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Abstract

The concept of “extreme data” is a recent re-incarnation of the “big data” problem, which is distinguished by the massive amounts of
information that must be analyzed with strict time requirements. In the past decade, the Cloud data centers have been envisioned as the essential
computing architectures for enabling extreme data workflows. However, the Cloud data centers are often geographically distributed. Such
geographical distribution increases offloading latency, making it unsuitable for processing of workflows with strict latency requirements, as the
data transfer times could be very high. Fog computing emerged as a promising solution to this issue, as it allows partial workflow processing in
lower-network layers. Performing data processing on the Fog significantly reduces data transfer latency, allowing to meet the workflows’ strict
latency requirements. However, the Fog layer is highly heterogeneous and loosely connected, which affects reliability and response time of task
offloading. In this work, we investigate the potential of Fog for scheduling of extreme data workflows with strict response time requirements.
Moreover, we propose a novel Pareto-based approach for task offloading in Fog, called Multi-objective Workflow Offloading (MOWO). MOWO
considers three optimization objectives, namely response time, reliability, and financial cost. We evaluate MOWO workflow scheduler on a set of
real-world biomedical, meteorological and astronomy workflows representing examples of extreme data application with strict latency requirements.

Keywords Extreme scale workflows, Fog computing, Multi-objective optimization

I. Introduction

Data-intensive scientific workflows represent an important class of
applications. These applications are present wherever data sources
and computations are distributed, in domains such as bioinformatics,
astronomy and civil engineering. They are characterized by a wide
data distribution due to the large volume of sources (e.g. sensors,
experimental processes), which has to be collected and analyzed
within given time constraints to obtain meaningful information.
The processes of data collection and analysis require a big amount
of computational and network resources, usually not available in
common scientific settings [1]. For this reason, execution of sci-
entific workflows often employs geographically distributed Cloud
resources.

The use of Cloud resources allows scientists in different fields to
run computationally intensive scientific workflows exploiting typical
Cloud features (e.g. elasticity, virtualization). However, in recent
years, we have seen the rise of extreme data scientific application [2]
(e.g. eHealth [3], astronomy [4] and other scientific application
domains). The main characteristics of these applications are (1) their
distributed nature, (2) the huge amount of data (in the order of
petabytes) they generate and (3) strict latency requirements. Due to
the geographical distance between the data sources and the Cloud,
running such workflows on the Cloud will negatively affect latency
and cause violation of workflow requirements [5].

Fog Computing has been proposed as a solution to these issues [6].
From an architectural point of view it can be seen as an extension of
the Cloud that relies on computational resources deployed in close
proximity to the user (Fog nodes). The use of Fog nodes allows to
differentiate scheduling for different types of workload components.

For example, it allows scheduling of interactive tasks closer to the
user, or data-intensive tasks closer to the data sources, to decrease
response time and improve user experience.

However, Fog architectures are highly heterogeneous and loosely
connected, therefore posing multiple challenges in terms of workflow
scheduling and tasks offloading. Moreover, Fog nodes usually host
less computational resources, thus preventing offloading of many
tasks on the Fog layer. Currently, only a few state-of-the-art research
works explored this problem [7, 8, 9]. However, they mostly focus on
optimizing only a single constrained objective, omitting important
parameters such as cost and reliability.

In this work, we investigate the potential of Fog computing for
scheduling of scientific workflows with low latency requirements.
First, we propose a model for workflow scheduling considering the
use of Cloud and Fog resources, in terms of virtual infrastructure,
i.e. virtual machines and containers. Then, we define the problem of
workflow scheduling as a multi-objective optimization problem, con-
sidering as objectives the global response time, reliability and cost of
the scheduling. Based on this definition, we propose MOWO (Multi-
Objective Workflow Optimization), an algorithm based on NSGA-II
metaheuristic, to solve this problem. Afterwards, we analyze the
suitability of the Cloud alone for performing near-real-time work-
flows and compare it with a hybrid Cloud/Fog environment. Finally,
we evaluate the algorithm in comparison to other state-of-the-art
workflow scheduling algorithms.

This work focuses on scientific workflows, therefore we will con-
sider real-world scientific and biomedical workflow structures with
randomly generated characteristics. Our evaluation employs Monte-
Carlo simulations, which have been proven to be very effective in
simulating Fog infrastructures [10].
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The paper is organized as follows: first, we define our theoretical
model in Section II. Based on the theoretical model, we design the
multi-objective algorithm in Section III. Then, we define our exper-
imental setup and the selected scientific workflows in Section IV
and comment our results in Section V. We discuss related work in
Section VI and conclude our paper in Section VII.

II. Model

II.1 Extreme Data Workflow Model
Our definition of extreme data workflow expands from the definition
of scientific workflow given by [11, 12]. Formally, a workflow W
is defined as a set of interdependent tasks represented by a DAG
(Directed Acyclic Graph), whose nodes are the tasks and edges
model dependencies between them. We extend this definition of
scientific workflow by considering also latency requirements for
data transfer between tasks, to model near-real-time requirements of
applications defined as in [13]. Formally,

Definition 1. W def
= 〈TW ,LW , ~dt(•), ~dl(•)〉, where TW is the set of

tasks in workloadW , LW is the set of edges connecting the tasks in TW
(LW ⊆ TW × TW ), ~dt(•) the vector of requirements of each task in TW
and ~dl(•) is the demand vector for each edge in LW .

Let TW be the set of workflow tasks. The demand vector ~dt(ti) for
a task ti ∈ TW , is defined in terms of CPU demand and input/output
data:

~dt(ti)
def
= 〈SIZE(ti), CPU(ti), DATAin(ti), DATAout(ti)〉, (1)

respectively, the size of the task ti in millions of instruction (MI), the
number of CPUs required by ti and the size of input/output data.
We assume that the size of input data is equal to the sum of the
output data of the task predecessors, namely

DATAin(ti) = ∑
tj∈π(ti)

DATAout(tj). (2)

Concerning edges, for each edge (ti , tj) ∈ LW we define the demand
vector ~dl((ti , tj)) as

~dl((ti , tj))
def
= lat((ti , tj)), (3)

where lat((ti , tj)) represents the maximum latency that user re-
quires to transfer data from ti and tj. This demand vector is used
to model the near-real time requirements of extreme data applica-
tions. To have a valid scheduling, we have to ensure that there is a
connection between ti and tj, which ensures a latency lower or equal
to lat((ti , tj)).

II.2 Infrastructure model
In this work, we target Cloud/Fog infrastructures. In this type of
infrastructures, we have heterogeneous computational nodes: (1)
Cloud data centers, with high computational capabilities, but far
from the source of data and geographically distributed, and (2) Fog
nodes, with lower computational capabilities [6] (in comparison with
Cloud data centers) but closer to the source of data and with lower
latencies [14].

Definition 2. We define a Cloud/Fog infrastructure I as a directed graph
such that I = {NI ,LI}, where NI is the set of computational nodes
and LI the set of network connections between the nodes, namely LI ⊆
NI ×NI .

Next, we define computational nodes and network connections.

II.2.1 Computational nodes

NI is defined as {CI ∪ FI ∪ EI}, respectively the set of Cloud data
centers, the set of Fog nodes and the set of end devices. Each
computational node can host a limited number of resources, in
terms of number of CPUs, the million of instructions per second
that the node can execute and its storage capabilities, defined by its
capacity vector~c. ~c varies according to the type of node. Concerning
Cloud nodes, we define ~cc as

~cc(ci ∈ CI ) = 〈CPU, MIPS, STORAGE, p(ci)〉 (4)

where CPU(ci) is the number of CPUs available on the Cloud data
center, MIPS(ci) is the million of instruction per second that each
CPU in ci can execute, STORAGE(ci) is the amount of storage available
on ci , p(ci) is the pricing function for using Cloud resources on
node ci (defined in Section II.3.1). Concerning Fog nodes, they are
computational nodes whose characteristics are: (1) a limited amount
of resource compared to the Cloud nodes, and (2) geographical
proximity to the user, i.e. they are located either on-premise, or at
locations near to end devices [14]. Therefore, we define a capacity
vector of a Fog node fi ∈ FI as

~c f ( fi ∈ FI )
def
= 〈CPU, MIPS, STORAGE, p f ( fi)〉 (5)

where CPU( fi) is the number of CPUs available on the Fog node,
MIPS( fi) represents the millions of instruction per second that each
CPU in fi can execute, STORAGE( fi) is the amount of storage available
on the Fog node and p f ( fi) the price penalty for execution on Fog
node fi (see Section II.3.1). Finally, we assume that each workflow
is submitted from an end device e ∈ EI . We define the end devices
ei ∈ EI as the nodes where each workflow is submitted to the
infrastructure and where the final results of the workflow execution
are collected. These nodes model different type of user devices used
to submit workflows and to retrieve results of their execution (e.g.
mobile devices, laptops or desktop PCs). For each end device we
define the capacity vector as

~ce(ei) ∈ EI ) = 〈CPU, MIPS, STORAGE〉. (6)

For each network connection li,j = (ni , nj) ∈ LI we also define a
Quality of Service vector QoS(li,j) as follows:

QoS(li,j) = 〈lat, bw〉, (7)

respectively the latency and the bandwidth available between nodes
ni and nj. If there is no connection between ni and nj, lat(li,j) = ∞
and bw(li,j) = 0. Conversely, we set lat(li,i) = 0 and bw(li,i) = ∞.
Formally,

Definition 3. li,j
def
= (ni , nj) : ni , nj ∈ NI . Also, ∃li,j ⇐⇒ lat(li,j) ≥

0, bw(li,j) ∈ R+.
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II.3 Problem definition

Scheduling S of a workloadW over an infrastructure I is a mapping
of the tasks in TW to the nodes in NI and of the edges in LW to
the physical links in LI . A task can be executed either on an end
device or offloaded to a Cloud/Fog node. Since links in LW impose
an order on tasks’ execution, scheduling ofW over I is performed
in different time steps. In each time step we execute only tasks
ti ∈ TW such that δin(ti , τ) = ∅. Such tasks are defined as ready. We
define as TW (τ) the set of tasks in TW that are ready at time step τ.
We define the partial scheduling of tasks TW (τ) as a set Sτ of pairs
(ti , nj), with Sτ ⊆ TW (τ)×NI , such that

(ti , nj) ∈ S� ⇐⇒ ti is allocated to node nj. (8)

More tasks can be assigned to a computational node, as soon as
node capacity constraints are respected. We define Sτ(ni) as the set
of tasks mapped to node ni at instant τ, namely

ti ∈ Sτ(nj) ⇐⇒ ∃j : (ti , nj) ∈ Sτ . (9)

For simplicity, we define S(ti) as the node where ti is scheduled
in schedule S . We define a valid scheduling of a workflow W on
infrastructure I , Sτ(W , I). A partial deployment is valid only if (1)
all the tasks are deployed only once on the infrastructure and (2) all
deployments of tasks on nodes satisfy the capacity constraints of the
nodes, namely:

Definition 4. A scheduling Sτ(W , I) of a workflowW on infrastructure
I is valid ⇐⇒

1.
⋃

nj∈NI S(nj) = TW (τ);

2. (ti , nj) ∈ Sτ(W , I), ti ∈ TW =⇒ nj ∈ E ;

3. (ti , nj) ∈ Sτ(W , I) ⇐⇒

(a) ∑ti∈Sτ (nj)
~d(ti) ≤ ~c•(ni);

(b)
⋃

ti∈Sτ (nj)
δin(ti , τ) ⊆ δin(ni , τ);

(c)
⋃

ti∈Sτ (nj)
δout(ti , τ) ⊆ δout(ni , τ);

(d) ∀(tj, ti) ∈ δin(ti , τ) lat(S(tj),S(ti)) ≤ ~dl(tj, ti), li,j ∈
δin(ni , τ);

(e) ∀(ti , tj) ∈ δout(ti , τ) lat(S(ti),S(tj)) ≤ ~dl((ti , tj)), li,j ∈
δout(ni , τ).

A complete deployment S(W , I) is the union of all partial de-
ployments, namely

S(W , I) =
⋃

τ=[0,τend ]

Sτ(W , I), (10)

where τend is the time when TW = ∅.

II.3.1 Objectives

In this work, we want to focus on the perspective of the user running
the workflow. For this reason, we do not consider objectives such as
energy consumption, or profit for the provider. Following the ideas
from [10, 15, 16], we focus on three main objectives: running time,
reliability and user cost. Therefore, the objectives of our deployment
are defined as follows:

min RT(S(W , I))
max RL(S(W , I))
min COST(S(W , I))

(11)

subject to the constraints in Definition 4, where RT represents the
total response time of the deployment, as defined in Equation 12,
RL represents the reliability of the deployment, as defined in Equa-
tion 16, and COST represents the cost of the deployment, as defined
in Equation 17.

Response time The workload response time is defined as

RT(S(W , I)) = τend(W), (12)

where τend is the time when TW = ∅. For each task ti , rt(ti) the
response time of ti depends on the maximum response time among
each predecessor of ti , plus (1) the time for running the task on node
ni , namely rtcpu(ti , ni), (2) the time for transferring input data of task
ti from node nj to ni , OTin(ti , ni , nj) and (3) the time for transferring
output data from predecessors to node ni OTout(ti , ni , nj). Due to
the interdependency of tasks, a task ti cannot be executed before all
its predecessors are terminated. For this reason, the response time of
each task depends on the maximum response time of its predecessors.
We define then the predecessor with maximum response time as
π∗(ti) = arg maxt∈δin ti

RT(t, S(t)). Finally, we define the response
time of each task as follows:

RT(t, S(t)) =


rtcpu(t, S(T)) ⇐⇒ δin(t) = ∅
RT(π∗(t), S(π∗(t))) + OTin(t,S(π∗(t)),S(t))+
+OTout(t, π∗(t)),S(t)))

(13)
We describe each term in the following text. First, we define
rtcpu(ti , ni) as follows:

rtcpu(ti , ni) =
SIZE(ti)

MIPS(ni)
(14)

Offloading time OTin depends on data transferred to S(ti) and
bandwidth available between end device e and D(ti). Offloading ti
requires transfer of input data DATAin(ti). Then, OTup and OTdown
are defined as

OTin,out(ni , ti , nj) =
DATAin,out

bw(ni , nj)
+ lat(ni , nj). (15)

Reliability The reliability for executing a workflowW on Cloud
and Fog resources NI is calculated by considering the reliability of
the physical devices Ri , where the set of tasks TW (τ) is scheduled.
We model the reliability objective as:

RL(S(W , I)) =
TW (τ)

∏
i=1

(Ri)) (16)
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Due to the strict dependencies among the workflow’s tasks, we
model the reliability in a sequential manner, meaning that if a task
fails due to node failure, the workflow will either not be successfully
completed or a fail-safe mechanism will be activated. The reliability
objective serves only as a criterion that predicts how high is the
probability for the workflow execution to fail and does not include
any workflow fail-safe mechanisms, such as roll-back or checkpoints.
More concretely, if the reliability of the workflow is higher, than
the protective mechanisms will have to be activated less frequently,
consequently reducing the execution overhead.

Cost The cost for user depends on where tasks are executed, the
amount of resources used and the running time, assuming different
cost for each Cloud or Fog node. User cost for a deployment S(W , I)
is defined as the sum of the execution costs of each task, as in

COST(S(W , I)) = ∑
ti∈W

cost(ti). (17)

Where cost(ti) depends on the VM instance vi used by ti and on
where this instance is executed. For simplicity, we assume that
~dt(ti) = ~cc(vi). If ti is offloaded on Cloud, the user pays the price
for running the VM on Cloud during the running time of the task ti
scheduled on the node cj ∈ CI , namely p(ti , cj). Concerning Fog, at
the time we write, finding a pricing strategy for Fog nodes is still
an open research challenge by [17], since Cloud pricing strategies
used for Cloud are not applicable on Fog [18]. Therefore, if task ti is
scheduled on Fog, the user will pay the average price for scheduling
the VM on Cloud, p̄(ti , CI ), plus an additional quantity, defined by
a function p f , for scheduling tasks on Fog. Such additional cost is
because of two main reasons: first, execution on Fog has a positive
effect on latency, due to the reduced geographical distance. Moreover,
deploying Fog nodes in proximity of the user (e.g. metropolitan
areas, highways) has an additional cost for the provider. Therefore,
this additional quantity p f (ti , f j) should maximize both provider’s
revenue and user’s QoS satisfaction. We define then the cost for
executing task ti as

cost(ti) =


0, S(ti) ∈ EI
p(vi) · RT(ti ,S(ti)), S(ti) ∈ CI
p(vi) · RT(ti ,S(ti)) + p f (vi ,S(ti), η), S(ti) ∈ FI

(18)
Where p(vi) depends on the CPU and STORAGE values of the VM vi ,
namely

p(vi) = CPU(vi) · pcpu + STORAGE(vi) · pstor . (19)

Instead, p f depends on a η parameter that models user preference
for lower latency or cheaper price. We define the p f (vi , η) function
in Equation 20.

p f (vi ,S(ti), η) =
Tf (ti)

η
−

√√√√ η · p(vi ,S(ti)) + Tf

η2 ·minnj∈FI RT(ti , nj)
, (20)

where Tf = ∑ni∈CI
lat(ej ,ni)

|CI |
+ 1

CPU(ni)
− ∑nk∈FI

lat(ej ,nk)

|FI |
and η is a

value between 0.01 and 1, where a value closer to 0.01 means that
user prefers to have lower latency, while a value closer to 1 indicates
that user prefers price over latency. In [19] it is shown that this
function maximizes both providers’ revenue and users’ satisfaction,

making it a possible pricing model for Fog. In this work, we consider
η = 1, which considers a scenario where users are more interested
in saving money than in having a very fast execution, meaning a
lower penalty for execution on the Fog.

III. Multi-Objective Algorithm

Workflow scheduling is an optimization problem, which is known
to be NP-complete [20]. Moreover, the introduction of the concept
of Fog offloading, described in Section II, further aggravates the
problem of finding close to optimal scheduling solutions. Therefore,
to search for scheduling solutions, we utilize modified optimization
algorithm, based on the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [21]. NSGA-II is an evolutionary multi-objective op-
timization algorithm that searches for Pareto-optimal solutions by
promoting the principle of elitism. This principle implies that the
solutions with highest fitness in a given population should always
be preserved and never deleted. Furthermore, NSGA-II increases
the exploration efficiency of the problem space by implementing
explicit mechanisms for diversity preservation in the population,
and by emphasizing the non-dominated solutions on each iteration.
As with any other genetic algorithm, the offspring population Po
is created by applying crossover and mutation operations on the
parent population Pp. More concretely, in our implementation we
utilize Simulated Binary Crossover (SBX) and polynomial mutation,
thus better sustaining the diversity in the population. In order to
guarantee that the best solutions are always preserved, the offspring
and parents populations are then combined together to form Pc.
Only then a non-dominated sorting is applied, thus identifying a set
of non-dominated Pareto solutions in the combined Pc population.
The above described process is repeated until the maximal number
of generations Ng is reached, thus identifying the final set of Pareto
optimal solutions. Afterwards, a strategy called crowding distance
sorting is applied to select solutions from the least crowded region
in the Pareto front.

In relation to the scheduling model, we represent the individuals
I in the population P as vectors VI with a size equal to the number
of tasks Tn that are scheduled. The values stored in each vector field
corresponds to a single Cloud or Fog resource, where the task can be
executed. Respectively, all processing elements in the environment
are also assigned with unique IDs that are equal to the values saved
in the vector field. In such way, each individual corresponds to a
solution vector that represents unique global scheduling of all tasks
in the workflow in relation to the Cloud and Fog nodes. Further-
more, we introduce an additional vector in which the dependencies
between the tasks and the synchronization barriers, i.e. workflow
levels, are uniquely marked. This allows every individual to be cor-
rectly represented and evaluated. An example of a single individual
that corresponds to a solution vector for scheduling 8 tasks to 5
resources is presented in Figure 1.

Figure 1: Solution vector
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IV. Experimental Setup

IV.1 Workflows
In order to validate and evaluate the performance of the scheduling
model, we carefully select four use-case workflows, from the field of
natural sciences, with different computing and storage demands.

IV.1.1 Montage workflow

Montage is a distributed application for assembling multiple in-
dependent astronomical images, therefore constructing a mosaic
that enables creation of user-specified projection views, coordinate
systems and spatial scale [22]. The application is composed of inde-
pendent modules that analyze the geometry of the images, which
are later used for creating and managing the mosaics.

The mosaic is costructed in four steps: (1) discovery of the ge-
ometry of the input images in relation to the sky and calculation
of the geometry of the output mosaic, (2) re-projection of the input
images to an unified spatial scale and coordinate system, (3) model-
ing the background radiation in the input images, and (4) adding
the re-projected, background-corrected images into the mosaic. The
structure of the workflow of this application is presented in Figure 2.

CalculateOverlaps

RetriveImageList

CalculateOverlaps CalculateOverlaps

Iterate_raw_images

CalculateOverlapsCalculateOverlaps

Iterate_overlaps

ParallelFor

ParallelFor

CalcBackgroundModel CalcTiles

CalculateOverlapsBgCorrectionMulti

Iterate_proj_images

ParallelFor

CalculateOverlapsAddAndShrink

Iterate_tiles

ParallelFor

AddTiles

Figure 2: Montage workflow

IV.1.2 MeteoAG workflow

MeteoAG is a distributed grid/cloud scientific application for con-
duction meteorological simulations. The simulator utilizes the nu-
merical atmospheric model RAMS [23] to produce atmospheric fields
of heavy precipitation areas over the western part of Austria at a
spatially and temporally much finer granularity in comparison with
the current weather models [24]. The main goal of the simulator is to
resolve and predict watersheds and thunderstorms in the Austrian
alpine region. The structure of the workflow of this application is
presented on Figure 3.

IV.1.3 Epigenomics workflow

The Epigenomics workflow is a data processing pipeline that exe-
cutes various genome sequencing operations [25]. The original DNA

SimulationInit

case_init

rams_makevfile

Parallel_per_simulation

ParallelFor

rams_init rams_all

revu_compare

raver

revu_all

Figure 3: MeteoAG workflow

sequence data is generated by a specific genetic analysis system. Af-
ter the acquisition, data sequences are split into several chunks that
can be processed in parallel. The data in each chunk is converted
into a specific format required by the sequence aligner. The rest of
the tasks in the workflow involve filtering of noisy or contaminating
sequences and reference genome mapping of the sequences into
the correct location. Afterwards, a global map is created, which
identifies the sequence density at each position in the genome. The
structure of the workflow of this application is presented in Figure 4.

IV.1.4 Burrows-Wheeler Aligner workflow

BWA is an alignment tool that is used to perform low-divergent
sequencing against a large reference genome [26]. The tool is based
on backward search with Burrows-Wheeler Transform (BWT), thus
efficiently aligning short sequencing reads against a large reference
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sol2sanger

mapMerge
Parallel_per_split

FilterContams

fastQSplit

fastq2bfq

map

maqIndex

pileup

Figure 4: Epigenomics workflow

sequence, allowing mismatches and gaps. BWA supports both base
space reads, e.g. from Illumina sequencing machines and color space
reads from AB SOLiD machines. It consists of three algorithms: (1)
BWA-backtrack optimized for small sequences, (2) BWA-SW for
longer sequences and (3) BWA-MEM is an optimized version of the
BWA-SW with support for higher density data. The structure of the
workflow of this application is presented in Figure 5.

IV.2 Simulation Framework

Different scenarios are evaluated through simulations, due to the
unavailability of real-world Fog infrastructure to perform our ex-
periments. At the time we write, several simulation frameworks
for Fog/Edge computing have been proposed, such as iFogSim [27]
and EdgeCloudSim [28]. However, they neither support workflow
scheduling nor allow to specify our cost model. For this reason, we
extend FogTorchPI [29] Monte-Carlo simulator to develop SLEIP-
NIR (Spark-enabled mobiLe Edge offloadIng Platform moNte-carlo
sImulatoR). SLEIPNIR is a Monte-Carlo simulation framework for
workflow scheduling on a Fog infrastructure. The use of Monte-
Carlo simulation has been proved to be more suited for the vari-
ability of the target environment [30]. Besides, SLEIPNIR supports
several DAG workflows scheduling algorithms, such as [31, 32].
SLEIPNIR is based on the model defined in Section II. In com-
parison to FogTorchPI, SLEIPNIR includes (1) Fog cost model de-
fined in Section II.3.1, (2) support for DAG workflow scheduling
and (3) implementation of typical scientific workflows described in
Section IV.1. The extended version of the framework is available
online (https://github.com/vindem/sleipnir). The input of our
Monte-Carlo simulation is the infrastructure setup, consisting of
the hardware characteristics of the computational nodes, network
configuration and QoS capabilities and requirements, as well as the
workflow to be executed. We want to ensure that each result falls in
a confidence interval of ±0.5 with 95% confidence. For this reason,
each experiment is run 10, 000 times. The confidence interval is calcu-
lated on the samples using the formula x̄± 1.96 · σ√

n , where x̄ is the

bwa_split1

bwa_bwa1aln

bwa_concat

Parallel_per_split

bwa_split2 bwa_bwaindex

Figure 5: BWA workflow

mean of samples, 1.96 is the z∗ value from the standard distribution
for the desired confidence level, σ is the population standard devia-
tion and n is the number of samples. The Monte-Carlo simulation is
described in Figure 6. For each iteration, we perform a sampling of
the infrastructure and of the workflow setup, defining for each task
and link of the workflows the demand vector ~d (as in Equations 1
and 3), the capability vectors ~c for each computational node and the
network link QoS (as in Equations 4, 5 and 7). Infrastructure and
application used in sampling are described in Section IV.3. For each
sampling, we run an instance of our MOWO algorithm and obtain
a Pareto-front. For the implementation of the multi-objective opti-
mization problem we utilize the jMetal multi-objective optimization
framework, which allows pre-defined metaheuristics with pluggable
objectives to be used [33]. Since different deployments can be gener-
ated during these runs, due to the high variability of the simulated
environment, we store all the obtained deployments in a histogram.
We consider only the deployment with the highest frequency in the
histogram for comparisons. If there are two deployments with the
same frequency, we consider the one with the best value for each
objective.

IV.3 Infrastructure setup

For each iteration, we perform a sampling of both infrastructure and
workflow setup and generate different setups, that allow to test the
algorithm’s performance in different settings. In the next sections,
we describe how the sampling is performed.
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Figure 6: SLEIPNIR overview

IV.3.1 Computational nodes

As described in Section II.2, we mainly consider Cloud and Fog
nodes. We assume two different configurations for our experiments:
CLOUDONLY, where we only have 12 Cloud nodes and CLOUD-
FOG, a heterogeneous configuration with 6 Cloud nodes and 6 Fog
nodes, that is a realistic setup for the type of workflows that we want
to run. The reason for this choice lies in the fact that we want to
perform a fair comparison between the two setups, using the same
number of computational nodes and showing that the differences
that we observe are due to the heterogeneity and the different net-
work setup. Concerning the sampling, at each iteration we randomly
generate the latency and bandwidth between each node, without
changing the nodes’ hardware specification. The configurations for
each node are summarized in Table 1. Concerning the cost of execu-
tion, it depends on the price for instantiating VMs on Cloud and Fog
nodes. We assume, for simplicity, that VMs can be instantiated with
the same size of the task, and that each task is deployed to exactly
one VM. Therefore, the price of VMs is calculated based on (1) the
demand vector of the task that is assigned to it and (2) the location
where VM is assigned. The values in Table 1 are used aspcpuand
pstorvalues in Equation 19, while the penaltypffor execution on Fog
nodes is calculated based on Equation 17. Latency and bandwidth
values refer to the connections outgoing from each node. Cloud
latency is assumed to be equal to the Internet latency, that is between
100 and 300 milliseconds according to [34]. Therefore, we simulate
it using a random Gaussian variable with the indicated mean and
standard deviation. Regarding latency and bandwidth of Fog nodes,
we use the distribution identified by [29], summarized in Table 2.

IV.3.2 Workflow setup

Concerning the workflows, our goal is to generate applications that
resemble real-world ones in terms of structure and whose tasks and
edges simulate, respectively, task requirements and user demands.
For this reason, during every execution we generate a new value
forSIZE, andD ATAoutfor each task, as defined in Equation 1
whileD ATAindepends on predecessors’D ATAoutas defined in

nj CPUMIPSSTORAGEpcpupstor lat bw Ri
∈NI [ms] [Mbps]
c* 6420, 000 5, 000 0.030.01G(µ=200,1, 0000.9999

σ=33.5)
f0 1615, 000 5, 000 0.030.01 lat bw 0.9795
f1 1610, 000 1, 000 0.030.01 lat bw 0.9995
f2 1612, 000 1, 000 0.030.01 lat bw 0.9799
f3 1616, 000 1, 000 0.030.01 lat bw 0.9843
f4 1613, 000 1, 000 0.030.01 lat bw 0.9595
f5 16 8, 000 1, 000 0.030.01 lat bw 0.9919

Table 1: CLOUD/FOG nodes configuration.

lat
[ms]

bw
[Mbps]

Probability

54 7.2 0.74
15 32 0.2
15 4 0.04
∞ 0 0.02

Table 2: Network availability distribution.

Equation 2. The first generation is done randomly, by sampling
a value using differentλfor exponential distribution: forSIZE,
λ={5, 000; 10, 000; 15, 000; 20000}MI, while forDATAinandDATAout
we setλ={62, 500; 125, 000; 250, 000; 500, 000}bytes. We assume
such values to be representatives of real world scenarios in terms of
data size and allow us to simulate tasks with different computational
demands. For each edge(ti,tj)between two tasks, we define user
latency requirements as in Equation 3. The latency requirements
are generated by using an exponential distribution withλ=1, 000
ms. This value allows to generate response time requirements that
arerepresentatives of typical near-real-time applications, as stated
by [13].

IV.4 Baseline algorithms

In this section, we describe the single-objective algorithms used as
baseline for our work. In this comparison, we considered different
workflow scheduling algorithms: HEFT [35] and PEFT [36]. How-
ever,during experimentation, we noticed that results given by the
two algorithms were very similar. Accordingly, we describe only the
results of the HEFT and HEFT-based heuristics and we focus there-
fore on the following single-objective algorithms: HEFT, MAXREL
and MINCOST.

IV.4.1 HEFT algorithm

The idea behind HEFT algorithm [35,37] is to schedule each DAG
node according to its critical path length to the exit node. This
parameter is modelled by therankof a node, defined as

rank(ti)=
R̄T(ti)iftiis the exit task.

R̄T(ti)+maxtj∈δout(ti)(̄OT(tj)+rank(tj))
(21)

Where R̄T(ti)is the average running time of taskticalculated over
each node inNI, namely

R̄T(ti)=
∑nj∈NIRTlocal(ti,nj)

|NI|
, (22)

7
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while ŌT(ti) is the average offloading time for task ti

ŌT(ti) =
∑nj∈NI OT(ti , md, nj)

|NI |
. (23)

We compute rank for each task ofW recursively, starting from the
SINK task. After this, we put tasks in a priority queue according to
their decreasing rank. At each iteration we select the node with the
highest rank, which is guaranteed to obtain a valid topological sort
of tasks. Moreover, to obtain a valid scheduling forW , we consider
only nodes respecting constraints defined in Definition 9. Among
these nodes, we select the best node for the selected objective. HEFT
pseudocode is described by Algorithm 1.

Algorithm 1 HEFT algorithm.
1: function HEFT(W , I)
2: computeRank(W ,NI )
3: S ← ∅
4: priorityQueue← sortByRank(W)
5: while !isEmpty(priorityQueue) do
6: t← f irst(priorityQueue)
7: var ← +∞
8: for n ∈ compatibleNodes(t) do
9: cur← RT(t, n)1

10: if cur < var then
11: target← n
12: var← cur
13: end if
14: end for
15: S ← S ∪ (t, target)
16: end while
17: return S
18: end function

IV.4.2 MAXREL algorithm

Concerning RL objective, the algorithm performs offloading of task
ti to the node nj that ensures the highest reliability. Ready tasks
are also selected according to the rank(ti) function, defined in Equa-
tion 21. Afterwards, we schedule the task with the highest rank(ti)
on the node nj with the highest Rj (see Equation 16). This selection
ensures that a valid schedule will be generated, since the task selec-
tion based on rank(ti) value ensures that a topological order of the
tasks inW . In addition, it ensures that the maximum reliability for a
valid schedule is achieved. MAXREL is summarized in Algorithm 2.

Algorithm 2 MAXREL algorithm.
1: function MAXREL(W , I)
2: computeRank(W ,NI )
3: S ← ∅
4: priorityQueue← sortByRank(W)
5: while !isEmpty(priorityQueue) do
6: t← f irst(priorityQueue)
7: var ← +∞
8: for n ∈ compatibleNodes(t) do
9: cur← Rn

10: if cur < var then
11: target← n
12: var← cur
13: end if
14: end for
15: S ← S ∪ (t, target)
16: end while
17: return S
18: end function

IV.4.3 MINCOST algorithm

Concerning COST objective, the best solution for minimizing cost is
running all the tasks on the end device. However, this results in a
significantly higher response time, due to the its limited capabilities.
To this end, the algorithm performs offloading of task ti to the
node nj that ensures the lower cost(ti , nj). Ready tasks are also
selected according to the rank(ti) function, defined in Equation 21.
MINCOST is summarized in Algorithm 3.

Algorithm 3 MINCOST algorithm.
1: function MINCOST(W , I)
2: computeRank(W ,NI )
3: S ← ∅
4: priorityQueue← sortByRank(W)
5: while !isEmpty(priorityQueue) do
6: t← f irst(priorityQueue)
7: var← +∞
8: for n ∈ compatibleNodes(t) do
9: cur ← cost(t, n)

10: if cur < var then
11: target← n
12: var← cur
13: end if
14: end for
15: S ← S ∪ (t, target)
16: end while
17: return S
18: end function

V. Results

The goals of our evaluations are twofold: first of all, we want to eval-
uate the benefits of executing scientific workflows on Fog resources,
showing the improvement in terms of resource time and investigat-
ing how cost and reliability are influenced. Secondly, we want to
investigate the benefits of our multi-objective MOWO approach for
scheduling of scientific workflows. For this reason, we design the
following two sets of experiments.

V.1 CLOUDONLY vs CLOUD/FOG
In this experiment, we evaluate the response time, the cost and
the reliability for executing the workflows described in Section IV.1
using different settings. We compare the three objectives in two
different scenarios: (1) CLOUDONLY, where only Cloud data centers
are used for the execution of the workflows, and (2) CLOUDFOG,
where a combination of Cloud data centers and Fog nodes are
used. We use state-of-the-art heuristic to find solutions for each
objective separately: HEFT (Heterogeneous Earliest Finish Time),
described in [35], for the response time objective; MINCOST, based
on HEFT, but selecting the node with the lower cost instead of
the lower response time, for the cost objective; MAXREL, based
on HEFT, but selecting the node with the higher reliability, for the
reliability objective. The goal of this experiment is to check the
different possibilities offered by the use of Fog nodes, and to show
the necessity of a multi-objective algorithm to explore all the possible
trade-offs. First of all, we check the performance of the algorithms by
varying the SIZE of each ti ∈ TW . Each SIZE(ti) value is sampled
at the beginning of each iteration from an exponential distribution
with a given λ parameter. To simulate different size values, we
perform four simulation runs, each one for a pre-defined number

8
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of iterations, using λ = {1, 000; 5, 000; 10, 000; 20, 000}. These values
for λ allow us to simulate realistic task execution times on our
simulation infrastructure. The results for the objectives are then
averaged over 1, 000 runs for statistical significance. The results for
HEFT are presented in Figure 7, for MINCOST in Figure 8 and for
MAXREL in Figure 9. CL results are for CLOUDONLY scenario,
while CF are for CLOUDFOG. As we can see, the response time
is significantly lower on CLOUDFOG when using smaller MIPS
values, i.e. we obtain a lower response time up to 71% compared to
CLOUDONLY. This is because for smaller tasks the use of Fog nodes
allows to exploit the lower latency of the Fog layer in comparison
with the Cloud layer. For larger task sizes, however, the higher
computational cost makes execution on Cloud more preferable, since
the lower computational capabilities of Fog nodes according to
the selected configuration significantly slow down the execution
of computationally-intensive tasks, reducing the positive effects of
lower latencies. The high cost that we observe when using HEFT
can be explained by the fact that the usage of more Fog nodes incurs
in higher penalties, due to the cost model designed in Section II.3.1.
It should also be noted that in this scenario, both MINCOST and
MAXREL tend to select Cloud data centers rather than Fog nodes,
due to the higher reliability of Cloud data centers and the absence
of cost penalties on these nodes. In conclusion, the results show that
the use of Fog is beneficial for task with low computation and high
data transmission, making it the best choice for optimizing response
time for this type of tasks. However, optimizing only for response
time has a negative effect on both cost and reliability. Therefore, it
is necessary to explore methods that allow selection of a trade-off
solution, such as the one presented in this paper.

V.2 Multi-objective Algorithm Evaluation

In this scenario, we evaluate the efficiency of the MOWO task offload-
ing approach in relation to the other state-of-the-art methods, namely
HEFT, MINCOST and MAXREL. We evaluate the response time, the
cost and the reliability for executing the workflows described in
Section IV.1. For each ti ∈ TW , we generate this value using an ex-
ponential distribution with λ = {1, 000; 5, 000; 10, 000; 20, 000} MI for
different simulation runs. We set λ = {50, 0000} bytes for DATAin and
DATAout to simulate complex queries. The results for each objective
are averaged over 1, 000 runs. The results for the Montage workflow
are presented in Figure 10, for Epigenomics in Figure 11, for BWA in
Figure 12 and for METEO-AG in Figure 13. Through the analysis of
the results, clear patterns can be identified. The MOWO approach
achieves lower response times of up to 30% in relation to all other
methods, especially for workflows composed of lower number of
less complex data-intensive tasks, such as BWA and METEO-AG. At
the same time, MOWO approach achieves reliability values close to
99%, which are close to those of MAXREL approach. Furthermore,
the cost of executing the workflow is very similar to the MINCOST
and MAXREL approaches, although for some workflows, such as
Montage, it can be slightly higher, due to the tendency of the MOWO
approach to utilize the Fog more than the Cloud. Overall, it can be
concluded, that for tasks with smaller computing requirements and
frequent data transfers, the MOWO approach provides benefits in re-
lation to the three objectives. For more complex tasks, the advantage
of the MOWO algorithm is reduced, due to the fact that the Fog has
only limited number of computing resources. Therefore, for more

complex tasks, the lower communication latency does not provide
significant advantage.

As our research deals with the implementation of a NP-complete
combinatorial multi-objective problem in large scale Cloud/Fog
environment, we present an experimental results that demonstrate
how our approach can provide high quality workflows’ scheduling
solutions across a large set of devices. To begin with, in Figure 14a we
present the correlation between the number of evaluations and the
quality of the solutions represented through the Hypervolume (HV)
[38]. For this experiment the number of evaluations was gradually
increased from 1, 000 to 14, 000 with a population of 100 individuals.
The results show that the best quality solutions are achieved when
the number of evaluation is around 7, 500. In cases in which the
number of evaluation is increased above 7, 500, no improvement in
the quality of the solutions can be observed.

Furthermore, we evaluate the scalability of the MOWO approach
in relation to the size of the workflows. Figure 14b presents the
correlation between the execution time of the MOWO algorithm
and the number of tasks in the workflow. To properly evaluate the
overhead of the genetic algorithm we also compare the execution
time of MOWO with HEFT. The size of each task is generated using
an exponential distribution whose lambda is set to 1, 000 and the
number of evaluations to 7, 500. The results clearly show that the
algorithm can scale relatively well in relation to the workflow size.
When the length of the workflow is raised from 20 to 100 tasks,
the execution time is increased on average only by 29%. Lastly,
in Table 3 we provide a detailed evaluation of the quality of the
solutions in relation to the workflow characteristics, namely, task
requirements and data transfer sizes. We conduct the analysis with
λ = {1, 000; 5, 000; 10, 000; 20, 000}MI and DATAin and DATAout set
to λ = {62, 500; 125, 000; 250, 000; 500, 000} bytes. We can conclude
that MOWO performs well for different MIPS and data requirements,
although for higher data sizes and MIPS the quality of the solutions
is slightly better, which can be accredited to the increase of the
solution space.

Message (Bytes) 62, 500 125, 000 250, 000 500, 000
Task (SIZE(ti)) HV STD HV STD SGN ABS HV STD SGN ABS HV STD SGN ABS

1, 000 0.4784 0.0211 0.5428 0.0183 1 0.0643 0.6493 0.0249 1 0.1708 0.6508 0.0395 1 0.1723
5, 000 0.5211 0.0441 0.5688 0.0475 1 0.0477 0.5306 0.0560 1 0.0095 0.5413 0.0601 1 0.0202
10, 000 0.5844 0.0288 0.5355 0.0508 −1 0.0489 0.6255 0.0531 1 0.0410 0.6802 0.0432 1 0.0957
20, 000 0.6063 0.0856 0.5705 0.0733 −1 0.0358 0.5585 0.0433 −1 0.0477 0.6100 0.1024 1 0.0037

Table 3: Solution quality in relation to the workflow specifics. SGN and
ABS are calculated using Wilcoxon Signed-Rank Test [39]

VI. Related work

VI.1 Workflow scheduling
The straightforward approaches for multi-objective scheduling usu-
ally combine multiple objectives in a single function. This is accom-
plished by assigning different weights for the objective functions,
therefore forming a single aggregated function. To illustrate, in [40]
the reliability and makespan functions are combined into a single
one through a user-provided weight vector. Similar approach is
implemented in [41], in which both objectives are given the same
weight without any requirement for user input. In general, these
approaches lack the ability to efficiently explore the problem space
as they depend on a priori weight assignment, which in many cases
is performed without prior knowledge of the problem. Another
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Figure 7: HEFT Results, 4 Workflows, CLOUDONLY vs CLOUDFOG
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Figure 8: MINCOST Results, 4 Workflows, CLOUDONLY vs CLOUDFOG

approach for combining conflicting objectives is to form a single
function by imposing constraints to each objective. The main idea is
to compute a solution which is optimized for a single objective, but
with a guarantee that the constraints on the other objectives are not
violated. An example work, which utilizes this approach for opti-
mizing the economical costs for executing workflows in the Cloud is
presented in [42]. Furthermore, in [43] an interesting approach for
time/cost optimization in heterogeneous systems is presented.

In recent years, techniques that compute in parallel a given set
of conflicting objectives have been described in the literature. In
[44], the suitability of several genetic multi-objective algorithms
for workflows scheduling has been analyzed. The results confirm
the assumption that these algorithms can provide good solutions,
unfortunately with a high computational cost. Therefore, a signifi-
cant research effort has been made to explore for computationally
efficient multi-objective heuristic approaches. To begin with, [15]
presents a HEFT based approach for resource scheduling in Cloud,
which utilizes multi-objective heuristics together with solution pre-
serving algorithm to optimize execution time and energy efficiency.
Furthermore, in [45] and [46] the authors propose workflow schedul-
ing approaches for Cloud environments based on multi-objective
genetic algorithms, namely NSGA-II and Particle Swarm Optimiza-
tion (PSO). Besides, [47] proposes a novel approach for workflow
scheduling in cloud–edge environment, which utilizes modified
PSO algorithm with two-factor based objective functions to search
for tradeoff between makespan and cost. Moreover, complex meta-
heuristics were also explored in the literature. In [48] the authors
proposed a novel approach that improves the efficiency of the HEFT
algorithm in two-objective problem space by utilizing gravitational

search algorithm.
Unfortunately, all the aforementioned approaches have been de-

signed for a specific Cloud infrastructure or have been simply ported
from the Grid to the Cloud. The concurrent scheduling approaches
do not consider the specific characteristics of the Fog, such as energy
requirements, resources reliability and communication latency. Fur-
thermore, their suitability for highly heterogeneous environments
has not been explored.

VI.2 Fog Offloading

Studies of different applications for Fog computing can be found
in [49, 50], focusing in domains such as smart cities and IoT, with
special attention to offloading. Offloading techniques are discussed
in [51], with regard to Cloud computing and not to Fog computing.
Concerning Fog offloading, several works apply it in the context
of IoT, such as [8, 9], considering only a single offloading objec-
tive. Similar to our work, multi-objective approaches have been
successfully applied in the context of Fog computing, either in the
context of mobile offloading [52] or for resource scheduling [53].
However, none of these works consider the context of scientific work-
flows. In [54], the benefits of accelerating execution of scientific
workflows by employing Fog resources are discussed, motivating
our work. Typical examples of scientifically workflows are described
in [25, 55]. The work in [56] proposed a heuristic-based algorithm for
task scheduling in a Cloud/Fog system, allowing providers to utilize
their own Fog nodes together with the rented Cloud resources. This
work focuses on providing better cost and makespan trade-off for
large-scale offloading applications.
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Figure 9: MAXREL Results, 4 Workflows, CLOUDONLY vs CLOUDFOG
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Figure 10: Results for the Montage Workflow, MOWO vs HEFT, MINCOST and MAXREL

Furthermore, the authors propose in [57] a service placement
strategy in a Cloud/Fog environment considering both sequential
and parallel service placement approaches, evaluated through a set
of non-functional parameters, such as service delay and response
time. Unfortunately, the concurrent algorithms for Fog offloading
are limited to only two objectives. Furthermore, they implement
strategies, in which, similarly to HEFT, all the tasks are first ranked
and only then the scheduling is performed. These approaches con-
sider in isolation the dependencies between the tasks and omit to
contemplate the importance of the virtual infrastructure.

VII. Conclusion and Future Work

In this work, we have proposed a multi-objective approach for data-
intensive workflows scheduling, which considers the response time,
the cost and the reliability as objectives. First, we modeled the prob-
lem of workflow scheduling and task offloading by considering the
functional requirements (i.e. response time, reliability and cost) of
the workflows and the specifics of the Cloud and Fog environments.
Then, we describe an algorithm based on NSGA-II, which is one
of the most popular metaheuristics, in context of identification of
optimal trade-off solution. Afterwards, we extend a Fog simulation
framework to evaluate the suitability of the cloud offloading concept
for data-intensive scientific workflows. We have proven that the use
of Fog is beneficial for tasks with low computation and high data
transmission, making it the best choice for optimizing response time
of data-intensive tasks. Furthermore, we have evaluated the effec-
tiveness of our algorithm, showing that the MOWO multi-objective
algorithm can achieve results very close to the single-objective ones,

achieving up to 30% lower response time when compared to HEFT
for small task sizes, while maintaining cost and reliability values
slightly lower than MINCOST and MAXREL respectively.

In the future, we plan to extend this model by considering different
types of workloads, i.e. not only scientific but also related to other
context, such as mobile gaming and video streaming. To this end,
we will also provide a more detailed support for mobile devices, by
including mobility and power consumption models. Furthermore,
we will extend the model to support the dynamically changing
Fog overlays, thus further improving the efficiency of the MOWO
approach. Finally, we want to extend our model by considering also
objectives that are of interest for the Cloud/Fog provider, such as
energy consumption and profit, as in [58]. Moreover, we plan to
perform a real-world implementation of this work on commercial
Edge platform, such as Huawei Intelligent EdgeFabric2, Azure IoT
Edge3 and AWS Lambda@Edge4
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Figure 11: Results for the Epigenomics Workflow, MOWO vs HEFT, MINCOST and MAXREL
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Figure 12: Results for the BWA Workflow, MOWO vs HEFT, MINCOST and MAXREL
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