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Abstract

The upcoming quantum era is believed to be an end for the elliptic curve
digital signature algorithm (ECDSA) and other number-theoretic digital sig-
nature schemes. Hence, the technologies which incorporate ECDSA would
be at risk once quantum computers are available at large scale. Distributed
ledger technology is one of the potential victims of powerful quantum com-
puters. Fortunately, post-quantum digital signature schemes are already
available. Hash-based digital signatures (HBS) schemes due to their simplic-
ity and efficiency have gained tremendous attention from the research com-
munity. However, large size of key and signature are the major drawbacks
of HBS schemes. This paper proposes a compact and efficient HBS scheme
“Smart Digital Signatures” (SDS), which is closer to an existing popular
HBS scheme, XMSS. SDS incorporates a novel one-time signature (OTS)
scheme in XMSS, namely SDS-OTS. Furthermore, SDS uses a slightly mod-
ified version of the key compression tree as compared to XMSS. We have
compared SDS with XMSS-WOTS and XMSS-WOTS+. The results reveal
a significant reduction in hash tree construction time compared to XMSS,
and key and signature sizes compared to WOTS and WOTS+. Finally, we
have also proposed a model for incorporating SDS into a distributed ledger,
with the help of High-Level Petri-nets.

Keywords: Distributed ledger, Digital signature, Post-quantum
cryptography

1. Introduction and Background

The popular digital signature schemes, RSA and ECDSA, would be at
significant risk after the invention of the first sufficiently powerful quantum
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computer [1]. Recently, it has been proven that the quantum technology
has the potential to solve hard computation problems in a matter of few
seconds which could otherwise take several hundred years [2]. Although,
recently available quantum processors are not powerful enough to break
ECDSA, however, the advancement trends of technology allow us to expect
a quantum computer being able to break ECDSA after just a decade [3].
An algorithm to break RSA and ECDSA with the help of a sufficiently pow-
erful quantum computer has already been proposed by Peter Shor [4]. So
what will be the situation? Will quantum computers erase digital signa-
ture technology at all? Thankfully, the answer is “no”, because alternate
digital signature schemes are already available, which can defeat quantum
attacks. The digital signature schemes having the potential to withstand
quantum attacks are commonly referred to as post-quantum (PQ) digital
signature schemes. There are total five types of post-quantum digital sig-
nature schemes available to-date, including, lattice-based digital signature
schemes, hash-based digital signature schemes, elliptic curve isogeny based
digital signature schemes, multivariate digital signature schemes, and code-
based digital signature schemes [5]. Although, PQ signature schemes are not
newer, however, none of them could attract practitioners at a large scale,
because of their low efficiency, improvable security, and large key/signature
sizes [5], [6].

The hash-based digital signature (HBS) schemes are fairly efficient and
provably secure [7]. Many popular PQ distributed ledgers, like Tangle [8],
QRL [9], PQChain [7], and DL-for-IoT [10] have already adopted HBS
schemes. However, HBS schemes suffer from larger key and signature sizes
[11]. The three building blocks of a modern HBS scheme include a core
one-time signature (OTS) or a few-time signature (FTS) scheme, a key com-
pression tree, and a main hash tree. The core OTS/FTS is used to sign the
message. A key compression tree compresses a given OTS/FTS public key
into a single value to allow it to exist as a leaf node of the main hash tree.
Finally, the main hash tree computes a single public key from a limited or a
virtually unlimited number of OTS/FTS public keys. Although a public key
encapsulating a large number of OTS public keys is desirable, however, dis-
tributed ledgers represent one of the exceptional cases. Distributed ledger
technology recommends limited use of a single ledger address to preserve
user’s financial privacy. Although a pure OTS scheme (which never allows
reusing a key) can offer the strongest financial privacy, however, it is exhaus-
tive in many situations. For example, it is exhaustive for an NGO to provide
a fresh ledger address to every donor, each time to receive new donations;
or, for a coffee shop manager to generate a fresh ledger address each time to
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receive payment against a cup of coffee. Therefore, there must be a way for
reusing a single ledger address at least for a limited number of times without
a security compromise. Hence, the HBS schemes which allow limited reuse
of a single public key are suitable for distributed ledgers as compared to the
more advanced HBS schemes.

This paper proposes Smart Digital Signatures (SDS) which is a com-
pact and efficient post-quantum digital signature scheme. SDS is closer to
an existing popular HBS scheme, XMSS [12]. SDS incorporates a novel
one-time signature (OTS) scheme into XMSS, namely “SDS-OTS”. Fur-
thermore, SDS uses a slightly modified version of the key compression tree
as compared to XMSS. We have compared SDS with two different instan-
tiations of XMSS, namely, XMSS-WOTS and XMSS-WOTS+. In the first
instantiation, we incorporated XMSS with the OTS scheme “WOTS” [13],
whereas, in the second instantiation, we incorporated XMSS with WOTS+

[11]. The results reveal that SDS is 74% faster than XMSS-WOTS+ and
30% faster than XMSS-WOTS.

The underlying OTS scheme of SDS, i.e. SDS-OTS, is the most compact
OTS scheme as compared to all of the existing OTS/FTS schemes. WOTS
and WOTS+ are the two most popular OTS schemes which have already
been adopted by state of the art PQ ledgers, “Tangle” and “QRL”. SDS-
OTS offers 87% reduction in key and signatures sizes as compared to WOTS,
and more than 80% reductions in key and signature sizes as compared to
WOTS+. WOTS+ is a compact variant of WOTS which uses bitmasks and
randomizations to achieve compactness. Bitmasking allows WOTS+ to re-
place a collision-resistant (CR) hash function by a simple pre-image resistant
function which finally offers compactness. However, bit-masking is expen-
sive to achieve on quantum processors as compared to collision resistance
[1]. Therefore, SDS-OTS avoids the use of bit-masks and randomizations.
Finally, this paper also proposes a model for incorporating SDS into a dis-
tributed ledger, with the help of High-Level Petri-nets (HLPN). We can
summarize our research contributions as:

1. We propose an efficient HBS scheme “SDS”, which is:
(a) 74% faster than XMSS-WOTS+ (i.e. XMSS incorporated with

OTS scheme, WOTS+), and,
(b) 30% faster than XMSS-WOTS

2. We incorporate an efficient novel OTS scheme into SDS, namely, SDS-
OTS, which is:
(a) Most compact OTS scheme
(b) Offers 87% reduction in key and signatures sizes as compared to

the WOTS
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(c) Offers 85% reduction in key size as compared to the WOTS+

(d) Offers 83% reduction in signature size as compared to the WOTS+

(e) Based on CR hash functions, hence, avoids the use of bitmasks
(which are expensive to achieve on quantum processors)

3. We provide HLPNs to present a road map for the researchers and
end-users for incorporating SDS into a distributed ledger.

The rest of the paper is organized as Section-2 gives a preliminary knowl-
edge of HBS schemes. Section-3 discusses our proposed HBS scheme SDS in
detail. Section-4 provides details for incorporating SDS into a distributed
ledger. Sections 5 provides security and performance evaluation. Finally,
Section-6 concludes this paper.

2. Hash Based Digital Signature (HBS) Schemes

An HBS scheme is either a one-time (OTS), a few-time (FTS), or a many-
time (MTS) signature scheme [1]. MTS scheme uses one or more OTS/FTS
scheme as its building block. Lamport proposed the very first OTS scheme
which suffered from impractically larger key and signature sizes [14]. Being
an OTS scheme, the Lamport scheme does not allow for signing two or
more messages using the same key. So, each time the user has to generate a
fresh key pair to sign a new message. Merkle signature scheme (MSS) [13]
reduced key and signature sizes to a practical level and incorporated hash
trees to allow for reusing a single public key for a specific number of times
(many times). MSS uses Winternitz-OTS (WOTS) scheme as its building
block. XMSS [12] further reduced key and signature sizes and incorporated
a more secure version of the hash tree. XMSS uses a compact variant of
WOTS (i.e. WOTSPRF ) as its building block. More advance MTS schemes,
like XMSSMT [15], XMSS-T [16], SHPINCS [17], and its variants [18], [19]
allow reusing a single public key for an unlimited number of times. Fig. 1
classifies existing HBS schemes into OTS, FTS, or MTS schemes, whereas,
Fig. 2 provides a mapping between MTS and OTS/FTS schemes.

2.1. OTS/FTS Schemes

Lamport scheme [14] signs each bit of the message-hash individually,
therefore, the total number of signature values are equal to the total number
of bits in the message-hash. If message-hash is M -bit long and each of the
individual signature values is n-bit long then, the bit-length of the signature
can be computed using the formula given in Eq. (1). The key size is even
double of the signature size because each bit of the message-hash has two
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Hash-based signature schemes

One-time
signature schemes

Few-time
signature schemes

Many-time
signature schemes

Lamport-Diffie

WOTS

WOTSPRF

WOTS+

HORS

HORS-T

PORS

PORS-T

MSS

XMSS

XMSSMT

XMSS-T

SPHINCS

SPHINCS-S

G-SPHINCS

BPQS

Figure 1: Classification of HBS schemes

key-values associated to it. Eq. (2) provides the formula for computing
the key-length (in bits). In the Lamport scheme, a public-key (pk) value is
simply the first post-image of the corresponding private key (sk) value (we
denote it as |h| = 1). Throughout the paper, we will use |key| to denote
the total number of values in key and |σ| to denote the total number of
values in the signature. Table 1 explains all the symbols used in the paper.

σ(Lamport) = (M)(n) (1)

key(Lamport) = 2(M)(n) (2)

WOTS scheme [13] divides message-hash into groups or patches of bits
and signs a complete patch of bits simultaneously. Thus the total number
of signature values decrease significantly. For a 4 -bit patch-size, there will
be a total M

4 signature values (i.e. just one-fourth of the Lamport scheme).
The patch-size (let we denote it as p) is customizable, i.e. user can select
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HORS
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MSS
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SPHINCS WOTS-T

XMSS-T

BPQS

Figure 2: OTS/FTS schemes mapping to the MTS schemes

the patch-size, he wants. The patch size is inversely proportional to the key
and signature sizes, however, it is directly proportional to the computational
cost. Therefore, a balance must be established. A typical patch-size is 4-bit.
In WOTS, there are total M

p patches in the message-hash, so we can write
the message-hash (H) like given in Eq. (3). An individual patch of bits can
produce a value in the range zero to 2p− 1. The actual number of signature
values is slightly greater than M

p because of a checksum that is appended
to the message-hash. Eq. (4) provides the formula used to compute the
checksum (c). Finally, key and signature sizes of WOTS can be computed
using the formula given in Eq. (5). For WOTS we have, |h| = 2p which
means that a pk -value is (2p)th post-image of the corresponding sk -value,
and |σ| = |key| = M

p || c (the number of key and signature values are
equal in WOTS).

H = m1||m2||m3||......||mM
p

(3)

c =

M
p∑
i=1

(2p − 1)−mi (4)
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σ(WOTS) =

(
M

p
|| c
)
n (5)

WOTSPRF [12] and WOTS+ [11] are the two compact variants of WOTS,
which achieve compactness by replacing the CR hash function by a simple
one-way function. The CR property being vulnerable to the birthday para-
dox attack is relatively harder to achieve [20]. The PQ security level of a
512 -bit long CR function is just equal to that of a 341 -bit long oneway
function [6]. Although, both WOTSPRF and WOTS+ offer compactness,
however, they are computationally expensive. Both these variants incorpo-
rate bitmasking, which is relatively expensive for quantum processors [1].
The signature sizes of both these variants are the same, however, the key
size of WOTS+ is relatively larger because of an additional set of random-
ization elements. Eq. (6) provides the formula for computing key-size for
WOTS+.

HORS scheme [17] is the most efficient scheme w.r.t the signature cre-
ation process, however, it suffers from an impractically large key size. Eq.
(7) provides the formula for computing the key size in HORS. The patch
size (p) in HORS must be sufficiently larger because the scheme will not be
secure otherwise. A large patch size in HORS causes an extremely large key
size. A pk -value is simply the first post-image of the corresponding sk -value.
PORS [19] is a secure variant of HORS which offers an enhanced security
at a marginal computational overhead. The key and signature sizes of both
HORS and PORS are the same. The only difference is that in the case of
HORS, multiple bit-patches may correspond to the same signature value,
however, in PORS there is always a distinct signature value against each of
the bit-patches.

key(WOTS+) =

(
M

p
|| c
)
n+ (2p)n (6)

key(HORS) = (2p)n (7)

The proposed OTS scheme, i.e. SDS OTS, uses a 4-bit patch size. Eq.
(8) provides the formula for computing key and signature sizes of SDS OTS.
Because p is fairly smaller (just 4-bit), therefore, both key and signature
lengths are significantly smaller. Both key and signature consist of 17 val-
ues in total. Each of the first sixteen pk -values is a 96th post-image of
the corresponding sk -value. However, the last pk -value (which is used for
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checksum) is the 1536th post-image of the corresponding sk -value.

σ(SDS) = (2p + 1)n (8)

Table 1: Symbols and their description

Symbol Description

n Security parameter (bit-length of an individual key/signature item)

H Hash of the message to be signed

M Bit-length of the hash of the message to be signed

p Size/length of an individual patch of bits

m An individual patch of the message hash

c Checksum appended to the message hash by WOTS

|σ| Total no. of items/values in the signatures

|key| Total no. of items/values in the private/public key

|hx| Total no. hash iterations required to transform a normal (except check-
sum) sk-item to the pk-item

|hc| Total no. hash iterations required to transform the checksum sk-item to
the pk-item

|h| Average no. hash iterations required to transform an sk-item to the pk-
item

b The security level offered by an OTS/FTS scheme

fH Oneway hash function

FSDS−OTS Forger trying to breaks SDS-OTS

Aonewayness Adversary trying to breaks onewayness of fH
mF , σF Message/signature pair returned by forger

HQ Message queried by the forger for signatures

fxH(y) fH computed on y for x-times

3. Smart Digital Signatures (SDS)

SDS incorporates two customization in XMSS; firstly, it replaces the
underlying OTS scheme of SDS by a novel OTS scheme “SDS OTS”, sec-
ondly, SDS proposes a modified version of XMSS-Ltree, namely SDS Ltree.
SDS-OTS offers a magical reduction in both key and signature sizes. The
next two subsections respectively explain our proposed OTS scheme and our
modified L-tree construction. After this discussion, we will provide the algo-
rithm for creating the main SDS tree (algorithm 5). We use the term “main
hash tree” to refer the tree which finally encapsulates many compressed OTS
public keys into a single SDS public key (SDSpk).

3.1. SDS OTS Scheme

In this section, we will explain our newly proposed OTS scheme “SDS-
OTS”. The proposed scheme works as follows:
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3.1.1. Key generation

The private and the public keys both consist of 17 values. We create
all of the private-key-values from a single initial value known as the seed.
It is safe to generate the whole private key from a single seed because our
scheme never uncovers any of the private key values to the verifier. Each
of the public-key-values is an nth post-image of the corresponding private-
key-value. The first 16 public-key-values are the 96th post-images of their
corresponding private-key-values, whereas, the last (i.e. 17th) public-key-
value is the 1536th post-image of the corresponding private-key-value. The
first 16 private-key-values are used to sign the message, whereas, the last
value is used to sign the checksum. The length of the hash function used
to generate the post-images has a direct impact on the level of security,
key/signature sizes, and processing time. For an appropriate level of se-
curity, we recommend using the hash function SHA384. SDS OTS offers
0.82KB key and signature sizes with hash function SHA384. Algorithm 1
provides complete pseudo-code for the key generation process.

3.1.2. Signature creation

The signature creation process starts with computing hash of the mes-
sage (msg) to be signed. We recommend using the hash function “SHA384”
thus, the message-hash consists of 96 hexadecimal symbols in total. We
index those symbols as {1→ 96}. Each index refers to a hexadecimal sym-
bol. Then we classify the indexes into sixteen different strings, like this: the
string (str0) of the indexes which contain the symbol 0, the string (str1) of
the indexes which contain the symbol 1, and up to the string (strf ) of the
indexes which contain the symbol f . Next, we sum-up the digits of each of
the strings to generate sixteen different string-sums, we denote these sums
as
∑15

i=0 striSum. We use the modulus operator to ensure that all of the
string-sums are in the range {1 → 96}. We compute the first 16 signature-
values by computing post-images of the corresponding private-key-values for
the corresponding striSum number of times. The 17th signature-value is for
checksum for which we first compute the checksum following the rule given
in Eq. (9). Finally, we compute the 17th signature-value by computing the
post-image of the corresponding private-key-value for checksum number of
times. Fig. 3 explains the process of signature creation for an example mes-
sage “Good Message 707070”. Algorithm 2 provides complete pseudo-code
for signature creation process.

Checksum =
15∑
i=0

(96− striSum) (9)
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Algorithm 1 Key Generation

Input: Security Parameter (1384)

Output:
∑16
i=0(sk[i], pk[i])

1: seed← os.urandom(48) . Generates a 384-bit random “seed” for private key
2: sk ← [ ]
3: for a = 0→ 16 do . All 17 sk-elements are computed from a single “seed”
4: seed← sha384(seed)
5: sk.append(seed)

6: end for
7: pk ← [ ]
8: for a = 0→ 15 do . Transforms first “16” sk-elements into pk-elements
9: x← sk[a]

10: for b = 1→ 96 do
11: x← sha384(x)

12: end for
13: pk[a]← x

14: end for
15: x← sk[16] . Transforms the 17th sk-element into pk-element
16: for b = 1→ 1536 do
17: x← sha384(x)

18: end for
19: pk[16]← x

3.1.3. Signature verification

The verifier starts the verification process by computing the hash of the
message (which signatures are to be verified). Then the verifier computes
“string-sums” and the “checksum” by following the procedure described in
the “signature creation” phase. The string-sums and the checksum allow
the verifier to transform the signatures into a verification key (vfKey). The
verification key consists of 17 values, each of which is some of the post-image
of the corresponding signature-value. Algorithm 3 explains the procedure
of computing the verification key from the signatures. The verification-
key must be equal to the public-key otherwise signature verification will be
failed.

3.2. SDS L-tree

XMSS uses L-tree to compress the OTS public keys to allow them to
exist as leaf nodes of the main hash tree. Our proposed variant of L-tree
is more compact and efficient than XMSS L-tree. SDS L-tree is compact
because unlike XMSS L-tree, SDS L-tree does not involve additional ran-
domization elements while computing a parent node from the corresponding
child nodes. SDS L-tree uses the last (i.e. 17th) element of the OTS public
key for randomization purposes. The plain 17th pk-element substitutes the
left randomization element, whereas, the hash of the 17th pk-element substi-
tutes the right randomization element. Because SDS L-tree engages the 17th
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Message hash: 4809271c853de120b670dd718b270158ac17d46ab4e1400c961d4b806bc63a34f30fbc7db361d275cfde117eac728dca

Indexes:
1 96

3 16 20 29 46

47

56 67

Symbol

(m)

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

16

String of Indexes with an “m“ symbol

(Strm)

316202946475667

7142430354451768586

515277892

1161636674

13842455364

103180

183950576075

61923283671798791

2925325593

449

3340628996

17264154586973

834485970819095

122122375272778394

13438488

656882

Sum(Strm)%96+1

(StrmSum)

69

84

47

42

46

14

57

90

46

18

51

69

81

75

40

36

Σ(96 - StrmSum) = 671

Signatures

(σm)

hash69(skm)

hash84(skm)

hash47(skm)

hash42(skm)

hash46(skm)

hash14(skm)

hash57(skm)

hash90(skm)

hash46(skm)

hash18(skm)

hash51(skm)

hash69(skm)

hash81(skm)

hash75(skm)

hash40(skm)

hash36(skm)

hash671(skm)

Figure 3: SDS OTS: Signature Creation Example for the Message “Good Message
707070”
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Algorithm 2 Signature Creation

Input: Message(Msg),
∑16
i=0 sk[i]

Output:
∑16
i=0 σ[i]

1: H[ ]← sha384(Msg)
2: hex← “0123456789abcdef” . The set of hex alphabets stored as string “hex”
3: hashCounts← [ ]
4: for x in hex do . A loop iterating for each of the hexadecimal alphabet
5: str ← “ ”
6: for i = 1→ 96 do . A loop to parse each hexadecimal character in “H”
7: if H[i] == x then
8: str ← str + i . Appends index of the selected alphabet of H to str
9: end if

10: end for
11: strSum← 0
12: for d in str do . A loop to compute sum of the digits in string “str”
13: strSum← strSum + int(d)

14: end for
15: strSum← strSum%96 + 1 . To impose 1 ≤ strSum ≤ 96
16: hashCounts.append(strSum)

17: end for
18: checksum← 0
19: for j = 0→ 15 do . A loop to compute the checksum
20: checksum← checksum + (96− hashCounts[j])
21: end for
22: hashCounts.append(checksum)
23: σ ← [ ]
24: for r = 0→ 16 do . A loop to compute the signatures on “M”
25: k ← sk[r]
26: for q = 1→ hashCounts[r] do
27: k ← sha384(k)

28: end for
29: σ.append(k)

30: end for

pk-element (which is basically for checksum purposes) into the randomiza-
tion process, therefore, it is no more required to store and process the 17th

pk-element as a leaf node. Removal of the 17th pk-element from leaf nodes
generates a balanced binary hash tree. On the other side, XMSS L-tree is
an unbalanced binary hash tree because of the checksum appended to the
message-hash by WOTSPRF . SDS L-tree being a balanced binary tree, does
not involve the processing of the additional unbalanced leaf nodes therefore
it is more efficient than XMSS L-tree.

3.2.1. Key compression using SDS L-tree

The proposed key compression algorithm is the same as XMSS L-tree
with just one difference, i.e. we use the last key element pk16 for random-
ization purposes rather than introducing new randomization elements. Fig.
4 shows the complete structure of an SDS L-tree and explains the process of
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Algorithm 3 Signature Verification

Input: Message(Msg),
∑16
i=0 σ[i],

∑16
i=0 pk[i]

Output: Succeeded/Failed
1: Follow steps 1 to 22 of algorithm 2 to compute “hashCounts”

2: vfKey ← [ ] . Verifier computes “vfKey” from the signatures
3: for i = 0→ 15 do . To compute first 16-elements of the vfKey
4: sig = σ[i]
5: for j = 1→ 96− hashCounts[i] do
6: sig ← sha384(sig)

7: end for
8: vfKey.append(sig)

9: end for
10: sig ← σ[16] . To compute the 17th element of the vfKey
11: for j = 1→ 1536− hashCounts[16] do
12: sig ← sha384(sig)

13: end for
14: vfKey.append(sig)
15: if vfKey == pk then
16: output : Succeeded
17: else
18: output : Failed
19: end if

producing a parent node from the corresponding child nodes. Algorithm 4
provides the complete pseudo-code of the key compression process. We use
a binary tree of height “5” (max. level is 4), in which leaf nodes store the
public-key-values. There are a total of 17 public-key-values of which the first
sixteen values are stored as leaf nodes of the L-tree, whereas, the 17th value
is used for randomization purposes while constructing a parent node from
the corresponding child nodes. The formula to construct a parent node from
the corresponding child nodes is given in Eq. (10). The same procedure is
iterated to devise all of the upper-level nodes of the tree up to the root node
which represents the compressed form of the public key.

N(i,j) =hash
[

[N(2i,j−1) ⊕ pk16 ] +

[N(2i+1,j−1) ⊕ hash(pk16)]
] (10)

4. SDS OTS based Distributed Ledger

This section provides guidelines for incorporating SDS OTS into a dis-
tributed ledger (DL). We have formally modeled our discussion with the help
of HLPN. Fig. 5 provides HLPN for the proposed DL. Table 2 explains the
places of the corresponding HLPN. We use the Z-specification language to
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Compressed Public Key

pk15

XORpk16 XOR Hash(pk16)

Hash

Figure 4: Public Key Compression using SDS L-tree

Algorithm 4 Key compression using SDS L-tree
Input: {pk0, pk1, pk2 · · · pk16}
Output: key
1: define array N [1 · · 31] . “N” is a binary tree (SDS L-tree)
2: for i = 0→ 15 do
3: N.insert(i+ 16, pk[i]) . pk0 to pk15 form leaf nodes of “N”

4: end for
5: leftRand← pk16 . pk16 forms the randomization elements
6: rightRand← hash(pk16)
7: k ← 16
8: for j = 0→ 3 do . Generates levels 1 to 4 of the L-tree
9: for (i = k; i < 2k; i = i+ 2) do

10: r1← N [i]⊕ leftRand
11: r2← N [i+ 1]⊕ rightRand
12: N [ i

2
]← hash(r1 + r2)

13: end for
14: k ← k

2

15: end for
16: key ← N [1] . The root node produces the compressed pk

define rules for the transitions included in the HLPN. For large-sized rules
involving multiple steps, we provide complete algorithms. The three major
parts of the HLPN include, ledger address (LA) generation, coins receiving,
and coins spending.

The process of LA generation starts from a private key which is a set
of 17 cryptographic values all generated from a single seed (Place-1, Eq.
(11)). The private key is used to generate the public key. Each of the
first 16 private-key-values is hashed for 96 times to generate the correspond-
ing public-key-value, however, the 17th private-key-value is hashed for 1536
times to generate the corresponding public-key-value (Place-2; Eq. (12)).
Finally, the compressed form of the public key represents LA of the user
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15



Algorithm 5 SDS main hash tree creation
Input: tree height (h)
Output: public key (SDSpk), Randomization Elements (leftRE, rightRE)

1: maxLevel← (h− 1)
2: totalNodes← 0
3: for (i← maxLevel; i ≥ 0; i← i− 1) do
4: totalNodes← totalNodes+ 2i . Computing total no. of nodes in SDS tree
5: end for
6: define array T [1 · · totalNodes]
7: for j = 2maxLevel → totalNodes do . Generating leaf nodes of SDS tree
8: Generate a new SDS OTS key-pair
9: Compress the OTS public key

10: T [j]← compressedOTSpk

11: end for
12: leftRE ← os.urandom(48) . To generate a 384-bit random value
13: rightRE ← os.urandom(48)
14: k ← 2maxLevel

15: for j = 1→ maxLevel do . Generating upper levels of SDS tree
16: for (i = k; i < 2k; i = i+ 2) do
17: r1← T [i]⊕ leftRE
18: r2← T [i+ 1]⊕ rightRE
19: T [ i

2
]← hash(r1 + r2)

20: end for
21: k ← k

2

22: end for
23: SDSpk ← T [1] . The root node is the pk

(Place-3; Eq. (13)). The DL uses an LA to preserve assets of a user.

R(new SK) =SK ′ =

16∑
i=0

{ski = seed ∧

seed′ = hash(seed)}

(11)

R(PK Computation) =

[ 15(f)∑
i=0

{pk′i = hash96(ski)}
]
∧[

pk′16 = hash1536(sk16)

] (12)
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Table 2: HLPN Places Description

No. Place Description Data-type
1 SK Private key A set of 17 values each 48 byte long
2 PK Public key A set of 17 values each is a hash output
3 LA Ledger address A single hash output
4 NewPT New payer transaction P(ID, TrxT ime, Inputs,Outputs, σ)
5 VerPT Verified payer transaction P(ID, TrxT ime, Inputs,Outputs, σ)
6 DL Distributed ledger P(Transactions)
7 NewOT New owner transaction P(ID, TrxT ime, Inputs,Outputs, σ)
8 SigOT Signatures on the owner’s transaction A set of 17 values each is a hash output
9 KeyOT Verification key for the owner transaction A set of 17 values each is a hash output
10 OwnLA Owner’s ledger address computed by the veri-

fier
A single hash output

11 VerOT Verified owner transaction P(ID, TrxT ime, Inputs,Outputs, σ)

R[Key Compression(PK)] =

[ 15∑
i=0

N ′(i+16,0) = pki

]
∧[

j≤3∑
j=0
k=16

{ ∑
k≤i≤(2k−2)

i a multiple of 2

N ′( i2 ,j+1) = hash(N(i,j) ⊕ pk16||

N(i+1,j) ⊕ hash(pk16))

}
∧
{
k′ =

k

2

}]
∧
[
LA′ = N( i2 ,j+1)

]
(13)

To allocate coins to a new LA, the payer originates a new transaction, we
denote it as payer transaction (new-PT) [Place-4; Eq. (14)]. The verifiers
verify the new-PT and upon a successful verification, we change its status
from new-PT to verified PT (ver-PT) [Place-5; Eq. (15)]. Finally, a miner
adds the ver-PT to the DL [Eq. (16)]. The verification process is the same
for both, payer and the owner transactions.

R(New Payer Transaction) =NewPT ′ ={ID, T ime,
Inputs,Outputs}

(14)

R(Verified Payer Transaction) =

V erPT ′ = NewPT ∪ {σnewPT }
(15)

R(Payer Transaction Acceptance) =DL′ = DL ∪ V erPT (16)

To spend coins, the owner generates a new transaction, we denote it as a
new owner transaction (new-OT) [Place-7; Eq. (17)]. Next, the owner adds
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signatures to his transaction, we denote it as sig-OT (Place-8); Algorithm 6
provides rules for signing the transaction. During verification of the owner
transaction, the verifiers use new-OT and sig-OT to generate the verification
key, i.e. key-OT (Place-9; Algorithm 7). Next, verifiers compress the
verification key to generate the owner’s LA, denoted as own-LA (Place-
10; Eq. (18)). The own-LA must already be stored in the ledger with
enough coins allocated to it. A valid own-LA turns the owner transaction
to a verified owner transaction ver-OT (Place-11; Eq. (19)). Finally, miner
accepts the ver-OT by posting it into the ledger (Eq. (20)).

R(New Owner Transaction) =NewOT ′ ={ID, T ime,
Inputs,Outputs}

(17)

Algorithm 6 Owner Transaction Signing
Input: NewOT, {sk0, sk1, sk2 · · · sk16}
Output: SigOT

1:
∑15
i=0 define string stri

2: ∀x ∈ hash(newOT ) • strx.concat(index(x))

3:
∑15
i=0 define striSum = 0

4:
∑15(f)
i=0

[∑stri.length
j=0 striSum

′ = striSum+ int(stri[j])
]
∧[

striSum = striSum%96 + 1
]

5:
∑15
i=0 σi = hashstriSum(ski)

6: define checksum = 0
7:
∑15
i=0 checksum = checksum+ (96− striSum)

8: σ16 = hashchecksum(sk16)
9: SigOT ′ = {σ0, σ1, σ2 · · ·σ16}

Algorithm 7 Owner Transaction Verification Key Generation
Input: NewOT, SigOT
Output: KeyOT
1: Follow steps 1→ 4 of algorithm 6 to generate striSum for 0 ≤ i ≤ 15
2: define vf key[17]

3:
∑15
i=0 vf keyi = hash96−striSum(σi)

4: Follow steps 6→ 7 of algorithm 6 to generate checksum
5: vf key16 = hash1536−checksum(σ16)
6: KeyOT ′ = {vf key0, vf key1, vf key2 · · · vf key16}

R(Verification Key Compression) =

OwnLA′ = R[Key Compression (KeyOT)]
(18)
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R(Owner Trx Verification) =

OwnLA ∈ DL =⇒ V erOT ′ = {NewOT ∪ σnewOT } ∨
OwnLA /∈ DL =⇒ V erOT = φ

(19)

R(Owner Trx Acceptance) = DL′ = DL ∪ V erOT (20)

5. Evaluations of SDS

This section compares the compactness and computational efficiency of
SDS with other HBS schemes. Furthermore, we provide a formal security
proof of SDS.

5.1. Security Evaluation of SDS

SDS requires a secure hash function for its secure execution. A secure
hash function is the one which can resist three types of attacks, pre-image
resistant, second pre-image resistant, and collision resistant. In case of pre-
image attack, the challenge for the adversary (A) is to find such an input (x)
which corresponding output (y) is known to him [Eq. 21]. In case of second
pre-image attack, the adversary knows an input-output pair (x, y), where
the challenge for him is to find another input (x′) which must be different
from x, however its output should be the same (i.e. y) [Eq. 22]. Finally,
in collision attack, the adversary has to find any two different inputs (x, x′)
which must map to a same output [Eq. (23)].

Pr[y = h(x);x′ ← A(y) : x = x′] ≤ ε (21)

Pr[y = h(x);x′ ← A(x, y) : x′ 6= x ∧ y = h(x′)] ≤ ε (22)

Pr[x, x′ ← A : x 6= x′ ∧ h(x) = h(x′)] ≤ ε (23)

The resistance power of a cryptographic protocol against different types
of attacks is generally known as the security-level (we denote it as b) offered
by that protocol. The security level of a family of hash functions depends on
its output-length. An ‘n-bit’ long hash function offers ‘(n/2)-bit’ PQ security
against both of the pre-image and second pre-image resistant. However,
an n-bit long hash function offers ‘(n/3)-bit’ PQ security against collision
attacks [1]. Table 3 provides classical and quantum security levels of popular
hash functions.

19



Table 3: Hash functions security levels [6], [20], [1]

Hash function Classical security Quantum security
Pre-
image

Collision Pre-
image

Collision

SHA160 160-bit 80-bit 80-bit 53-bit
SHA256 256-bit 128-bit 128-bit 85-bit
SHA384 384-bit 192-bit 192-bit 128-bit
SHA512 512-bit 256-bit 256-bit 171-bit

5.1.1. Formal Security Proof of SDS OTS

We formally prove that SDS OTS is a “chosen plaintext attack” (CPA)-
secure scheme; and that, security of SDS OTS is a security reduction of
the used hash function. A number of existing studies have used the CPA
model to prove security of the proposed schemes. Some latest studies which
use CPA model include, ABE with enhanced leakage resistance [21, 22], self-
adaptive big data storage [23], anti-quantum blockchain [24], PQ-blockchain
[25], and compact PQ-blockchain [26]. Other less common approaches used
to establish security proofs include simulations [27] and experimental results
[28].

CPA Model: CPA model allows a forger F to query signatures on his
chosen message

(
mQ1, mQ1, · · · , mQn

)
. A signing oracleO responds forger’s

queries. In the end, forger has to return a message/signature pair
(
mF , σF

)
,

such that σF are valid signatures of mF and mF /∈ {mQ1,mQ2, · · · ,mQn}.
A CPA secure scheme means that the success probability of the forger is
negligible.

Existential unforgeability of SDS-OTS: SDS-OTS is a triple (Key-
gen, Sign, Verify); Keygen takes a security parameter n as input and returns
a key-pair (sk, pk). Sign takes a message-hash (H) and private key (sk) as
input and returns signatures (σ) of H. Verify takes message-hash (H), sig-
natures (σ), and public key (pk) as input and returns either Succeeded or
Failed.

KeyGen generates a new key pair (sk, pk). A signing oracle O having
knowledge of the private key (sk) responds the forger’s queries. Forger (F)
can submit at most one query to O. F has knowledge of pk. Upon querying
of a message HQ from F , O must return valid signatures of HQ, i.e. σQ. The
challenge for F is to return a message/signature pair (HF , σF ) such that,
σF are valid signatures of HF , and, HF 6= HQ. SDS-OTS is existentially
unforge-able under CPA model if the probability that F wins the above
game in a time T , is at most ε. We formally write it as, SDS-OTS is a (T ,
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ε, 1)-existentially unforgeable OTS scheme.
Reduction Proof: Algorithm 8 explains that, how an adversaryAonewayness

can exploit a forger (FSDS−OTS) to break onewayness of the underlying hash
function. Aonewayness generates a new SDS-OTS key pair. Then he chooses
two random values (α, β) and tampers the corresponding key-element (steps
2 - 3). Then adversary runs forger. When forger queries a message (HQ)
then, either adversary responds with the corresponding signatures (σQ)
[steps 9 - 11] or aborts the process (steps 6 - 7). When forger returns a
message-signature pair (HF , σF ) then adversary will be able to win the
game, only under certain conditions (steps 13 - 17).

The success probability of A is an aggregation of the three success proba-
bilities, the probability that A is able to respond F ’s signature-query (steps
6 - 8); the probability that F is able to win the game (step 13); and the prob-
ability that the message returned by F allows A to compute the challenged
pre-image (steps 14 - 16). Eq. 24 computes the success probability of A.
The approximated success probability of A (εA) is 0.001 times the success
probability of F (εF ). Hence, a negligible success property of the adversary
(A) is not possible without a negligible success probability of the forger (F).
The total time taken by A includes, SDS-OTS key generation time (step1),
SDS-OTS signing time (steps 9 - 10), and the forgers time (step 12). Eq. 25
computes the total time taken by A. Our algorithm allows just one query to
F (step 5), which leads to onetime-ness. Finally the message returned by F
must be different from the queried message (step 13), which leads to existen-
tial unforgeability. Hence it proved that, SDS-OTS is a (T ,ε,1)-existentially
unforgeable signature scheme.

εA =

(
|hx| − β

)(
|key| − 1

)(
|hx|

) εF (
β − 1

)(
|key| − 1

)(
|hx|

) (24)

TA = TKeyGen + TSign + TF (25)

5.2. Compactness Evaluation of SDS

The underlying OTS scheme of SDS, i.e. SDS OTS, offers minimum key
and signature sizes as compared to all of the existing OTS/FTS schemes.
SDS-OTS offers 87% reduction in key and signatures sizes as compared to
WOTS (adopted by IoTA [8]), and more than 80% reduction in both key
and signature sizes as compared to WOTS+ (adopted by QRL [9]). Table
4 allows comparing “key and signature” sizes of SDS OTS with the existing
OTS/FTS schemes. The formulas for computing key and signature sizes of
different OTS/FTS schemes have already been provided in Section-2 (see
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Algorithm 8 Aonewayness
Input: SDS-OTS(Keygen,Sign,Verify), hash function (fH), forger FSDS−OTS , a post-image y
Output: Pre-image x, such that fH(x) = y

1: Generate a new SDS-OTS key pair
(∑|key|−1

i=0 (ski, pki)
)

2: Randomly choose α ∈ {0 . . . (|key| − 2)} and β ∈ {1 · · · |hx|}
3: Tamper the key-element pkα like this: pkα ← f

(|hx|−β)
H (y)

4: Run the forger FSDS−OTS
5: if FSDS−OTS queries a message (HQ) then
6: if hashCountsα for HQ < β then
7: return failed
8: else
9: Compute

∑|key|−1
i=0

(
σi ← f

hashCounti
H (ski)

)
for i 6= α

10: Compute σα ← f
(hashCountα−β)
H (y)

11: Respond FSDS−OTS with σQ

12: if FSDS−OTS returns a message-signature pair (HF , σF ) then
13: if σF are valid signatures of HF and HF 6= HQ then
14: if hashCountα for HF > β then
15: return failed
16: else
17: return f

(β−hashCountα−1)
H (σFα )

18: In any other case return failed

Equations (1) - (8)). The key and signature sizes of an OTS/FTS scheme
depend on several parameters, like, bit-length of an individual key-element
(n) and bit-length of the message hash (M), etc. Table 1 explains all those
parameters.

5.3. Computational Efficiency Evaluation of SDS

We have compared SDS with two different instantiations of XMSS. In the
first instantiation, we used WOTS+ as the core OTS scheme, whereas, in the
second instantiation we used WOTS as the core OTS scheme. We generated
hash trees of all heights between two and eleven. For these implementations,
we used Python language in the environment “JetBrains PyCharm Commu-
nity Edition 2018.3.3”. The testbed consists of an Intel Core i5 CPU (2.4
GHz) with 4GB RAM, running Windows 8.1 32-bit release. The results
reveal that SDS is on average 74% more efficient than XMSS-WOTS+ (i.e.
XMSS incorporated with the OTS scheme “WOTS+”), and 30% more effi-
cient than XMSS-WOTS. The graphs in Fig. 6 and 7 allow comparing tree
generation time of SDS with both instantiations of XMSS.

5.3.1. Execution Time of SDS OTS

The execution time of SDS OTS is comparable to the other OTS/FTS
schemes. Figures 8, 9, and 10 allow comparing the execution time of
SDS OTS with the other OTS/FTS schemes. The results reveal that all
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Table 4: Key and signature sizes: OTS/FTS schemes

Scheme Parameters PQ-SL∗ Sig. Size Key Size
n m p |key|

[14] 256

256

n/a 512 85-bit 8.2KB 16.4KB
[13] 256 4 67 85-bit 2.1KB 2.1KB
[12] 210 4 67 87-bit 1.8KB 1.8KB
[11] 190 4 83 88-bit 1.6KB 2.0KB
[19] 256 16 65536 85-bit 2.1MB 2.1MB
SDS-
OTS

256 4 17 79-bit 0.5KB 0.5KB

[14] 384

384

n/a 768 128-bit 18.4KB 36.9KB
[13] 384 4 99 128-bit 4.8KB 4.8KB
[12] 280 4 99 127-bit 3.5KB 3.5KB
[11] 270 4 115 128-bit 3.3KB 3.9KB
[19] 384 16 65536 128-bit 3.1MB 3.1MB
SDS-
OTS

384 4 17 122-bit 0.8KB 0.8KB

[14] 512

512

n/a 1024 171-bit 32.8KB 65.5KB
[13] 512 4 131 171-bit 8.4KB 8.4KB
[12] 370 4 131 172-bit 6.1KB 6.1KB
[11] 360 4 147 172-bit 5.9KB 6.6KB
[19] 512 16 65536 171-bit 4.2MB 4.2MB
SDS-
OTS

512 4 17 164-bit 1.1KB 1.1KB

*Post Quantum Security Level

three algorithms of SDS OTS, i.e. key generation, signature creation, and
signature verification, are fairly efficient. SDS OTS offers 70% and 60%
reductions in key-generation and signature-creation times respectively as
compared to the existing most compact OTS scheme “WOTS +”.

6. Conclusions

We have proposed a novel hash-based digital signature scheme “smart
digital signatures (SDS)”, which is a compact and efficient variant of the pop-
ular hash-based scheme XMSS. The comparison results reveal that SDS is
74% more efficient than XMSS-WOTS+ and 30% more efficient than XMSS-
WOTS. The underlying OTS scheme of SDS, i.e. SDS-OTS is the most
compact OTS scheme as compared to all of the existing OTS/FTS schemes.
SDS-OTS offers 87% reduction in key and signatures sizes as compared to
WOTS (adopted by IoTA), and more than 80% reduction in key and sig-
nature sizes as compared to WOTS+ (adopted by QRL). SDS-OTS is also
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Figure 10: Sig. Verification Time (in seconds) of OTS/FTS Schemes

a computationally efficient scheme that offers 70% and 60% reductions in
key-generation and signature-creation times respectively as compared to the
existing most compact OTS scheme “WOTS +”. The paper also provides a
road map for incorporating SDS into a distributed ledger, with the help of
HLPN. For the future, we intend to incorporate SDS into the blockchain-
technology beyond cryptocurrencies, for example, blockchain for Industrial
Internet of Things or blockchain for the Internet of Energy, etc.
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