed randomly assigned based on the values
obtained from [66]. The clients walk from left to right and right to

9



Fig. 6. Trust values of (a) Good fog client and (b) Good fog server over trust

computation cycle.

left continuously on defined trajectory throughout the simulation
period. The proposed system is an event-driven trust computa-
tion where, when a moving client arrives to the trust computation
zone, it starts exchanging information with fog servers in order
to create a connection to trusted fog server. Trust computation
zones are regions in the simulation environment where a fog
client is leaving the network coverage area of currently connected
service provider. A trust computation cycle (simulation cycle) is
equal to travel from one end of the walkway to the other. If
there are multiple trust zones between the two ends of the road,
the average value of trusts computed in all zones is taken. We
first presented evolutions of trust accuracy, trust convergence
and how resistant is the system to increased number of mali-
cious nodes. Next, comparative analysis of different derivatives of
the proposed algorithm is given. Finally, our algorithms are also
compared against baseline trust computation methods.

5.1. Evaluation of trust accuracy, convergence and resilience

The evaluation results of accuracy, convergence and resilience
of the proposed algorithm are presented in the next paragraphs.
Unless specified, default parameters shown in Table 3 are used.

Fig. 6 shows trust accuracy and convergence of randomly
picked normal or good fog client (Fig. 6(a)) and good fog server
(Fig. 6(b)) with adaptive and static weighting factors (γ ) among

direct and indirect trusts. The trust management that relies on
adaptive weighting factor is the most accurate and the fast con-
verging one. This is because indirect trust gets higher weights
only when it is obtained from larger number of recommenders.
For static weighting, as the values of γ increase, the trust con-
verges faster and it has better accuracy. This confirms that the
trust value obtained by self-observation better describes the final
trust value of an entity. This is because recommendations are
affected by the presence of malicious nodes [67]. In our system,
by default 20% nodes are dishonest or bad nodes. Trust value
of 0.9 is achieved at 17th cycle when more weight is given to
indirect trust for fog clients while only at 9th cycle the same value
is achieved if more weight is provided for direct trust. As shown
in the diagram, though it takes a longer time to converge, relying
on indirect trust doesn’t prevent the algorithm from convergence.
Therefore, we can say that indirect trust has a very important
role, especially in cases direct observation is imprecise or not
possible. There is no difference between trust values of fog clients
and fog servers except in case of fog servers the graph is a bit
smoother due to a constant set of neighboring servers that feed
recommendations.

The evaluation of the trust value of a randomly selected bad
fog client and bad fog server are shown in Fig. 7. If a node
is bad either intentionally or unintentionally it acts undesirably
resulting in its less trust value. Fog servers that have high latency
and low PDR are bad servers. Hence, the servers latency and PDR
which are out of range of good nodes are converted to trust values
less than 0.5. Friendship and Honesty are calculated based on
interaction history and propagated trust values. All the metrics
are used to compute the direct trust value of the overall trust.
The indirect trust which is obtained from recommenders may
contribute to up to 50% (maximum) of the overall trust. The main
objective of this evaluation is assuming that a node is bad, how is
trust management system handling such situations without going
through the nitty-gritty of malicious node detection. The default
trust value of a node in this evaluation is 0.5 and the ground truth
values of bad and good nodes are 0.0 and 1.0, respectively. Based
on the type of a node the trust level increase or decrease in the
course of trust computation cycle. The algorithm is able to turn
bad nodes worst. This is especially true when the weighting factor
of direct and indirect trust values is dynamically determined since
the factor depends on preceding trust values. The reduction of the
trust values helps other nodes abstain from creating connection
to such nodes and to remove such nodes from the network
whenever it necessitates.

Fig. 8 shows the effect of the algorithm to the increased
percentage of bad fog clients with adaptive γ . The percentage
of bad nodes are set to 20%, 40%, and 60%. It can be observed
that as the percentage of malicious nodes increase it takes more
time for a good fog clients trust values to converge. Moreover,
the trust value at which convergence appears lowers as more
population of malicious nodes are introduced. For instance, the
trust value of a good fog client cant attain 0.80 till 22nd cycle
of simulation if the percentage of bad nodes is 60%. However, the
algorithm is resilient to hostility since it provides reasonably high
trust value even in percentage of large population of bad nodes.
The value meets the requirements of many applications although
the population of bad nodes is large.

We modified the algorithm in such a way that bad nodes are
expelled from the network. A fog client is expelled if it is unable
to be accepted by any neighboring service provider. That is, it
passes a trust computation zone without successfully connecting
to another service provider due to its low trust value. A fog
server is expelled if it is not selected for service provision by any
service requester over a trust computation cycle. The percentage
of expelled bad nodes in the simulation environment where the

10



Fig. 7. Trust values of (a) Bad fog client and (b) Bad fog server over trust

computation cycle.

Fig. 8. Effect of percentage of bad nodes on trust values of a good fog client.

percentage of bad nodes is 50% are graphed in Fig. 9. This data is
collected by counting nodes expelled up to a simulation cycle. At
25th trust computation cycle, all bad fog servers and 82% of bad
fog clients are able to be expelled from the network.

The behavior of fog nodes may change over time [51,68]. A
good node may change to a bad node because of malfunctioning

Fig. 9. Percentage of expelled bad nodes over trust computation cycle.

Fig. 10. Change of behavior of nodes (a) from Good to Bad and (b) from Bad to

Good.

or in order to pose attacks and a bad node may also change to

good behaving node. Fig. 10 shows the trust value of a randomly

selected good node whose behavior has turned to bad (Fig. 10(a))

and a bad node whose behavior has changed to good (Fig. 10(b))

at 12th simulation cycle. The algorithm is able to capture the

behavior change of nodes correctly.

11



Fig. 11. Average percentage of bad fog servers selected for service provision.

5.2. Comparative analysis

The TTM systems algorithm can be amended in different ways.
Hence, we have modified the algorithm in two different ways.
The first amendment is made in such a way that a fog client
evaluates trust values of all neighboring servers and send a con-
nection request to the server with the highest possible trust
value. We named this change Modified Two-way Trust Manage-
ment (MTTM) system. In the original two-way algorithm, any fog
server encountered early and that fulfills trust value requirement
of the client is selected as long as the client itself is found to
be trustworthy. The second alteration of the algorithm is a One-
way Trust Management (OTM) system where clients can evaluate
trust of servers to which they are going to connect without
their trust being evaluated by the servers. This method works
in the same way as TTM except, in this case, clients trust is not
evaluated. In addition to the two-modification random service
provider selection which randomly opts service providers with-
out regard to the trust values is another method on the plate for
comparison. The four methods are evaluated in terms of average
percentage of bad servers selected for service provision over 25
trust computation cycles by a randomly selected fog client. In
a single trust computation cycle a fog client changes its parent
(fog server) 20 times, which implies the total number of fog
server selections are 500 in 25 trust computation cycle. In this
experiment, a bad server has a chance to be selected for service
version if a fog client cant find a good one. A bad server is the
one with trust value less than 0.5. The objective of the evaluation
is to check how effective is the proposed method in terms of
selection of the best service provider with the assumption that
the quality of services provided depends on the trust level of the
service provider. For this evaluation the percentage of bad servers
is set to 40% and the number of fog servers has the default value.
The average percentage of bad service providers selected over the
trust computation cycles, with confidence 95% level, is plotted in
Fig. 11.

MTTM has chosen only one bad fog server on average in all
trust computation cycles. It is the most effective method because
of its ability to choose the most trusted node to create a con-
nection. However, since the method involves high overhead (see
Fig. 12) due to the computation of trust of all neighboring servers,
it is not suitable for real-time systems. Moreover, MTTM results
in an unbalanced load distribution among fog servers. That is,
the algorithm heavily loads fog servers with highest trust values
(see Fig. 13). TTM may select a server which does not possess
the highest trust value but it is optimal in the selection of service
providers with desired trust value and it has lesser computational

Fig. 12. Number of overhead operations over trust computation cycle.

overhead as well as balanced load distribution than MTTM. OTM
has a bit higher percentage of bad fog server choices than TTM
since clients will not be denied connection by any server. In TTM
a bad server may reject connection request of a bad client due to
a very low trust value.

Fig. 12 shows overhead of the three subjective logic-based
trust computation algorithms over trust computation cycle. Over-
head here referees the number of trust computations that doesn’t
result in a trusted connection. In MTTM trust value of all servers
are computed regardless of trust values of the servers encoun-
tered. Then, connection request is sent to the one with the highest
trust value. That is why it has the highest overhead. This makes
MTTM not suitable for latency sensitive applications. OTM has
high chance of getting servers quicker than TTM. Hence, it has
the lowest overhead.

In addition to the high overhead, MTTM has a negative effect
on load balancing. Servers with high trust values tend to attract
a lot of fog clients whereas those with lower trust values are
idle. Fig. 13 shows load distribution of randomly selected 10
fog servers. TTM and OTM have comparatively balanced load
distribution while MTTM biases towards servers with high trust
values. In MTTM, fog servers numbered 1, 3, and 9 have very high
load shares whereas others have either very small or no loads.

The last set of experiments conducted are the evaluation of
the trust levels of servers opted for service provision using MTTM,
TTM, and OTM against two well-known peer-to-peer trust com-
putation baselines, PeerTrust [69] and EigenTrust [70], for trust
values of a randomly selected good node. The purposes of this
evaluation are: (i) to check if two-way trust computation has
indeed advantage over one-way trust computations, (ii) to com-
pare our trust management algorithms against baseline schemes.
Hence, trust convergence and accuracy of the trust computation
methods on randomly selected good fog server are evaluated over
trust computation cycles. Percentage of bad client nodes is set
to have default value (i.e., 20%), and direct and indirect trust
contributions to overall trust are decided dynamically. The result
is shown in Fig. 14.

MTTM outperforms the other subjective logic-based trust
management methods proposed both in accuracy and trust con-
vergence though its difference with TTM is minor. This is bearing
to its ability to choose the most trusted fog server. One-way
trust management system is the least performing algorithm. The
reason behind this is that, firstly, the trust value of the server
they first encountered and selected may not have the highest
trust value in comparison with neighboring servers. Secondly,
the indirect trust computation of the servers misses recom-
mendations from nearby servers. In the main algorithm, clients

12



Fig. 13. Load distribution of randomly selected fog servers.

Fig. 14. Trust values of different derivatives of the algorithm and baseline

schemes for randomly selected good fog server.

propagate trust values of the servers they have computed to es-
tablish trusted data communication to servers and the servers use
this value to weight recommendations of the servers. Therefore,
we can conclude that the two-way trust management system
chooses most trusted service providers than the one-way trust
management system. The baseline schemes have comparable
trust values as OTM as all of the trust computation methods are
one-way. However, PeerTrust and EigenTrust converge faster than
OTW though they have lower accuracy as trust computation cycle
increases. Due to two-wayness and adaptive nature, MTTM and
TTM have highest accuracy and fast convergence time than the
other one-way trust management systems.

6. Conclusion

Unprecedented amount of data is being generated by IoT de-
vices posing challenges to cloud computing to find a pathway to
the data to travel to its destination. Fog computing is a promising
architecture that allows data processing near to where they are
generated instead of sending them to the cloud. In doing so,
it saves a great deal of bandwidth and responds in real time
making it ideal solution for latency sensitive applications. To
enjoy the bevy advantages of fog computing there are chal-
lenges that have to be addressed where security, privacy and

trust management are among the most important ones. In this

paper, we have presented a two-way trust management system

that enables service requesters to evaluate trust level of service

providers before awarding the service and that allows service

providers to check the trustworthiness of the service demanders.

The bidirectionality of our solution is the first of its kind for

fog computing and it allows fog nodes abstain from connecting

to untrustworthy nodes and ensures secure data communication

with only trusted nodes. The system incorporates both QoS and

social trust information to compute trust levels of fog nodes

from adaptive combination of direct observation and from rec-

ommendations. Subjective logic is used to aggregate trust values

obtained from neighboring recommenders. Extensive evaluation

of the trust management system shows that it converges quickly,

have high accuracy and is resilient to trust-based attacks. The

solution is modified in two different ways and compared in

terms of percentage of bad nodes selected for service provision

and trust convergence. The first modification is that a service

requester selects a service provider with the highest trust value

instead of selecting a trusted service provider encountered first.

The second amendment, whereas, is the conversion of TTM to

the conventional one-way trust management system. We found

that the proposed system gives an optimal solution since the

modifications have either high overhead and unbalanced load

distribution or do not converge in time or have less accuracy.

The comparison of subjective logic-based algorithms with two

baseline trust schemes shows the preeminence of the two-way

versions of the proposed trust management system.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Acknowledgments

We would like to thank anonymous reviewers of this pa-

per for the insightful and detailed comments. This work is sup-

ported partly by the French government and Ethiopian Ministry

of Education.

13



References

[1] M.P. Daniel Alsen, J. Shangkuan, The future of connectivity: Enabling

the Internet of Things, 2017, URL https://www.mckinsey.com/featured-

insights/internet-of-things/our-insights.

[2] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in

the internet of things, in: Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, ACM, 2012, pp. 13–16.

[3] S. Yi, Z. Qin, Q. Li, Security and privacy issues of fog computing: A

survey, in: International Conference on Wireless Algorithms, Systems, and

Applications, Springer, 2015, pp. 685–695.

[4] E. Marín-Tordera, X. Masip-Bruin, J. García-Almiñana, A. Jukan, G.-J. Ren, J.

Zhu, Do we all really know what a fog node is? Current trends towards

an open definition, Comput. Commun. 109 (2017) 117–130.

[5] E. Alemneh, S.-M. Senouci, P. Brunet, PV-Alert: A fog-based architec-

ture for safeguarding vulnerable road users, in: 2017 Global Information

Infrastructure and Networking Symposium, GIIS, IEEE, 2017, pp. 9–15.

[6] A.M. Rahmani, T.N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang, P.

Liljeberg, Exploiting smart e-Health gateways at the edge of healthcare

Internet-of-Things: A fog computing approach, Future Gener. Comput. Syst.

78 (2018) 641–658.

[7] C.-F. Lai, D.-Y. Song, R.-H. Hwang, Y.-X. Lai, A QoS-aware streaming service

over fog computing infrastructures, in: 2016 Digital Media Industry &

Academic Forum, DMIAF, IEEE, 2016, pp. 94–98.

[8] T. Fernández-Caramés, P. Fraga-Lamas, M. Suárez-Albela, M. Vilar-

Montesinos, A fog computing and cloudlet based augmented reality system

for the industry 4.0 shipyard, Sensors 18 (6) (2018) 1798.

[9] B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, Q. Yang, Incorporating

intelligence in fog computing for big data analysis in smart cities, IEEE

Trans. Ind. Inform. 13 (5) (2017) 2140–2150.

[10] OpenFog, Building an open architecture for fog computing, 2018, URL

https://www.openfogconsortium.org.

[11] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M.A. Ferrag, N. Choudhury,

V. Kumar, Security and privacy in fog computing: Challenges, IEEE Access

5 (2017) 19293–19304.

[12] J. Ni, K. Zhang, X. Lin, X.S. Shen, Securing fog computing for internet of

things applications: Challenges and solutions, IEEE Commun. Surv. Tutor.

20 (1) (2017) 601–628.

[13] Y. Guan, J. Shao, G. Wei, M. Xie, Data security and privacy in fog computing,

IEEE Netw. 32 (5) (2018) 106–111.

[14] N. Tariq, M. Asim, F. Al-Obeidat, M. Zubair Farooqi, T. Baker, M. Ham-

moudeh, I. Ghafir, The security of big data in fog-enabled IoT applications

including blockchain: A survey, Sensors 19 (8) (2019) 1788.

[15] H. Li, M. Singhal, Trust management in distributed systems, Computer 40

(2) (2007) 45–53.

[16] T.S. Dybedokken, Trust Management in Fog Computing (Master’s thesis),

NTNU, 2017.

[17] I. Stojmenovic, S. Wen, The fog computing paradigm: Scenarios and

security issues, in: 2014 Federated Conference on Computer Science and

Information Systems, IEEE, 2014, pp. 1–8.

[18] Z.M. Aljazzaf, M.A. Capretz, M. Perry, Trust bootstrapping services and

service providers, in: 2011 Ninth Annual International Conference on

Privacy, Security and Trust, IEEE, 2011, pp. 7–15.

[19] Y. Wang, J. Vassileva, Trust and reputation model in peer-to-peer networks,

in: Proceedings Third International Conference on Peer-to-Peer Computing,

P2P2003, IEEE, 2003, pp. 150–157.

[20] B. Liu, A survey on trust modeling from a Bayesian perspective, 2018, arXiv

preprint arXiv:1806.03916.

[21] Z. Yan, P. Zhang, A.V. Vasilakos, A survey on trust management for Internet

of Things, J. Netw. Comput. Appl. 42 (2014) 120–134.

[22] J.-H. Cho, A. Swami, R. Chen, A survey on trust management for mobile

ad hoc networks, IEEE Commun. Surv. Tutor. 13 (4) (2010) 562–583.

[23] J. Guo, R. Chen, J.J. Tsai, A survey of trust computation models for service

management in internet of things systems, Comput. Commun. 97 (2017)

1–14.

[24] F. Azzedin, M. Ghaleb, Internet-of-things and information fusion: Trust

perspective survey, Sensors 19 (8) (2019) 1929.

[25] R. Chen, J. Guo, F. Bao, J.-H. Cho, Integrated social and quality of service

trust management of mobile groups in ad hoc networks, in: 2013 9th Inter-

national Conference on Information, Communications & Signal Processing,

IEEE, 2013, pp. 1–5.

[26] L. Atzori, A. Iera, G. Morabito, SIoT: Giving a social structure to the internet

of things, IEEE Commun. Lett. 15 (11) (2011) 1193–1195.

[27] V.L. Tran, A. Islam, J. Kharel, S.Y. Shin, On the application of social internet

of things with fog computing: a new paradigm for traffic information

sharing system, in: 2018 IEEE 6th International Conference on Future

Internet of Things and Cloud, FiCloud, IEEE, 2018, pp. 349–354.

[28] A. Jøsang, Decision making under vagueness and uncertainty, in: Subjective

Logic, Springer, 2016, pp. 51–82.

[29] A. Jsang, Subjective Logic: A Formalism for Reasoning Under Uncertainty,

Springer Publishing Company, Incorporated, 2018.

[30] R. Chen, J. Guo, F. Bao, Trust management for service composition in

SOA-based IoT systems, in: 2014 IEEE Wireless Communications and

Networking Conference, WCNC, IEEE, 2014, pp. 3444–3449.

[31] F. Bao, R. Chen, Trust management for the internet of things and its

application to service composition, in: 2012 IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks, WoWMoM,

IEEE, 2012, pp. 1–6.

[32] F. Bao, R. Chen, J. Guo, Scalable, adaptive and survivable trust management

for community of interest based internet of things systems, in: 2013 IEEE

Eleventh International Symposium on Autonomous Decentralized Systems,

ISADS, Citeseer, 2013, pp. 1–7.

[33] F. Bao, I.-R. Chen, Dynamic trust management for internet of things

applications, in: Proceedings of the 2012 International Workshop on

Self-Aware Internet of Things, ACM, 2012, pp. 1–6.

[34] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, X. Wang, TRM-IoT: A trust

management model based on fuzzy reputation for internet of things,

Comput. Sci. Inf. Syst. 8 (4) (2011) 1207–1228.

[35] U. Jayasinghe, N.B. Truong, G.M. Lee, T.-W. Um, Rpr: A trust com-

putation model for social internet of things, in: 2016 Intl IEEE

Conferences on Ubiquitous Intelligence & Computing, Advanced and

Trusted Computing, Scalable Computing and Communications, Cloud and

Big Data Computing, Internet of People, and Smart World Congress,

UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, IEEE, 2016, pp. 930–937.

[36] M. Khani, Y. Wang, M.A. Orgun, F. Zhu, Context-aware trustworthy service

evaluation in social internet of things, in: International Conference on

Service-Oriented Computing, Springer, 2018, pp. 129–145.

[37] M.B. Monir, M.H. AbdelAziz, A.A. AbdelHamid, E.-S.M. EI-Horbaty, Trust

management in cloud computing: a survey, in: 2015 IEEE Seventh Inter-

national Conference on Intelligent Computing and Information Systems,

ICICIS, IEEE, 2015, pp. 231–242.

[38] M. Chiregi, N.J. Navimipour, Cloud computing and trust evaluation: A

systematic literature review of the state-of-the-art mechanisms, J. Electr.

Syst. Inf. Technol. (2017).

[39] T.H. Noor, Q.Z. Sheng, S. Zeadally, J. Yu, Trust management of services in

cloud environments: Obstacles and solutions, ACM Comput. Surv. 46 (1)

(2013) 12.

[40] J. Huang, D.M. Nicol, Trust mechanisms for cloud computing, J. Cloud

Comput. Adv. Syst. Appl. 2 (1) (2013) 9.

[41] S. Chakraborty, K. Roy, An SLA-based framework for estimating trustwor-

thiness of a cloud, in: 2012 IEEE 11th International Conference on Trust,

Security and Privacy in Computing and Communications, IEEE, 2012, pp.

937–942.

[42] P. Manuel, A trust model of cloud computing based on Quality of Service,

Ann. Oper. Res. 233 (1) (2015) 281–292.

[43] R. Hajizadeh, N. Jafari Navimipour, A method for trust evaluation in

the cloud environments using a behavior graph and services grouping,

Kybernetes 46 (7) (2017) 1245–1261.

[44] R. Chen, J. Guo, D.-C. Wang, J.J. Tsai, H. Al-Hamadi, I. You, Trust-based

service management for mobile cloud IoT systems, IEEE Trans. Netw. Serv.

Manag. 16 (1) (2018) 246–263.

[45] F.H. Rahman, T.W. Au, S. Newaz, W.S. Suhaili, Trustworthiness in fog: A

Fuzzy approach, in: Proceedings of the 2017 VI International Conference

on Network, Communication and Computing, ACM, 2017, pp. 207–211.

[46] A. Alrawais, A. Alhothaily, C. Hu, X. Cheng, Fog computing for the internet

of things: Security and privacy issues, IEEE Internet Comput. 21 (2) (2017)

34–42.

[47] R. Roman, J. Lopez, M. Mambo, Mobile edge computing, fog et al.: A survey

and analysis of security threats and challenges, Future Gener. Comput. Syst.

78 (2018) 680–698.

[48] F.H. Rahman, T.-W. Au, S.S. Newaz, W.S. Suhaili, G.M. Lee, Find my

trustworthy fogs: A fuzzy-based trust evaluation framework, Future Gener.

Comput. Syst. (2018).

[49] R. Mahmud, R. Kotagiri, R. Buyya, Fog computing: A taxonomy, survey and

future directions, in: Internet of Everything, Springer, 2018, pp. 103–130.

14



[50] M. Wazid, A.K. Das, N. Kumar, A.V. Vasilakos, Design of secure key

management and user authentication scheme for fog computing services,

Future Gener. Comput. Syst. 91 (2019) 475–492.

[51] P.B. Velloso, R.P. Laufer, D.D.O. Cunha, O.C.M. Duarte, G. Pujolle, Trust

management in mobile ad hoc networks using a scalable maturity-based

model, IEEE Trans. Netw. Serv. Manage. 7 (3) (2010) 172–185.

[52] OpenFog, Open fog consortium, openfog reference architecture for fog

computings, 2017, URL https://www.openfogconsortium.org/wpcontent/

uploads/OpenFog_Reference_Architecture_2_09_17-FINAL-1.pdf,2017.

[53] R.K. Naha, S. Garg, D. Georgakopoulos, P.P. Jayaraman, L. Gao, Y. Xiang, R.

Ranjan, Fog computing: Survey of trends, architectures, requirements, and

research directions, IEEE Access 6 (2018) 47980–48009.

[54] M. Arshad, Z. Ullah, N. Ahmad, M. Khalid, H. Criuckshank, Y. Cao, A survey

of local/cooperative-based malicious information detection techniques in

VANETs, EURASIP J. Wireless Commun. Networking 2018 (1) (2018) 62.

[55] S. Namal, H. Gamaarachchi, G. MyoungLee, T.-W. Um, Autonomic trust

management in cloud-based and highly dynamic IoT applications, in: 2015

ITU Kaleidoscope: Trust in the Information Society, K-2015, IEEE, 2015, pp.

1–8.

[56] V. Paxson, Empirically derived analytic models of wide-area TCP

connections, IEEE/ACM Trans. Netw. 2 (4) (1994) 316–336.

[57] G. Haßlinger, O. Hohlfeld, The Gilbert–Elliott model for packet loss in real

time services on the Internet, in: 14th GI/ITG Conference-Measurement,

Modelling and Evalutation of Computer and Communication Systems, VDE,

2008, pp. 1–15.

[58] A. Bildea, O. Alphand, F. Rousseau, A. Duda, Link quality estimation with

the Gilbert–Elliot model for wireless sensor networks, in: 2015 IEEE 26th

Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications, PIMRC, IEEE, 2015, pp. 2049–2054.

[59] R. Chen, J. Guo, Dynamic hierarchical trust management of mobile

groups and its application to misbehaving node detection, in: 2014 IEEE

28th International Conference on Advanced Information Networking and

Applications, IEEE, 2014, pp. 49–56.

[60] A. Jøsang, A logic for uncertain probabilities, Int. J. Uncertain. Fuzziness

Knowl.-Based Syst. 9 (03) (2001) 279–311.

[61] A. Jøsang, S. Marsh, S. Pope, Exploring different types of trust propagation,

in: International Conference on Trust Management, Springer, 2006, pp.

179–192.

[62] H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: A toolkit

for modeling and simulation of resource management techniques in the

Internet of Things, Edge and Fog computing environments, Softw. - Pract.

Exp. 47 (9) (2017) 1275–1296.

[63] M. Etemad, M. Aazam, M. St-Hilaire, Using DEVS for modeling and simu-

lating a Fog Computing environment, in: 2017 International Conference

on Computing, Networking and Communications, ICNC, IEEE, 2017, pp.

849–854.

[64] R. Mayer, L. Graser, H. Gupta, E. Saurez, U. Ramachandran, Emufog: Exten-

sible and scalable emulation of large-scale fog computing infrastructures,

in: 2017 IEEE Fog World Congress, FWC, IEEE, 2017, pp. 1–6.

[65] A. Brogi, S. Forti, QoS-aware deployment of IoT applications through the

fog, IEEE Internet Things J. 4 (5) (2017) 1185–1192.

[66] H. Hamdane, T. Serre, C. Masson, R. Anderson, Issues and challenges for

pedestrian active safety systems based on real world accidents, Accid. Anal.

Prev. 82 (2015) 53–60.

[67] Y. Wang, Y.-C. Lu, I.-R. Chen, J.-H. Cho, A. Swami, C.-T. Lu, LogitTrust: A

logit regression-based trust model for mobile ad hoc networks, in: 6th ASE

International Conference on Privacy, Security, Risk and Trust, Boston, MA,

2014, pp. 1–10.

[68] M. Nitti, R. Girau, L. Atzori, Trustworthiness management in the social

internet of things, IEEE Trans. Knowl. Data Eng. 26 (5) (2013) 1253–1266.

[69] L. Xiong, L. Liu, Peertrust: Supporting reputation-based trust for peer-to-

peer electronic communities, IEEE Trans. Knowl. Data Eng. 16 (7) (2004)

843–857.

[70] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The eigentrust algorithm

for reputation management in p2p networks, in: Proceedings of the 12th

International Conference on World Wide Web, ACM, 2003, pp. 640–651.

15


	A two-way trust management system for fog computing
	Introduction
	Related work
	System model
	How it works?
	Deployment example
	Trust metrics

	Subjective logic-based trust management system
	Subjective logic and trust computation
	Two-way trust computation algorithm
	Resistance to trust-based attacks 

	Trust management algorithm performance
	Evaluation of trust accuracy, convergence and resilience
	Comparative analysis

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


