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Abstract

The pervasiveness and the growing processing capabilities of mobile and embedded computing systems are leading
to a shift from the Internet of Things (IoT) paradigm to the Fog computing scenario where the environment is instru-
mented with high-performance computing in the proximity to cyber-physical systems. The design of such systems
requires an accurate planning, on the one hand, to ensure that specific application requirements will be properly met
at run-time, and, on the other hand, to minimize the system’s monetary costs. In this paper we present a methodology
for an automated design and deployment of distributed cyber-physical systems into smart environments. We propose
an engine based on a Mixed Integer Linear Programming (MILP) formulation which takes in input a planimetry of the
environment and a description of the applications and, based on a repository of available processing boards, identifies
the cost-optimized instantiation of the processing architecture and the corresponding distribution of the application
functionalities. By comparing our proposal with the existing methodologies that address similar problems we can
highlight the following novelties: i) we address a system architecture composed of heterogeneous devices, ii) we
adopt a realistic model of the environment, and iii) we perform a joint co-exploration of architecture instantiation and
applications mapping. An experimental evaluation, considering a smart office case study, demonstrates the potential
of the proposed approach in minimizing the overall system monetary cost around 42% w.r.t. a baseline approach not
exploiting planimetry information. Such results have been also confirmed by an extensive experimental campaign
using synthetic problems, which also highlighted how the execution times of the optimization process are affordable
for the design-time process.
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1. Introduction

Fog computing [7, 8] is commonly considered as
a crucial enabling technology for future Internet of
Things (IoT) systems. Fog computing extends the orig-
inal Cloud computing architecture, in which processing
and storage capabilities are confined into datacenters,
with an additional layer, i.e. the Fog layer, installed
in the proximity to cyber-physical systems. Such Fog
layer enables the execution of the application logic on
processing nodes in direct connection with IoT devices,
thus supporting information process and analysis in a
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short distance from where the data is produced, see Fig-
ure 1.

Low communication latency between applications
and IoT devices is crucial to support applications that
have stringent delay requirements [17] and, therefore,
not supported in common Cloud computing systems
in which data is offloaded to datacenters throughout
the Internet. As discussed in [30], closed-loop au-
tomation logic [34], augmented reality services [2] or
real-time video analytics [31], hospital emergency sys-
tems [3], home automation [13] are only a few examples
of systems for smart environments that can be enabled
through Fog computing.

The installation of Fog nodes, which rely on high
performance embedded computing boards, to support
cyber-physical systems in smart environments, how-
ever, requires an accurate planning. Although, small
environments, e.g. a small office or a house, might be
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Figure 1: Fog computing scenario.

served satisfactorily by only upgrading the few existing
computing nodes, such as existing network equipment
like gateways or routers, larger and more complex en-
vironments, such as an office building comprising many
floors or an university campus covering a large district,
will require the installation of a large number of new
Fog nodes. This activity has to consider the specific
application requirements of the cyber-physical system,
both in terms of communication capabilities (i.e. mini-
mum bandwidth) and the coverage of specific geograph-
ical locations to interact with. These requirements are
considered essential in many of the Fog computing use-
cases envisioned by the OpenFog consortium [20] and
by several companies [1, 12, 21]. For instance, in the
smart building use-case a smart alert system [23] re-
quires the complete coverage of the area in order to
ensure that data from all the sensors are collected and
analyzed. On the other hand, a smart video surveil-
lance system requires that processing nodes are placed
not only to meet geographical and communication re-
quirements but also considering processing ones to en-
sure that the flow of images from cameras is captured
and elaborated with the required throughput.

Unfortunately, a systematic analysis of the literature
on Fog computing allowed us to conclude that past ap-
proaches either consider different issues, such as the
definition of resource management middlewares and the
runtime workload balancing and distribution [4, 25, 33],
or when considering the system design, they consider
a sub-part of the problem. In particular, design ap-
proaches for Fog computing systems generally consider
the workload mapping on a given architecture [9, 26,
27] or, when instantiating the architecture, rarely con-
sider the geographical position of the Fog nodes in the
optimization [10, 11].

Given these motivations, we present in this work a
methodology to automate the design and deployment
of cyber-physical systems for smart environments. The

goal of the proposed approach is to automatically iden-
tify a suitable architecture of the cyber-physical system
and the corresponding applications’ workload distribu-
tion in order to minimize the architectural cost and en-
sure that requirements of each application, such as pro-
cessing resource requirements and cyber-physical inter-
action ones, are met. Specifically, we aim at defining an
approach for the placement of the Fog processing nodes
based on the planimetry of an environment with candi-
date positions and the requirements of the smart appli-
cation. The goal of the proposed approach is to mini-
mize the overall deployment cost by selecting the opti-
mal placement and configuration of the Fog nodes. To
this aim, we propose an engine based on a Mixed Integer
Linear Programming (MILP) formulation which takes
in input: 1) a planimetry of the environment with the
set of candidate positions for the placement of process-
ing nodes, 2) a description of the workload represent-
ing the smart applications, and 3) a repository of avail-
able processing boards, i.e. embedded systems available
for deployment as Fog processing nodes. The engine
produces a cost-optimized instantiation of different pro-
cessing boards in a sub-set of available positions in the
planimetry to compose a distributed architecture and a
corresponding workload distribution. The architecture
will be capable of providing the necessary computation
and communication resources to the executed workload
and, at the same time, mapping each application in the
geographical location required for its cyber-physical in-
teraction with the surrounding environment.

To summarize, the contributions of this paper are the
following:

• a novel model of the processing node placement
problem that includes realistic reference architec-
ture and environmental models, the last one char-
acterized by overlapping geographical locations,

• a MILP formulation that ensures a cost-optimized
deployment of Fog nodes to minimize the over-
all cost while still ensuring that workload require-
ments are met,

• a performance evaluation of the proposed ap-
proach, which also considers a realistic use-case.

Moreover, the proposed approach differs from the past
work on the design and deployment of Fog computing
system (e.g. [9, 26, 27, 11]) by considering the follow-
ing aspects:

• the adoption of a reference architecture, built by in-
stantiating various types of heterogeneous devices
presenting different performance/cost tradeoffs,
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• the joint co-exploration of architecture instantia-
tion and applications mapping, and

• the adoption of a realistic environmental model
presenting overlapping geographical locations for
cyber-physical interactions of different applica-
tions, which provide an additional degree of free-
dom to opportunistically place processing devices
during the joint optimization.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the related work on the con-
sidered problem. Then, Section 3 introduces a detailed
presentation of the problem, later modeled in a formal
way in Section 4. The design automation engine based
on a MILP formulation is proposed in Section 5. The
effectiveness of the approach is analyzed in Section 6
by means of a case study, discussed in details, and an
extensive evaluation based on synthetic problems. Fi-
nally, Section 7 draws the conclusions and presents fu-
ture work.

2. Related Work

The majority of the literature on Fog computing in-
vestigated the optimization of resource provisioning and
workload mapping on an already-given architecture;
this activity is performed either at runtime or at design
time. Some papers [4, 25] propose middlewares for run-
time resource management of distributed systems com-
posing the Fog infrastructure and the dynamic mapping
of the incoming workload. In contrast, the work here
proposed does not deal with runtime resource manage-
ment; instead, it focuses on system-level design opti-
mization, that is performed at the time of the installation
of the cyber-physical system to minimize its monetary
cost.

When considering the design-time optimization,
in [33], for example, an optimal placement methodol-
ogy for virtual machines in Fog computing systems is
proposed, taking into account the opportunity to deploy
multiple replicas to ensure high availability and short
response time. In [32], instead, the authors propose a
task scheduling algorithm for delay-sensitive applica-
tions. Having an industrial use-case in mind, a schedul-
ing model for containerized tasks is designed to assign
tasks to nodes ensuring that each one is completed on
time and the number of concurrent tasks is optimized.
Authors of [19] propose a resource allocation strategy
for Fog computing based on priced timed Petri nets
aimed at dynamically allocating Fog resources at run-
time. In [9] the authors propose a simulation frame-
work for Fog computing able to perform an automated

exploration of a workload on an architecture received as
input. An exhaustive exploration is performed to iden-
tify a solution satisfying applications’ computation and
communication requirements within the architecture ca-
pabilities. Other SystemC simulators for networked em-
bedded systems [24, 6] can be adopted in the consid-
ered scenario as they consider all the necessary com-
putation and communication aspects, however, the geo-
graphical distribution of nodes is not modeled. A more
advanced exploration engine is proposed in [26], where
a genetic algorithm has been designed to maximize the
number of services that can be deployed in a Fog archi-
tecture, which has multiple hierarchical layers to reduce
the amount of workload offloaded in the Cloud. Two
similar approaches optimizing workload distribution in
a Fog-Cloud architecture have been defined to minimize
the traffic [27], and also energy consumption and ap-
plication latency [28]. Finally, an already-instantiated
architecture is considered in [18] to optimize the data
placement among the various nodes. In conclusion, the
main limitations that characterize existing approaches
are that the architecture is received as input and it is
fixed, i.e. no geographical/planimetric information are
included in the architectural/application models.

Architecture instantiation and geographical place-
ment of the processing nodes have been considered in
previous works focusing on different contexts, i.e. Wire-
less Sensor Network (WSN) and IoT scenarios. It is
worth mentioning the framework proposed in [22] that
performs an automated synthesis of the network and
placement of wireless sensors and base stations. The
framework considers also reliability issues by introduc-
ing architectural redundancies aimed at improving the
system’s lifetime. Indeed in WSN and IoT scenarios,
application mapping is not considered in the design
problem; in fact, each application functionality is al-
ready bound with a specific IoT node. Therefore the de-
sign problem consists only of the architecture instantia-
tion. Then, in [29] a planimetry where IoT nodes are al-
ready installed is considered to optimize the placement
of services in order to improve the efficiency of com-
munications of a ZigBee network. Another mapping
approach considering the topology is proposed in [5],
however, the work considers only a simple planimetry
composed by disjointed rectangular regions. Finally, a
very simple square homogeneous region where nodes
have to be placed is considered in [15].

The most relevant recent work for our investigation
has been presented in [10, 11], where approaches for
the modeling and the synthesis of distributed embedded
systems in the Fog computing scenario are proposed.
In particular in [11] the authors propose a topology-
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Table 1: Qualitative comparison of the proposed approach w.r.t. the past work.
Approach

[33] [32] [19] [9] [24] [6] [26] [27] [28] [18] [22] [29] [5] [15] [11] PA

Knob Arch. Inst.
√ √ √ √

Mapping
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Model Planimetry B B B B B ADV.
Transmission

√ √ √ √ √ √ √ √ √ √ √ √ √ √

Metric

Workload Perf.
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Traffic
√ √ √ √ √ √ √ √ √ √ √ √ √ √

Economic Cost
√ √ √ √

Power
√ √ √ √ √

aware architecture model and a formal framework to
efficiently synthesize the system in terms of architec-
ture instantiation and applications’ mapping. The ap-
proach mainly focuses on concurrently minimizing the
economic cost, the energy consumption and the delay
and error rate in the transmissions. However, also this
work is mainly focused on the networking aspects while
the planimetric model of the environment is not ex-
ploited to share Fog nodes among different applications
requiring cyber-physical interactions in geographical lo-
cations partially or fully overlapping. Instead, our ap-
proach also aims at exploiting the possibility to share
geographical resources to further minimize the mone-
tary cost of the solution without considering in depth
the networking aspects.

Table 1 summarizes the characteristics of the dis-
cussed past approaches and compares them against the
proposed work. For each paper we highlight the con-
sidered action knobs (architecture instantiation and task
mapping), the models for planimetry (B: basic or ADV.;
advanced) and transmission, and the metrics adopted
as optimization goal/constraint (workload performance,
traffic, economic cost and power consumption). In
conclusion, the proposed approach advances the past
works by considering all previous features and introduc-
ing an advanced planimetry model that captures cyber-
physical interactions with the environment.

3. Problem Description

The problem we consider deals with the design of the
computing architecture of a distributed cyber-physical
system in a given environment and the subsequent smart
workload deployment. As a running example, Figure 2
shows the simple planimetry of a floor of an office build-
ing requiring two applications: advanced video surveil-
lance for intrusion and fire detection, and smart music
broadcasting services.

In this scenario, we identify two different actors: 1)
the architect who designed and supervised the construc-

tion of the considered environment, and 2) the engi-
neer of the cyber-physical system who designs the smart
computing infrastructure. We assume that the archi-
tect has already instrumented and cabled the consid-
ered environment to support the installation of process-
ing nodes, which will compose the distributed cyber-
physical system, and to provide access points to enable
the communication. Such installation points, referred to
as spots, are depicted with white circles in the planime-
try in Figure 2(a). The engineer can therefore select a set
of boards from his/her repository of available process-
ing components to be installed in the desired spots in
order to build the distributed architecture for the cyber-
physical system.

The applications deployed in smart environments
generally have a cyber-physical nature, as they require
to interact with the surrounding environment. Indeed, a
complex application may be composed of several coop-
erating tasks. Some of the tasks have to sense and/or ac-
tuate in different, possibly distant, geographical zones;
therefore, these tasks need to be executed in the spe-
cific zone they need to interact with. Other tasks, such
as data aggregation or post-processing, do not present
such location-specific requirements and therefore can be
executed in any geographical position. In the running
example in Figure 2(b), applications are represented as
task graphs, and the zones are depicted as dashed rect-
angles. Each zone is also annotated with the specific
application’s tasks to be executed in. It is worth noting
that different zones may possibly completely or partially
overlap. In the example, we would like to perform both
video/fire surveillance and music broadcasting in the
two rooms, thus leading to two completely overlapping
zones (indeed the figure shows a single dashed rectan-
gle). Moreover, the L-shape of the corridor will re-
quire the definition of two different partially-overlapped
zones for video surveillance, therefore requiring two
distinct tasks.

In order to design the system, the engineer has to
identify an instantiation of the computing architecture
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Figure 2: A running example: a floor of a smart office building.

on the available spots and a subsequent deployment of
the applications on the installed processing boards. In
this scenario, the availability of various types of boards,
the presence of several spots where to install the boards
and geographical complete/partial overlapping among
zones and spots open to a large set of possible alter-
native solutions to the considered design problem. For
the considered example, Figure 2(c) shows two alterna-
tive solutions; installed boards are depicted with black
circles and the list of tasks executed by each board is
reported on the right side. For the corridor different de-
cisions have been adopted in the two solutions; in So-
lution 1 a single board has been installed in the central
angle comprised in both zones (in the bottom-left part
of the planimetry) to execute all the tasks, while in So-
lution 2 two cheaper boards, located in one of the zones
each in the opposite corners, have been used to split
the workload. A similar analysis may be carried out
for each of the two rooms; we may instantiate a single
powerful board for hosting all the desired functionalities
or partition fire/video surveillance and music broadcast-
ing on two separate cheaper boards. Indeed, the two
presented solutions represent the opposite bounds of a
design space and between the two ones, various other
combinations may be identified to partially exploit zone
overlapping and resource sharing. The decision on how
to select the solution is therefore driven by some opti-
mization function, that may be for instance the mone-
tary cost of the system capable at providing the desired
functionalities. In the example, the designer will select
one of the two solutions (or some other intermediate
one) based on the higher convenience in instantiating a
lower number of powerful boards or a larger number of
cheaper boards. As a conclusion, these peculiarities of

the cyber-physical nature of the system open new pos-
sibilities for optimizing the system during the synthe-
sis process. Moreover the larger the size of the consid-
ered problem (in terms of dimension of the board repos-
itory, number of applications’ tasks, number of zones
and number of spots), the larger the dimension of the
depicted design space, that may assume a considerably
huge size.

4. System Model

Based on the design problem discussed in the pre-
vious section, we have defined the following system
model representing the environment planimetry, the ar-
chitecture to be instantiated and the workload to be de-
ployed. Then, the system design problem is formulated
presenting the synthesis constraints and the optimiza-
tion function.

Environment planimetry. The standard environment
planimetry provided by the architect has been annotated
with two additional aspects, called spots and zones,
respectively. A spot, representing a possible position
where a processing board can be installed, is formally
defined with the tuple:

si =< (x, y), bup, bdown > (1)

representing the coordinates (x, y) of the spot in the
planimetry, and information regarding the available
connection, in particular the provided up/downlink
bands. If the planimetry consists of various floors, coor-
dinates will include an additional field. Moreover, also
3D models can be considered for the planimetry; a z co-
ordinate will be accordingly added. Finally, for the sake
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of simplicity, a single connection type is considered for
each spot; however, the model can be extended with a
vector to consider multiple, selectable connections.

A zone of cyber-physical interaction of a task is mod-
eled as a polygon in the planimetry. Formally, the zone
is represented with the tuple:

zi =< coords, spots > (2)

where coords is a non-empty list of coordinates (x, y)
forming the polygon, and spots a non-empty list of po-
sitions si in which the involved activity can be executed
on the zone itself.

Application. As common practice in the considered
scenario (e.g., [11, 27]), an application (or a set of ap-
plications) is modeled as directed acyclic graph Gappl =

(T,D), where T is the set of tasks ti composing the dis-
tributed application and D is the set of edges di, j, repre-
senting data dependency among tasks ti and t j.

Each task executes a functionality on a specific zone
by interacting with the environment by means of a set
of sensors and actuators. It derives that the task ti is
modeled in terms of the tuple:

ti =< type, z, sens, acts > (3)

where type represents the functionality, z the zone
where to execute the task, and sens and acts the lists
of required sensors and actuators. The performance of
the task is tightly connected to each board that will be
in charge of its execution; therefore, the performance
model is discussed later in the architecture’s model.

The edge di, j is only characterized with the amount of
exchanged data per unit of time between two tasks, i.e.
the required band:

di, j =< breq > (4)

Architecture. In this scenario, we assume to have a
repository of boards that can be installed in the avail-
able spots to realize the distributed system architecture
running the required workload. Each board bi represents
a class of Fog nodes and is characterized in terms of its
processing resources (in particular, the number of cores
in the CPU, the size of RAM and the one of the disk),
the lists of peripherals for sensing and actuating on the
surrounding environment, and its monetary cost:

bi =< cpu, ram, disk, sens, acts, cost > (5)

Moreover, since we expect to have a heterogeneous set
of boards, the execution footprint of each task ti on each

board b j is annotated in a performance table, i.e. a
map storing storing for each pair (ti, b j) the required re-
sources:

per f (ti, b j) :< ti, b j >→< cpu, ram, disk > (6)

it is worth noting that a task may also require just a
fraction of a CPU core based on the concept of CPU
quota provided by the operating system scheduler to
each process when running a multiprogrammed work-
load. Moreover, if a task cannot be executed on a spe-
cific board, per f will contain a < +∞,+∞,+∞ > tuple.

Synthesis problem formulation. Given the above dis-
cussion, a system design is defined by instantiating a
non-empty set of nodes N, each one ni consisting in 1)
the installation of a specific board in the selected spot,
and 2) in the mapping of all the tasks of the application,
each one on a single node of the instantiated architec-
ture. Therefore, the node is formally defined as:

ni =< b, s, tasks > (7)

being tasks the non-empty set of tasks mapped on the
current node. Do note that the board here represents a
class of Fog nodes; therefore, we may install different
instances of the same board in different nodes of the
same architecture.

In the definition of a solution in terms of a set of
nodes N, a set of constraints has to be guaranteed:

• At most a node can be instantiated in each spot1:

∀ni ∈ N, ∀n j ∈ N with i , j : ni.s , n j.s (8)

• Each task t j has to be mapped on a single node ni:

∀t j ∈ T ∃ni ∈ N : t j ∈ ni.tasks (9)

∀ni ∈ N, ∀n j ∈ N with i , j :
ni.tasks ∩ n j.tasks = ∅

(10)

• Each task t j has to be mapped in a node ni installed
in a spot included in the required zone t j.zone:

∀ni ∈ N, ∀t j ∈ ni.tasks :
ni.s ∈ t j.z.spots

(11)

• Each node ni has to provide all the sensors and
actuators required by each task mapped on it, i.e.

1Do note that here we use the dot notation to refer to a specific
attribute of a tuple.
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t j ∈ ni.tasks:

∀ni ∈ N, ∀t j ∈ ni.tasks :
ni.sens ⊂ t j.sens ∧ ni.acts ⊂ t j.acts

(12)

• Each node ni has to provide the processing re-
sources at least equal to the sum of requests of all
the mapped tasks ni.tasks:

∀ni ∈ N :

ni.cpu ≥
∑

t j∈ni.tasks

t j.cpu

 (13)

For the sake of brevity only CPU resource is re-
ported for the formula; the same constraint applies
to RAM and disk resources.

• The node ni has to provide the communication re-
sources at least equal to the sum of requests of all
the mapped tasks ni.tasks. Therefore, assuming
Dout_ j be the set of edges d j,k outgoing task t j, the
constraint can be formulated as:

∀ni ∈ N :

ni.s.bup ≥
∑

d j,k∈Dout_ j

d j,k.breq

 (14)

The above formula refers to the uplink band. The
formulation requires a similar constraint for the
downlink band.

The goal of the defined design problem is to identify
an implementation consisting of a set of nodes N min-
imizing the architecture cost; the overall cost is com-
puted as the sum of the costs of all instantiated boards
in the various nodes:

costarch =
∑
ni∈N

ni.b.cost (15)

As a final note, the model presented in this paper
focuses on the design of the distributed cyber-physical
system on which the Fog layer relies. Although left as
future work, it is important to highlight that the pro-
posed model can be easily extended to support applica-
tions whose implementation is distributed between Fog
and Cloud. To this aim, additional formulas can be in-
troduced to model the interaction between the Fog and
Cloud layers. On one side, one or more additional con-
straints are needed to take into account the application
requirements in the communication between the Fog
and the Cloud layers, i.e. the minimum uplink band-
width required to offload the data to the Cloud towards

Table 2: MILP variables, sets and parameters
Sets
S set of available spots (|S | = s)

T set of task (|T | = t). Each element t j represents a specific task

mapped in a specific spot sk

B set of board instances (|B| = b). Each element bi represents a

specific board installed in a specific spot sk

Parameters
Bcpui number of cores of board i

Brami ram space of board i

Bdiski disk space of board i

Bseni list of sensors of board i

Bacti list of actuators of board i

Bcosti cost of board i

S upk uplink bandwidth of spot k

S downk downlink bandwidth of spot k

up j uplink bandwidth requirement of task j

down j downlink bandwidth requirement of task j

cpui, j number of cores required by task j on board i

rami, j ram space required by task j on board i

diski, j disk space required by task j on board i

Pre-Processing Parameters
mi, j binary parameter set to 1 if and only if the task j can be

deployed on board i

z j,k binary parameter set to 1 if and only if the task j can be

deployed in spot i

cpui,k, j number of cores required by task j on board i in spot k

rami,k, j ram space required by task j on board i in spot k

diski,k, j disk space required by task j on board i in spot k

Variables
xi,k, j binary variable set to 1 if and only if task t j is hosted

on board bi installed in the spot sk

yi,k binary variable set to 1 if and only if the board bi is installed

in the spot sk

application components that perform historic data col-
lection or big data analysis. On the other, the cost func-
tion needs to be modified in order to include the costs of
deploying some parts of the application in the Cloud.

5. Design Space Exploration Engine

The system model specified in the previous section
is a Generalized Assignment Problem (GAP) [16], that
is generally solved by means of a MILP formulation.
The variables, sets and parameters of the formulation
are listed in Table 2, whereas the model constraints and
optimization function are summarized in Table 3.

Formula C1 in Table 3 defines the objective function,
that is to minimize the overall system’s cost, as defined
in Equation 15. To define the constraint, we introduce a
decision variable yi,k to state if a board i is installed in
the spot k.
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Table 3: MILP model constraints and optimization function
Cost function
C1 min

∑
i∈B

∑
k∈S

Bcosti · yi,k

Task allocation
C2

∑
i∈B,k∈S

xi,k, j = 1 ∀ j ∈ T

Board placement
C3

∑
i∈B

yi,k ≤ 1 ∀k ∈ S

C4 yi,k ≤ xi,k, j ∀i ∈ B,∀k ∈ S ,∀ j ∈ T

Cyber-physical requirements
C5 (mi, j + z j,k) · xi,k, j = 0 ∀i ∈ B,∀k ∈ S ,∀ j ∈ T

Computation requirements
C6

∑
j∈T

cpui,k, j · xi,k, j ≤ Bcpui ∀i ∈ B,∀k ∈ S

C7
∑
j∈T

rami,k, j · xi,k, j ≤ Brami ∀i ∈ B,∀k ∈ S

C8
∑
j∈T

diski,k, j · xi,k, j ≤ Bdiski ∀i ∈ B,∀k ∈ S

Communication requirements
C9

∑
j∈T

up j · xi,k, j ≤ S upk ∀i ∈ B,∀k ∈ S

C10
∑
j∈T

down j · xi,k, j ≤ S downk ∀i ∈ B,∀k ∈ S

The feasibility of the solution is modeled by the rest
of the formulas in Table 3. Constraint C2 ensures that
all the task instances are allocated to one and only one
board, as described by Equations 9 and 10. In such a
constraint, the decision variable xi,k, j is used to annotate
a task j hosted on a board i installed in the spot k. Then,
Constraints C3-C4 are the Board placement constraints
and are exploited to define the relation between xi,k, j and
yi,k. Specifically, the former ensures that only one board
is allocated in a specific spot (as stated by Equation 8),
whereas the latter is used to count the cost of an instan-
tiated board only once, independently from the number
of allocated tasks.

Constraint C5 guarantees the cyber-physical require-
ments, and therefore that each task is mapped in the re-
quired zone on a node having necessary sensors and ac-
tuators. Actually, Equations 11 and 12 cannot be easily
expressed in a MILP formulation since includes set in-
clusion operations. Therefore, in order to simplify the
formulation, two additional context matrices Z having
size t× s and M having size b× t are introduced. Specif-
ically, each element of Z states if a task t j cannot be
mapped on a given spot sk since sk is not included in the
required zone:

z j,k =

{
0 i f task j can be deployed in spot k
1 otherwise (16)

and, each element of M if a task t j can be executed on
board bi, since the board does not contain all required
sensors and actuators:

mi, j =

{
0 i f task j can be hosted on board i
1 otherwise (17)

Matrices Z and M are computed in a pre-processing
phase before the MILP optimization by performing an
exhaustive exploration and analysis of all the combina-
tions between the list of tasks T , the list of spots S ,
and the lists of boards B. As a consequence, the sum
in the formula will return the number of violations to
the cyber-physical requirements and we require it to be
equal to zero.

Subsequent Constraints C6-C8 are exploited to verify
that each board has enough CPU, RAM and disk space
for all the mapped tasks, as stated in Equation 13.

It is worth noting that we compressed the MILP for-
mulation by merging constraints C5 and C6 as follows.
Based on the additional matrices the execution footprint
of each task t j on each board bi deployed in a spot sk is
modeled as follows:

cpui,k, j =

{
cpui, j i f mi, j = 0 ∨ z j,k = 0
+∞ otherwise (18)

Thus in case a task cannot be allocated to a board or it
cannot be deployed in a specific spot, the CPU cost is
equal to +∞ and therefore the constraint on the maxi-
mum CPU, i.e. C6, will be never fulfilled.

Similar considerations are drawn for the communica-
tion requirements; Constraints C9 and C10 specify the
available bandwidth of each spot, to check the upwards
and downwards available bandwidth, respectively, as
stated in Equation 14.

The solution provided by the MILP solver is used to
derive the optimum system architecture. Specifically,
the obtained solution is the one that minimizes the over-
all deployment cost according to the equation speci-
fied in Formula C1. It is worth noting that, for some
spot there may be no board capable of providing all
the processing resources and peripherals of the group of
mapped tasks, thus leading to an unfeasible solution.

6. Experimental Evaluation

The proposed methodology has been evaluated
through an extensive experimental campaign compris-
ing both realistic problems and synthetic ones. In order
to analyze the performance in a realistic scenario, we
first considered an office building use case. In this case
study, two smart services, i.e. fire detection and video
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Figure 3: Planimetry of the smart office case study.
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Figure 4: Application task graphs of the smart office case study.

surveillance, are considered for deployment in an of-
fice floor planimetry. Then, an extensive experimental
campaign has been carried out in order to evaluate the
performance on a wide range of different scenarios. In
this last experiment, different synthetic problems have
been randomly generated.

As discussed in Section 2, this work addresses a dif-
ferent problem w.r.t. the past approaches; as a conse-
quence it is not possible to perform a direct comparison
against anyone of them. As highlighted in Table 1, only
few works consider both architecture instantiation and
task mapping problems. Moreover only one of them
considers the economic cost in its metrics [11], but it
mainly focuses on the networking aspects. Therefore,
we compared our solution against a baseline approach
that considers all the zones as separate, i.e. it tackles the
problem in an independent manner for each zone.

We implemented a prototype of the proposed automa-
tion framework by means of the following technolo-
gies: we employed the standard IBM ILOG CPLEX
optimization solver [14], for the MILP formulation and
we implemented the preprocessing scripts and related
wrapper and utility modules for the input/output in
Python. We performed two different experimental cam-

paigns; the former considered a case study to show in
detail the results of the synthesis process and compare
the solution against a baseline implementation. The lat-
ter employed a large set of synthetic problems to per-
form a systematic analysis of the peculiarities of the so-
lutions and design process. All the experiments have
been performed on an Intel R© CoreTM i7-4770 CPU @
3.40GHz, and 16 GB of RAM running a 64-bit Linux
operating system.

6.1. Case Study: a Smart Office Building

We defined a case study where to apply the proposed
approach consisting in a floor of an office building re-
quiring two smart services: fire detection and video in-
trusion surveillance. Figures 3(a) and 4 report the task
graphs of the two applications and the planimetry of the
building’s floor.

Regarding the planimetry, we mainly focused on the
corridors and we placed a set of 40 spots (represented
as white circles in Figure 3(a)), both in the angles and
in the center of each single corridor. Then, we defined
17 zones which various tasks have to interact with (de-
picted as rectangles in the figure by using different col-
ors for the sake of readability). Each zone includes on
average 4 different spots, possibly shared. Finally, we
specified a WiFi connection as the communication tech-
nology for all the spots. It is worth mentioning that we
focused on the corridors since they present an irregu-
lar form with several angles thus leading to a more in-
teresting optimization problem for our approach. On
the other hand, each room can be considered as a self-
standing area being disconnected from the rest of the
floor; as a consequence, the related architecture deploy-
ment and task mapping can be considered as a separate
optimization sub-problem, presenting a trivial solution.
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The video surveillance is composed of a set of tasks
acquiring pictures from the camera, and two subsequent
stages to perform motion detection and to, in case of
intrusion, interact with the alarm speakers. The fire de-
tection application instead has a set of tasks to collect
data from CO2 and temperature sensors to be then ag-
gregated and analyzed in order to fire an alarm and to
close all doors and windows. The overall task graph
consists of 60 different tasks. Since, the two applica-
tions require to monitor uniformly the entire floor, tasks
requiring sensing/actuation interactions with the envi-
ronment are uniformly distributed in all the corridors.

We characterized a repository of boards by consid-
ering various real-world commercial solutions, namely
Raspberry Pi 3, Hardkernel Odroid XU3, Asus Tinker
and an Intel Mini-PC NUC. Such solutions represent
various options with different prices and specifications,
e.g. with RAM ranging from 1024 to 3072 and dif-
ferent CPU options from dual-core to octa-core. In or-
der to consider different peripheral configurations of the
boards, we also defined different setups, each one with
varying connected sensors and actuators. As result, the
repository consists of 15 different boards, whose cost
spans between 25USD and 519USD as can be seen in
Table 4.

We applied the proposed approach, here dubbed as
JOINT, to this case study and we compared the ob-
tained solution against the solution obtained by a basic
approach, called DISJOINT that considers all zones as
separate and optimizing the instantiation of the process-
ing node(s) in each zone as an independent problem, i.e.
not considering the planimetry in the design process.

The solutions obtained by the two approaches are de-
picted in Figures 3(b) and 3(c) respectively, where the
used spots are represented as black circles. Our solu-
tion is composed of 12 nodes while the basic one of
17 nodes, and they present relevantly different costs:
610USD and 1055USD respectively, i.e. obtaining a
42% monetary saving. We accurately investigated the
characteristics of such solutions to understand the moti-
vation of such a large cost difference and we found out
that there are two main reasons. The more obvious one
is the difference in the number of instantiated nodes, due
to the possibility enabled by our approach to share the
processing resources of the various nodes among dif-
ferent zones; in particular, our solution exploited the
83% of the CPU (that is the most required processing
resource in the defined case study) on average, while
the basic solution only the 60%.

Moreover, we found out that there is a significant dif-
ference in the chosen types of boards. Since both fire
detection and video intrusion surveillance have to be ex-

Table 4: Board Repository
Name CPU RAM Disk Sensors Actuators Cost

Raspberry0 4 1024 6400
Camera,
CO2,
Temp

Door,
Window,
Speaker

75

Raspberry1 4 1024 6400 Camera
Door,
Window 55

Raspberry2 4 1024 6400
Temp,
CO2

Door,
Window,
Speaker

45

Raspberry3 4 1024 6400
Door,
Window 35

AsusTinker
BoardS0 4 2048 12800 Camera 135

AsusTinker
BoardS1 4 2048 12800

Camera,
CO2,
Temp

Speaker 174

AsusTinker
BoardS2 4 2048 12800

Temp,
CO2

Speaker 110

Odroid0 8 2048 3200
Camera,
CO2,
Temp

89

Odroid1 8 2048 3200 Camera 59

Odroid2 4 512 800
Temp,
CO2

Door,
Window,
Speaker

60

Odroid3 4 512 800
Door,
Window 25

Huawei0 8 3072 12800
Camera,
CO2,
Temp

Speaker 239

Huawei1 8 3072 12800
Camera,
CO2,
Temp

Door,
Window,
Speaker

278

Macchiato0 4 16384 800 519
Macchiato1 4 4096 800 389

ecuted in every zone, the independent optimization of
each zone performed by the basic approach often se-
lects a more expensive board type hosting all the re-
quired sensors and actuators. On the other hand, our
approach performs a global optimization that allows to
avoid overprovisioning not only of the processing power
but also of the necessity of sensors and actuators. As a
consequence, our approach is able to instantiate cheaper
boards providing only a subset of the required sensors
and actuators to be shared by the tasks executed in dif-
ferent overlapping zones. In the case study, the basic
solution features 90 sensors and actuators integrated in
the various boards among which only 70 ones are ac-
tually used (77%); on the other side, in our solutions,
the architecture contains only 53 sensors and actuators
among which 44 ones are used (83%).

6.2. Performance Evaluation

In order to perform a systematic evaluation of the ap-
proach, we implemented an automated strategy to for-
mulate pseudo-realistic synthetic problems that, based
on the required number of zones and spots, generates
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Figure 5: Performance evaluation.

a planimetry and the required set of tasks. Indeed, the
board repository is the same presented in Section 6 as
well as the task graph which is the one reported in Fig-
ure 4. Differently from the previous case, we allow
spots with three different communication technologies:
WiFi, Ethernet 100BASE-T and Ethernet 1000BASE-T.

Task instances are randomly generated and placed in
each zone with different probabilities. An iterative pro-
cess is performed, each zone is scanned sequentially
and, for each zone, a one task instance of each different
task type is added according to its specific probability.
Specifically, the tasks used to collect data from CO2 and
temperature sensors and the alarm tasks are deployed in
a zone with a probability of 75%. The camera acqui-
sition task has an associated probability equal to 50%,
whereas the door and window related tasks (are less fre-

quently deployed with a probability of 30%.

The motion detection tasks have been considered
zone-independent tasks, in fact, a motion detection task
can potentially run in any zone since it only performs
data manipulation over streams arriving from cameras,
i.e. no attached sensors. However, in order to generate
a realistic problem, we added multiple motion detection
tasks following an approach similar to the one imple-
mented above; specifically, for each zone we included
this additional type of task with a probability equal to
40%. Finally, we also introduced another type of task
that combines camera acquisition with motion detec-
tion; As for motion detection, it is zone-independent
because the task already has all the needed sensors in
place, i.e. each task combines the camera stream and
the motion detection algorithm; therefore, no specific
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zone placement is required. The probability of adding
this task is 30% for each zone.

Regarding the computation requirements, each task
consumes a certain amount of CPU, RAM and disk ac-
cording to its task type and the selected board type.
Specifically, RAM and disk requirements have been set
considering only the task type because they are homo-
geneous across different boards (final values between 5
and 250 for RAM and between 1 and 20 for disk). The
CPU requirements, instead, have been randomly chosen
based on the task type and on the performance table,
resulting in a distribution between 0.35 and 2 cores for
each task.

In order to steer the problem generation algorithm,
we also introduced three additional parameters: i) max-
imum spots per zone, ii) maximum zones per spot, and
iii) maximum connected zones. The first and the sec-
ond parameters are used to define the density of spots
and, to some extent, the maximum number of overlap-
ping zones. The third parameter, instead, is exploited to
take into account zone-independent tasks. Specifically,
even if such tasks can be deployed almost in any zone
w.r.t. spot’s bandwidth limitations, we tried to gener-
ate problems that can reflect real environments. To this
aim, we assumed that zone-independent tasks must be
deployed within a certain area around the source and tar-
get tasks. In other words, we aggregated close zones in
a sort of clusters, called areas, and we assume that zone-
independent tasks must be deployed within the area of
their source and target tasks. If this is unfeasible, addi-
tional source or target tasks are added to the problem.
The maximum connected zones parameter defines the
maximum size of the cluster.

Again, even in this case, we compared our JOINT so-
lution against the DISJOINT baseline, where the con-
cept of zones overlapping and consequent spot sharing
are not exploited. To perform an extensive analysis, we
ran a set of experiments by varying the number of spots
(from 25 to 300) and consequently the number of zones
(from 15 to 150, approximately). The obtained results
are reported in Figure 5, where each point represents the
average of 10 different problems of a specific size and
it is reported along with the 95% confidence interval.
Moreover, to limit execution times for both approaches,
we halt the MILP solver as soon as the obtained solution
is proven to differ from the optimal solution for less than
5%.

The solution cost is reported in Figure 5(a); as can be
seen, the overall cost is proportional to the number of
spots in both the two cases. Indeed, the number of spots
increases the problem dimension and therefore the num-
ber of boards that must be instantiated. However, it is

worth to note that, even with small problems character-
ized by 25 spots, the JOINT approach finds a solution
with a cost around 700 on average, whereas the DIS-
JOINT approach solves the problem with an overall cost
of 945 on average. With larger problems the difference
between the two approaches increases significantly. For
instance, with 250 spots the DISJOINT approach finds a
solution that costs almost double the solution found by
our JOINT approach.

We also analyze the CPU and RAM usages of the ob-
tained solutions, in Figure 5(b) and 5(c), respectively.
Disk usage presents results similar to the ones of CPU
and RAM usages; thus such results have not been re-
ported for the sake of space. As can be seen the JOINT
approach can, on average, use the 80% of the CPU and
the 40% of RAM in all configurations, whereas the DIS-
JOINT achieves the 50% and the 20 %, respectively. As
in the previous use case, this confirms that the JOINT
approach assumes that some spots are shared between
zones and therefore tasks from different zones can be
allocated to the same board deployed in the shared spot.

The side effect of considering the planimetry in our
JOINT approach is a higher complexity in the problem
in input to the MILP solver. We report in Figure 5(d) the
statistics on the execution times needed by the solver to
obtain a valid solution for each problem. With small
and medium size problems (with less than 200 spots)
the performances are equal and the computation time is
negligible. With more spots, instead, the performance
of the two approaches differ significantly. The DIS-
JOINT approach can find a solution in less than 10 min-
utes in all configurations, whereas in the JOINT case,
the MILP solver can require up to 40 minutes to find
a solution proven to be 5% far from the optimal one.
Moreover the graph shows that execution time grows in
an over-linear way w.r.t. the problem size. However, it
is important to remark that the synthesis problem ana-
lyzed in this work should be run offline only one time
during the design process (or only when the workload
changes); therefore a solving time of less than one hour
could be acceptable in most cases. Moreover, scenarios
with 300 spots are particularly huge and not so frequent
in real use cases.

7. Conclusions

We have presented a methodology for the automated
design and deployment of distributed cyber-physical
systems in smart environments. The proposed approach
takes into account a realistic environmental model pre-
senting overlapping geographical locations for cyber-
physical interactions of different applications, and per-
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forms a joint co-exploration of the architecture instan-
tiation and of the corresponding applications mapping
by means of a MILP optimization engine. We proved
the effectiveness of our approach to a smart office case
study by comparing the obtained solution with the one
produced by a basic reference approach that optimizes
each zone in the environment individually. Our solu-
tion employs fewer boards than the basic solution also
optimizing resource utilization. Moreover, our solution
is able to select cheaper boards, still able to satisfy the
applications’ requirement, resulting in a 42% cost sav-
ing. An extensive experimental campaign using syn-
thetic problems has confirmed such results; here, the
cost saving is up to the 50% for large size problems; at
the same time execution times of the optimization pro-
cess showed to be affordable within the design-time pro-
cess. Future work will focus on extending the proposed
methodology to consider fault tolerance and security is-
sues.
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