
On Byzantine Fault Tolerance in Multi-Master Kubernertes
Clusters

Gor Mack Dioufa, Halima Elbiazea,∗, Wael Jaafarb

aUniversité du Québec À Montréal, Montreal, Quebec, Canada
bCarleton University, Ottawa, Ontario, Canada

Abstract

Docker container virtualization technology is being widely adopted in cloud computing

environments because of its lightweight and efficiency. However, it requires adequate

control and management via an orchestrator. As a result, cloud providers are adopt-

ing the open-access Kubernetes platform as the standard orchestrator of containerized

applications. To ensure applications’ availability in Kubernetes, the latter uses Raft

protocol’s replication mechanism. Despite its simplicity, Raft assumes that machines

fail only when shutdown. This failure event is rarely the only reason for a machine’s

malfunction. Indeed, software errors or malicious attacks can cause machines to exhibit

Byzantine (i.e. random) behavior and thereby corrupt the accuracy and availability of

the replication protocol. In this paper, we propose a Kubernetes multi-Master Robust

(KmMR) platform to overcome this limitation. KmMR is based on the adaptation

and integration of the BFT-SMaRt fault-tolerant replication protocol into Kubernetes

environment. Unlike Raft protocol, BFT-SMaRt is resistant to both Byzantine and

non-Byzantine faults. Experimental results show that KmMR is able to guarantee the

continuity of services, even when the total number of tolerated faults is exceeded. In

addition, KmMR provides on average a consensus time 1000 times shorter than that

achieved by the conventional platform (with Raft), in such condition. Finally, we show

that KmMR generates a small additional cost in terms of resource consumption com-

pared to the conventional platform.

∗Corresponding author
Email address: elbiaze.halima@uqam.ca (Halima Elbiaze)

1Département d’informatique, C.P. 8888, Succursale Centre-ville Montréal (Québec) H3C 3P8 Canada

Preprint submitted to Elsevier April 14, 2020

ar
X

iv
:1

90
4.

06
20

6v
3 

 [
cs

.D
C

] 
 1

1 
A

pr
 2

02
0



Keywords: Cloud computing, Docker containers, Kubernetes, Byzantine and

Non-Byzantine faults, fault tolerance, service continuity.

1. Introduction

Faced with the continuous increase in capital expenditure and operating expendi-

ture costs of fully reliable and available Information Technology (IT) systems, compa-

nies tend towards outsourcing their IT services to specialized companies such as cloud

service providers. The main advantage of this strategy is to claim an excellent service

quality while paying only for the necessary and consumed resources. As for the service

provider, its purpose is to meet the needs of clients by providing the required resources

when demanded. A common approach is to pool (or slice) its resources to share them

between several clients. In this context, many challenges emerge to provide a reli-

able cloud environment, e.g., quality-of-service guarantee, resources management, and

service continuity.

In order to exploit efficiently the service provider’s resources, the virtualization

technology has been introduced [1, 2]. The latter allows the services to see the re-

sources, e.g., servers, routers, communication links, and data storage, in a manner

that is independent from the physical infrastructure/equipment, and to use these re-

sources based on service requirements, rather than on physical granularity. In partic-

ular, servers virtualization using containers, called also containerization, has gained

popularity among cloud service providers, since it addresses issues, such as the ineffi-

cient use of resources [3, 4]. Unlike full-hardware virtualization, such as VMware [1],

containerization leverages virtualization at the operating system level, hence generating

a lighter overhead. In such system, the resource allocation unit is the container. The lat-

ter is defined as the virtual runtime environment running atop a single operating system

kernel and emulating an operating system. Several implementation platforms are avail-

able for containerization, such as LXC, OpenVZ and Docker [3, 4, 5]. Nevertheless,

Docker stands out as the most interesting container-based virtualization platform as it

provides the simplest lightweight and scalable way of creating and deploying contain-

ers, besides its large spectrum of use cases, including hybrid clouds [6], microservices



[7], infrastructure optimization [8] and big data [9].

In a container-based server platform, containerized applications need to be man-

aged, i.e., a container hosting an application is dynamically deployed, run, then re-

moved. The management of these operations in a container-based virtualization plat-

form is called Containers Orchestration. Containers Orchestration is a complex task

that requires a very light but efficient mechanism for automated deployment, scaling,

and management of containers. For instance, to efficiently manage Docker containers,

cloud service providers such as Google, Docker, Mesosphere, Microsoft, VMware,

IBM and Oracle adopted Kubernetes as their standard platform to orchestrate con-

tainerized applications [10, 11, 12]. Kubernetes is a Google open project advocating

the vision of a modular, customizable and therefore scalable orchestration platform [3].

In order to guarantee the availability and continuity of hosted applications, Kubernetes

uses the Raft protocol. The latter replicates the states between the machines hosting

the containers, where each state is an image of the hosted containerized applications

[13, 14]. In spite of its simplicity and rapidity in the replication process, Raft proto-

col has major limitations when it comes to machines’ failure. Indeed, Raft can only

detect and correctly deal with shutdown events of machines. In other words, if a ma-

chine experiences a Byzantine (random) behavior, Raft is unable to guarantee service

continuity [14, 15, 16]. Indeed, Byzantine behaviors, such as delayed, dropped, or cor-

rupted messages, or abnormally executed processes have been widely observed in real

systems, as summarized in [17].

Being conscious of the risks of software errors and malicious attacks that can push

a machine into a Byzantine behavior, we propose in this paper the adaptation and inte-

gration of the BFT-SMaRt fault-tolerant replication protocol into Kubernetes. By doing

so, we expect our proposed platform to resist to any type of faults while guaranteeing

service continuity. To the best of our knowledge, this is the first work that proposes a

Kubernetes platform tolerant to Byzantine and non-Byzantine faults.

The main contributions of this paper are summarized as follows:

1. We present an overview of Docker virtualization, Kubernetes platform, fault-

tolerance within this platform and its limits.



2. We propose the Kubernetes multi-Master Robust (KmMR) platform, a platform

tolerant to Byzantine and non-Byzantine faults. KmMR is based on the integra-

tion of BFT-SMaRt into Kubernetes environment.

3. We propose an efficient method to adapt and integrate the replication protocol

BFT-SMaRt (written in Java) into Kubernetes (written in Golang).

4. We implement the proposed KmMR solution in an OpenStack-based cloud envi-

ronment, evaluate its performances and compare it to the conventional platform,

called Kubernetetes multi-Master Conventional (KmMC). Comparison is real-

ized through experiments in non-Byzantine and Byzatine environments, where

both crash and Distributed Denial-of-Service (DDoS) attacks are performed to

destabilize the machines and corrupt their replication process. The obtained re-

sults confirm the effectiveness and robustness of KmMR.

The rest of the paper is organized as follows. Section II describes Docker container-

ization technology. In section III, the Docker containers orchestration platform Ku-

bernetes is explained. Whereas, section IV discusses fault-tolerance in Kubernetes.

Section V presents our KmMR platform. Experimental evaluation and results are dis-

cussed in Section VI. Finally, section VII closes the paper.

2. Background

In this section, we present an overview of Docker containers and its orchestration

mechanism, supported by Kubernetes.

2.1. Docker Containers

Container virtualization, also known as containerization, relies directly on kernel

functionalities to create isolated virtual environments, as illustrated in Fig. 1. These

virtual environments are named containers, while the features provided by the operat-

ing system kernel are called namespaces and cgroups [19]. The namespaces control

and limit the amount of resources used for a process, while the cgroups manage the

resources of a process group. Hence, a container provides the resources needed to run



Figure 1: From virtual machines to containers [18]

applications as if they were the only processes running in the host machine’s operating

system.

Even though several containerization platforms have been proposed, such as LXC,

OpenVZ and Docker [3, 4, 5], only Docker sparked interest and popularity among the

research and professional communities thanks to its operational simplicity and flexi-

bility. Indeed, traditional virtualization uses a Hypervisor to create virtual machines,

deploy guest operating systems on them, and host the applications [20]. Whereas,

Docker containerization requires only the installation of the Docker container engine

on the operating system’s kernel of the host machine, allowing the creation of contain-

ers that host the applications. Nevertheless, both are autonomous systems that use a

higher system, i.e., the one of the host machine, to perform their tasks. The differ-

ence is that virtual machines must contain a whole guest operating system, while the

containers use directly the one of the host machine. Fig. 1 illustrates an architectural

comparison of traditional virtualization and containerization.

Docker is a complex but very intuitive ecosystem for container development. It is

mainly composed of six elements, as shown in Fig. 2:

1. Docker Client: It is the command line interface tool used to configure and inter-

act with Docker. For any Docker command instruction (e.g., docker run), the

client sends the command to Docker daemon (dockerd) that carries it out.



Figure 2: Components of Docker [18]

2. Docker Daemon: It is the Docker server that listens to the application program-

ming interface requests and manages Docker objects, such as images, containers,

networks, and volumes, etc.

3. Docker Images: An image is a read-only template/snapshot, pulled or pushed

from a public or a private repository, in order to create a Docker container. This

is the building block of Docker. It is lightweight, small, and fast compared to

those of traditional virtual machines.

4. Docker file: It is used to build Docker images.

5. Docker Containers: Basically, a Docker container is a user space of the operating

system. It is composed of a set of processes isolated from the rest of the system,

and running from an image that provides necessary files to support the processes

of the hosted application.

6. Docker registries: Registries are the central repository and distribution compo-

nent of Docker images.

7. Docker Engine: It combines the Docker daemon, application programming in-

terface and the command line interface tools.



By its simplicity and small number of components, the Docker architecture pro-

vides interesting advantages [21, 22, 23]:

1. Deployment rapidity: Docker achieves fast operations, such as communication,

and container building, testing and deployment.

2. Applications Portability: Containerized applications are easily portable, as they

can be moved around as a single unit, without affecting their response perfor-

mances or the containers.

3. Fast service delivery: Docker containers format is standardized, such that pro-

grammers and administrators tasks do not interfere when deploying them. In-

deed, Docker provides a reliable, consistent, and enhanced environment that

achieves predictable outputs when codes are moved between development, test

and deployment platforms.

4. Density: Docker uses the available resources more efficiently compared to vir-

tual machines, since it does not rely on a Hypervisor. It is able to run densely

several containers on the same single host, hence optimally using the resources

and increasing its performance, compared to virtual machines.

5. Scalability: Docker can be deployed in several physical servers, data servers, and

cloud platforms without any restriction. Containers can be easily moved from a

cloud environment to a local host and vis-versa, at a fast pace. Deployment

adjustments can be easily realized according to needs.

In Table 1, we summarize the characteristics of virtual machines and Docker con-

tainers. Accordingly, the Docker container can be created and removed almost in real

time and thus introduces a negligible task overload with respect to the host machine’s

resources use [22, 24, 25]. Compared to virtual machines, Docker containers are ad-

vantageous in terms of network management, boot speed, deployment/migration flex-

ibility, and resources use, e.g. RAM, storage, etc. [22]. However, they suffer from

the weak isolation of the host machine. Indeed, if a Docker container is compromised,

then an attacker can get full access to the operating system of the host machine [26, 27].

Consequently, there is an urgent need for a robust and secured environment for Docker

containers. Moreover, Docker is unable on its own to deploy containers on distributed



Table 1: Characteristics of Virtualization Technologies

Parameters Virtual Machines Docker Containers

Operating System

Every virtual machine virtu-

alizes the host material and

loads its own guest operating

system

No container emulates host

material. Host operating sys-

tem is used.

Communication Through Ethernet peripherals

Through Inter-Process Com-

munication standard mecha-

nisms, e.g., sockets, pipes,

shared memory, etc.

Resources Usage

(CPU and RAM)
High Quasi-native

Startup time Few minutes Few seconds

Storage

High requirement for guest

operating system and associ-

ated software installation and

execution

Low since host operating sys-

tem is used

Isolation

Libraries and files’ sharing

among virtual machines is

impossible

Libraries and files can be

seamlessly mounted and

shared

Security
Depends on the Hypervisor’s

configuration
Requires access control



machines and ensure their interaction [26]. In this matter, an orchestration mechanism

is needed to manage Docker containers in distributed systems.

2.2. Containers Orchestration

Handling a few Docker containers on one machine is an easy task. However, when

it comes to moving these containers into production on a set of distributed hosts, many

questions arise. Indeed, driven by providing availability, scaling, and networking, an

integration and management tool is required not only to ensure initial containers de-

ployment, but to also manage multiple and dynamic containers as one entity. Clearly,

handling everything manually is not conceivable because it would be very difficult to

ensure the viability, maintenance and sustainability of the system. Thus, the process

of deploying multiple containers can be optimized through automation, especially in

large scale systems. This type of automation is referred to as orchestration and includes

features like work nodes’ location determination, load balancing, inter-container com-

munication, service discovery, status updates, containers migrations, scaling up, and

tolerance to malfunctions.

Several orchestrators have been proposed and implemented to manage Docker

container-based platforms. Examples include Fleet [28], Mesos [29], Swarm [30]

and Kubernetes [31]. In the remainder of this paper, we are interested in Kubernetes

only. The latter is a stable and free solution that can automate the deployment, mi-

gration, monitoring, networking, scalability, and availability of applications hosted in

container-based server platforms [4, 11].

3. Kubernetes: An Open-Access Orchestrator of Docker Containers

Kubernetes, abbreviated K8s, is a project initiated by Google in 2014 when it saw

the advantages of Docker containers over traditional virtualization. The Kubernetes

Orchestrator automates the deployment and management of large-scale containerized

applications, such as applications’ microservices generation [7], cloud services to store,

access, edit and share video content [32], and mission critical services as telecommu-

nications and energy delivery services [33, 34]. Its platform runs and coordinates con-

tainers on sets of physical and/or virtual machines. Kubernetes is designed to fully



Figure 3: Architecture of Kubernetes (ex: one master node and one work node)

manage the life cycle of containerized applications, using predictability, extensibility,

and high availability methods, as detailed in [35, 36].

3.1. Kubernetes Architecture

Kubernetes architecture is based on the master/slave model [37]. It consists of a

cluster of one master node and several work nodes, called minions, as shown in Fig.

3. Their roles are given as follows:

Kubernetes master: This node is responsible of the overall management and availabil-

ity of the Kubernetes cluster. Its components, i.e. the Application Programming In-

terface (API) server, controller and scheduler, support the interaction, monitoring and

scheduling tasks within the cluster. The API server provides the interface to the shared

state of the cluster through which the other components, e.g. work nodes, interact. The

controller monitors the shared state of the cluster through the API server and makes

decisions to bring the cluster back from an unstable state to a stable one. The sched-

uler manages the cluster load. It takes into account individual and collective resource

requirements, quality-of-service requirements, hardware/software constraints, policies,

etc. The Kubernetes cluster data is stored in a database, e.g. etcd [38], whereas cluster



administration is at the master level via the K8s command-line interface kubectl. The

latter stores its configuration and authentication information to access the API server

in the kubeconfig file.

Kubernetes minions: Containerized applications run on these nodes. On one hand,

the client nodes communicate with the work node via their kubelet through the mas-

ter node. The kubelet receives commands from the master node and executes them

through its Docker engine. It also reports the state of the work node to the API server.

On the other hand, the kube-proxy runs on each work node to manage clients’ access to

deployed services. Each service is compiled into one or many Pods. A Pod is a logical

set of one or several containers. This is the smallest unit that can be programmed as a

deployment in Kubernetes. Containers in the same Pod share resources such as storage

capacity, IP address, etc.

3.2. Pods Instantiation

In Kubernetes, the placement of Pods is realized following a specific strategy. In

fact, considering a Kubernetes cluster consisting of a master node and a finite set of

minions M = {M1,M2, ...,Mn}, a pod P (t,m, p, v) asking for t CPU cycles, m

RAM, a specific communication port p and a v storage capacity, needs to be deployed

within the cluster. To select the minion on which the pod will be instantiated, the

K8s master node proceeds in two steps: 1) it filters the minions. Then, 2) it ranks the

remaining minions to determine the best one suited for the pod. These two steps are

detailed as follows:

Filtering: In this operation, nodes without required resources (t,m, p, v) are removed.

Kubernetes uses multiple predicates to perform filtering, including:

• PodFitsResources: does the node have enough resources (CPU and RAM) to

accommodate the pod?

• PodFitsHostPorts: is the node able to run the pod via the p port without conflicts?

• NoVolumeZoneConflict: does the node have the amount of v storage that the pod

requests?



• MatchNodeSelector: does the node match the parameters of the selector query

defined in the pod description?

These predicates can be combined to set up sophisticated filters.

Ranking: After filtering, Kubernetes uses priority functions to determine the best

minion among the nodes able to host the pod. A priority function assigns a score

between 0 and 10 where 0 is the least preferred and 10 is the most preferred node.

Each priority function is weighted by a positive number and the final score is the sum

of the weighted scores. The main priority functions that can be activated in Kubernetes

are:

• BalancedResourceAllocation: it aims at balancing the minions charge. Indeed,

it places the pod in a node in a way that the resource utilization rate (CPU and

RAM) is balanced among the minions.

• LeastRequestedPriority: it favors the node that has most resources available.

• CalculateSpreadPriority: it minimizes the number of pods belonging to the same

service on the same node.

• CalculateAntiAffinityPriority: it minimizes the number of pods belonging to the

same service on nodes sharing a particular attribute or label.

• CalculateNodeLabelPriority: it favors nodes with a specific label.

Once the final scores of all nodes are calculated, the minion having the highest score

is selecte to instantiate the pod. If there is more than one minion that has the highest

score, the master node selects one of them randomly.

4. Fault Tolerance in Kubernetes

In this section, we explain the fault tolerance mechanism in Kubernetes. We start

by a brief description of faults. Next, we present the associated consensus problem.

Finally, the built-in fault tolerance protocol “Raft" is detailed.



4.1. Background

The robustness of a system refers to its ability to continue functioning when part

of the system fails [39]. A system fails when the outputs are no longer conform to the

original specification. The occurrence of a failure can be: 1) transient, i.e. appears,

disappears and never occur again, 2) intermittent, i.e. reproducible in a given context

and 3) persistent, i.e. appears until repair. A non-faulty (non-failing) node or process

is called correct when it follows its specifications. Whereas, a faulty node/process

may stop or exhibits a random behavior. In general, failures/faults may be caused by

software defects, malicious attacks, or human-machine interaction errors. In distributed

systems orchestrated by Kubernetes, faults may occur at the master node or minions.

They can be classified into two categories:

1. Fail-stop faults: They are characterized by the complete activity’s stop (or crash)

of a node. This state is perceived by others as the absence of expected messages

until the eventual application’s termination. A system that is able to detect only

these faults considers that a node/process can be in one of two states, either it

works and gives the correct result, or it does nothing.

2. Byzantine faults: Byzantine faults are characterized by any behavior deviat-

ing from the node/process’s specifications and producing non-conform results

[40]. We distinguish between natural Byzantine faults, such as undetected phys-

ical errors on messages’ transmissions, memory and instructions, and malicious

Byzantine faults, designed to defeat the system, such as viruses, worms and sab-

otage instructions.

In large and/or uncontrolled systems, the risk of faults is high and shall be mitigated to

ensure service continuity. One way to realize it is to use the State Machine Replication

(SMR) mechanism [41]. The latter consists of using multiple copies of a system, im-

plemented as a state machine, to tolerate faults and keep the system’s availability. Each

copy of the system, called a replica, is placed on a different node [42]. SMR allows a

set of nodes to execute the same instruction sequences on each request sent by a client.

There are two approaches to execute requests: 1) active replication, where all nodes

execute requests, update their state machines, and respond to clients. And 2) passive



replication, where only one node, called leader, executes the requests and forwards

state machine changes to other nodes, then responds to clients.

To avoid inconsistency in replication, nodes/replicas need to be sure that their state

machines are identical before responding to clients. The following section describes

this state machine replication problem, called the Consensus problem.

4.2. Consensus Problem

The Consensus is a fundamental condition in fault-tolerant distributed systems. It

consists of tuning replicas’ values to the same one, proposed by one of the nodes. The

Consensus problem can be formulated as follows: We assume a system composed of a

set N = {N1, N2, . . . , Nn} of n replicated nodes, and that at most only f nodes can

fail, where f ≤ n − 1. Let N ′ ⊆ N be a subset of m ≤ n nodes. The consensus

problem consists of finding a protocol that allows the following:

1. Any node ∈ N ′ can propose a replica’s value to the other nodes.

2. When all nodes agree on the same value, a consensus is achieved.

Without loss of generality, protocols that satisfy these conditions, possess four proper-

ties [43]:

1. Termination: Each correct node eventually decides a value.

2. Validity: The decided value has been proposed by one or many other nodes.

3. Integrity: The decision is unique and final.

4. Agreement: Two correct nodes cannot decide different values.

According to [42], any protocol that verifies the following safety and liveness condi-

tions has the previous four properties:

1. Safety: All the correct replicas execute the requests they receive in the same

order.

2. Liveness: Each request is correctly executed by correct nodes.

Such a protocol is commonly referred as consensus/replication protocol. Its decisions

are based on exchanged messages between all or a part of the nodes in the system.



Indeed, a consensus is achieved if the quorom, defined as the minimum number of cor-

rect nodes required to build the consensus, participate in the consensus process. The

quorum depends on the size of the system and the maximum number of tolerated faults.

Two fault-tolerant classes of replication protocols exist. In the first, called Non-

Byzantine, nodes fail only when they stop functioning. For n nodes, at most f = n−1
2

crash faults can be tolerated. Examples of non-Byzantine protocols include Raft [14],

Paxos [44], and Zab [45]. In the second class, called Byzantine, any type of failures can

be tolerated. However, they typically tolerate only f ′ = n−1
3 faults [46]. As Byzantine

protocols examples, we can cite Practical Byzantine Fault-Tolerance (PBFT) [47], Effi-

cient Byzantine Fault-Tolerance (EBFT) [48], UpRight [49], Prime[50], and Byzantine

Fault-Tolerance State Machine Replication (BFT-SMaRt) [15, 51].

4.3. Built-in Fault Tolerance in Kubernetes: Raft Protocol

Raft is the replication protocol built into Kubernetes [14, 52]. Basically, it ensures

that the replicas maintain identical state machines, while tolerating only crash faults. It

is based on passive replication, where a node may be leader, follower or candidate, as

illustrated in Fig. 4:

• Leader: In a cluster, a single active node directs the communication, by receiving

requests, processing them, forwarding state machine changes to other nodes, and

responding to clients.

• Follower: When a leader is active, all other nodes are set as followers. They wait

for the changes sent by the leader to update their state machines.

• Candidate: When the leader breaks down, the followers become candidates and

trigger votes to elect a new leader.

The mandate of a leader lasts from its election until its breakdown. In order to or-

ganize elections, Raft assigns an index to each mandate. These indexes are called

terms. Any leader or candidate node includes the term index in its messages. Whereas,

a follower needs to wait for a random time, typically between 150 and 300 ms, be-

fore transiting into candidate. An active leader periodically sends heartbeat messages



Figure 4: Raft Protocol’s Election Process

(AppendEntriesMessage) to all nodes in the cluster. Any node receiving this mes-

sage resets its wait time to a random value. Otherwise, at the expiration of its wait

timer, the follower changes status to candidate and triggers a new election. The can-

didate proceeds as follows: 1) Increments its current term number, 2) votes for itself,

and 3) sends vote request (RequestV oteMessages) to all other nodes. The latter vote

for the request containing a term index greater than theirs, update their term index and

return to the follower status. Once a candidate receives the votes of the majority, de-

fined as df + 1e votes, it becomes the new leader. However, if no candidate obtains

the majority of votes, e.g. in a tie situation, no leader is elected in this term, and a

new term will be triggered by the node that sees its timer expiring first. The require-

ment for a majority of votes ensures that a single leader is elected in a term (Safety

condition), while the wait time of followers guarantees that a leader will eventually be

elected (Liveliness condition).

To run in Kubernetes environment, some changes have been made to Raft protocol:

1. Unlike the conventional Raft, where requests to followers are redirected to the

leader, Raft is converted to active replication to be conform to the load balancing

property of Kubernetes [52].

2. Raft is re-implemented in Golang, the same programming language used to de-

velop Kubernetes and Docker containers.

Besides Raft, another non-Byzantine replication protocol, called DORADO was pro-



posed for Kuberenetes [53]. This protocol is similar to Raft, but requires sharing the

master node’s memory to all instanciated containers in work nodes, in order to store

their state machines. This approach allows to achieve shorter consensus times than

Raft, but aggravates the containers’ isolation issue.

Despite their simplicity, Raft and DORADO are particularly powerless against

Byzantine behaviors [54]. Indeed, a failing node may not stop, and adopts continually

a Byzantine (random) behavior, e.g. not following the protocol, corrupting its local

state, or producing incorrect or inconsistent outputs [42]. To mitigate this problem, we

propose in the next section a novel Kubernetes platform, where both non-Byzantine

and Byzantine faults can be tolerated, while ensuring service continuity.

5. KmMR: A K8s multi-Master Robust Platform

Kubernetes allows to deploy and orchestrate groups of containers with a single mas-

ter node. The latter replicates the containers on different work nodes to provide service

continuity. However, if the master node fails, containers are no longer available and all

management data is lost. To avoid such case, the deployment of multi-master clusters,

where several master nodes cooperate, becomes necessary. However, duplicating mas-

ter nodes only does not provide complete fault tolerance [55]. In fact, this mechanism

must be associated with a replication protocol to ensure consistency between the mas-

ter nodes states, i.e., update operations to a replicated data item within the nodes should

reach and be executed at some time, in all master nodes, and in the same chronological

order [42, 56]. Such multi-master systems are important for critical applications, e.g.,

telecommunication and energy services, where the continuous availability of services

is required 24 hours a day, and 7 days a week.

In this section, we propose to create a resistant Kubernetes multi-master platform to

all kinds of faults, in order to guarantee service continuity. We consider a Kubernetes

cluster consisting of n replicated K8s master nodes and c work nodes. Work nodes

process clients’ service requests and send their reports (requests) to the master nodes,

as shown in Fig. 5. We assume that communications between nodes may experience

important delays, thus causing communication failures.



Figure 5: System Model

Figure 6: Consensus Process by BFT-SMaRt



5.1. BFT-SMaRt: Replication Protocol for KmMR

Among the known Byzantine protocols, only PBFT [47], UpRight [49] and BFT-

SMaRt [15] implement a Byzantine fault-tolerant replication system. The choice of

BFT-SMaRt is motivated by the following:

• BFT-SMaRt is very well suited for modern hardware, e.g. multi-core systems,

unlike other protocols such as PBFT [15].

• BFT-SMaRt outperforms other protocols, e.g. UpRight, in terms of consensus

time, defined as the required time to process a client’s request [15].

• BFT-SMaRt guarantees a high accuracy in replicated data, when a Byzantine

faulty behavior is exhibited within the system [15].

• BFT-SMaRt is a modular, extensible and robust library. It is able to provide an

adaptable library that sets-up reliable services [57].

• Unlike other Byzantine protocols, BFT-SMaRt supports reconfiguration of the

replica sets, e.g., addition and removal of nodes [58].

• BFT-SMaRt provides efficient and transparent support for critical and sustain-

able services [59].

In BFT-SMaRt, a consensus is established according to the following steps, as illus-

trated in Fig. 6. First, a work node broadcasts its request to master nodes, who trigger

the execution of the consensus protocol. Each instance of the consensus begins with the

leader master node proposing to other nodes a batch of requests in the PROPOSE mes-

sage. Master nodes validate the authenticity of the PROPOSE message and its content.

If valid, they register the proposed batch and broadcast WRITE messages with cryp-

tographic hashes of the proposed batch, to all other nodes. If a master node receives

dn+f ′+1
2 e WRITE messages with the same hash, where d.e is the ceiling function, it

sends an ACCEPT message to all other nodes. This message contains its decision batch

for the consensus instance. If the leader master node is not correct, a new election must

be triggered, and all nodes need to converge to the same execution by consensus. The

election procedure is described in detail in [60].



Figure 7: Integration Methodology of BFT-SMaRt into Kubernetes

5.2. Proposed Integration Methodology of BFT-SMaRt into K8s

The BFT-SMaRt protocol is implemented in Java, an object-oriented programming

language, while Kubernetes and the Docker engine are written in Golang, a service-

oriented programming language [61]. In order to integrate BFT-SMaRt into Kuber-

netes, two options can be considered:

1. Rewrite all BFT-SMaRt library’s source code in Golang.

2. Wrap the BFT-SMaRt library in a Docker container.

Unlike Raft, with a source code less than 3000 lines and easily rewrited in Golang,

BFT-SMaRt source code is larger and more complex, with approximately 100 files and

a total of 13500 lines of Java code. Consequently, the second option is more likely to

be realizable. This choice is supported by the advantages offered by Docker. Indeed,

Docker containers run fast and their introduced overhead is negligible [24, 22]. The

proposed procedure to integrate BFT-SMaRt into Kubernetes is illustrated in Fig. 7.

First, we recover the library BFT-SMaRt and all its dependencies from Github [57].

Then, we customize it by setting the parameters of the master nodes. Next, we create

our Docker file Dockerfile, as detailed in Fig. 8. Afterwards, we execute Dockerfile

to produce the BFT-SMaRt containerized image. Finlly, we instantiate in each K8s

master node the Docker image with its information.

6. Experimental Evaluation

6.1. Simulation Settings

We implemented the KmMR solution in an OpenStack cloud environment provided

by Ericsson Canada [62]. The available resources are as follows: 50 GB of RAM and

20 virtual processors (VCPU), usable on a maximum of 10 machines.



Figure 8: Dockerfile to Create the BFT-SMaRt Container

The experiment is carried out on clusters composed of several Kubernetes master

nodes (n = 5 and n = 7), connected to each other via the OpenStack GigabitEthernet

network and accessible from the Internet. Each node is a virtual machine equipped

with the Ubuntu server 18.04 TLS 64-bit OS, a dual-core i7 CPUs (VCPU) clocked

at 2.4 GHz, 4 GB of RAM and 20 GB storage capacity. The Docker engine 18.05.0-

ce is installed on Kubernetes nodes for container instantiation needs. We deployed

Kubernetes 1.11.0 to orchestrate the Docker containers. The master Kubernetes role

kubeadm has been enabled on all master nodes (multi-master configuration). The re-

maining machines are used to act as work nodes and DDoS attackers. BFT-SMaRt

has been containerized and integrated into the master nodes to provide coordination

and consensus. Work nodes send their requests in closed loop, i.e. they wait for the

response of a request before sending a new one, as defined in [63].

In the cluster, we initialize the replication protocol on master nodes. Then, two

work nodes broadcast their requests. Upon request reception, master nodes exchange

messages to build the consensus. To measure the performance of KmMR, we used the

micro-benchmark 0/0 where both request and response messages are empty [47].

DDoS attacks are used to model Byzantine behaviours, using the Hping3 command



[64, 65]. Indeed, we inject DDoS-based “CPU Load" and “Network Flooding" Byzan-

tine faults as follows [66, 67]. “CPU Load" fault is triggered by increasing the number

of users continuously sending requests to a master node, while “Network Flooding" can

be initiated by some master nodes towards others. We assume that attacking machines

target simultaneously a single master node. Each attacker sends successively and con-

tinuously requests of size 65495 bytes in open loop, i.e. without waiting for responses,

through the command Hping3 -f IP address of targeted master node -d 65495.

We evaluate the performance of our solution and compare it to the Kubernetetes multi-

Master Conventional (KmMC) platform, where non-Byzantine replication protocol

Raft is used. Two scenarios are considered for our experiments:

• Scenario 1: In this scenario, we consider a Kubernetes platform where, initially,

the number of (crash) faults in the cluster is lower than the maximum number of

faults tolerated by the replication protocol in place. This corresponds to f < n−1
2

and f ′ < n−1
3 for KmMC and KmMR respectively. Then, we perform a DDoS

attack on one master node, and evaluate the consensus times for each platform.

• Scenario 2: Unlike Scenario 1, the initial number of (crash) faults is set to be the

maximum that can be tolerated by the used replication protocol. Then, DDoS at-

tacks are performed on one master node. In this scenario, we evaluate established

consensus times as well as resources consumption by the DDoS victim (CPU,

RAM, and available communication Bandwidth). Resources are measured using

commands IPerf3 for Bandwidth, and top for CPU and RAM [68, 69].

6.2. Results and Discussions

Considering Scenario 1, we present in Table 2 the achieved consensus times ver-

sus DDoS attack rate of KmMC and KmMR, for a cluster of 5 and 7 master nodes

respectively. For both platforms, consensus times increase slightly and proportionally

to DDoS attack rates. Indeed, even with the additional Byzantine fault, f and f ′ re-

spect the maximum number of tolerated faults2. Hence, platforms’ operation continue

2Notice that KmMC sees the DDoS attack as a crash event in this case.



Table 2: Consensus Times (µsec) versus DDOS Attack Rate (Gbps) (Scenario 1)

KmMC KmMR

DDoS

attack rate

5 K8s Master

Nodes

7 K8s Master

Nodes

5 K8s Master

Nodes

7 K8s Master

Nodes

0 1701.91 2048.25 2746.45 3161.83

2 2004.38 2132.93 2940.87 3179.45

4 2178.72 2471.39 3362.42 4521.79

4.5 2201.37 2501.73 3525.17 4632.38

5 2287.65 2623.87 3612.93 4729.98

5.5 2304.12 2702.99 3867.32 4970.93

6 2331.12 2732.25 4053.53 4970.93

without significant degradation. However, KmMC realizes shorter consensus times

than KmMR. This is expected, since the replication protocol Raft is designed with few

consensus message exchanges between master nodes, compared to BFT-SMaRt. Fi-

nally, we conclude that it is recommended to select the KmMC platform if the risk of

exceeding the maximum number of faults, dictated by Raft, is very low.

For Scenario 2, we present in Fig. 9 the consensus time versus DDoS attack rate,

for a cluster of 5 master nodes. The results show that the consensus time increases with

DDoS attack rate. When the attack rate is below 4.25 Gbps, KmMC provides a slightly

better performance than KmMR. Indeed, in this case, the DDoS victim resists to the

attack thanks to its sufficient resources. However, for an attack rate above 4.25 Gbps,

KmMC deteriorates rapidly and significantly. This is mainly due to the vulnerability of

Raft replication protocol in front of Byzantine faults. Indeed, the DDoS victim would

behave improperly, e.g. not responding to other nodes in a timely manner. Thus, from

this moment, Raft triggers changes in the cluster’s leadership since it is no longer able

to reach a consensus with its current leader. This triggering considerably slows down

consensus in the KmMC platform. Meanwhile, KmMR resists to all DDoS attacks, and

is able to achieve consensus time 1000 times better than KmMC in average.



0 1 2 3 4 5 6

DDoS Attack Rate (Gbps)

103

104

105

106

107

108

109

C
on

se
ns

us
 T

im
e 

(7
 s

ec
)

KmMC
KmMR

Figure 9: Consensus time versus DDOS attack rate (Scenario 2, n = 5)

0 1 2 3 4 5 6

DDoS Attack Rate (Gbps) 

103

104

105

106

107

108

109

1010

C
on

se
ns

us
 T

im
e 

(7
 s

ec
)

KmMC
KmMR

Figure 10: Consensus time versus DDOS attack rate (Scenario 2, n = 7)



0 1 2 3 4 5 6

DDoS Attack Rate (Gbps)

0

5

10

15

20

25

C
P

U
 C

on
su

m
pt

io
n 

R
at

e 
(%

)

KmMC
KmMR

Figure 11: CPU consumption rate versus DDOS attack rate (Scenario 2, n = 7)

Fig. 10 illustrates the consensus time versus DDoS attack rate in the same envi-

ronment as Fig. 9, but for a cluster of 7 master nodes. The same behavior is exhibited

for n = 5 and n = 7 master nodes. However, for n = 5, consensus is established

faster thanks to the smaller number of exchanged messages. As n increases, KmMC

becomes more susceptible to DDoS attacks. Indeed, the rapid degradation of KmMC’s

performance starts at attack rate 4.1 Gbps for n = 7, compared to 4.25 Gbps for n = 5.

Whereas, KmMR is able to establish consensus in a reasonable time, even for high

attack rates.

Figs. 11-13 present the CPU, RAM and Bandwidth performances of the DDoS

victim node, for Scenario 2 and n = 7. When the DDoS attack rate is below 4.5 Gbps,

KmMR uses as much or more resources than KmMC. This is expected since establish-

ing a consensus in KmMR using BFT-SMaRt requires a larger number of messages

exchange. However, for attack rates above 4.5 Gbps, KmMR and KmMC have almost

the same level of resource utilization. Indeed, Raft starts to make changes in the cluster

in order to regain its stability, resulting in higher resources consumption than usual.



0 2 4 4.5 5 5.5 6

DDoS Attack Rate (Gbps)

600

650

700

750

R
A

M
 C

on
su

m
pt

io
n 

(M
by

te
s)

KmMC
KmMR

Figure 12: RAM consumption versus DDOS attack rate (Scenario 2, n = 7)

0 1 2 3 4 5 6

DDoS Attack Rate (Gbps)

0

1000

2000

3000

4000

5000

6000

7000

8000

A
va

ila
bl

e 
B

an
dw

id
th

 (
M

bp
s)

KmMC
KmMR

Figure 13: Available Bandwidth versus DDOS attack rate (Scenario 2, n = 7)



6.3. Solution Limitations and Future Insights

When researchers proposed PBFT-like protocols, such as BFT-Smart, their main

concern was to enhance the performance of BFT in fault-free cases, while maintaining

properties of Liveness and Safety, when faults occur. BFT-SMaRt aims to be robust in

terms of high performance in fault-free executions, and correctness when faults hap-

pen. According to our experiments, it is clear that BFT-Smart is capable of surviving

in a small and partially uncontrolled environment, where Byzantine faults may occur.

However, it would reach rapidly its limits in a larger network, mainly due to its heavy

communication and limited scalability.

To reinforce resistance to malicious Byzantine faults, the notion of robust BFT pro-

tocols has been introduced by Aardvark, i.e., maintaining a constant and stable per-

formance in the presence of few Byzantine faults [70]. Indeed, several improvements

have been proposed, such as Aardvark [70], Spinning [71], and RBFT [72], in order

to efficiently handle some worst-case malicious Byzantine behaviors. For instance,

Aardvark tolerates nodes/replicas to expect a minimum acceptable throughput from

the leader [70], while Spinning changes the leader with every batch of requests [71].

Finally, RBFT [72] proposed to maintain a constant performance during a fault event.

It is demonstrated in [72] that Aardvark and Spinning performances are reduced by

at least 78% in presence of a fault, whereas RBFT degrades by only 3%. This is due

to RBFT’s design, where f + 1 protocol instances are ran, but only one executes the

received request.

Although interesting, the previous protocols would experience difficulties in managing

inconsistency in large scale systems [73]. Indeed, this type of management is relegated

to client nodes, although the reason to use a consistent BFT protocol is precisely to

avoid this responsibility to clients. One of the promising solutions is to concurrently

run independent processes aiming at achieving higher throughputs [74], which is the

basic approach to implement scalable blockchain architectures.

Blockchain, by itself, is a BFT replicated state machine, where each state-update is a

Turing machine with bounded resources. Unlike conventional BFT protocols where

fault tolerance is realized among a small/medium group of nodes through rounds

of message exchanges (votes and safety-proofs messages), blockchain achieves BFT



among a very large number of participants, where at each time period, only a sin-

gle message (Proof-of-Work -PoW- message) is broadcast by a participant. Adopting

known BFT mechanisms into blockchain has led to the proposal of hybrid solutions,

such as Byzcoin [75], Bitcoin-NG [76], Casper [77] and Solida [78]. These approaches

anchor off-chain BFT decisions inside a PoW chain or the other way around. For in-

stance, Casper is a proof-of-stack (PoS)-based finality system, which overlays a PoW

blockchain. By design, Casper allows to provide Safety and plausible Liveness, as

well as protect the system against long range revisions and catastrophic crashes faults

[77]. Moreover, innovative solutions in the age of blockchains, such as Honeybadger

[79], Algorand [80], and LightChain [81], revisit the BFT setting with greater scala-

bility and simplicity. Honeybadger is a demonstrative example of how BFT can build

a blockchain cryptocurrency [79]. It can reach consensus within 5 minutes using 104

nodes. By design, Honeybadger requires prior setting of a fixed number of consensus

nodes, which may be problematic in terms of targeted attacks that may either com-

promise the nodes or exclude them from the system. In contrast, Algorand, a PoS

approach, can achieve better performance without having to select a fixed set of nodes

beforehand [80]. Also, it is robust against malicious attacks, even from a malicious

leader, and scales better for a large number of clients. Finally, in order overcome the

low communication and storage efficiency, inconsistency and scalability problems en-

countered in existing blockchains, the authors in [81] proposed LightChain. The latter

is a blockchain defined over a skip graph-based peer-to-peer distributed hash table over-

lay, which achieves consensus through Proof-of-Validation (PoV), i.e., a blockchain

data is considered valid if its hash value is signed by a randomly selected number of

validators [81]. It has been proven that LightChain is a fair, consistent, and communi-

cation/storage efficient blockchain.

In spite of its limits, it is clear that the implementation of BFT-Smart into Kubernetes is

the first step into providing robustness to this popular Docker containers orchestration

platform. As future work, one could investigate the integration of more sophisticated

protocols to Kubernetes, such as the aforementioned ones, and test their robustness

to malicious Byzantine behaviours. Testing can be realized through the BFT-bench

framework introduced in [66].



7. Conclusion

With the increased importance of virtualization in cloud computing, Docker con-

tainerization is favored for its lightweight and efficient virtualization. This implies

the emergence of new forms of architectures organizing cloud services in containers,

ready to be instantiated in virtual and/or physical machines. Since the main objective is

to guarantee service continuity, orchestrating these containers may seem challenging.

Recently, Kubernetes has been adopted as the orchestration platform of Docker con-

tainers. Although efficient in managing containers, Kubernetes guarantees service con-

tinuity only in presence of non-Byzantine (crash) faults occuring within the system. In

fact, the current replication protocol within Kubernetes “Raft" cannot handle Byzantine

faults. In this paper, we propose a new orchestration platform capable of overcoming

this limitation in Kubernetes. The KmMR platform, based on Byzantine replication

protocol BFT-SMaRt, is presented. We detailed our approach to integrate the BFT-

SMaRt library (written in Java) into Docker and Kubernetes (written in Golang). Then,

we implemented a Kubernetes multi-master platform in an OpenStack-based cloud en-

vironment. The system is evaluated for two different scenarios, where initially the

maximum number of tolerated faults is either reached or not, and for two orchestra-

tion platforms, KmMC and KmMR. The results show that the conventional approach

KmMC is efficient and robust in a non-Byzantine and controlled environment, i.e.

number of maximum tolerated faults is not exceeded. However, in a Byzantine and

not fully controlled environment, KmMR guarantees the continuity of services, while

KmMC collapses in front of severe Byzantine faults. In a such environment, KmMR

resources consumption is typically stable, compared to KmMC. In future works, we

will investigate the integration of more robust BFT protocols into Kubernetes, in order

to ensure a better protection against malicious Byzantine faults.

Acknowledgement

This work was partially funded by NSERC-CRD program.



References

[1] G. K. Thiruvathukal, K. Hinsen, K. Läufer, J. Kaylor, Virtualization for Compu-

tational Scientists, Computing in Science Engineering 12 (4) (2010) 52–61.

[2] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Net-

work Function Virtualization: State-of-the-Art and Research Challenges, IEEE

Commun. Surveys Tuto. 18 (1) (2016) 236–262.

[3] D. Bernstein, Containers and Cloud: From LXC to Docker to Kubernetes, IEEE

Cloud Computing 1 (3) (2014) 81–84.

[4] R. Peinl, F. Holzschuher, F. Pfitzer, Docker Cluster Management for the Cloud-

Survey Results and Own Solution, J. Grid Comput. 14 (2) (2016) 265–282.

[5] R. Rizki, A. Rakhmatsyah, M. A. Nugroho, Performance Analysis of Container-

based Hadoop Cluster: OpenVZ and LXC, in: Proc. 4th Int. Conf. on Information

and Commun. Tech. (ICoICT), 2016, pp. 1–4.

[6] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, Proactive Workload Management in

Hybrid Cloud Computing, IEEE Trans. Network and Service Management 11 (1)

(2014) 90–100. doi:10.1109/TNSM.2013.122313.130448.

[7] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, S. Tilkov, Microservices: The

Journey So Far and Challenges Ahead, IEEE Software 35 (3) (2018) 24–35.

[8] S. Garg, S. Garg, Automated Cloud Infrastructure, Continuous Integration and

Continuous Delivery using Docker with Robust Container Security, in: Proc.

IEEE Conf. Multimedia Info. Process. and Retrieval (MIPR), 2019, pp. 467–470.

[9] R. Zhang, M. Li, D. Hildebrand, Finding the Big Data Sweet Spot: Towards

Automatically Recommending Configurations for Hadoop Clusters on Docker

Containers, in: Proc. IEEE Int. Conf. Cloud Eng., 2015, pp. 365–368.

[10] A. Sill, Emerging Standards and Organizational Patterns in Cloud Computing,

IEEE Cloud Computing 2 (4) (2015) 72–76.

https://doi.org/10.1109/TNSM.2013.122313.130448


[11] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, Borg, Omega, and

Kubernetes, Queue 14 (1) (2016) 10.

[12] Google, Kubernetes (2018).

URL https://kubernetes.io/

[13] C. Oliveira, L. C. Lung, H. Netto, L. Rech, Evaluating Raft in Docker on Kuber-

netes, in: Proc. Int. Conf. Syst. Science, Springer, 2016, pp. 123–130.

[14] D. Ongaro, J. K. Ousterhout, In Search of An Understandable Consensus Algo-

rithm, in: Proc. USENIX Annual Technical Conf., 2014, pp. 305–319.

[15] A. Bessani, J. Sousa, E. E. P. Alchieri, State Machine Replication for the Masses

with BFT-SMART, in: Proc. 44th Annual IEEE/IFIP Int. Conf. Dependable Syst.

and Net., 2014, pp. 355–362.

[16] C. N. Copeland, H. Zhong, Tangaroa: A Byzantine Fault Tolerant Raft,

scs.stanford.edu (2014).

[17] M. Correia, D. G. Ferro, F. P. Junqueira, M. Serafini, Practical Hardening of

Crash-tolerant Systems, in: Proc. of the USENIX Conf. on Annual Technical

Conf. (USENIX ATC), USENIX Association, Berkeley, CA, USA, 2012, pp. 41–

41.

[18] R. P. Padhy, Docker Containers and Kubernetes: An Architectural Perspective

(2018).

URL https://dzone.com/articles/docker-containers-and-

kubernetes-an-architectural

[19] A. Moga, T. Sivanthi, C. Franke, OS-Level Virtualization for Industrial Automa-

tion Systems: Are We There Yet?, in: Proc. 31st Annual ACM Symp. Applied

Comput., ACM, 2016, pp. 1838–1843.

[20] VMware vSphere Hypervisor (2019).

URL www.vmware.com/products/vsphere-hypervisor.html

https://kubernetes.io/
https://kubernetes.io/
https://dzone.com/articles/docker-containers-and-kubernetes-an-architectural
https://dzone.com/articles/docker-containers-and-kubernetes-an-architectural
https://dzone.com/articles/docker-containers-and-kubernetes-an-architectural
www.vmware.com/products/vsphere-hypervisor.html
www.vmware.com/products/vsphere-hypervisor.html


[21] B. B. Rad, H. J. Bhatti, M. Ahmadi, An Introduction to Docker and Analysis of

its Performance, Int. Journal of Comput. Sci. and Net. Security (IJCSNS) 17 (3)

(2017) 228–235.

[22] A. M. Joy, Performance Comparison Between Linux Containers and Virtual Ma-

chines, in: Proc. Int. Conf. Advances in Comput. Eng. and Appl. (ICACEA),

IEEE, 2015, pp. 342–346.

[23] V. T., Advantages of Docker (2015).

URL jyx.jyu.fi/bitstream/handle/123456789/48029/1/URN%

3ANBN%3Afi%3Ajyu-201512093942.pdf

[24] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An Updated Performance Com-

parison of Virtual Machines and Linux Containers, in: Proc. Int. Symp. Perf.

Analysis of Syst. and Soft. (ISPASS), IEEE, 2015, pp. 171–172.

[25] P. Sharma, L. Chaufournier, P. Shenoy, Y. Tay, Containers and Virtual Machines

at Scale: A Comparative Study, in: Proc. 17th Int. Middleware Conf., ACM,

2016, p. 1.

[26] W. Li, A. Kanso, Comparing Containers versus Virtual Machines for Achieving

High Availability, in: Proc. IEEE Int. Conf. Cloud Eng., 2015, pp. 353–358.

[27] A. Manu, J. K. Patel, S. Akhtar, V. Agrawal, K. B. S. Murthy, Docker Con-

tainer Security via Heuristics-based Multilateral Security-conceptual and Prag-

matic Study, in: Proc. Int. Conf. Circuit, Power and Comput. Tech. (ICCPCT),

IEEE, 2016, pp. 1–14.

[28] CoreOS, Fleet Project (2014).

URL https://github.com/coreos/fleet

[29] Apache, Mesos Project (2014).

URL https://github.com/apache/mesos

[30] A. Luzzardi, V. Victor, Swarm: A Docker-native Clustering System (2014).

URL https://github.com/docker/swarm/

jyx.jyu.fi/bitstream/handle/123456789/48029/1/URN%3ANBN%3Afi%3Ajyu-201512093942.pdf
jyx.jyu.fi/bitstream/handle/123456789/48029/1/URN%3ANBN%3Afi%3Ajyu-201512093942.pdf
https://github.com/coreos/fleet
https://github.com/coreos/fleet
https://github.com/apache/mesos
https://github.com/apache/mesos
https://github.com/docker/swarm/
https://github.com/docker/swarm/


[31] K8s, Kubernetes Source Code (2014).

URL https://github.com/kubernetes/kubernetes/

[32] A. AWS, GoPro Reduces Compute Footprint by 70% Using Amazon ECS.

URL https://aws.amazon.com/solutions/case-studies/

gopro-containers/

[33] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, S. Dustdar,

Microservices: Migration of a Mission Critical System, IEEE Trans. Services

Comput. (2018) 1–1.

[34] A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, S. K. S. Gupta, Ensuring

Safety, Security, and Sustainability of Mission-Critical Cyber–Physical Systems,

Proceedings of the IEEE 100 (1) (2012) 283–299.

[35] N. Kratzke, P.-C. Quint, Understanding Cloud-native Applications After 10 Years

of Cloud Computing: A Systematic Mapping Study, J. Systems and Software 126

(2017) 1–16.

[36] G. Sayfan, Mastering Kubernetes: Master the Art of Container Management by

using the Power of Kubernetes, 2nd Edition, Packt Publishing, 2018.

[37] N. Bila, P. Dettori, A. Kanso, Y. Watanabe, A. Youssef, Leveraging the Serverless

Architecture for Securing Linux Containers, in: Proc. IEEE 37th Int. Conf. Dist.

Comput. Syst. Wrkshps. (ICDCSW), IEEE, 2017, pp. 401–404.

[38] CoreOS, Coreos ETCD (2018).

URL https://coreos.com/etcd/

[39] F. Cristian, Understanding Fault-tolerant Distributed Systems, Commun. of the

ACM 34 (2) (1991) 56–78.

[40] L. Lamport, R. Shostak, M. Pease, The Byzantine Generals Problem, ACM Trans.

Programm. Languages and Syst. (TOPLAS) 4 (3) (1982) 382–401.

[41] P.-L. Aublin, Towards Efficient and Robust Fault-Tolerant Protocols (in French),

Ph.D. thesis, Université de Grenoble (2014).

https://github.com/kubernetes/kubernetes/
https://github.com/kubernetes/kubernetes/
https://aws.amazon.com/solutions/case-studies/gopro-containers/
https://aws.amazon.com/solutions/case-studies/gopro-containers/
https://aws.amazon.com/solutions/case-studies/gopro-containers/
https://coreos.com/etcd/
https://coreos.com/etcd/


[42] F. B. Schneider, Implementing Fault-Tolerant Services Using the State Machine

Approach: A Tutorial, ACM Comput. Surveys (CSUR) 22 (4) (1990) 299–319.

[43] M. Pease, R. Shostak, L. Lamport, Reaching Agreement in the Presence of Faults,

Journal of the ACM (JACM) 27 (2) (1980) 228–234.

[44] L. Lamport, et al., Paxos Made Simple, ACM SiGACT News 32 (4) (2001) 51–

58.

[45] R. Van Renesse, N. Schiper, F. B. Schneider, Vive la différence: Paxos vs. View-

stamped Replication vs. Zab, IEEE Trans. Dependable and Secure Comput. 12 (4)

(2015) 472–484.

[46] G. Bracha, S. Toueg, Asynchronous Consensus and Broadcast Protocols, J. ACM

(JACM) 32 (4) (1985) 824–840.

[47] M. Castro, B. Liskov, Practical Byzantine Fault Tolerance and Proactive Recov-

ery, ACM Trans. Computer Syst. (TOCS) 20 (4) (2002) 398–461.

[48] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, P. Verissimo, Efficient

Byzantine Fault-Tolerance, IEEE Trans. Computers 62 (1) (2013) 16–30.

[49] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, T. Riche,

Upright Cluster Services, in: Proc. 22nd Symp. Operating Systems Principles

(SIGOPS), ACM, 2009, pp. 277–290.

[50] Y. Amir, B. Coan, J. Kirsch, J. Lane, Prime: Byzantine Replication Under Attack,

IEEE Trans. Dependable and Secure Comput. 8 (4) (2011) 564–577.

[51] J. Sousa, A. Bessani, M. Vukolic, A Byzantine Fault-Tolerant Ordering Service

For The Hyperledger Fabric Blockchain Platform, in: Proc. 48th Annual Int.

Conf. Dependable Syst. and Net. (DSN), IEEE, 2018, pp. 51–58.

[52] X. L. Blake Mizerany, Y. Qin, The Raft Consensus Algorithm (2018).

URL https://raft.github.io//#implementations

https://raft.github.io//#implementations
https://raft.github.io//#implementations


[53] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, L. M. S. de Souza, State Machine

Replication in Containers Managed by Kubernetes, J. of Syst. Arch. 73 (2017)

53–59.

[54] J. Lim, T. Suh, J. Gil, H. Yu, Scalable and Leaderless Byzantine Consensus in

Cloud Computing Environments, Inf. Syst. Frontiers 16 (1) (2014) 19–34.

[55] L. Perronne, Towards Efficient and Robust BFT Protocols (in French), Ph.D. the-

sis, Université Grenoble Alpes (2016).

[56] A. Souri, S. Pashazadeh, A. Navin, Consistency of Data Replication Protocols in

Database Systems: A Review, International Journal on Information Theory (IJIT)

3 (2014) 19–32.

[57] GitHub, BFT-Smart Library (2018).

URL https://github.com/bft-smart/library

[58] L. Lamport, D. Malkhi, L. Zhou, Reconfiguring A State Machine, ACM SIGACT

News 41 (1) (2010) 63–73.

[59] A. N. Bessani, M. Santos, J. Felix, N. F. Neves, M. Correia, On the Efficiency

of Durable State Machine Replication, in: Proc. USENIX Annual Tech. Conf.,

2013, pp. 169–180.

[60] J. Sousa, A. Bessani, From Byzantine Consensus To BFT State Machine Repli-

cation: A Latency-Optimal Transformation, in: Proc. 9th European Dependable

Comput. Conf. (EDCC), IEEE, 2012, pp. 37–48.

[61] Golang, The Go Programming Language (2018).

URL https://golang.org/

[62] O. Sefraoui, M. Aissaoui, M. Eleuldj, OpenStack: Toward An Open-source Solu-

tion for Cloud Computing, Int. J. Computer Appl. 55 (3) (2012) 38–42.

[63] B. Schroeder, et al., Open Versus Closed: A Cautionary Tale, in: In NSDI,

USENIX Association, 2006, pp. 239–252.

https://github.com/bft-smart/library
https://github.com/bft-smart/library
https://golang.org/
https://golang.org/


[64] Sanfilippo, Hping3 (2014).

URL www.hping.org/hping3.html

[65] B. Ops, Denial-of-Service Attack–DOS Using Hping3 with Spoofed IP in Kali

Linux, BlackMORE Ops. BlackMORE Ops 17 (2016).

[66] D. Gupta, Towards Performance and Dependability Benchmarking of Distributed

Fault Tolerance Protocols, Ph.D. thesis, Grenoble Alpes University (2016).

URL https://tel.archives-ouvertes.fr/tel-01376741

[67] D. Gupta, L. Perronne, S. Bouchenak, BFT-Bench: A Framework to Evaluate

BFT Protocols, in: Proc. 7th ACM/SPEC Int. Conf. Perform. Eng. (ICPE), 2016,

pp. 109–112. doi:10.1145/2851553.2858667.

[68] iPerf, IPerf (2018).

URL https://iperf.fr/fr/iperf-doc.php

[69] S. BISWAS, A Guide to The Linux Top Command (2018).

URL www.booleanworld.com/guide-linux-top-command/

[70] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, M. Marchetti, Making Byzantine

Fault Tolerant Systems Tolerate Byzantine Faults, in: NSDI, Vol. 9, 2009, pp.

153–168.

[71] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, Spin One’s Wheels?

Byzantine Fault Tolerance with a Spinning Primary, in: Proc. 28th IEEE Int.

Symp. Rel. Dist. Syst., 2009, pp. 135–144. doi:10.1109/SRDS.2009.36.

[72] P. Aublin, S. B. Mokhtar, V. Quéma, RBFT: Redundant Byzantine Fault Tol-

erance, in: Proc. IEEE 33rd Int. Conf. Dist. Comp. Syst., 2013, pp. 297–306.

doi:10.1109/ICDCS.2013.53.

[73] E. Buchman, Tendermint: Byzantine Fault Tolerance in the Age of Blockchains,

Master’s thesis, University of Guelph (2016).

URL https://atrium.lib.uoguelph.ca/xmlui/handle/10214/

9769

www.hping.org/hping3.html
www.hping.org/hping3.html
https://tel.archives-ouvertes.fr/tel-01376741
https://tel.archives-ouvertes.fr/tel-01376741
https://tel.archives-ouvertes.fr/tel-01376741
https://doi.org/10.1145/2851553.2858667
https://iperf.fr/fr/iperf-doc.php
https://iperf.fr/fr/iperf-doc.php
www.booleanworld.com/guide-linux-top-command/
https://doi.org/10.1109/SRDS.2009.36
https://doi.org/10.1109/ICDCS.2013.53
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769


[74] R. Kotla, M. Dahlin, High throughput Byzantine fault tolerance, in: Proc.

Int. Conf. Depend. Syst. and Net., 2004, pp. 575–584. doi:10.1109/

DSN.2004.1311928.

[75] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, B. Ford, En-

hancing Bitcoin Security and Performance with Strong Consistency via Collec-

tive Signing, in: Proc. 25th USENIX Conf. Sec. Symp., USENIX Association,

USA, 2016, p. 279–296.

[76] I. Eyal, A. E. Gencer, E. G. Sirer, R. V. Renesse, Bitcoin-NG: A Scalable

Blockchain Protocol, in: 13th USENIX Symp. Network. Syst. Design and Im-

plement. (NSDI 16), USENIX Association, Santa Clara, CA, 2016, pp. 45–59.

[77] V. Buterin, V. Griffith, Casper the Friendly Finality Gadget (2017). arXiv:

1710.09437.

[78] I. Abraham, D. Malkhi, K. Nayak, L. Ren, A. Spiegelman, Solida: A Blockchain

Protocol Based on Reconfigurable Byzantine Consensus (2016). arXiv:

1612.02916.

[79] A. Miller, Y. Xia, K. Croman, E. Shi, D. Song, The Honey Badger of BFT

Protocols, in: Proc. ACM Conf. Comp. and Commun. Sec. (SIGSAC), As-

sociation for Computing Machinery, New York, NY, USA, 2016, p. 31–42.

doi:10.1145/2976749.2978399.

[80] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling

Byzantine Agreements for Cryptocurrencies, in: Proc. 26th Symp. Op. Syst.

Princ. (SOSP), Association for Computing Machinery, New York, NY, USA,

2017, p. 51–68. doi:10.1145/3132747.3132757.

[81] Y. Hassanzadeh-Nazarabadi, A. Kupçu, O. Ozkasap, LightChain: A DHT-

based Blockchain for Resource Constrained Environments (2019). arXiv:

1904.00375.

URL https://arxiv.org/abs/1904.00375

https://doi.org/10.1109/DSN.2004.1311928
https://doi.org/10.1109/DSN.2004.1311928
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1612.02916
http://arxiv.org/abs/1612.02916
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/3132747.3132757
https://arxiv.org/abs/1904.00375
https://arxiv.org/abs/1904.00375
http://arxiv.org/abs/1904.00375
http://arxiv.org/abs/1904.00375
https://arxiv.org/abs/1904.00375

	1 Introduction
	2 Background
	2.1 Docker Containers
	2.2 Containers Orchestration

	3 Kubernetes: An Open-Access Orchestrator of Docker Containers
	3.1 Kubernetes Architecture
	3.2 Pods Instantiation

	4 Fault Tolerance in Kubernetes
	4.1 Background
	4.2 Consensus Problem
	4.3 Built-in Fault Tolerance in Kubernetes: Raft Protocol

	5 KmMR: A K8s multi-Master Robust Platform
	5.1 BFT-SMaRt: Replication Protocol for KmMR
	5.2 Proposed Integration Methodology of BFT-SMaRt into K8s

	6 Experimental Evaluation
	6.1 Simulation Settings
	6.2 Results and Discussions
	6.3 Solution Limitations and Future Insights

	7 Conclusion

