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a b s t r a c t

In the Membrane Computing area, P systems are unconventional devices of computation inspired by
the structure and processes taking place in living cells. Main successful P system applications lie
in computability and computational complexity theories, as well as in biological modelling. Given
that models become too complex to deal with, simulators for P systems are essential tools and their
efficiency is critical. In order to handle the diverse situations that may arise during the computation,
these simulators have to take into account that worst-case scenarios can happen, even though they
rarely occur. As a result, there is a significant loss of performance. In this paper, the concept of
adaptative simulation for P systems is introduced to palliate this problem. This is achieved by passing
high-level information provided directly by P system model designers to the simulator, helping it to
better adapt to the target model. For this purpose, an existing simulator for an ecosystem modelling
framework, named Population Dynamics P systems, is extended to include the information of modules,
that are usually employed to define ecosystem models. Moreover, the standard description language for
P systems, P-Lingua, has been re-engineered in its version 5. It now includes a new syntactical item,
called feature, to express this kind of high-level semantic information. Experiments show that this
simple adaptative simulator supporting modules as features doubles the performance when running
on GPUs and on multicore processors.

1. Introduction

Membrane Computing is a paradigm of computation inspired by 
the behaviour and the structure of living cells, introduced by Gh. 
Păun in 1998 [1]. This paradigm has led to several kinds of 
massively-parallel computing devices known as membrane sys-
tems or, simply, P systems. Applications of P systems range from 
contributions within computability and computational complex-
ity theories (e.g. seeking new frontiers in the P vs NP problem [2–
4]), to computational modelling in life sciences such as Systems 
Biology [5,6] (e.g. bacterium quorum sensing [7]) and Population 
Dynamics [8,9] (e.g. butterfly Pieris oleracea in eastern North 
America [10]).

Although many variants of such systems have been defined 
so far, the main common ingredients are a compartmentalised 
structure given by membranes or cells and a multiset of objects 
within each region. P systems evolve from one state to the next 
one by a pre-defined set of rules in a transition step. A sequence 
of such states or configurations is a computation of the system.

The key feature in their applications is the massive and double
parallelism nature: rules are executed in a maximally-parallel
manner within each membrane, while all membranes evolve
in parallel at the system level. In order to keep control of the
computation taking place, there is a global clock that synchronises
the execution of rules at the P system level.

Simulating P systems is of huge importance to develop val-
idation, verification and virtual experimentation tools [11,12].
For instance, Population Dynamics P systems (PDP systems, for
short) were conceived and successfully employed for ecosys-
tem modelling [13], and their efficient simulation is the key for
fast model designing process [9], parameter calibration [14] and
experimentation [15].

Many simulation tools have been developed since the
paradigm was born [11,16]. The general scheme of a simulator
design is structured in three modules: definition of the P system
to be simulated, simulation of one or more computations, and
collection of output data from the model computation. One of the
most generic approaches and widely employed is P-Lingua [17,
18], a programming language designed specifically for the defini-
tion of P systems. The P-Lingua framework includes a Java library
(called pLinguaCore) that allows reading P system descriptions
specified in a plain-text file. The framework can either simulate a
computation of the described P system or alternatively export the
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description to other formats that can serve as input to external
simulators.

The natural way to accelerate these simulations is to exploit
their massive parallelism by leveraging High Performance Com-
puting technologies [19]. Implementing P system parallelism in
modern parallel processors is not straightforward, mainly due to
its non-deterministic and synchronous nature, but it has been
shown that Graphics Processing Units (GPUs) can be employed
successfully for this task. For example, some variants of P systems
that have been simulated on GPUs are: P systems with active
membranes [20], a specific family of P systems with active mem-
branes solving SAT [21,22], kernel P systems on PSO [23], and
spiking neural P systems through a matrix representation [24].
In this sense, a project called PMCGPU [25] includes some P sys-
tem simulators implemented on GPUs. Moreover, distributed sys-
tems [26], multicore processors [27] and FPGAs [28] have been
explored as alternatives to speedup the simulation.

There are two main approaches when designing P system
simulators: specific and generic approaches [29]. The former is
conceived to simulate only certain families of P systems of the
same type (looking for best efficiency, even hard-coding infor-
mation of the P systems, e.g. [30]). The latter aims at simulating
any P system of a certain variant (looking for flexibility, allocat-
ing large arrays to store all defined objects in the system even
though finding all of them at the same time in a configuration is
improbable, e.g. [20]). Generic simulators are required in certain
scenarios, such as in ecosystem modelling, so that the model
designers would use just one simulator for all their models [31].
However, this comes at the expense of performance degradation,
because the simulators are developed to support many worst
case-scenarios that normally do not take place in models. For
example, generic simulators work over the whole set of rules of
the target P system, performing a blind search for those that are
applicable. In this case, the worst case scenario being assumed
is that all the rules can be applicable at every step. Attempts to
overcome this issue have been considered. For example, in [22],
rules having more interactions are grouped in order to avoid com-
munication between GPU threads. Nonetheless, this is specific to
the variant of P systems with active membranes and the paper
does not clarify how the global clock synchronisation is satisfied.

In general, when designing models of P systems, designers
usually think first on a general scheme for their solution in form
of a workflow of modules that can be executed sequentially or
in parallel [9]. In each module, only a subset of rules can be
applied. This kind of high-level information has always been
skipped in generic simulators. In this work, the idea of bridging
the gap between the model designer and the simulator developer
is explored through the concept of adaptative simulator. It will
enable designers to specify certain high-level semantic features
(such as modules) that will permit simulators to better adapt to
the model. This opens the way to discard worst case-scenarios
that will never take place; for example, avoiding checking every
single rule defined in the model at every transition step. It is
noteworthy that this approach lies in the middle ground between
generic and specific approaches: an adaptative simulator can han-
dle any P system of the supported variant but receiving enriched
information along with the P system description.

In short, the main contributions of the paper are the following:
(1) introducing the concept of adaptative simulator in the world
of Membrane Computing; (2) testing this concept by developing
an adaptative simulator for PDP systems as a case study, which
takes advantage of the modules defined usually in the algorithmic
scheme of ecosystem models; (3) extending the new P-Lingua
(version 5) with a new way to specify semantic information called
features; (4) definition of a specific syntax to define modules;
(5) extending the PDP system simulators within PMCGPU project

to support features by reading the new files generated with P-
Lingua 5 and processing this module information; (6) developing
the adaptative multicore (OpenMP) simulator so that the number
of internal loops iterations decrease substantially; (7) developing
the adaptative GPU (CUDA) simulator so that internal loops it-
erations are reduced as well as the internal data structures are
compacted, which leads to better memory coalesced accesses
and concurrent execution of kernels by using CUDA streams; (8)
benchmarking using an extension of the PDP system model for
tritrophic interactions1 over the following parallel hardware: i7
CPU, Xeon CPU, Tesla P100 GPU, Tesla K40 GPU and GTX 1050Ti
GPU, including a detailed speedup and profiling analysis.

The rest of the paper is organised as follows. The Introduc-
tion section will provide a summary of the concepts required
to understand this work, covering PDP systems, P-Lingua and
GPU computing. Section 2 describes the base algorithm for PDP
systems, called DCBA, and its implementation in both multicore
and GPU processors. Section 3 presents the new version of P-
Lingua implemented supporting features. Section 4 depicts the
extension made to DCBA and the parallel implementations to
support modules. Section 5 provides a succinct overview to the
model employed for benchmarking, and a detailed analysis of the
obtained performance results. Finally, Section 6 ends the paper
with conclusions and planned future work.

1.1. Population dynamics P systems

In this section, the formal definition of a PDP system is pro-
vided. First, the syntactical ingredients are introduced, and after
that, some semantic aspects are discussed.

Definition 1. A Population Dynamics P system of degree (q,m)
with q ≥ 1, m ≥ 1, and taking T ≥ 1 time units, is a tuple

Π = (G, Γ , Σ, T , RE, µ, R, {fr,j : r ∈ R, 1 ≤ j ≤ m},
{Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

• G = (V , S) is a directed graph. Let V = {e1, . . . , em} whose
elements are called environments, and S is a set of pairs of
environments representing the arcs of the graph;
• Γ is the working alphabet and Σ ⫋ Γ is an alphabet repre-

senting the objects that can be present in the environments;
• T is a natural number that represents the simulation time of

the system;
• RE is a finite set of communication rules between environ-

ments of the form

(x)ej
p
−−−→(y1)ej1 · · · (yh)ejh

where x, y1, . . . , yh ∈ Σ , (ej, ejl ) ∈ S (1 ≤ l ≤ h) and p is
a computable function from {1, . . . , T } to [0, 1]. By default,
and if p is not specified for a rule, then it is the constant
function 1. h may be different in each rule. These functions
verify the following:

– For each ej ∈ V and x ∈ Σ , the sum of functions
associated with the rules whose left-hand side is (x)ej
is exactly 1.

• µ is a membrane structure consisting of q membranes in-
jectively labelled by 1, . . . , q. The skin membrane is labelled
by 1. A electrical charge from the set EC = {0,+,−} is also
associated with each membrane.

1 An ecosystem with three trophic levels.



• R is a finite set of evolution rules of the form

u[ v ]αi → u′[ v′ ]α
′

i

where u, v, u′, v′ ∈ Mf (Γ ) (the set of all finite multisets over
Γ ), i (1 ≤ i ≤ q), u + v ̸= ∅ and α, α′ ∈ {0,+,−}. The
following restriction must hold:

– If (x)ej is the left-hand side of a rule from RE , then none
of the rules of R has a left-hand side of the form u[v]α1 ,
for any u, v ∈ Mf (Γ ) and α ∈ {0,+,−}, having x ∈ u.

• For each r ∈ R and for each j (1 ≤ j ≤ m), fr,j :
{1, . . . , T } −→ [0, 1] is computable. These functions verify
the following:

– For each u, v ∈ Mf (Γ ), i (1 ≤ i ≤ q), α, α′ ∈ {0,+,−}
and j (1 ≤ j ≤ m) the sum of functions associated
with j and the set of rules whose left-hand side is u[v]αi
and whose right-hand side has polarisation α′, is the
constant function 1.

• For each j, (1 ≤ j ≤ m), M1j, . . . ,Mqj are finite multisets
over Γ , describing the objects initially placed within the re-
gions in environment ej (also known as initial configuration).

In other words, a PDP system consists of m environments
e1, . . . , em linked by the arcs from a directed graph G. Each envi-
ronment ej contains a P system, Πj = (Γ , µ, RΠj ,M0j, . . . ,Mq,j),
of degree q (i.e. number of membranes) where every rule r ∈ R
has associated a computable function fr,j (specific for environ-
ment j) forming RΠj . Let us remark that all Πj have the same
skeleton; that is, membrane structure µ and set of rules from R.
Specifically, rules from R are also called skeleton rules.

A computation is a sequence of configurations through tran-
sition steps, at maximum T . A configuration of the system at
an instant t is a tuple of multisets of objects present in the
m environments and at each region of each Πj, together with
the polarisation of each membrane in each P system (0, + or
−). At the initial configuration of the system we assume that
all environments are empty and all membranes have a neutral
polarisation. We also assume that a global clock exists, marking
the time for the whole system; that is, all membranes and the
application of all rules (from RE and from all RΠj ) are synchronised
in all environments.

The P system can pass from one configuration to the next
one by using the rules from

⋃m
j=1 RΠj ∪ RE as follows: at each

transition step, the rules to be applied are selected according to
the probabilities assigned to them, and all applicable rules are si-
multaneously applied in a maximal way (i.e. no more rules can be
further applicable). This is done by consuming the left-hand side
of the rules, and generating the right-hand side afterwards. For
rules in RΠj , the charge of the (active) membrane can be changed.
In this sense, the consistency of charges must be maintained: in
order to simultaneously apply several rules from RΠj to the same
membrane, all rules must have the same electrical charge on their
right-hand side.

For more information about the syntax of the models, refer
to [9,31]. The semantics discussed in this section are the basics of
the functioning of the framework. However, specific details will
depend upon the simulation algorithm that will reproduce the
computation [32,33].

1.2. P-Lingua and pLinguaCore version 4

P-Lingua [17,18] is a software framework for Membrane Com-
puting which includes a definition language for P systems (also
called P-Lingua). A file defining a P system model with P-Lingua
language in plain text is also known as P-Lingua file, and has

the .pli extension. Several parsing tools and simulators have been
developed within the framework in a series of versions from 1 to
4. The main tool is the Java library pLinguaCore, containing three
distinguished components:

• A parser for reading input P-Lingua files and checking con-
straints related to the corresponding variant. In order to
achieve this, the first line of a P-Lingua file should include a
P system model type declaration by using a unique identi-
fier. There are several predefined P system models that can
be used, each one with its own identifier, for instance tran-
sition, membrane_division, tissue_psystems, and
probabilistic. The analysis of semantic ingredients, such
as rule patterns, is hard-coded for each variant. Several
versions of pLinguaCore were released to cover different
types of models.
• For each P system model type, the pLinguaCore library in-

cludes one or more built-in generic simulators, each one
implementing a different simulation algorithm. For instance,
Population Dynamic P systems [9] (probabilistic iden-
tifier in P-Lingua) can be simulated inside the library by
applying three different algorithms: BBB, DNDP, or DCBA [32,
34] (discussed in Section 2.1).
• Alternatively, pLinguaCore library is able to transform input

P-Lingua files to other formats such as XML or binary in
order to feed external simulators. The generated files for the
given P systems are free of syntactic and some semantic
errors since the transformation is done after the parser
analysis. Several external simulators use this tool, like in the
PMCGPU project (Parallel simulators for membrane comput-
ing on GPU) [19,25], where two GPU simulators read binary
files generated by pLinguaCore.

The main advantage of P-Lingua framework is its ease of
use. The syntax is close to the scientific notation employed in
Membrane Computing. Thus, researchers can write and debug P
systems in a familiar way using modules, parameters, variables,
iterators and other programming ingredients. For instance, sev-
eral real ecosystem models have been written, debugged and
simulated using the P-Lingua framework [9,15,31].

However, one of the main drawbacks of this framework is the
poor flexibility to define semantic ingredients such as derivation
modes, i.e, the way in which P system computations should be
simulated. Indeed, P-Lingua 4 includes only one fixed and hard-
coded derivation mode for each variant (with unique identifier).
Simulators are also hard-coded and fixed in pLinguaCore, contain-
ing one or more simulators for each derivation mode (associated
to the P systemmodel type defined in the first line of the P-Lingua
file). Moreover, P-Lingua users are not able to tune simulators
inside pLinguaCore to get more efficient simulations since all of
them implement the same API. Finally, a collateral downside is
related to the time and memory consumption to parse very large
P systems. All these issues have been tackled in the new version
5 (Section 3).

1.3. GPU computing

In what follows, we summarise the key concepts of GPU
computing required for the understanding of this work. Mod-
ern Graphics Processing Units (GPUs) are massively parallel co-
processors for computing acceleration [35]. This is easily achiev-
able by using CUDA, a programming model introduced by NVIDIA
in 2007. From now, we will focus on CUDA, given that it is the
technology employed in this work, and the concepts are similar
in other programming models such as OpenCL and ROCm. CUDA
abstracts the underlying architecture in GPUs, focusing only on
managing threads and memory. Moreover, it is a heterogeneous



model where the GPU (a.k.a. device) and CPU (a.k.a. host) have
separated execution and memory spaces. Programmers have to
define the code executed by the threads (called kernel) and
manually manage the access to memory. This has to be efficiently
handled by considering the memory hierarchy and coalesced ac-
cess to data (contiguous threads accessing consecutive positions
in memory).

Threads are distributed into a grid where they are arranged
into synchronised and cooperating blocks. Kernels are assigned
to each grid, and as long as there are enough resources in the
hardware, it is possible to launch concurrent kernels by assigning
them to different CUDA streams. A stream represents a flow of
execution of kernels, and there is a default stream that cannot run
in parallel with others. Inside GPUs of today, one can find from
hundreds to thousands of cores distributed in multiprocessors.
Moreover, several Gigabytes of global memory (large but slow)
are built in the cards, and accessible by all threads executed
in the device. The host is in charge of sending data to and
retrieving data from the device, and calling kernels that are off
sourced to there [35]. Specific features of each GPU hardware
are normally defined by the compute capability number [36].
Concurrent access by threads to a single datum in GPU memories
can be accomplished without race conditions through specific
atomic operations (e.g. addition, multiplication, swapping, etc.).

2. DCBA

In this section, the target simulation algorithm for PDP sys-
tems, named DCBA, is depicted. Firstly, the theoretical basis to
understand the algorithm is provided. Second, the parallel design
of DCBA is described.

2.1. Algorithm description

There are three main simulation algorithms for PDP systems:
BBB, DNDP and DCBA [32,33]. In short, Binomial Block Based (BBB)
algorithm first groups rules having the same left-hand side (Def-
inition 2) into blocks, shuffle and iterate them, executing rules
according to a multinomial random variate according to their
probabilities. In contrast, Direct Non Deterministic distribution with
Probabilities (DNDP) algorithm randomly loops over the rules
calculating for each one a binomial random variate according to
the probability. DNDP uses a second stage to satisfy maximality
by executing, one by one, the remaining rules as much as possible.

Each algorithm aimed at improving the accuracy in which
the reality is mapped to the models. Perhaps, the most difficult
feature to handle by the simulation algorithms is the competition
of objects between rules. In this sense, both DNDP and BBB have a
common drawback: the distribution of objects among competing
rules leads to high deviations in the results. This is why the latest
algorithm, called Direct distribution based on Consistent Blocks
Algorithm (DCBA) [32], was defined for. The key idea of DCBA is
to implement a proportional distribution of objects among rules
grouped into consistent blocks (a concept similar to, but not the
same than, blocks in BBB), while dealing with consistency and
probabilities.

In what follows, the key concepts required for DCBA are going
to be described. Then, a brief pseudocode and explanation of the
algorithm is provided. For more information, please refer to [31,
32]. Firstly, rules in R and RE can be classified into consistent
blocks having the same left-hand side and the same charge in the
right-hand side, following the Definitions 2 and 3.

Definition 2. The left and right-hand sides of the rules are
defined as follows:

(a) Given a communication rule r ∈ RE of the form
(x)ej

p
−−−→ (y1)ej1 · · · (yh)ejh where ej ∈ V and x, y1, . . . , yh ∈

Σ:

• The left-hand side of r is LHS(r) = (ej, x).
• The right-hand side of r is RHS(r) = (ej1 , y1) · · ·

(ejh , yh).

(b) Given a skeleton rule r ∈ R of the form u[v]αi → u′[v′]α
′

i
where 1 ≤ i ≤ q, α, α′ ∈ {0,+,−} and u, v, u′, v′ ∈ Mf (Γ ):

• The left-hand side of r is LHS(r) = (i, α, u, v). The
charge of LHS(r) is charge(LHS(r)) = α.
• The right-hand side of r is RHS(r) = (i, α′, u′, v′). The

charge of RHS(r) is charge(RHS(r)) = α′.

Definition 3. Rules from R and RE can be classified into consistent
blocks as follows: (a) the rule block associated to (i, α, α′, u, v) is
Bi,α,α′,u,v = {r ∈ R : LHS(r) = (i, α, u, v) ∧ charge(RHS(r)) = α′};
and (b) the rule block associated with (ej, x) is Bej,x = {r ∈ RE :

LHS(r) = (ej, x)}.

Definition 4. Two consistent blocks B1
i1,α1,α′1,u1,v1

and B2
i2,α2,α′2,u2,v2

compete for objects when the following holds:

(a) The two blocks are mutually consistent. That is, if i1 = i2 ∧
α1 = α2 then α′1 = α′2.

(b) Their left-hand sides overlap. That is, either of the following
conditions hold:

• If i1 = i2 and α1 = α2 then u1∩u2 ̸= ∅ and v1∩v2 ̸= ∅

• If i1 ̸= i2 but i1 is the parent membrane of i2, then
v1 ∩ u2 ̸= ∅, and vice versa.

For the sake of simplicity, the left-hand side of a block B,
denoted by LHS(B), is the left-hand side of any rule in the block.
Note that a block Bi,α,α′,u,v determines a consistent set of rules;
that is, all skeleton rules in a block are mutually consistent
(generating the same charge to the same membrane). Let us
recall that the sum of probabilities of the rules belonging to the
same consistent block must be equal to 1. In particular, rules
with probability equal to 1 form individual blocks. Moreover,
rules having exactly the same left-hand side (LHS) belong to the
same block, but rules with overlapping (but different) left-hand
sides are classified into different blocks. Overlapping LHS leads
to object (resource) competition. This is a critical aspect to be
managed by simulation algorithms (see Definition 4).

DCBA tackles the resource competition issue by performing
a proportional distribution of objects among competing blocks.
Algorithm 1 describes the main loop of the DCBA, which is struc-
tured in two stages: selection and execution. Selection stage
consists of three phases: Phase 1 distributes objects to the blocks
in a certain proportional way, Phase 2 ensures maximality by
checking the maximal number of applications of each block, and
Phase 3 translates from block to rule applications by calculating
random numbers using a multinomial distribution.

INITIALISATION procedure constructs a static distribution
table Tj for each environment, where:

• Column labels correspond to every consistent block Bi,α,α′,u,v
and Bej,x, for environment j.
• Row labels are pairs (x, i), for all objects x ∈ Γ , and 0 ≤ i ≤

q. i = 0 denotes the environment.
• Each entry at row (x, i) and column B is:

– 1
k , if LHS(B) = (ej, x) and i = 0



Algorithm 1 DCBA MAIN PROCEDURE
Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy parameter), and an initial configuration C0.
1: for j ← 1 to m do
2: (Tj) ← INITIALISATION (j,Π)
3: end for
4: for t ← 0 to T − 1 do
5: SELECTION:
6: for j ← 1 to m do
7: Bj

sel ← ∅, R
j
sel ← ∅

8: (T t
j , C ′t , B

j
sel) ← PHASE 1 (j, Π, A, Ct , Tj) ▷ (Distribution of objects)

9: (C ′t , B
j
sel) ← PHASE 2 (j, Π, C ′t , B

j
sel, T

t
j ) ▷ (Maximality)

10: (Rj
sel) ← PHASE 3 (j, Π, Bj

sel) ▷ (Probabilistic distribution)
11: end for
12: EXECUTION:
13: for j ← 1 to m do
14: (Ct+1) ← PHASE 4 (j, Π, C ′t , R

j
sel)

15: end for
16: end for

– 1
k , if LHS(B) = (j, α, u, v) and either i = j and xk ∈ v or j
is parent of i and xk ∈ u. In other words, if the object in
the row label x appears in its associated compartment
i with multiplicity2 k in the left-hand side of the block
B of the column label.

– 0, otherwise.

Moreover, two multisets, Bj
sel and Rj

sel, are also initialised to be
empty. They are going to be used to store the selection of blocks
and rules, respectively.

Before starting SELECTION, a copy of the current configura-
tion Ct is made, named C ′t . PHASE 1 carries out the distribution of
objects among the blocks by using the static tables Tj. These tables
are modified by three different filters: Filter 1 (removing columns
of non-applicable blocks b due to mismatch charges in LHS(b)
and C ′t ), Filter 2 (discarding the columns with objects in the LHS
not appearing in C ′t ) and Filter 3 (discarding empty rows). In
order to get a set of mutually consistent blocks, the consistency
condition is checked after applying Filter 1 and Filter 2. If it fails,
the simulation process can either halt with an error message or
non-deterministically construct a subset of mutually consistent
blocks.

After applying these filters, a dynamic table T t
j is generated,

whose values are normalised as follows: (1) a sum per row is
computed, and (2) for each row, the corresponding multiplicity
of the object in the multiset C ′t is multiplied by the original value
in the dynamic table to the square (i.e. ( 1k )

2), and divided by the
sum of the row calculated before in (1).

Finally, the number of applications for each block is calculated
by computing the minimum value per column. This number is
annotated in Bj

sel for the corresponding block associated with the
column, and used to consume the objects in the LHS from C ′t .
However, this application might not be maximal due to rounding,
so in order to be more accurate this phase is repeated A times
(called the A parameter).

As mentioned, it might be possible that some blocks are still
applicable because of rounding artefacts in the distribution pro-
cess. Due to the requirements of P systems semantics, a max-
imality phase (PHASE 2) is applied. It imposes a random order
to the remaining columns (blocks) in each dynamic table and by
looping over them, the remaining applications are distributed one
by one according to the arbitrary order. These last applications
are also annotated in Bj

sel. Thus, some blocks appearing deep in
the random order might not be applied.

2 Number of instances of an element in a multiset.

In order to complete the SELECTION stage of the algorithm,
DCBA has to provide a multiset of rules (rule applications) to the
EXECUTION stage. After PHASE 2, only block applications in Bj

sel
are available. Hence, PHASE 3 calculates rule section. It applies the
corresponding probabilistic distribution at the local level of each
block following a multinomial random variate M(N, g1, . . . , gl),
where N is the number of applications of the block, and g1, . . . , gl
are the probabilities associated with the rules r1, . . . , rl within the
block at step t , respectively. These random applications are then
annotated in Rj

sel.
Finally, the EXECUTION stage is applied. For each selected rule

r in Rj
sel, the RHS(r) is added to C ′t , and charge(RHS(r)) is assigned

to the corresponding membrane (now safely, thanks to satisfying
consistency condition). Finally, C ′t is just the next configuration
Ct+1. In order to loop through the configurations, in each iteration,
DCBA cleans up Bj

sel and Rj
sel, and deletes the dynamic distribution

tables, starting over again with Tj.

2.2. Parallel implementation

A key advantage of DCBA over DNDP and BBB is that the
distribution of objects to the blocks is made through a matrix.
Thus, it does not require a random order over rules and blocks
(at least for phases 1, 3 and 4). This facilitates a parallel im-
plementation. On the contrary, a major downside of DCBA is its
low efficiency, which requires to construct a large table with
dynamic structure. Moreover, this table is sparse: it is very rare
that objects participate in every block’s left-hand side. For this
reason, an efficient implementation of DCBA should avoid the
construction of the whole distribution table. In pLinguaCore, a
hash table [32] was employed to make a dense representation.
In contrast, parallel implementations used different approaches.

The project ABCD-GPU, developed inside PMCGPU, was con-
ceived to provide parallel implementations to DCBA. First, the
distribution table was replaced by a virtual table [37] that trans-
lates the operations over the table to operations over the rule
blocks information, plus requiring only three new arrays. When
DCBA loops over columns, this implementation iterates over the
rule blocks. Information of each column can be extracted from
the corresponding block’s LHS. Loops over rows are performed
by accessing again the blocks’ LHS, but storing the partial results
in a global array. The three new arrays aforementioned are:

• activationVector: the information of filtered blocks is stored
here as boolean values, having one position for each rule
block and environment.



• addition: the row sums calculated for normalisation are
stored here, having one number per each tuple (object,
region, environment). Using floating numbers might lead
to imprecise representations. In order to solve this issue,
an alternative representation is also employed (from now
on, n/d representation), where the numerator and denomi-
nator are stored in two separated arrays (named numerator
and denominator). Consequently, the divisions and multipli-
cations are made just once, when calculating the column
minimums. In rows having many competing blocks, the n/d
representation can overflow, so floating numbers are the
only solution.
• MinN: the minimum numbers calculated per column are

stored here.

ABCD-GPU started with a multi-core version [27,37] based
on C++ and OpenMP. Three approaches for parallelisation were
taken: by environments, by simulations and both environment
and simulation. Given that PDP systems have a probabilistic na-
ture, it is required to run several simulations in order to increase
the confidence of the results and get accurate average temporal
series. These simulations can run independently of each other,
and hence, it has been the best way to parallelise the simula-
tor. Moreover, experiments showed that PDP system simulations
were memory bandwidth bound. Using a CPU i7 Sandy Bridge
(1 × 4), a peak speedup of 2.5x was obtained against a serial
implementation.

In [38], an implementation in CUDA was introduced. This sim-
ulator seeks for fine-grain parallelism, since only parallelising by
simulations is not enough for a GPU. The following grid configura-
tion was employed: a thread block for each environment in the x
axis and for each simulation in the y axis; 256 threads per thread
block that loop in tiles over the rule blocks3 for selection phase
kernels or loop over rules for execution phase. Although this
design is tight to the simulated model (number of environments,
rule blocks) and the user preferences (simulations to run), the
number of CUDA threads is large enough. This design is illustrated
in Fig. 1.

The implementation was made through 7 different kernels [38,
39], 3 for phase 1, 2 for phase 4, and one for each of the remaining
phases:

• Kernel for filters (phase 1): filters 1 and 2 are applied,
plus consistency checking. Only error warning and halting is
supported (see Section 2.1), given that a model presenting
inconsistency is found to be rare and hard to control by
designers. Filter 3 is not required with the virtual table.
• Kernel for normalisation and column minimum (phase 1):

the row sums of the table are calculated and employed
to compute the minimum values per column, denoting the
applications of the corresponding rule block. When using ac-
curate mode, the n/d representation is employed. In order to
save computations, and at initialisation, the total sums from
Tj are pre-calculated, and those non-applicable rule blocks
subtract just the numerator vector accordingly. When non
accurate mode is used, floating numbers are used per row,
so applicable rule blocks add their corresponding values in
addition vector.
• Kernel for updating (phase 1): once the applications of each

rule block is computed, this kernel updates the configura-
tion by subtracting the corresponding LHS, annotates that
number to Bj

sel and applies filter 2 again.

3 From now, we will call rule blocks to the consistent blocks formed out of
the PDP system, in order to distinguish them from the thread blocks of CUDA
programming model.

• Kernel for phase 2: two approaches, static and dynamic,
are taken here since this phase is inherently sequential.
The static one performs a random loop over the remaining
blocks. Randomness is simulated by the GPU scheduler with
atomic operations among threads. This results to be suffi-
cient according to experiments [39]. The dynamic approach
detects competing blocks using shared memory. After that,
the maximal applications are calculated in parallel for each
non-competing group of blocks [38].
• Kernel for phase 3: in this phase, a library called

CURNG_BINOMIAL [37] was developed in order to generate
a binomial random variate. As in pLinguaCore, only constant
probabilistic functions fr,j and pr along time are supported
(they may differ only between environments). The number
of applications per rule is annotated in Rj

sel.
• Kernels for phase 4: rules are visited by threads, and only

those with applications in Rj
sel are considered. The RHS is

generated in the configuration using atomic operations for
addition, and the membrane charges are safely updated.
Two kernels implement this stage separately for rule blocks
belonging to the skeleton of the PDP system and another for
environment communication rule blocks.

Concerning the internal data layout of the C++ implementa-
tion, the information of the rules and blocks are compacted by
separating the LHS, RHS and probability in different arrays. These
are accessed by indexes assigned to each rule block and rule. The
configuration of the PDP system is implemented as follows: an
array of 8-bit integers for the charges of the membranes and
an array of 32-bit unsigned integers for the multisets within
the regions, storing the multiplicity of each object defined in
the alphabet. activationVector is bitwise coded: an array of 32-
bit words stores in each position the activation flags for 32 rule
blocks. When using the n/d representation, two arrays of 32-
bit unsigned integers are used (for numerator and denominator),
otherwise an array of 32-bit floats is used for addition. MinN is
an array of 32-bit unsigned integers. When using the GPU, the
arrays are stored in global memory given that they get updated
in each step. Some parts of the rule information get stored in
constant memory given that they remain unchanged during the
simulation, showing a slight performance improvement according
to our experiments. Further details can be consulted in the source
code at PMCGPU website [25].

ABCD-GPU simulator has been tested by using randomly gen-
erated PDP systems, and validated using the model of the Bearded
Vulture ecosystem in [39,40]. Using a NVIDIA Tesla C1060 GPUs
and random PDP systems, an overall speedup of 7x was obtained
compared to a single CPU, and 3x against 4-core CPU using the
OpenMP implementation [37,38]. Using a Tesla K40 and sim-
ulating the Bearded Vulture model, the obtained speedup was
18.1x.

3. P-Lingua version 5.0

In this work, P-Lingua syntax has been extended by including
the concept of feature in order to pass information directly from
the P-Lingua user to the simulator. A new lightweight parser has
been developed in C++ 11 using the Standard Template Library
(STL) instead of using the Java pLinguaCore. The new software
is able to execute a fast and memory-efficient parsing of the P-
Lingua files with the new syntax and produce output files in
XML/JSON/binary format. The generated binary files are a seri-
alisation of internal data structures describing the P system and
can be loaded by simulators directly into memory. This version of
P-Lingua is retro-compatible, so files written with versions 1 to
4 can be also used in version 5. The software can be downloaded
from https://github.com/RGNC/plingua.

https://github.com/RGNC/plingua


Fig. 1. Example of the design for ABCD-GPU, working over a PDP system with 2 environments and performing 2 simulations. Inside environments, rule blocks are
represented by strides. Thread blocks with 256 threads are launched and loop over the rule blocks.

3.1. Syntax of a P-Lingua file

In general, a P-Lingua file begins with the definition of the
P system model type and contains a set of functions, where
each function can define rules, initial multisets or the initial
membrane structure. Global and local variables can be defined as
in conventional programming languages.

@model<probabilistic>
@include "pdp_model.pli"
N = 10; // Number of environments
M = 7 ; // Number of species

The lines above specify the model type to be used and two
global variables. In this new version of P-Lingua, other files can
be imported. A new syntax has been included in order to define
variants in P-Lingua files instead of using pre-defined identifiers,
in this case, the included file pdp_model.pli defines the seman-
tics (e.g. derivation mode) of the probabilisticmodel (for PDP
systems). The specific details about the new semantic ingredients
in P-Lingua 5 are out of the scope of this work, and can be found
in [41].

1 def main()
2 {
3 @mu = []’p;
4 @mu(p) += [[[]’1]’0]’{k},{k} : 101 <= k <= (100+N);

5 @ms(1,{j+100}) += X{k} * q{k,j} : 2<=k<=M,1<=j<=N;
6 @ms(0,{j+100}) += X{1} * q{1,j} : 1<=j<=N;
7 @ms(0,{j+100}) += R{0} : 1<=j<=N;

8 /*r1*/ X{1}[]’1 --> +[X{1},G*(h{j})]’1:: m{j} : 1<=j<=3;
9 /*r2*/ [X{i}]’1 --> +[X{i}*(1+d{i})]’1:: (k{i,1}*0.5)

: 2<=i<=M;
10 /*r3*/ [X{i}]’1 --> +[X{i}]’1:: 1-(k{i,1}*0.5) : 2<=i<=M;

11 reproduction_rules(M,3);
12 }

The code above is an example of a function (with line num-
bers). A main function must be included as starting module.
Functions can call other functions and, optionally, they can also
return a value. For instance, there is a predefined function for
random number generation. In the example, there is a call with
two parameters in line 11, and the initial membrane structure
has been defined in a parametric way in the first two lines (3 and
4). For Population Dynamics P systems, a virtual skin membrane
p is used. That is, the structure is a cell-like P system, i.e, a
tree structure where the membranes at the second level are the
environments. Each membrane has two labels: membrane and
environment identifiers. In this example, membranes used for the
environments are identified by (100+ i, 100+ i) with i from 1 to
the number of environments N .

Lines from 5 to 7 add multisets of objects to the initial mul-
tisets defined by a particular pair of labels. Multiplicities are

defined by using the multiplication symbol (*). Likewise, line 6
includes q{i,j} times the object X{1} in the initial multiset of
membrane 0 (skin) at environment j+100, for j from 1 to N.

Lines from 8 to 9 are examples of rules. Each rule has a left-
hand side and a right-hand side separated by an arrow symbol
(-->). Membranes are defined by square brackets with an op-
tional charge + or - before the left bracket (default is neutral
charge) and a membrane label after the right bracket. Iterators
can be used to define rules in a parametric way. Finally, probabil-
ities related to rules are included after the symbol :: and before
the iterators’ ranges. For instance, line 8 defines three rules using
a parameter j from 1 to 3, each one having probability m{j}.

3.2. Features

In this new P-Lingua version, the user can provide additional
high-level information to the simulator by using features (in-
spired from directives in common programming languages, as in
OpenMP). A feature can be a numeric value or a character string
associated to a unique name (character string). The syntax to
define a feature is as follows:

@feature_name = feature_value;

Next, three features are defined as an example, the first one is
an integer, and the rest are strings:

@number_of_modules = 5;
@sequence = "3, 1, 4, 2, 5";
@names = "high, low"

It is also possible to define a feature without value; in this case,
a default value of 1 is assigned. Moreover, the user can define two
types of features:

• Global features: They are written at the global scope and are
related to the whole P system. In fact, the example above
represents global features.
• Rule features: This type is related to only a particular rule.

It is written at the rule scope after providing the rest of
the syntax of the rule (i.e. right before the semicolon). For
example:

[A]’1 --> [B]’1 :: 0.9 @stage = "generation";

Features are stored inside the serialised object created by P-
Lingua, and the place depends on the type (global or rule level).
They can be fetched by explicit calls, meaning that simulators that
do not support features will work as usual.

4. Adaptative GPU simulator

This section provides a detailed description of the adapta-
tive PDP system simulator for GPUs. The mechanism to declare
modules as features and how to handle them is first explained,
and later the extension of DCBA to take advantage of modules is
discussed.



4.1. Modules as features

In [9], a protocol for describing PDP system models is stan-
dardised. In stage 4 of the protocol, the algorithmic scheme
captured by the model is sketched. Let us recall that a cycle
corresponds to a certain time in the simulated biological system
(e.g. a year) and that lasts a prefixed number of steps in the
model. Cycles are repeated along the computation. Inside a cycle,
the same sequence of processes will be repeated. They take
predetermined time intervals, ensuring in this way that a cycle
always lasts the same transition steps. These processes are known
as modules, and represent specific parts of the system to be
modelled. Moreover, given that modules can bifurcate to others,
their execution can be made either sequentially or in parallel, but
always in a synchronous way.

Moreover, defining models by modules is not unique for bio-
logical modelling. When dealing with solutions to
computationally-hard problems, designers usually develop mod-
els by stages (that can be seen as a sequence of modules), what
eases the design and posterior formal verification. This can be
seen for example in the solution to the subset-sum problem
in [42], where the stages are: generation, weight calculation,
checking, and output. Similarly, a solution to SAT problem based
on P systems with active membranes can be constructed over
the following stages: generation, synchronisation, check-out and
output [43]. These stages cover the whole computation of the
P system, given that it stops after completing the last stage. In
particular, this was the key when developing specific simulators
for this solution [30,44], because it is easier to adapt the kernels
to each stage: rules to be applied in each stage are previously
known, allowing to automatically discard rules from other stages.

In this sense, an adaptative simulator has the goal of getting
closer to specific simulators without losing generality; that is,
they are generic simulators with improved performance by taking
advantage of extra information provided directly by designers
(e.g. modules). The concept of adaptative simulator is here tested
by an extension of ABCD-GPU. For simplicity, the scheme of mod-
ules supported by this simulator is restricted to a directed graph
without cycles. This way, the activation of modules is predefined
by a transition graph, where modules get active for a certain pe-
riod of time (measured in transition steps of the model) according
to a relationship of succession: after one module, others can get
active. We will say that a module is active in a certain transition
step when its rules are electable for execution. Therefore, rules
from inactive modules can be automatically discarded in selection
stage. Let us remark that several modules can be active at a
certain step, but cycles in the transition graph are not permitted
(after a module, none of its predecessors can come next). In fact,
the whole graph must be synchronised: modules (e.g. b and c)
following a certain one (e.g. a) must be active in the next step
after finishing the activation of the ancestor (a); and if a module
(e.g. c) has more than one ancestor (e.g. a and b), they (a and
b) must finish their activation right in the step before it (c) gets
active. Similarly to the modular scheme of ecosystem models,
this transition graph is defined at the level of a cycle in the
simulation time. Consequently, the first modules getting active at
the beginning of each cycle become at step 0. Last modules end
along with the cycle at step n, where n is the duration of a cycle
minus 1. In Fig. 2, an example of a transition graph is shown.

Modules can be defined in P-Lingua files in a straightforward
way through features. This means that they are included along-
side the model description as an extension, being easily accessible
for model designers. It is noteworthy that this information is
transparent for simulators not supporting modules, given that
features are extra items that have to be fetched explicitly. There
are two main pieces of information that has to be declared in
order to define modules:

Fig. 2. Example of a transition graph formed by 8 modules, and with a cycle of
7 steps. Module 1 is active in the first two steps of the cycle and module 3 will
follow by getting active in the third step. Module 2 is active simultaneously with
1 and 3 during 3 steps. After modules 2 and 3, the fourth module gets active
from steps 3 to 4. After it, module 5 gets active for 2 steps, while in parallel,
modules 6 and 7 get active consecutively by just one step.

1. Information about the modular structure of the model. This
includes module names and their temporal relation. The
latter indicates when a module starts inside a cycle and
which modules will follow a given one.

2. Information about distribution of rules in modules. That is,
which module each rule belongs to.

The modular structure consists of the following: module
names, duration of each module measured in transition steps of
the model, and successors according to the graph of temporal
relation. This is declared in a global feature as follows:

@modules="(module1,duration1,modulek11,. . .,modulek1z1
);. . .;

(modulen,durationn,modulekn1,. . .,moduleknzn)";

where n is the total amount of modules; modulei is the identifier
of module with index i (it can be either just the index i or a
descriptive name, e.g. ‘‘feeding’’, ‘‘mortality’’, etc.); durationi is
the number of steps that module i is active; zi is the num-
ber of modules that get activated after the end of modulei; and
moduleki1 , . . . ,modulekizi

are the identifiers of the modules follow-
ing module i (that is, its successors list), with 0 ≤ zi ≤ n − 1.
Therefore, for each module i, the designer has to provide a name
or index of such module, its duration in steps, and the modules
that come next after it finishes. Specifically, the successors list is
empty when the module is the last one in the cycle or there are no
modules starting after it. For example, the following declaration
in P-Lingua corresponds to the graph in Fig. 2:

@modules= "(1,2,{3});(2,3,{4});(3,1,{4});
(4,2,{5,6});(5,2,{}); (6,1,{7});(7,1,{})";

Membership to each module is declared by a local feature
to the corresponding rules in the following form: @module =
‘‘modulei’’. This indicates the identifier of the module (as de-
scribed in the feature @modules) where the corresponding rule
belongs to. For example, a set of rules belonging to module 1 can
be defined as follows:

[X{i}]’1 --> +[X{i}*(1+d{i})]’1::(k{i,1}*0.5)
@module="1": 2<=i<=M;

In the above example, an iterator is employed, so for each
value of i (which iterates until the constant value M) a rule is
generated with that pattern. All of them belong to module 1, and
each one has probability k{i,1}

2 .



All rules must belong to a module. By default, if the @module
feature is not provided for a rule, it is assumed to be part of a
default, virtual module that gets active during the whole cycle.
Moreover, it is easy to demonstrate that all rules inside each
consistent block belong to the same module. Finally, a further
restriction is imposed: two rule blocks from two different mod-
ules getting active at the same step cannot compete for objects
(as in Definition 4). That is to say, DCBA is executed locally to
each module given that rule blocks from simultaneous modules
are independent. Of course, rule blocks inside modules or from
consecutive modules can have overlapping LHS. This is usual
in modular designs and it is required in order to obtain better
efficiency.

4.2. Modular DCBA

The module structure is retrieved from P-Lingua 5 data struc-
tures in the binary file, together with the model itself. This is
important because the simulator has to process this information
before reading the rule blocks. For example, with the goal of
increasing coalesced access to data on the GPU, rules blocks are
sorted first according to the module they belong to.

Four main arrays are employed to handle modules during
the simulation. All of them have a size equals to the number of
modules:

• startStep: for each module, the step since it gets active.
• endStep: for each module, the step since it is no longer

active.
• blockIndexSkeleton: for each module, the index of the first

skeleton rule block (i.e. of the form Bi,α,α′,u,v) belonging to
it.
• blockIndexCommunication: the index of the first communica-

tion rule block (i.e. of the form Bej,x) belonging to it.

In other words, a module i starts its activation in step
startStep[i] inside a cycle, and ends at endStep[i] − 1. The rule
blocks from the skeleton belonging to module i are
blockIndexSkeleton[i] to blockIndexSkeleton[i + 1] (idem for com-
munication rule blocks). When blockIndexSkeleton[i] =

blockIndexSkeleton[i+1], no skeleton rule block belongs to module
i (vice versa for communication blocks). These arrays can be
constructed from the transition graph, as defined in previous
section, using Algorithm 2. Although it is sequential, it has to
be run only once at the beginning. Moreover, the number of
modules is not expected to be very high. As an example, next, the
startStep and endStep vectors are defined for the graph in Fig. 2:
startStep = {0, 0, 2, 3, 5, 5, 6}, endStep = {2, 3, 3, 5, 7, 6, 7} (each
position corresponds to the module index as shown in the figure).

Let us recall that Fig. 1 shows an example of the original
design of ABCD-GPU. It can be seen that while environments
and simulations are completely parallelised by thread blocks, rule
blocks (or rules for phase 4) are distributed among the threads,
which are restricted to 256 for best performance according to our
experiments. The higher the amount of rule blocks, the larger
is the loop inside environments. In fact, ABCD-GPU first visits
every block but for only detecting its applicability. Hence, if the
block is not applicable, it will be dismissed for normalisation and
updating kernels. However, three downsides happen:

• Threads need to visit activationVector for every block, to
check whether it is active.
• activationVector can be sparse, so its access by threads is not

fully coalesced and would require more iterations to cover
all of them.

• Given that activationVector is sparse and not compacted,
access to rule block information (LHS, etc.) is also not co-
alesced.

Fig. 3 exemplifies the work distribution of ABCD-GPU with
modules. This version increases parallelism by launching con-
current thread blocks, assigning each module to a stream. The
loop over thread blocks is further decreased by only considering
those inside the active modules, avoiding in this way to visit
activationVector for all of them.

As a matter of fact, modules are windows over the rule blocks,
allowing to skip those not belonging to active modules (Fig. 3).
Thus, the advantage is twofold: (1) it reduces the loop over
rule blocks made by threads, and (2) it compacts activation-
Vector to module level, reducing sparsity. The larger a module,
the sparser activationVector. Furthermore, DCBA is executed lo-
cally inside modules, enabling the possibility to run it in parallel
over simultaneously-active modules. Specifically in ABCD-GPU,
the implementation has been slightly modified:

• Kernels receive the range of rule blocks (or rules) to visit.
Originally in ABCD-GPU, kernels looped over every rule
block defined in the PDP system.
• For every module, a kernel is launched for a specific range

of transition steps. If more than one module is active, these
kernels run in parallel by assigning them to non-default
CUDA streams.
• As an extra improvement, it is easy to check that commu-

nication rule blocks do not require DCBA for object distri-
bution, because their LHS (a single object from Σ) cannot
overlap with skeleton rules (see Definition 1). Therefore,
two kernels, one for skeleton rule blocks and another for
communication rule blocks, are launched at different CUDA
streams.

However, there are some aspects to be considered. First, as
mentioned in Section 2.2, if the accurate mode with n/d repre-
sentation is used, non-active blocks have to subtract their contri-
bution to numerator vector. That is to say, blocks from non-active
modules have to be visited in any case, losing the advantage of
this technique. Instead, local copies of numerator and denominator
for each module are previously populated and employed when
needed. Therefore, the algorithm needs to upload to the GPU
only those copies for active modules by copying just the non-
null values at each transition step. Given that rules from different
simultaneously-active modules cannot compete for objects, they
will not interfere. In contrast, for non-accurate mode, the addition
vector can be used as previously safely. Secondly, kernels might
run out of parallelism when handling small modules (with few
rule blocks). Thirdly, memory for Bj

sel and Rj
sel has to be initialised

at every step. In the original version of the simulator, this ini-
tialisation is done implicitly because all rule blocks and rules are
visited. This way, threads write at least a 0 in their positions
if the corresponding rules are not selected. Fourthly, given that
DCBA is performed per module, it might be possible to reduce
space in some auxiliary data structures, like Bj

sel, activationVector,
etc. This was not done at the time of writing, but it is planned
for future work. Lastly, the same aforementioned design concepts
have been also applied to the multicore (OpenMP) version of the
PDP system simulator. Here, simulations are distributed among
cores, and each thread loops over the rule blocks that are only
active according to the module information, as done by the GPU
simulator. The same data structures are employed, so compaction
also takes place.

The source code of the adaptative PDP system simulator im-
plemented in this work is available at the PMCGPU website [25]
(section ‘‘Files’’, folder ‘‘ABCD-GPU’’), and at the following repos-
itory https://github.com/RGNC/abcd-gpu (tag adaptative-1.0).

https://github.com/RGNC/abcd-gpu


Algorithm 2 MODULES PROCESSING PROCEDURE
Require: A transition graph of modules defined as a set of tuples: RGM = {(modulei, durationi, successorsi = {moduleki1 , . . . ,modulekizi

})}, for 1 ≤ i ≤ n,
where n is the number of modules.

1: initialise arrays startStep, endStep, duration and predecessor with 0
2: for each (modulei, durationi, successorsi) from RGM do ▷ (create aux arrays)
3: duration[i] ← durationi
4: for each module j from successorsi = {moduleki1 , . . . ,modulekizi

} do
5: predecessor[j] ← i ▷ (assuming synchronisation, choose any predecessor)
6: end for
7: end for
8: for i ← 1 to n do ▷ (create final arrays)
9: j ← i ▷ (seeking the first predecessor)
10: t ← 0 ▷ (accumulating duration of predecessors)
11: while predecessor[j] ̸= 0 do
12: t ← t + duration[j]
13: j ← predecessor[j]
14: end while
15: startStep[i] ← t
16: endStep[i] ← t + duration[i]
17: end for

Fig. 3. Example of the design for modular ABCD-GPU, for a PDP system with 2 environments and for 2 simulations. Inside environments, rule blocks are represented.
There are two active modules (in shaded). Thread blocks with 256 threads are launched in two CUDA streams, A and B. Each stream is for each module.

5. Case study

Next, the behaviour and performance of the adaptative PDP
system simulators for GPU and OpenMP are analysed. The model
employed as benchmark is introduced in the first subsection, and
the detailed analysis is made in the second one.

5.1. Generalised tritrophic interactions model

The model employed in this work to test the performance of
the simulators is based on the tritrophic interactions presented
in [33,45]. This is a virtual ecosystem that was defined to illus-
trate PDP systems as a modelling framework. In this model, three
trophic levels are represented: grass, herbivores and carnivores.
These species interact with each other, reproduce and move along
the 10 environments when no food is encountered. Rule block
competitions take place. For instance, all herbivores compete for
grass, that is represented by a single object, G.

For benchmarking purposes, the model has been generalised
so that the number of species can be changed. The corresponding
parameters (probabilities, amount of copies eaten per species,
etc.) are generated randomly. This was possible thanks to the abil-
ity of P-Lingua 5 to incorporate calls from the model to random
number generation functions. The P-Lingua file corresponding to
this generalised model is available along with the source code of
the simulator.

Fig. 4 shows the transition graph (and hence, the modules) in
the model. A cycle takes 9 steps, and there are 5 modules, each
one lasting 1 transition step excepting module 3, which takes
5 steps. Environment communication rules are executed only in
module 3. The @modules feature definition is therefore as follows:

Fig. 4. Transition graph corresponding to the modules in the algorithmic scheme
of tritrophic interactions model [45].

@modules="(1,1,{2});(2,1,{3});(3,5,{4});(4,1,{5});
(5,1,{})";

There is no connection from module 5 back to 1. As mentioned
in Section 4.1, the transition graph has no cycles and moreover,
the graph is defined till the end of cycle. Thus, it is assumed that
the next cycle will start again with module 1. Last but not least,
identifiers of modules can be also strings, but we opted to provide
just the indexes for simplicity.



5.2. Analysis of performance results

In this section, the benchmark carried out to the adaptative
PDP systems simulator is analysed. The two versions of the simu-
lator are compared: original (ABCD-GPU as in [39]) and modular
(adaptative variant of ABCD-GPU). The extended tritrophic model
is used as input. In all experiments, 20 years of the virtual ecosys-
tem are simulated (corresponding to 180 transition steps of the
PDP systems). The A parameter of DCBA is set to 2, and the
static approach for phase 2 was chosen. No output was asked, so
only the simulation runtimes were measured. The scalability of
the simulators is analysed by increasing the number of species.
Specifically, 7 will be used to denote the base model, which has
in fact 7 species. In order to have an idea of the dimensions of
the model, the ratio of rule blocks per species is approximately
22: 21985 rule blocks are generated for 1000 species, being 9990
communication rule blocks and 11995 skeleton rule blocks. An-
other parameter affecting scalability is the amount of simulations
running in parallel. For this reason, 50 and 100 simulations were
launched for the tests. Accurate, n/d, representation of additions
in normalisation for phase 1 was only employed for the original
model. In larger models, the non accurate mode is used. The
following two configurations of CPU and GPU hardware were
used to run the simulations (short names are provided in bold):

• (i7) Intel i7-8700 CPU at 3.20 GHz, having 12 logical cores (6
physical), 8 GB of DDR4 system memory. g++ version 7.4
was used.
• (Xeon) Intel Xeon CPU E3-1230 v3 at 3.30 GHz, having 8

logical cores (4 physical), 32 GB of DDR3 system memory.
g++ version 4.9 was used.
• (P100) Tesla P100 GPU, having 3584 cores at 1.33 GHz, 16

GB of device memory with 4096-bit memory bus width at
715 Mhz. Compute Capability 6.0. CUDA 10.0 was used.
• (GTX1050) GeForce GTX 1050Ti GPU, having 768 cores at

1.42 GHz, 4 GB of device memory with 128-bit memory bus
width at 3.5 GHz. Compute Capability 6.1. Plugged to the
CPU i7. CUDA 10.0 was used.
• (K40) Tesla K40c GPU, having 2880 cores at 0.75 GHz, 12 GB

of device memory with 385-bit memory bus width at 3 GHz.
Compute Capability 3.5. Plugged to the CPU Xeon. CUDA 9.0
was used.

Let us start by analysing the impact of the modular scheme
to the multicore implementation. As mentioned in Section 2.2,
OpenMP is employed to distribute simulations among threads.
The i7 CPU is tested with 4 (i7-omp4) and 8 (i7-omp8) threads,
while the Xeon runs only 4 (Xeon-omp4) threads. The achieved
speedups by using modular against original version are displayed
in Fig. 5, where 100 simulations were run (when using 50, the
numbers are similar). It can be seen that for all tested cases,
the modular version outperforms the original one by up to 2.7x
in Xeon CPU for 1000 species. modular simulator has a better
impact in Xeon than in i7, where the accelerations obtained are
lower (up to 2.3x). Moreover, lower improvements, between 1.5
and 1.9x, are found in a small model like the base one, while
the accelerations seem to increase slightly with larger models.
Furthermore, experiments with large models using 8 threads and
modular version show a bit faster simulation when compared to
using 4 threads.

Fig. 6 shows the speedups obtained by the simulators when
running on the GPU. Similarly to the multicore version, the adap-
tative (modular) simulator outperforms the original one, except-
ing for the case of simulating the base model on GTX1050 and
P100. Here, the introduced overload downgrades slightly the
performance, as it will be seen in the profiling Table 3. The
accelerations are much higher on the K40 GPU (from an older

generation), reaching 2.5x for 500 species and 50 simulations.
On the GTX1050, up to 1.7x is achieved with 1000 species and
50 simulations. On the P100, up to 1.8x is achieved with 300
species and 50 simulations. For 5000 species, the GTX1050 was
not able to run 100 simulations due to memory constraints. For
the three tested GPUs, the accelerations tend to be constant with
larger models. Runtimes for P100 are much lower than in K40 and
GTX1050 due to its higher capacity and memory bandwidth. For
example, modular version of the simulator running 100 simula-
tions for 1000 species took 736.37 ms in the P100, but 2224.39 ms
and 2885.41 ms in K40 and GTX1050.

A cross comparison of runtimes and speedups achieved by
GPU compared to CPU is shown in Fig. 7. Fig. 7(a) shows the
runtimes in the fastest GPU tested (P100) and in the fastest CPU
configuration (i7 with 8 OpenMP threads). Fig. 7(b) corresponds
to the speedups reached by the above simulation times. The
GPU is faster, in both modular and original versions, than the
multicore counterparts when handling middle and large models.
Only for the small base model, the GPU is a bit slower (above
0.9x). Speedups are higher with larger models, being around 30x
and 50x for modular and original simulators, respectively, and for
2000 species. When simulating hundreds of species, 6x and 10x
accelerations were obtained for modular and original versions.
Finally, the speedup of the GPU is lower when using the modular
version, given that the impact of the modular scheme is better for
the CPU than for the GPU.

Lastly, let analyse the impact of the adaptative simulator in
each kernel launched by the GPU. Tables 1–3 summarise the
profiling performed on the simulator (numbers were obtained
with nvprof tool provided in the CUDA toolkit). Kernels for Filters,
Normalisation and Update belong to phase 1 (modular version
includes a fourth kernel named reset addition, which explicitly set
to 0 the row sums for each iteration of A (accuracy) parameter
in DCBA). Both phases 2 and 3 are performed by single kernels.
Phase 4 (execution) is divided in two kernels, one executing rules
from skeleton and another for environment communication rules.
Last two rows show the total time corresponding to the part
for DCBA and the initialisation overhead required by the GPU
(which is the same for both modular and original versions). The
overall percentage of time consumed by each kernel (and phase)
is shown in the column Overall, while the total runtime (for the
total of 180 simulated steps) is in the column named Time (using
milliseconds). Last column contains the speedups for each kernel
and phases achieved by the modular against original version.

Tables 1 and 2 correspond to the simulation of the model
with 1000 species and running 50 simulations on K40 and P100,
respectively. It is easy to see that the larger impact of using
modular version takes place in phase 2. This sequential phase is
highly accelerated (13.8x on K40, 7.8x on P100) by reducing the
loops over rule blocks taking into account the modules. Phases 3
and 4 are also well accelerated (around 4x and 2x), but phase 1
is barely improved. Although kernels for filters and normalisation
are twice faster in the modular simulator, the update kernel is
slower (double runtime in P100). Furthermore, kernel for execut-
ing environment communication rules is much slower onmodular
version, given the low degree of parallelism. The cause of the
negative effects in these two kernels could not be determined
yet, but the source of it is the decrease of parallelism (fewer rule
blocks have to be visited). In all cases, phase 1 is the bottleneck
in the simulation process, taking the majority of the time (from
30/50%, in original, to 70%, in modular).

Finally, the worst case where the modular simulator is slower
than the original when using the base model is analysed in Ta-
ble 3. The advantage of using the GPU to handle as many rule
blocks as possible is restricted by using the modular version.
In such case, very few threads will perform effective work, so



Fig. 5. Speedup achieved by using the adaptative simulator compared to the original version, for three configurations of multicore processors. The number of species
are increased up to 10000, and 100 simulations were run.

Fig. 6. Speedup achieved by using the adaptative simulator compared to the original version, for three GPUs: Tesla K40, GTX1050Ti and Tesla P100. The number of
species are increased up to 5000. 50 and 100 simulations were run.

Table 1
Modular against original simulator in K40 GPU, simulating the model with 1000
species and running 50 simulations.

Original Modular Speedup

Overall Time Overall Time

Filters 32% 456.32 ms 31% 194.08 ms 2.35x
Normalisation 13% 179.49 ms 10% 64.40 ms 2.79x
Update 12% 168.37 ms 31% 189.42 ms 0.89x
Reset addition 2% 14.59 ms
Phase 1 57% 804.18 ms 75% 462.50 ms 1.74x
Phase 2 22% 305.60 ms 4% 22.13 ms 13.81x
Phase 3 17% 237.27 ms 15% 90.15 ms 2.63x
Exec skel 2% 27.90 ms 1% 6.47 ms 4.31x
Exec env 0% 1.53 ms 1% 7.02 ms 0.22x
Phase 4 2% 29.43 ms 2% 13.49 ms 2.18x
Total DCBA 98% 1376.48 ms 95% 588.27 ms 2.34x
Init overhead 2% 5%

the performance is negatively affected. Indeed, only kernels for
normalisation, phase 2, and execution of skeleton are accelerated.
Here again, phase 2 runs twice faster on the modular version,
demonstrating the positive effect in this serial kernel. The slowest
kernel is again Update from phase 1. In this case, the overhead

Table 2
Modular against original simulator in P100 GPU, simulating the model with 1000
species and running 50 simulations.

Original Modular Speedup

Overall Time Overall Time

Filters 14% 78.25 ms 9% 38.01 ms 2.06x
Normalisation 23% 129.69 ms 21% 94.36 ms 1.37x
Update 20% 112.93 ms 44% 195.07 ms 0.58x
Reset addition 5% 20.44 ms
Phase 1 56% 320.87 ms 79% 347.87 ms 0.92x
Phase 2 14% 79.36 ms 2% 10.14 ms 7.83x
Phase 3 24% 135.97 ms 14% 62.67 ms 2.17x
Exec skel 3% 21.65 ms 1% 5.75 ms 3.76x
Exec env 0% 0.67 ms 1% 4.39 ms 0.15x
Phase 4 3% 22.32 ms 2% 10.15 ms 2.20x
Total DCBA 97% 558.52 ms 97% 430.83 ms 1.30x
Init overhead 3% 3%

for initialisation is high, consuming half of the time required for
simulation.

In light of the results here analysed, it can be concluded
that using the adaptative simulator in small models only pays
off when using the CPU. On the contrary, modular version is



Fig. 7. Comparison of P100 versus i7 with 8 threads. Both original and modular simulators are tested for different number of species in the model. (a) shows
the runtimes in ms for P100 and i7 executing original and modular versions, while (b) shows the corresponding speedups of P100 against i7 for both version. 50
simulations were run. Bar plots use logarithmic scale for y-axis.

Table 3
Modular against original simulator in GTX1050 GPU, simulating the base model
with 7 species and running 100 simulations.

Original Modular Speedup

Overall Time Overall Time

Filters 6% 11.87 ms 8% 15.05 ms 0.79x
Normalisation 13% 23.28 ms 11% 21.19 ms 1.10x
Update 8% 14.83 ms 11% 21.43 ms 0.69x
Reset addition 3% 4.86 ms
Phase 1 27% 49.99 ms 33% 62.54 ms 0.80x
Phase 2 7% 12.22 ms 3% 5.05 ms 2.42x
Phase 3 10% 17.99 ms 11% 20.80 ms 0.87x
Exec skel 2% 4.08 ms 2% 3.34 ms 1.22x
Exec env 1% 2.55 ms 1% 1.42 ms 1.80x
Phase 4 4% 6.63 ms 3% 4.77 ms 1.39x
Total DCBA 47% 86.85 ms 49% 93.16 ms 0.93x
Init overhead 53% 51%

always better in large models for both GPU and CPU. Moreover,
the adaptative simulator has better acceleration effects in older
generations of GPUs (K40) and CPUs (Xeon). Finally, the GPU
turns out to be faster than the CPU counterparts when used
for medium and large models. However, modular version for

tritrophic model reduces the amount of parallelism (fewer blocks
have to be visited), so the benefit of using the GPU is lower.

6. Conclusions and future work

Generic P system simulators are designed to assume that
worst situations might arise, such as applying all the defined
rules at a given step. This flexibility usually comes with a per-
formance cost. In contrast, specific simulators are designed for a
target model, restricted to just one family of P systems. In this
paper, adaptative simulators are explored as a middle ground.
The model designer is asked to provide high-level information, in
form of so-called features, to the simulator in a straightforward
and transparent way (similarly to directives in programming
languages). For this purpose, a new P-Lingua version supporting
these features has been developed.

As a case study, ABCD-GPU has been extended. It is a simulator
for PDP systems aimed at ecosystem modelling. This extension
enables the simulator to handle modules, typically defined in
PDP system models, so that rules are grouped and then sequen-
tially executed. In this way, the internal loops over the rules
are significantly reduced, showing speedups of up to 2.5x in



GPU implementations, and 2.7x in CPU counterparts. Adaptative
simulators can be constructed easily from previous one by im-
plementing extensions. This comes with slight a overhead, while
reducing the parallelism in GPU simulators, so paying off when
simulating large models.

The concept of features offers new opportunities to enhance
the performance of P system simulators. These have been inte-
grated into P-Lingua in a transparent manner, such that existing
simulators remain unaffected but can be extended to support
them. We believe that this will open new research lines, some
of them discussed next.

In this work, we did not pay attention to the memory foot-
print. The memory employed by the adaptative simulator in-
creases slightly (specially when using the n/d representation,
where separated arrays are populated per module). However, the
largest data structures (like Bj

sel, R
j
sel, activations and additions)

can be highly decreased by taking into account the modules,
considering that DCBA is applied locally to each module. In order
to do so, translating global to local identifiers for blocks and
objects would help.

Modules are disjoint subsets of the set of rules of the P system.
The rules of each module are supposed to be executed in parallel.
The idea of module is not unique for PDP systems. Other P system
models, like multicompartmental P systems (for systems biol-
ogy modelling) and solutions to computationally-hard problems
(where the computation is defined by stages) also define modules
as stages of the computation. This work has explored expressing
modules as features that divide the rule traversal into stages. We
note other possible implementations as a natural extension to this
work: (1) objects acting as counters make data structures very
sparse [29], so a feature can help to identify them and use an
efficient representation; (2) competitions of rules happen locally
inside each module, and a feature specifying where can localise
even more DCBA; (3) features can have the ability of disabling
environments and even membranes at certain steps, avoiding
wasting resources; (4) features can be also used to improve
the accuracy rather than just the efficiency, like some specific
simulation parameter (e.g. the accuracy, A, of DCBA), or even
different simulation algorithms (BBB, DNDP) can be selected per
rule and step. Concerning the modules, an improved transition
graph where conditional transitions between modules (e.g. if
some objects appear in the configuration) are allowed can be
explored.

Finally, the roadmap for PDP system GPU simulators was dis-
cussed in [39]. The idea of using features to help the simulator
was first introduced in item 8 of this roadmap. There are more
ideas for improving efficiency to be explored. For instance, item 6
corresponds to micro-DCBA, where competitions are automati-
cally detected to perform DCBA locally. Although it shares sim-
ilarities with the goal of this work, the main difference is that it
does not require extra information from the model designer, but
it depends only on the rules defined. One downside of defining
modules as features is that unexpected results can be obtained
from the simulation when this information is wrongly provided,
specially if the model has not been validated nor debugged by
the designer yet. Thus, features are recommended in deploy-
ment environments (i.e. virtual experimentation and parameter
calibration), while micro-DCBA is intended for the validation
processes of the model.
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