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Abstract

The deployment of a charging infrastructure to cover the increasing demand of
electric vehicles (EVs) has become a crucial problem in smart cities. Addition-
ally, the penetration of the EV will increase once the users can have enough
charging stations. In this work, we tackle the problem of locating a set of
charging stations in a smart city considering heterogeneous data sources such
as open data city portals, geo-located social network data, and energy trans-
former substations. We use a multi-objective genetic algorithm to optimize the
charging station locations by maximizing the utility and minimizing the cost.
Our proposal is validated through a case study and several experimental results.

Keywords: electric vehicle, charging station, genetic algorithm, energy, smart
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1. Introduction

An increasing number of people are talking about the electric vehicle (EV),
but there are many who still have not decided to buy an electric car, not only
because of its cost, but also because of the lack of confidence in the network
being able to withstand this new demand and the absence of public charging
stations. More than 900 million vehicles circulate on the planet and three million
of them are already electric. China dominates the demand with 580 thousand
units sold and the United States is second with 280 thousand units. In order
for the market to develop faster, electric companies must begin to plan the
installation of infrastructure in homes and highways in order to provide users
with charging stations. So far, the most logical thing is to install them in
supermarkets, shopping centers, and parking lots.

However, in countries such as Peru, the introduction of the EV has been
slowed down by the lack of regulation and especially by the absence of infras-
tructure. This lack of a public EV charging infrastructure is partly due to the
complexity of properly structuring the deployment of these stations. Creating
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this network of charging stations is expensive and complex and there is a con-
cern on the part of local authorities to appropriatels select locations for the
installation of these infrastructures.

This paper presents a proposal to solve the problem of choosing the most
suitable configuration to create an EV charging network in a city. In order to do
this, it is necessary to decide the location of the charging stations to be installed
among all of the possible locations in the city and the number of charging poles
that each station will have (which will be different for each station depending
on the need). Given the large number of possible solutions, the search space is
large enough to propose the use of a genetic algorithm.

The genetic algorithm presented here has been adapted to manage the in-
formation extracted from a smart city and to take advantage of it. The results
of this algorithm are improved thanks to the use of population distribution in-
formation, traffic intensity information by zones, activity in social networks,
location of electrical transformer substations, etc.

The contents of the paper are organized as follows. Section 2 reviews existing
platforms and tools about EV charging stations as well as related work about
locating EV charging infrastructures using different algorithms. Then, Section
3 formalizes the problem that we aim to solve and the notation that we follow.
The multi-objective evolutionary algorithm that solves the proposed problem
is presented in Section 4. Section 5 presents a case study in the city of Lima
(Peru) with some experimental results. Finally, we present final conclusions and
future work in Section 6.

2. Related work

Currently, there is significant effort being made in the consolidation of the
Electric Vehicle (EV) in society. The supply of different car manufactures re-
garding EV and hybrid vehicles has been increasing over time. Furthermore,
governments, administrations, and town councils are also providing funds and
opportunities to establish different EV charging stations.

The users of EV have different tools for finding existing EV charging stations
and can even plan their route. For instance, there are several online tools such as
those in [1, 9, 3] that provide the location of alternative fueling stations for the
United States and Canada. Additionally, there is a more complete tool in [5],
which is a mobile application and an online tool for finding EV charging stations
worldwide that includes information about the type of connectors. Similarly,
there are several alternative tools suchs as those in [26, 4]. Finally, in the well-
known Google maps application [15], a simple search for “EV charging stations”
will provide the charging stations that are in the area shown on the map.

In the field of EV charging, there is a significant research work that focuses
on optimizing the charging of a set of EVs in a decentralized way [14]. Other
works try to optimize the use of the electric supply network by reducing the
impact of the EV on it [22].

There are also several guidelines such as those in [10, 2] to help administra-
tions and governments implement EV charging stations and to determine where
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to place them. Similarly, the guide in [27] is directly based on the experience of
governments in EV planning and implementation processes.

An important problem regarding EV charging stations is to determine their
locations. It is critical to provide an EV charging infrastructure that is sufficient
to cover demand in order to promote its use. This problem has been addressed
in different ways, as we analyze below in the following paragraphs.

First of all, there still exists a limitation in the adoption of the EV because
of a phenomenon called “range anxiety”. This phenomenon is due to a charging
station infrastructure that is insufficient, which makes users unsure if they will
be able to cover the desired distance within their EV range without having
options to charge their batteries [23]. Thus, there are also several studies that
analyze the charging behaviours of users [13, 12].

Mathematical programming is used in [28] to determine the best places to
establish alternative fuel stations in order to maximize the number of vehicles
served. Another work uses a conceptual optimization model that focuses on a
corridor in which the goal is to choose the number of stations and the charging
power at each station in order to provide enough service while minimizing the
social cost [24]. There is also a tool in [20] that focuses mainly on the voltage
analysis needed at charging stations to evaluate the effects of typical loads in
the charging poles and the distribution network.

The work in [32] uses driver behaviour, vehicle performance, battery at-
tributes, travel profiles, environmental conditions and charging infrastructure
to strategically locate the charging stations in order to maximize the perfor-
mance of the use of EVs. A similar approach presented in [30] tries to maximize
the service of electric taxis and their charging by using a genetic algorithm that
takes into account the range that a taxi can travel, its charging time, and the
capacity of the charging stations. Another work in [8] also uses a genetic algo-
rithm to select the location and type of charging poles, using a grid in which
each cell contains the number of trips that end in it. Then, the most popular
destinations are selected as the potential locations for charging stations. Simi-
larly, the model in [21] solves a maximum demand coverage problem to locate
the EV charging stations in a weighted network in which the weight of the arcs
is the number of cars from the origin to a destination.

An agent-based, decision-support system that identifies patterns in driving
activities and residential EV ownership is presented in [29]. This data is used
to deploy a charging infrastructure. In a similar way, He et al. [16] mainly
consider EV driving ranges to optimize the location of charging stations so as
to maximize the path flows by using a heuristic algorithm. Alternatively, the
users’ travel destinations are considered as Points of Interest (PoIs) in [31]. The
model proposed in the cited work ranks the PoIs according to their attraction
for EV users, and two approaches are considered. One approach uses a method
to obtain the maximum demand coverage to optimize the location of charging
points. The second approach uses an iterative method to penalize the PoIs that
are close to existing charging points.

Finally, none of the cited works mentioned above combine all of the data
that can be extracted from a city, i.e., population, traffic or frequent routes,
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social data, available energy or distribution network locations, and the cost of
each charging pole and station.

Nevertheless, our previous works of the current proposal presented in [18, 17]
do use a genetic algorithm to obtain near-optimal solutions by integrating a set
of heterogeneous sources of data. These proposals obtain data from open data
web portals for the population and traffic of the studied city, data from social
networks to measure the geo-located activity of the users, etc. Hence, the goal
of these proposals is to deploy an EV charging infrastructure by using a genetic
algorithm to locate charging stations by starting from a set of PoIs and using
all of the data obtained from the city.

Thus, the main goal of our new proposal is to improve the previous ones
by gathering more crucial data such as energy and using better optimization
techniques to locate EV charging stations in a smart city. Additionally, other
minor improvements are also considered. The main novelties of the current
proposal are the following:

• The introduction of a multi-objective genetic algorithm to separate the
parameters that measure utility and cost instead of considering them in
a single fitness function. The solutions obtained are also in the Pareto
frontier to guarantee the optimization of all the objectives.

• The inclusion of power transformer substations of the city to take into ac-
count the distance to connect the new charging stations to be locate. This
is a crucial aspect in order to determine whether or not place a charging
station in an area, considering the availability of energy infrastructure.

• Improvement in the treatment of geo-located social network data by the
application of a geohashing algorithm that concentrates the individual
messages into zones. These zones are then tagged with the number of
social network messages generated in the area. This reduces the compu-
tation significantly in environments with a huge amount of data that is
extracted from social networks.

• A case of study and experimental evaluation in the city of Lima (Peru),
from which we gathered all the necessary data. This involves the challenge
of obtaining the new data of a city as well as the challenge of testing our
system in another context.

3. Problem Definition

This work aims to find a solution to the problem of locating a set of Electric
Vehicle (EV) charging points in a city. Cities are large and complex systems,
and, thanks to smart city technologies and open data, we have a lot of informa-
tion (both static and real-time) that can be used to try to select the best places
to install such stations.

We rate a solution as good if it takes into account variables such as the
amount of population that a station may serve, the amount of traffic of roads
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near a station, or whether the area where the station is located has activity
during the day (commercial and service districts) or receives its main activity
at the end of the day (residential districts).

There are more infrastructures in a city that may be useful as inputs for this
problem, some of which can make the installation of charging stations cheaper:
being close to any of the energy transformer substations found in cities, being
connected to a center that has enough power to provide the service of charging
EVs, or being connected to a center that reduces the public works required to
bring energy to the selected point. Those are discussed further in the following
sections.

Since evaluating every coordinate of a city in order to determine where to
place a set of EV charging stations would be too big of a problem, in this work,
we use a genetic algorithm that decides on a sub-set of pre-defined points that
an expert has properly selected. This set of points (I) is made of Points of
Interest and is defined as:

I = 〈(x0, y0), (x1, y1), . . . , (xn, yn)〉

where each pair of (xi, yi) are the coordinates of a Point of Interest. A Point of
Interest (PoI) is selected in this problem because it is a candidate for being a
future EV charging station location. These points are usually in places where it
is interesting to place such stations. For example, they are close to busy areas;
there are parking spaces available where you can stop for a long enough period
of time to charge the vehicle; or they meet other criteria chosen by the expert.
However, this set of points is usually too large, and since it is not possible
to deploy as many charging stations in the city, an algorithm such as the one
proposed here is needed to determine which of all these points are more optimal
to install EV charging stations.

To make this decision, it is important to feed the algorithm with useful data
that helps it to optimize the solution. This data may be taken from different
sources; these are usually open data platforms that the city makes available to
citizens. However, it is also common to obtain more specialized information
directly from the technicians of the city council or the electric companies that
provide services in the city. For this problem, we have selected the following
data:

1. Cadastral information: Knowing how many people live in each zone
of the city may be useful in determining where the demand of charging
stations may be higher. That is why we use the population information
(P ) as:

P = 〈(C1, p1), (C2, p2), . . . , (Cn, pn)〉

where Ci is a polygon that represents a cadastral block in the city with
population data (pi). A polygon Ci is made of a set of coordinates, where
the first and the last point are the same since it is a closed polygon:

Ci = 〈(xi1 , yi1), (xi2 , yi2), . . . , (xi1 , yi1)〉
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2. Traffic information: The number of vehicles circulating in a given area
is also a good indicator for making decisions about the need to install a
station near high traffic areas. The traffic information (T ) is defined as:

T = 〈(L1, t1), (L2, t2), . . . , (Ln, tn)〉

where Li is a polyline that defines a street segment with a measure of
traffic ti:

Li = 〈(xi1 , yi1), (xi2 , yi2), . . . , (xin , yin)〉

3. Social Activity: Another source of useful information for determining if
a certain area of the city is active is monitoring social networks in real time.
By capturing geo-located statuses from social networks, we can determine
with great precision where a sufficiently representative percentage of the
population is spending their time [19]. In our case we used tweets from the
social network Twitter. This metric gives us very interesting information,
since knowing where people spend the day is even more useful than the
population information because it gives us some clues about their mobility.
To represent the Twitter geo-located activity in a city, we use tweets with
geo-location information, which is a latitude-longitude pair. However,
managing every coordinate of a city introduces a high computational cost.
This is due to the high granularization of the coordinate values (due to
the fact that they are represented with floating numbers). Therefore, we
encode them to a simpler format called geohash [25]. This is a public
domain geocoding system that allows us to put coordinates in buckets of
grid shape. These buckets are encoded as a hash made of a short string of
numbers and letters. The number of characters represents the precision of
the bucket. The longer it is, the more accurate it is and also the smaller
the area covered by the bucket. Thanks to this encoding system we can
represent the social activity in a city as:

A = 〈(h1, a1), (h2, a2), . . . , (hn, an)〉

where hi is a geohash code with 7 characters of precision (which is approx-
imately 150 meters of precision) and ai is the quantity of social activity (in
our case, tweets) that have fallen inside the bucket hi. Note that we are
using tweets in this example, but you can impute any type of geo-localized
data to a bucket as long as this data represents some kind of social activ-
ity in the city (e.g., cell phone calls). In this work, we have used social
information from Twitter because it has the following characteristics: it
is open and accessible data, available through a public API for anyone;
it is a very active social network that generates 500 million tweets every
day around the world; approximately 1% of the tweets published are geo-
localized. However, it should be noted that the number of tweets collected
is not a determining value, since what we take into account in this work is
the distribution of these tweets throughout the geography to be analyzed.
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Even so, as the algorithm interprets this data as social activity, it can
always be improved by integrating data from other sources such as other
social networks or cell phone calls if this information is available.

4. Transformer Substations: Since EV charging stations have a high re-
quirement for energy consumption, arranging them in appropriate places
to minimize the cost of the work of laying electricity and ensure that they
will have sufficient available power is a good idea. In the algorithm pro-
posed in this work, we try to bring these infrastructures as close as possible
to the transformer substations that are distributed throughout the city. A
transformer substation is an electrical installation that receives high volt-
age energy (30 kilovolts) or medium voltage energy (10, 15 or 20 kilovolts)
and delivers medium or low voltage for use by end users, normally at 400
volts in three-phased systems and 230 in single-phased systems. Since we
are using the location and properties of these substations we define:

E = 〈(x1, y1, e1), (x2, y2, e2), . . . , (xn, yn, en)〉

where xi and yi represent the coordinates of a substation (latitude and
longitude) and ei is the available energy at the substation. This value
of available energy helps the algorithm to determine how many charging
poles the charging station may have and what power each one can have.

When available, all of this data provides very useful information to make the
decision of where to put the charging stations. The set of Points of Interest is a
required pre-requisite since we are going to make the decision based on an initial
set of possibilities. This set I can be as large as we want because the input to
the algorithm is the number of charging poles that we plan to put in the city
(usually each country has its own recommendation on the proportion of EVs
to charging stations). The rest of the data introduces useful information that
helps the algorithm to make an informed decision. An example visualization
of this data in the San Isidro district of Lima (Peru) is shown in Figure 1.
However, there are some constraints that may limit our decision process. These
constraints force us to be adaptive, as is shown in next subsection.

3.1. An adaptive algorithm for environments with constraints

When we propose how to build a solution for the placement of EV charging
stations, we need to take into account different inputs from a city. All of these
inputs help the evolutionary algorithm that we present in the next section to
optimize the solution. However, a city is a very complex system that cannot
be treated as a static object. A city grows year after year, incorporating new
elements and even eliminating some of the existing ones, and the algorithm must
be adaptive to manage these kinds of constraints in the environment, depending
on when it is run. One element that forces the algorithm to be adaptive is the
possibility of previously existing charging stations in the city. These stations
may be considered as a constraint to the algorithm since they should not be
ignored or disabled. However, they could see their capacity increased as part of
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Figure 1: Example of input data for the San Isidro district of Lima (Peru). Legend: Pins
represent Points of Interest. Lightning bolts represent Transformer Substations. Blue polygons
depict cadastral information blocks and red lines depict traffic information.

the solution proposed by the algorithm (i.e., doubling the number of charging
poles). That is why stations of this type that are already installed in the city
should be viewed as a special case, where their current capacity is a restriction
that cannot be diminished but may be increased.

This constraint is introduced as an input to the algorithm as:

F = 〈f0, f1, . . . , fn〉

where fi ∈ N0 is the number of previously installed stations in the Point of
Interest Ii ∈ I. When fi is 0, there is not a constraint for PoI Ii.

The adaptability of the algorithm to this restriction is presented in this
work, where we manage it as a special case that determines the feasibility of an
individual.

4. Multi-objective Evolutionary Algorithm

The nature of the problem we aim to solve entails using multi-objective
optimization algorithms. We need to maximize the utility of locating a set of EV
charging points while also minimizing the cost of this infrastructure. These are
the two objectives to be optimized in the problem. Furthermore, the complexity
of this problem makes other techniques inefficient considering the wide range
of possibilities of locating stations in a considerably large number of positions
and also the different number of charging poles in each station. We also have to
note that each station located in a specific point has an area of influence that
covers the population, traffic, and social network activity. Similarly, the cost
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depends on the number of charging poles and the distance to the energy points.
Therefore, it is a hard problem to solve due to the number of different variables
to manage as well as the geometric calculations that are involved regarding the
areas of influence and intersections in order to take into account the coverage
of each station.

Of the different genetic algorithms that support multi-objective optimiza-
tion, we used the well-known Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [7]. The main advantage that we exploit of NSGA-II with respect
to a genetic algorithm with a single fitness function is the multi-objective opti-
mization that obtains solutions near the Pareto frontier. This means that the
algorithm attempts to obtain near-optimal solutions, by considering all of the
objectives, and, hence, for any solution, one objective value cannot be improved
without decreasing another objective value (from known solutions). In other
words, the solutions returned by the NSGA-II algorithm are not dominated.

We use the µ+λ evolutionary algorithm implementation of the deap1 library
of Python. The µ value represents the number of individuals to select for the
next generation, which we consider the population size of our problem. Then,
the λ value is the number of children to produce at each generation, which we
have defined as half of the population size in order to generate a significant
number of children and to select the best among them.

The NSGA-II algorithm uses specific genetic operators for selection, crossover,
and mutation. For the selection operator, differently from a general genetic
algorithm, the NSGA-II uses its own selection operator that chooses the best
individuals with respect to the Pareto frontier. The crossover operator that
we use in our implementation is the two-point technique, in which two points
of the chromosomes are selected and everything between those two points is
swapped between the parents. Finally, we use the uniform integer technique
as a mutation operator, which generates a new integer value within a provided
range with an independent probability of each attribute being mutated.

4.1. Energy-aware Infrastructure Location

One of the main considerations in placing an EV charging station is its
distance to an available electric transformer substation. Depending on the city
council and the power company involved, there will be a specific limit distance
to which it is feasible to build a connection. Also, within this limit, there is
an associated cost of installing the electric power line from the transformer
substation to the new charging station, for simplicity, in this case, we consider
the cost to be linear with respect to distance. Additionally, there should be
enough free power capacity in the transformer substation to supply the charging
station. However, in this work, we assume that there is enough free power
capacity in the transformer substations that we introduce in the algorithm.

Therefore, before starting the evolutionary algorithm, a pre-calculation can
be done to find the distance to the nearest transformer substation for each PoI.

1https://github.com/DEAP/deap
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Then, during the execution of the evolutionary algorithm, the only calculation
regarding the energy cost to be done is the evaluation of the fitness of each
individual. For each PoI where a charging station is going to be placed, we
compute the cost of connecting it to the nearest electric transformer substation
(ΘE):

ΘE =

{
base cost · distance, if distance ≤ limit distance · 1.05

(base cost · distance) · 2, otherwise

where base cost is a constant that is specified as a configuration parameter; and
limit distance is the maximum distance that the city council or power company
allows to make a connection from a transformer substation to a charging station.
Therefore, the cost of connecting energy to a charging station is linear with the
distance, while this distance is lower than the specified limit (plus a 5% margin);
then the cost doubles with the distance.

4.2. Fitness Function

The attributes that are considered to determine the activity around a PoI
are population, traffic, and published tweets. The population can be specified as
blocks corresponding to sets of houses. The traffic should be specified by streets;
the more detail, the more accurate the algorithm can be. The published tweets
must be geo-located so that they can be easily included in the corresponding PoI
area. Additionally, the geo-located tweets are preprocessed using a geohashing
technique in order to reduce computation. Hence, a collection of millions of
tweets in a city is divided into small areas noting the number of tweets in each
small area (similarly to the population blocks).

To evaluate each feasible individual, a Voronoi diagram is generated taking
into account only the active PoIs, that is, the ones in which a station is going to
be placed with a specific number of charging poles greater than zero. Then, the
attributes (i.e., population, traffic, and tweets) to consider inside the influence
area of the PoI must be inside the corresponding Voronoi polygon and inside
the influence radius specified in the configuration of the problem. Hence, we
define the influence area of a PoI as the zone of the geometric intersection of
the Voronoi polygon with the circumference centered in the PoI with a radius
given as input parameter of the problem (normally, it will take values of 50-1000
meters, depending on the other supplied input data). The reason for considering
both the Voronoi polygons and the circumference around the PoI is to make the
influence area more accurate in the case of near PoIs in which the circumferences
collide. Hence, the intersection of the Voronoi polygon and the circumference
impedes considering the same area by two or more PoIs at the same time. An
example of the influence area of the PoIs is shown below in Figure 4 of Section
5.

We use the following notation: Φ is an individual, and each cpi ∈ Φ is
the number of charging poles (between 0 and a maximum determined by the
configuration of the problem) to be placed in a station located at the PoI.

10



The utility of an individual Φ is defined as the sum of the attributes that
cover the area of the corresponding PoI (i.e., population, traffic, and social
activity). This is done for every PoI cpi in which at least one charging pole is
placed. The equation is as follows:

utility =
∑

∀cpi>0∈Φ

(ωP · Pi + ωT · Ti + ωA ·Ai) (1)

where Pi is the covered population of the station obtained by the geometric
intersection of the Voronoi polygon of the PoI, the polygons corresponding to
population blocks and the influence area; Ti represents the covered traffic of
the streets in the influence area of the PoI; Ai is the number of tweets that are
geo-located in the influence area of the PoI; and each ω is the corresponding
weight of the different attributes that are considered for the utility.

The cost (Θ) of an individual Φ is defined as::

Θ =
∑

∀cpi>0∈Φ

(Θcp · cpi + ΘEi
) + ΘS · |Φ| (2)

where ΘS is the fixed cost of a station, Θcp is the fixed cost of a charging pole,
cpi is the number of charging poles at each PoI of the individual, ΘEi

is the
energy cost of cpi, and |Φ| is the number of activated stations in Φ where at least
one charging pole is located (and hence a station is placed). In other words, |Φ|
is the number of cpi ∈ N1 (where N1 = {x ∈ N|x > 0}).

Finally, the fitness function involves the maximization of the utility and
the minimization of the cost to obtain solutions that comply with the Pareto
frontier.

4.3. Feasibility and Penalty Function

In order to achieve solutions that respect the constraints, we defined specific
feasibility functions to check whether or not an individual is feasible. Addition-
ally, these functions allow us to apply a penalty function to determine “how far”
an infeasible individual is from the feasibility constraints of the problem.

We establish two main constraints in our problem. On the one hand, we have
a specific number of total charging poles to locate (Ψ) in all different charging
stations. Hence, one feasibility function controls that the number of charging
poles of an individual (the sum of charging poles of all stations) is specified as
the Ψ parameter with an error bound of ±5% (Equation 3):

0.95 ·Ψ ≤
∑

∀cpi∈Φ

cpi ≤ 1.05 ·Ψ (3)

On the other hand, an instance of the problem may have a subset of charg-
ing stations with a minimum number of previously installed charging poles as
a constraint (this is the set F , as we presented in subsection 3.1). We call
these constrained stations fixed stations. For this reason, the second feasibility
function checks that for each station of the individual, the computed number
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of charging poles cpi is greater than or equal to the number of fixed station
charging poles Fi (in the case that there is no fixed charging pole in the station,
this number is initialized to 0):

∀i ∈ Φ, cpi ≥ Fi (4)

These two constraints define the feasibility of the individuals. Any infeasible
individual that is generated during the evolutionary algorithm is not desirable
as a solution. However, it is important to know the distance to feasibility since
just a few mutations or crossover operations can lead to a feasible individual.
Therefore, we define the corresponding distance functions for both constraints
in order to quantify “how far” an infeasible individual is.

In the case of the total number charging poles, the distance function δcp is
quadratic with respect to the difference of total number charging poles desired
and the total number charging poles of the individual.

δcp = ((
∑

∀cpi∈Φ

cpi)−Ψ)2 (5)

For the fixed stations, the distance function δf is defined as:

δf =
∑

∀cpi∈Φ,cpi<Fi

(Fi − cpi)4 (6)

where those stations in which the constraint of Equation 4 is violated, the
difference of the minimum number charging poles that should be there (because
they are fixed) is raised to the power of 4. This is done to penalize the δf
distance in a much more severe way than the δcp distance.

Finally, the function ∆ that evaluates the distance to feasibility of an infea-
sible individual is defined as:

∆ = δcp + δf (7)

With all of these elements, we can now specify the penalty that is applied to
each infeasible individual instead using the fitness function. As we mentioned
above, our evolutionary algorithm is implemented using the deap library. For
this algorithm, there is a mechanism called Delta penalty [6] that allows a feasi-
bility function and a distance function to be specified. The feasibility function
returns true if the individual is feasible considering the two constraints defined
above; otherwise, it returns false. The distance function increases the returned
value as the infeasible individual moves away from feasibility.

Therefore, the feasible individuals are evaluated by the fitness function,
which considers utility and Θ (cost); and the infeasible individuals are evalu-
ated by the delta penalty function, which considers the “distance to feasibility”,
as we define below:

f(Φ) =

{
(utility,Θ), if Φ is feasible

(−∆,∆), otherwise
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Figure 2: Penalty function examples

When evaluating an individual Φ, the value returned by the algorithm is a
tuple with two elements: utility and cost (Θ). However, if Φ is not feasible,
the values returned are (−∆,∆) since the utility must be maximized and the
cost minimized. This guarantees that any infeasible individual Φ′ will be worse
than any feasible individual Φ′′ since the utility of Φ′ will be a large negative
number, while the utility of Φ′′ will be a positive number. Similarly, the cost of
Φ′ will be significantly higher than the cost of Φ′′. An example of this is shown
in Figure 2. The left (a) graph shows the possible utility function in green while
it is in the feasible central area (top of the graph). The outside areas (light red)
represent infeasibility with its corresponding −∆ function. Similarly, the right
(b) graph represents the cost function Θ in green in the feasible area (bottom of
the graph), and the ∆ function represents the outside zones of feasibility with
an increasing value.

5. Case study: City of Lima

In this section, we present a case study of the algorithm proposed in this
work for the San Isidro district of the city of Lima (Peru). The city of Lima is
very interested in anticipating the future and being prepared for the imminent
mass arrival of the EV. For this reason, in this case study, we used the San Isidro
district as a benchmark for the algorithm. This is achieved in part thanks to
the collaboration of the authorities in providing the necessary data for this case
study. The district of San Isidro is one of the 43 districts of the province of
Lima. It has an estimated population of 58056 inhabitants, and its total area is
11.1km2. It is mainly inhabited by families with a high socioeconomic level.

There is global interest in promoting the EV; for example, the European
Commission (EC) has published a White Paper on Transport [11] where the EC
sets the goals to reach by 2050, betting on the elimination of fossil-fuel based
cars.
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5.1. Case study example

Figure 3: Initial Voronoi diagram based on the PoIs of Lima

For this case study, we have introduced 55 Points of Interest provided by the
local district. They have identified places where it would be possible to install
an EV charging station. However, let’s imagine that the experts of the local
government wish to install a significantly smaller number of stations; therefore,
the algorithm presented in this work should make a satisfactory and informed
proposal. One of the first things that the algorithm performs is to join any PoI
that is too close to other PoIs. The minimum distance is selected by the user
(e.g., 150 meters) and the PoIs are clustered following this minimum distance.
An exception to this situation is when there are existing charging stations, which
are treated as a constraint and cannot be removed. In the case of the San Isidro
district, there are no previous charging stations in the city, so this constraint
does not apply for this case study.

As stated above, to select an area of influence for each Point of Interest, we
create a Voronoi diagram using the input PoIs to create regions on the plane
of the city. Then, we intersect these regions with a circular area of a diameter
chosen by the user (e.g., 600 meters). This gives us the proper area to compute
the input variables for the fitness function (i.e., population, traffic, etc.).

This initial situation is shown in Figure 3. As the execution of the genetic
algorithm progresses, each selected individual (which represents which stations
are active or inactive and with how many charge poles) forces the recalculation
of the Voronoi diagram and its intersections with the influence circles (Figure
4). This allows the fitness function to evaluate the quality of that individual
(as long as this individual has previously passed the feasibility check). Note
that an individual will not be considered feasible when it has more charge poles
than the number accepted by the user or when it tries to reduce the number of
charge poles of a previously installed station.
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Figure 4: Example of the Voronoi diagram and influence circles of each PoI in Lima

Finally, the genetic algorithm returns a set of possible solutions with a good
balance between utility and cost. Figure 5 shows a possible solution for this case
study. In this solution, it can be observed that the number of points selected as
candidates for installing charging stations is significantly lower than the initial
number of Points of Interest proposed as inputs. For this reason, the set of
Voronoi polygons shown in the solution is different from the initial one (Figure
3) because they are adapted and recalculated for each solution evaluated.

One approach for seeing how the solution has been adapted to the character-
istics of the city is to check how the charging stations are distributed in relation
to the electrical transformer substations. The algorithm has tried to minimize
the cost of deploying charging stations that are too far from these substations.
This is why Figure 6 shows how the distribution of the stations resembles the
coverage of the transformer substations, which is shown as a heatmap. Sim-
ilar checks could be done by comparing the solution with the distribution of
population, traffic, or social activity.

5.2. Experimental Results

In this subsection, we present some of the experimental results of our pro-
posal when applied to the city of Lima. As mentioned above, our NSGA-II
evolutionary algorithm is implemented using the deap2 library of Python. The
settings that we use in these experiments are summarized in Table 1.

For the main parameters of the genetic algorithm, we considered different
initial populations ranging from 100 to 5000 individuals, an evolution through
300 generations, and the probabilities for the crossover and mutation operations
of 0.5 and 0.05, respectively. The values (µ + λ) of the NSGA-II algorithm are

2https://github.com/DEAP/deap

15



Figure 5: EV charging stations location solution for the Lima case study example

defined depending on the population. Therefore, the number of individuals to
select at each generation is µ = population, and the number of descendants to
produce at each generation is λ = population

2 .
The main parameters of these experiments for the San Isidro district were

the following. We increased the input set of PoIs from 55 to 548 by including
additional PoIs to the original 55 PoIs provided by the authorities, which we
show in the above case study. This implies that the problem has a larger search
space, which increases the probabilities of a genetic algorithm finding a better
solution by expanding that search space. With this greater number of PoIs, the
minimum distance among PoIs is established as 50 meters, and, hence, all PoIs
at a closer distance are clustered. This clustering process reduces the original
548 PoIs to 379, with a minimum distance among them of 50 meters. Taking
into account the shape, the characteristics, and the population of the San Isidro
district, the number of charging poles to locate in this problem is 50, with a
maximum of 3 charging poles per station. We considered this setting to be
the most appropriate for the district regarding the needs for an EV charging
infrastructure.

We have already provided above the details and formulas that we used to
calculate the values of fitness, which is based on the following parameters. The
weights used in the utility function were: ωP = 0.4, ωT = 0.35, and ωA = 0.25
since we consider population to be the most important parameter, followed
by traffic. The costs that affected the fitness values were: the cost of placing
each charging station (10000); the cost per charging pole (40000) (note that
the cost of placing the station is, in fact, the cost of placing the first charging
pole, which is more expensive than the additional poles); and the cost per
meter to connect the nearest transformer substation to the charging station
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Figure 6: Heatmap of energy transformer substations in Lima compared to the solution of the
case study.

(150). The limit to connect to a transformer substation was 100 meters, which
means that any longer distance would double this cost. Finally, the influence
radius of the charging stations was 100 meters since the minimum distance
among PoIs was 50 and the number of PoIs with respect to the previous case
study was considerably higher. It is important to note that these values were
obtained through consultations with companies that specialize in the installation
of charging points for EVs.

We consider that while the genetic algorithm is configurable, the rest of the
parameters are a setting of the problem that is not directly comparable with a
different one. Hence, our experiments focused on analyzing the quality of the
solutions obtained by the variation of the genetic algorithm configuration with
the same problem setting.

Figure 7 shows the evolution of the average utility of individuals through
generations of the problem setting presented in Table 1 with different initial
populations for the genetic algorithm. Each line represents the average of 10
different executions with the corresponding initial population, and it shows the
average utility of the individuals in the population at each generation. Globally,
the utility remains in relatively small values since it represents the percentage of
area covered by the charging stations. In order to have full coverage of the whole
area, all PoIs must have a charging station and the union of the influence areas
of all PoIs should totally cover the areas in which there is population, traffic,
and social activity. Therefore, it is unlikely that such a solution exists, but also,
in the case that concerns us with only 50 poles to locate, it is impossible to
cover the whole area. That is why we simply seek maximum coverage with the
provided resources.
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Table 1: Configuration parameters for the Lima case study

Parameter Value
population 100-5000
generations 300
crossover prob. 0.5
mutation prob. 0.05

number of PoIs 548
distance PoIs 50
total poles to locate 50
max poles per station 3

ωP 0.4
ωT 0.35
ωA 0.25
cost station 10000
cost pole 40000
cost distance energy 150
energy radius 100
influence radius 100

All of the utility values in Figure 7 are positive since there is no infeasible
individual generated in the genetic algorithm. On the one hand, we used a
controlled method to generate the initial population to avoid creating infeasi-
ble individuals. On the other hand, the possible infeasible individuals created
through the generations of the evolutionary algorithm are not selected for next
generations since there are enough feasible individuals that are much better than
those infeasible individuals that have a high penalty of −∆ for utility. Also note
that, as we explained in Section 4.3, the only infeasible individuals that can be
produced are those with a number of charging poles that differs more than 5%
of the specified value of 50 in these experiments, since we do not consider any
previous existing charging station in the San Isidro district.

The lines of the graph in Figure 7 clearly follow an increasing curve through
generations with small oscillations. The experiments with an initial population
of 100 individuals have an average utility for their individuals that is significantly
lower than the other experiments. Additionally, the average utility of the ex-
periments with 100 individuals of initial population hardly improves from the
100 generations and it stabilizes when arriving at 150 generations. This occurs
because such a small population prevents the algorithm from evolving beyond
these generations; this phenomenon is not so evident in other experiments with
a larger population.

For the rest of the initial populations, the evolution is quite similar and
the significant differences of average utility among them begin at 150 to 200
generations. The experiments with 250 individuals in the population stabilize
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Figure 7: Evolution of average utility starting with different populations

at around generation 250, while the experiments with a higher population still
vary. At generation 300, the average utilities of the experiments are ordered
from the highest to the lowest initial population, with the experiment with a
population of 5000 being the one with the highest utility. However, there is an
exception in the experiments with a population of 1000 individuals since they
have the highest global average utility in many generations and also a higher
average utility than the experiments of 2500 individuals even at generation 300.
It is worth noting that in this graph, we are analyzing the average utility of all
of the individuals in the population, and, for this reason, there may be many
individuals that decrease or increase this value. Therefore, in order to be able
to observe how the number of individuals in the initial population influences
the utility when generating the best individuals, we represent the graph of the
maximum utility values for these experiments.

The graph in Figure 8 shows the maximum utility among all of the individu-
als at each generation for several numbers of individuals in the initial population
of the NSGA-II algorithm. As in Figure 7, these results are the average of 10
executions for each initial population. This graph shows how maximum util-
ity grows significantly in the first 100 generations in all cases. As we observed
above, the case with 100 individuals stabilizes at around 125 generations and it
is unable to improve the maximum utility for any individual. Therefore, for this
case, 150 generations would be enough. A similar behaviour is observed for the
cases of 250 and 500 individuals of initial population (approximately at genera-
tion 175 and 200, respectively) with just some small variation in the case of 500
individuals in the final 50 generations. For the cases of 1000, 2500, and 5000
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Figure 8: Evolution of maximum utility starting with different populations

individuals, the maximum utilities reached have a very close value and also have
a very similar evolution so that the maximum utility almost does not increase
in the last 50 generations. Therefore, we can consider that 300 generations are
enough to obtain a solution for these problem settings.

The maximum utility values shown in Figure 8 are ordered with respect
to the initial population, with the 5000-individual experiments being the ones
with the highest maximum utility. Finally, it should be noted that the dif-
ference between the maximum utility values of the experiments with less than
1000 individuals of initial population is significant with respect to those of 1000
individuals or more. However, there is no significant difference in maximum
utility between the values of the experiments with 1000, 2500, and 5000 indi-
viduals. Therefore, given the complexity of the execution of 5000 individuals
with respect to 1000, and the small difference in the quality of the final solution,
it is up to the user to determine how many individuals between these ranges a
configuration should have in order to reach a satisfactory solution.

A similar graph that plots the cost Θ could be done since cost behaves
similarly to utility, but with different scales and orders of magnitude. Note
again that the multi-objective genetic algorithm works perfectly in the sense
that we can optimize objectives that represent totally different values because
we do not have to put them together in the same formula leveraging them.

Figure 9 compares the evolution of utility and cost in order to show how the
NSGA-II algorithm performs with the multi-objective function that maximizes
utility and minimizes cost Θ. The lines represent the average utility (left axis)
and the cost (right axis), respectively, of the averaged results of the 10 repeti-
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Figure 9: Evolution of average utility and cost

tions for the experiment with 1000 individuals of initial population. It can be
observed that there is great improvement in both utility and cost in the first
100 generations, and then the cost is stabilized while the utility keeps increas-
ing. This indicates that the algorithm is able to find a stable cost using all
resources to locate the 50 charging poles, and then it keeps generating individ-
uals with a similar cost but changing the distribution of the stations to increase
the coverage, thereby increasing the utility.

Since the solutions returned by the algorithm are at the Pareto frontier,
i.e., the objectives are optimized independently and there are none that are
Pareto dominated, there are several alternatives to be chosen by the user. In
the tests carried out, the users must choose between several solutions in which
if we consider a solution Φ and an alternative Φ′, the utility of Φ is greater than
that of Φ′, while the cost Θ of Φ is in turn greater than that of Φ′. Hence,
it is up to the users, who should be experts in the field of electric mobility,
to choose the alternative that best suits their needs. Although it must be
noted that the differences between the solutions are not very significant, what
is really significant is the reduction from the possible initial combination to the
set of possible solutions found by the genetic algorithm. This provides decisive
guidance during the decision-making process.

The obtained solutions tend to have one charging pole per station to cover
the demand, except for some stations located in central areas with more pop-
ulation, traffic, and social network activity that have more than one charging
pole. Hence, the solutions have around 45-50 stations out of the 548 initial PoIs
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clustered to 379, and 48-52 charging poles of the 50 (±5%) to be located ini-
tially. Therefore, we can consider these results satisfactory since the algorithm
behaves as expected.

Figure 10 shows a solution obtained with an initial population of 5000 in one
of the 10 repetitions of the experiment. In this solution, the charging stations
are distributed quite equally in the San Isidro district in an attempt to cover
the area, but they are more concentrated in the center of this district since
there is more population and social activity there. It is important to note that
this solution differs from the one in Figure 5 regarding the size of the Voronoi
polygons since the PoIs are closer and their influence areas are also smaller.
Finally, it must also be noted that the solutions obtained in different repetitions
of the same setting have very similar utility and cost values, and these solutions
have just slight differences in their shape, with some of the stations varying,
with the ones represented in Figure 10.

Figure 10: Solution for the location of EV charging stations in Lima

6. Conclusion

In this paper, we have presented a multi-objective genetic algorithm to solve
the problem of selecting the most suitable locations for installing electric vehi-
cle (EV) charging stations in a smart city. The algorithm takes into account
extracted information extracted about the city. This includes population dis-
tribution, traffic intensity, activity in social networks and the location of energy
transformer substations as well as the cost of installing the stations and the
number of charging poles for each station to cover the demand.

We have improved previous works by introducing a multi-objective evolu-
tionary algorithm that optimizes both utility and cost, generating solutions
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along the Pareto frontier. This kind of algorithm allows us to find a solution
that finds a balance between the greatest benefit of installing the proposed sta-
tions in the solution and the lowest possible cost from among the solutions of
this type. Thus, the decision-maker in the deployment of an EV charging in-
frastructure in a city can use this information to maximize the benefit of the
deployment without excessively raising the cost or wasting resources. We have
also included the energy transformer substations of the city in the algorithm in
order to determine the best locations for the new EV charging stations, taking
into account the existing power infrastructure in order to rationalize the con-
nections and impact on the city. This feature also provides a better estimate
of the cost of deployment since EV charging stations have to be connected to
transformer substations. Thus, the closer the charging stations are located to
the transformer substations, the lower the cost of supplying the energy to the
chosen points. Another of the improvements proposed by this work is the use
of social activity information to not only track where users live in a city, but
also where they move throughout the day. This information is crucial in deter-
mining where there is a greater likelihood of having users who need to charge
their EVs throughout the day. In addition, since we only use the intensity of
this social activity in order not to overload the evolutionary algorithm with the
enormous amount of geo-localized information existing nowadays, the solution
has been optimized using buckets where the information has been discretized.
This has improved the performance of the evolutionary algorithm. Finally, the
system was analyzed through a case study in the city of Lima (Peru), and it
was empirically evaluated.

As future work, the energy capacity transformer substations can be added
as a constraint of the problem to perfectly fit the charging stations to be located
by taking into account the available capacity, thus reducing the impact on the
current energy infrastructure. In addition, a search will be made for the best
algorithm configuration parameters in order to maximize the quality of the re-
sults. Furthermore, the users of the system (i.e., administrations, governments,
or city council managers) might want to prioritize certain PoIs or city zones
that are of special importance and that are not totally reflected in the available
data. This would make our system more adaptive to the requirements of the city
managers in order to strategically deploy an adequate charging infrastructure.
Finally, it would be useful to improve our system with a technique that plans a
phased installation over several years of the charging infrastructure. This way,
the introduction of EV charging stations could be done incrementally to cover
the demand as it grows, while rationalizing the deployment costs over time.
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