
Please cite the Published Version

Ding, Weichao, Luo, Fei, Han, Liangxiu , Gu, Chunhua, Lu, Haifeng and Fuentes, Joel (2020)
Adaptive virtual machine consolidation framework based on performance-to-power ratio in cloud
data centers. Future Generation Computer Systems, 111. pp. 254-270. ISSN 0167-739X

DOI: https://doi.org/10.1016/j.future.2020.05.004

Publisher: Elsevier BV

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/625701/

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publica-
tion in Future Generation Computer Systems, published by and copyright Elsevier.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-2491-7473
https://doi.org/10.1016/j.future.2020.05.004
https://e-space.mmu.ac.uk/625701/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


 

1 
 

Adaptive Virtual Machine Consolidation 
Framework Based on Performance-to-Power 
Ratio in Cloud Data Centers 

WEICHAO DING1, FEI LUO 1, LIANGXIU HAN 2, CHUNHUA GU 1, HAIFENG LU 1 and JOEL 
FUENTES3 
1School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China 
2School of Computing, Mathematics and Digital Technologies, Manchester Metropolitan University, UK 
3Department of Computer Science and Information Technology, Universidad del Bı́o-Bı́o, Chillán, Chile 

Corresponding author: Fei Luo (e-mail: luof@ecust.edu.cn). 

This work was supported by the National Natural Science Foundation of China (Grant NO.61472139), the Newton Fund Institutional Links of UK (Grant 

ID 332438911). 

ABSTRACT Efficient resource management in a Cloud data center relies on minimizing energy 

consumption and utilizing physical resource efficiently while maintaining the service-level agreement (SLA) 

at its highest level. To achieve this goal, dynamically consolidating virtual machines (VMs) is considered a 

promising method, because it eliminates the hotspots resulting from overloaded hosts and switches the 

underloaded hosts to sleep mode through the live migration of VMs. However, during the consolidation, 

each VM migration consumes additional resource, leading to performance degradation and SLA violation. 

To address this issue, this study proposes a novel adaptive performance-to-power-ratio (PPR)-aware 

dynamic VM consolidation framework based on both the predicted resource utilization and PPR of the 

heterogeneous hosts to resolve the trade-off of performance and energy. The proposed framework consists 

of four stages: (1) host overload detection based on residual available computing capacity; (2) selection of 

the appropriate VMs for migration from the overloaded hosts based on minimum data transfer; (3) host 

underload detection based on multi-criteria Z-score approach; (4) allocating the VMs selected for migration 

from the overloaded and underloaded hosts based on the modified power-aware best-fit decreasing 

algorithm. To validate the reliability and scalability of the proposed method, we performed experimental 

evaluation in both real and simulated environments. The experimental results demonstrate that the proposed 

approach can reduce the energy consumption effectively and ensure maximal conformity to the quality of 

service (QoS) requirements across heterogeneous infrastructures, in comparison with the existing 

competitive approaches. 

INDEX TERMS Cloud computing, Dynamic consolidation, Energy consumption, SLA violation  

I. INTRODUCTION 

The rapid growth of cloud computing applications has led to 

a dramatic increase in the operation costs of cloud data 

centers, because of the increasing energy consumption and 

environmental pollutants [1], [2]. The energy consumption 

of data centers increased by 56% worldwide from 2005–

2010, accounting for 1.3% of total electricity use [3]. A 

recent study [4] shows that electricity demand by data centers 

in 2018 was an estimated 198 billion kWh, almost 1% of 

demand for electricity in the world. In the US, it is reported 

that data center power demand has increased from 29 billion 

kWh in 2000 to nearly 73 billion kWh in 2020 [5]. This is 

not only because of the large number of hosts in the data 

centers, but also because of the low efficiency of power 

utilization ratio and inefficient use of resource. For example, 

it was reported that the average CPU utilization of over 5000 

hosts is only about 10-50% of their maximum utilization 

levels in a data center during a 6-month period [6]. In 

addition, even completely idle hosts consume approximately 

70% of their peak power [7]. Therefore, there is an urgent 

need for new solutions on how to manage under- or 

overloaded hosts and satisfy the service-level agreement 

(SLA) requirements for improving energy efficiency and 

reducing operational costs in data centers.  

One effective way to maintain the quality of service (QoS) 

while improving energy efficiency is dynamic virtual–

machine (VM) consolidation using the live migration 

technique [8], [9], whereby VMs are migrated from one host 

mailto:luof@ecust.edu.cn


 

2 
 

to another, for instance, from an underloaded host to another 

while ensuring minimum downtime and no suspension or 

performance degradation; in this framework, idle hosts are 

switched to the sleep or a low-power mode, based on their 

actual resource requirements. However, it has been reported 

that the aggressive migration process can cause performance 

degradation and SLA violation [39], due to the dynamic 

resource usage patterns in service applications.  

In our previous work [40], we proposed an energy-aware 

VM consolidation method, named BS-MISR, to achieve the 

balance between energy consumption and performance. 

However, the BS-MISR had several limitations: (1) it 

employed the current value of resource utilization, which 

may result in inaccurate prediction of application load and 

cause unnecessary VM migration; (2) BS-MISR mainly 

considered factors such as CPU utilization and memory, but 

not the performance-to-power ratio (PPR) factor in relation to 

the various heterogeneous hosts; (3) BS-MISR only focused 

on the two stages of VM selection and VM placement in the 

process of resource consolidation. 

As a matter of fact, a high level of PPR can help reduce 

energy consumption without degrading the performance of 

the cloud data center. Figure 1 illustrates the impact of low 

and high PPR under two scenarios: (1) consolidation of VMs 

on hosts with low PPR; and (2) consolidation of VMs on 

hosts with high PPR. In Figure 1, there are four hosts; two 

are HP ProLiant DL360 G7 (Server1 and Server2), and the 

other two are HP ProLiant DL360 G9 (Server3 and Server4). 

Each host has a VM. The average PPR of the HP ProLiant 

DL360 G7 and HP ProLiant DL360 G9 are 3329 and 10118, 

respectively. Assuming that each VM requires the same 

amount of resource, the workload of HP ProLiant DL360 G7 

and host HP ProLiant DL360 G9 are 15% and 5%, 

respectively. When the CPU utilization alone is taken into 

consideration in the process of VM consolidation, Server3 

and Server4 will be detected as under-loaded, and to 

minimize the number of active hosts, all the VMs will be 

consolidated on Host Server1 or Server2, making the energy 

consumption of all the hosts equal to 142 W. In contrast, if 

considering both the PPR and the CPU utilization of the 

different hosts, the system will consolidate all the VMs in 

Server3 or Server4, and the total energy consumption would 

be 101 W (energy consumption and PPR values of the hosts 

are provided by SPECpower benchmark [10]). Although the 

number of active hosts in both approaches is the same, the 

energy consumption in the second approach is 28.9% lower 

than that of the first approach. Thus, it is evident that the PPR 

is an influential factor in the context of energy-aware 

resource management. 

In this study, by taking both factors, namely predicted 

resource utilization and PPR of heterogeneous hosts, into 

account, we propose a novel adaptive framework for VM 

consolidation that resolves the trade-off between the energy 

consumption and application performance. The main 

contributions of this paper are as follows: 

• A novel workload prediction model built on the moving 

average (MA) and the interquartile range (IQR) 

techniques to predict the resource usage in decision-

making. The proposed model improves the prediction 

accuracy by considering the degree of dispersion of 

resource utilization, and it reduces the frequency of VM 

migrations caused by abruptly changing the workload.  

• A novel host overload detection algorithm based on the 

residual available computing capacity (RACC) 

evaluation model that can set adaptive CPU upper 

thresholds for heterogeneous hosts, according to the PPR 

of the host. 

• A multi-criteria host underload detection algorithm using 

Z-score [26] technique by considering both the hosts' 

CPU utilization and power efficiency. 

• A VM selection approach, called Minimum Data Transfer 

(MDT), based on dynamic programming, which can deal 

with the resource shortage effectively, and minimize the 

data transfer during VM migrations. 

 
 
FIGURE 1 VM Consolidation on Different PPR Hosts 

The remainder of this paper is organized as follows. In 

Section II, the related works are discussed. The proposed VM 

consolidation framework is introduced in Section III. The 

key stages of the VM consolidation framework design are 

proposed in Section IV. Evaluation metrics including energy 

consumption, SLA violations (SLAV), Energy-SLA violations 

(ESV), and the total amount of transmitted data are discussed 

in detail in Section V. The simulation setup and performance 

evaluation are described in Section VI. Finally, Section VII 

concludes the paper and highlights the future work.  

II. RELATED WORK 

There is a wide range of studies that address the VM 

consolidation problem (VMCP) for balancing energy and 

performance in large cloud data centers. In this section, 

previous literature regarding the energy-aware management 

is discussed.  

Some studies that use heuristics to solve the VMCP are [9], 

[11], [14], [17], [19]. For example, Beloglazov et al. in [9] 

proposed several metrics to rank hosts using an adaptive 



 

3 
 

upper bound method based on the statistical analysis of 

historical CPU data. They divided the process of VM 

consolidation into four steps: (1) host overload detection, (2) 

host underload detection, (3) selection of VMs from 

overloaded hosts and (4) finding new placement for the VMs. 

The authors also proposed several adaptive heuristics for all 

the steps: median absolute deviation (MAD), IQR, and local 

regression (LR) for Step 1; simple method (SM), considering 

only the CPU utilization for Step 2; minimum migration time 

(MMT), random choice and maximum correlation (MC) for 

Step 3; power-aware best-fit decreasing (PABFD) [12] for 

Step 4. Their experimental results showed that the best 

combination of all the above methods is 

(LR/MMT/SM/PABFD); however, the underload detection 

algorithm only accounts for the CPU utilization of the 

physical host without considering the characteristics (such as 

quantity, memory utilization, etc.) of the VMs, which can 

lead to an increase in the number of VMs migrated and 

amount of data transmission in the consolidation process. 

Building upon the work in [9], Horri A et al. [14] proposed 

two novel heuristics for underload detection and VM 

placement. In the detection phase of the underloaded host, 

the authors extended the SM by considering the number of 

VMs on the host, thereby reducing the SLA violations. In the 

VM placement phase, they introduced an efficient QoS-

aware algorithm based on both the host utilization and 

minimum correlation between the VMs. Experimental results 

showed that the above algorithms significantly outperformed 

LR/MMT/SM/PABFD [9]. Similarly, an online resource 

management policy that reduces energy consumption and 

minimizes the number of migrations in cloud environments 

was proposed in [17]. The authors introduced a new 

prediction approach to selecting the VMs by exploiting the 

MA technique for host overload detection and multi-criteria 

decision making algorithms. They also proposed an effective 

technique for calculating the weights of the CPU, RAM, and 

bandwidth. However, their approach carries the risk of 

resource losses because, in the overload detection phase, they 

assumed that the weights of the resource in different 

dimensions were the same, without considering the 

heterogeneity of physical resource. 

A novel VM consolidation approach to obtaining energy, 

QoS, and temperature balance in cloud environments was 

proposed in [19]. Unlike other research, they categorized the 

hosts based on operations per second per watt; then, they 

calculated the temperature of the optimum host that had a 

workload of 90% in the data center and designated this 

temperature as the upper threshold for other hosts. However, 

the host's temperature is related not only to the workload but 

also to the lifetime of the hardware. Thus, as the hardware, 

especially the fan, ages, the temperature of the CPU will rise 

sharply. Therefore, it is not ideal to use temperature as the 

threshold when performing thermal-aware consolidation 

practically. 

Several studies have formulated the VMCP as a variable-

size bin-packing problem [15], [18], [27], where hosts are 

conceived as bins and VMs are conceived as items. For 

instance, [15] considered the VMCP as a three-dimension 

bin-packing problem and solved it using four variants of the 

best-fit decreasing algorithm. In contrast to existing studies, 

the authors applied exact algorithms to VMCP. Although the 

devised models and exact algorithms can solve large-scale 

instances, they cannot capture future mega-scale data centers. 

H. Inkwon et al. [18] considered the VMCP as a multi-

capacity stochastic bin-packing problem and efficiently 

solved it using a heuristic method. The authors treated the 

resource demands of VMs as random variables with known 

means and standard deviations and circumvented 

performance bottlenecks by calculating their correlation. 

However, the authors created a correlation matrix using a 

random function and assumed that there was no pattern in the 

correlation matrix; thus, their approach is unsuitable for 

specific applications that have target service models.  

Some other studies used bio-inspired and nature-inspired 

algorithms, such as PSO [16], [27], GA [20], and ACO [30], 

[31]. The authors in [20] proposed a hybrid approach of GA 

and PSO called HGAPSO for resource allocation and VMs 

migration, which can not only save the energy consumption 

and minimize the wastage of resource but also avoid SLA 

violation at the cloud data center.  Zhihua Li et al. [21] 

developed a discrete differential evolution algorithm to 

search for the global optimum solution for VM placement. N. 

Sharma et al. [27] focused on the key goals of multi-

objective VM allocation based on PSO and VM migration 

to reduce energy consumption, resource wastage, and SLA 

violations. However, these intelligent evolutionary 

algorithms are sensitive to the parameters and require 

artificial adjustment according to the system status. Therefore, 

the cost of parameter optimization is high, and orchestrating 

better trade-off between multiple objectives is time-

consuming, which is unsuitable for the large-scale 

infrastructure-as-a-service (IaaS) cloud platform. 

A few schemes applying predictive models, and various 

host overload approaches have been proposed [28], [29], [42]. 

F. Fahimeh et al. [28] proposed a regression-based model to 

approximate the future CPU and memory utilization of VMs 

and PMs for energy-aware VM consolidation. The authors in 

[29] developed a deep learning-based adaptive window size 

selection method, dynamically limiting the sliding window 

size to capture the trend for the latest resource utilization, and 

then build an estimation model for each trend period. 

However, it is necessary to improve the prediction accuracy 

of those aformentioned methods through the simulation-

based learning that cannot be implemented by IaaS cloud 

providers, such as Amazon EC2. 

It is necessary to reiterate at this juncture that the major 

weakness of all the aforementioned approaches is their 

failure to take the variation in the PPRs of the heterogeneous 

infrastructures in resource management into consideration. 

To address this limitation, we propose a novel adaptive 

framework for dynamic VM consolidation based on both the 

predicted utilization of resource and the PPR of the hosts. 

The proposed framework exploits the prediction model to 

determine the overloaded hosts based on the RACC 



 

4 
 

evaluation model, performs the VM selection based on the 

minimum data-transfer algorithm, detects the underloaded 

hosts using the Z-score technique. Finally, during the live 

migration, the proposed VM placement algorithm gathers 

VMs from candidate hosts to be mapped in a certain manner 

in order to minimize the number of active low-PPR hosts and 

maximize the resource utilization of the high-PPR hosts. 

III. THE PROPOSED FRAMEWORK FOR VM 
CONSOLIDATION 

The proposed dynamic VM consolidation framework is 

shown in Fig. 2. It consists of four layers including: user 

request, global manager, cluster manager, and the shared 

cloud storage layers. Different from our previous work [40], 

we have constructed the workload prediction module in the 

global manager, and developed a new RACC model as a 

separate module to support host status detection. In addition, 

we designed the VM migration module in the cluster 

manager, which enhanced the decoupling between the global 

manager and cluster manager. 

S 1 S i S N

VM Allocator
RACC

Calculator

Global manager

VM 1

Host1 Host2 Host m...

Cluster K Cluster manager

......

VM 2 VM m

...

shared cloud storage  

Requests

Users

...

S 2

Host Detector Workload PredictorVM Selector

VM Monitor

VM 1 VM 2 VM n

 
FIGURE 2 Proposed Dynamic VM Consolidation Framework (Adapted 
from our previous work [40])  

• User request layer: The user request layer is an interface 

between the cloud service provider and consumers. It is 

responsible for receiving requests and establishing the 

SLA based on the consumer’s preferences. If the SLA 

negotiation is successful, the user request layer sends the 

consumer requests to the global manager layer. 

• Global manager layer: It consists of four key components. 

The workload predictor gathers the information from the 

cluster manager and predicts the resource utilization of 

each physical host based on the developed prediction 

model. The host detector determines when a host is 

overloaded or underloaded, based on the proposed 

detection algorithms. The VM selector determines the 

VMs that should be migrated from an overloaded host 

based on the proposed VM selection algorithm. The VM 

allocator issues commands for the optimization of the 

VMs’ placement, based on the proposed VM placement 

algorithm. 

• Cluster manager layer: The cluster manager continuously 

monitors the resource utilization of the hosts in the 

cluster and resizes the VM according to their resource 

needs. The VM Monitor (VMM) resizes and migrates the 

VMs to other hosts.  

• The shared cloud storage layer: A shared cloud storage 

system saves data, facilitates data-sharing between the all 

hosts, and provides users with a shared cloud storage 

resource; it also enables rapid live migration of the VMs. 

We adopt the VM consolidation procedure defined in [9] 

that splits the VMCP in cloud data centers into four stages:  

(1) Overload detection: The host detector examines the 

physical hosts one by one, and using the overloading 

detection algorithm, determines whether a host is 

overloaded; 

(2) VM selection: If it is detected that a host is overloaded, 

the VM selector selects the VMs to be migrated from 

the overloaded host using the VM selection algorithm 

to eliminate hotspots; 

(3) VM placement: Once the list of VMs to be migrated 

from the overloaded hosts is compiled, the VM 

allocator is invoked to find a new placement for the 

VMs to be migrated based on the VM placement 

algorithm; 

(4) Underload detection: The host detector determines 

underloaded hosts using the underload detection 

algorithm, and the VM allocator finds a new 

placement for all the VMs from the underloaded hosts.  

Owing to the heterogeneity of the cloud resource and 

variety of applications in the cloud environment, the 

workload on the hosts changes dynamically over time. It is 

critical to develop accurate workload prediction models for 

effective resource management and allocation. Therefore, the 

main difference between our VM consolidation framework 

and the one proposed in [9] is that the values of resource 

utilization used in the algorithms of VM consolidation are 

predicted using the workload predictor, rather than based on 

the current usage. 

Through the four steps above, the VM consolidation 

framework can return a combined migration map that 

includes the information about the VM placement. Assuming 

that it takes one byte to record the mapping relationship 

between each VM and a physical machine, the scheduling 

interval of the consolidation procedure is 𝑇𝑐 , and the data 

collection period of the workload predictor is 𝑇𝑑. Each load 

record includes five fields: timestamp, server ID, CPU, 

memory, and bandwidth. The data size of each load record 

occupies c bytes, and the additional communication 



 

5 
 

complexity generated by the consolidation framework is 

O(𝑛 + 𝑐𝑚𝑙
𝑇𝑐

𝑇𝑑
), where 𝑙 denotes the length of the historical 

load data, and 𝑚 and 𝑛 represent the number of servers and 

VMs, respectively.  

IV. DESIGN OF KEY COMPONENTS OF PROPOSED 
FRAMEWORK 

A.  WORKLOAD PREDICTOR 

Workload predictor is used for predicting usage of all 

resource types of physical hosts based on the proposed 

prediction model in this work. 

As there is a strong correlation between the change in host 

utilization and time [23], we have proposed a workload 

prediction model called weighted moving average (WMA) 

that is predicated on the MA [24] and the IQR techniques. 

The MA technique is a well-known time-series prediction 

technique for various applications [24], [25]. However, the 

default MA technique uses a simple linear model for 

forecasting based on the current values [17]. Furthermore, it 

is highly sensitive to noise and instantaneous spikes. To 

address this issue, the IQR (a statistic measure of variability 

involving the division of data into quantiles, that is, four 

equal parts: 𝑄1 , 𝑄2 , 𝑄3  and 𝑄4 ) is used to increase the 

robustness of the model.  

Mathematically, the WMA can be represented as follows: 

𝑊𝑀𝐴 ≔< 𝑈𝑡
𝑟,  𝑃𝐹, 𝑢̂𝑡+1

𝑟 > 
(1) 𝑈𝑡

𝑟: The input of the parameter of the WMA that is a 

set of utilization history of resource 𝑟 (such as CPU, 

memory, and bandwidth) at time 𝑡 . Let 𝑢𝑡
𝑟  represent 

the utilization of resource 𝑟 at time 𝑡; then the input 

parameter of the WMA can be formulated as 𝑈𝑡
𝑟 =

{𝑢𝑡−𝑙+1
𝑟 , … , 𝑢𝑡−1

𝑟 , 𝑢𝑡
𝑟} , where 𝑙  denotes the history 

length.  

(2) 𝑢̂𝑡+1
𝑟 : The output parameter of the WMA representing 

the predicted utilization of resource 𝑟 at time 𝑡 + 1. 

(3) PF: The prediction formula of the WMA. To enhance 

the robustness and prediction accuracy of the WMA, 

we first rank the set 𝑈𝑡
𝑟  in ascending order and find the 

first, second, and third quartiles of 𝑈𝑡
𝑟 , respectively. 

Then, we divide the values of 𝑈𝑡
𝑟  into a high-value set, 

𝐻, and a low-value set, 𝐿, using the second quartile 𝑄2. 

Finally, the final predicted utilization value 𝑢̂𝑡+1
𝑟  is 

computed by calculating the average of two separate 

sets with different weight values. The model 

formulation of WMA is defined as follows: 

        

$
 

 

2

1
1

2

1

|

| |

| < 

         (1 )  
| |

  


  



 

  





t
r r

i i
r

i t l
t

t
r r

i i

i t l

u u Q

u k
H

u u Q

k
L

            (1) 

            1  3

4 0 4 0

Q - QIQR
k = =

Q - Q Q - Q
                            (2) 

where the coefficient 𝑘 represents the weight of the higher 

values exceeding 𝑄2 in 𝑈𝑡
𝑟 , 𝑢𝑖

𝑟 is the 𝑖-th utilization value of 

𝑟  in the historical dataset, and 𝑄4  and 𝑄0  represent the 

maximum and minimum value of the time-series, 

respectively.   

According to (1) and (2), we can observe that the 𝐼𝑄𝑅 is 

directly proportional to the weight of H, and by extension, 

𝑢̂𝑡+1
𝑟 , as well. This is because a high 𝐼𝑄𝑅 corresponds to a 

greater dispersion of the CPU utilization, thus increasing the 

likelihood of the CPU utilization to reach 100%. Therefore, 

the main idea of the proposed WMA is to predict the 

workload of the hosts precisely, depending on the historical 

degree of dispersion of resource utilization.  

When the WMA is running, the workload predictor needs 

to communicate with the cluster manager to obtain the 

historical load data of each server. The computational 

bottleneck of the prediction model lies in sorting the 

historical load data. Because the length of the historical data 

is relatively small, the quicksort algorithm is adopted, and its 

worst-case time complexity and space complexity are O(𝑙2) 

and O(𝑙),  respectively, where 𝑙  denotes the history length. 

Assuming that the data size of each load record occupies c 

bytes, then the communication complexity of the WMA can 

be formulated as O(𝑐 ∗ 𝑙 ∗ 𝑚), where m denotes the number 

of the servers in the cloud platform. In this study, since the 

value of the load data includes five fields (timestamp, server 

ID, CPU, memory and bandwidth), each field can be 

expressed as a real number, which usually occupies a small 

fixed number of bytes in the computer. This means that the 

data size c can be expressed as a fixed constant, and the final 

communication complexity can thus be expressed as 

O(𝑙 ∗ 𝑚). 

Regarding the history length, 𝑙, in real scenarios, although 

increasing the length of the historical load data will be 

beneficial to the accuracy of load forecasting, it can be seen 

from the above complexity analysis that the computational 

complexity of WMA will increase exponentially with the 

increase in 𝑙 ; therefore, we suggest that 𝑙  should not be 

excessively large (30 in our experiment). With respect to data 

size, as analyzed previously, the data size of the load can be 

expressed as a fixed constant; therefore, it will not have a 

significant impact on the communication complexity of the 

WMA. In addition, when the server number of the data 

center is too large, we can consider implementing WMA 

load-balancing in a distributed mode. 

B.  HOST DETECTOR 

The host detector is responsible for determining when a host 

is overloaded or underloaded based on the proposed 

detection algorithms. 

1) OVERLOAD DETECTION ALGORITHM 

The key of the overload detection algorithm is to determine a 

reasonable upper threshold for the host, based on the current 

RACC of the host. Because the CPU characteristics of each 



 

6 
 

host, such as frequency and number of cores, varies, it is 

unreasonable to evaluate the RACC of the host relying solely 

on CPU utilization. In this work, we determine the RACC 

based on the power consumption and PPR as follows: 

    (100%) ( )
i i i i iH H H H HRACC P P U PPR         (3) 

where 𝑈𝐻𝑖
 represents the current CPU utilization of host 𝐻𝑖; 

𝑃𝐻𝑖
(100%) and 𝑃𝐻𝑖

(𝑈𝐻𝑖
) represent the energy consumption 

when the host CPU utilization is full and 𝑈𝐻𝑖
, respectively; 

𝑃𝑃𝑅𝐻𝑖
 represents the PPR of 𝐻𝑖 . All the parameters in Eq. (3) 

can be obtained by conducting experiments on the host using 

SPECpower_ssj2008 [10]. 

Based on the RACC calculation formula, Eq. (3), we 

propose a novel host overload detection algorithm, named 

RACC-aware Threshold (RACCT), that uses the RACC, 

instead of the CPU utilization, as the upper threshold of the 

host. The pseudo-code of the RACCT is shown in Algorithm 

1. First, it classifies all the hosts in the data center based on 

the PPR, and finds the optimum host 𝐻𝑜𝑝𝑡  with the 

maximum PPR value; then, the algorithm sets a fixed value 

of upper CPU utilization threshold, 𝑈𝑇𝐻𝑜𝑝𝑡
, for the 𝐻𝑜𝑝𝑡 , and 

calculates the 𝑅𝐴𝐶𝐶𝐻𝑜𝑝𝑡
, according to Eq. (3), when the 𝐻𝑜𝑝𝑡  

load is 𝑈𝑇𝐻𝑜𝑝𝑡
. Finally, using the 𝑅𝐴𝐶𝐶𝐻𝑜𝑝𝑡

 as the upper 

threshold for all the hosts in the data center, that is, we 

perform a RACC-aware consolidation on another host, if it is 

detected that the RACC of a host is lower than 𝑅𝐴𝐶𝐶𝐻𝑜𝑝𝑡
, 

the host will be regarded as overloaded. Considering the 

strong computing capacity of the 𝐻𝑜𝑝𝑡  and the advantage of 

the prediction model (WMA), that is, the ability to 

effectively eliminate the instantaneous spikes, it is suggested 

that 𝑈𝑇𝐻𝑜𝑝𝑡
 be set to close to 100% to fully maximize the 

computing resource of 𝐻𝑜𝑝𝑡 . The PPR of the host is inversely 

proportional to the upper utilization threshold, because a 

lower performance increases the likelihood of the CPU 

utilization reaching 100%, thus resulting in SLA violations. 

The complexity of the host overload detection is 𝑂(𝑚) , 

where 𝑚 is the number of servers.  

Algorithm 1: Host overload detection 

Input: Host List 
Output: Overload Host List 

1. PPRHopt
← 𝑀𝐼𝑁 

2. For each host in Host List do { 

3.     If PPRhost > PPRHopt
{ 

4.         PPRHopt
= PPRhost 

5.         Optimum Host = host 
6.     } 

7. } 

8. RACCHopt
→ Calculate RACC of Optimum Host  

                      When the Load is UTHopt
 

9. For each host in Host List do { 

10.     RACChost ← Calculate RACC of host at time t 
11.     If RACChost < RACCHopt

 { 

12.         host is Overload 
13.         Add host to Overload Host List 

14.     } 

15. } 
16. Return Overload Host List 

2) UNDERLOAD DETECTION ALGORITHM 

The simplest and commonly used method for determining 

underloaded hosts is called the simple method [9], [17]; it is 

based on the minimum CPU utilization. However, as 

mentioned in earlier sections, due to heterogeneous hosts 

with different CPU capacity and power efficiency, 

determining underloaded hosts depends on not only CPU 

utilization but also the PPR of a host.    

In this study, we propose a multi-criteria underloaded host 

detection (MCUHD) algorithm based on the Z-score [26] that 

scores each host based on CPU utilization and PPR, and the 

host with the highest score is detected as an underloaded host. 

The formula is defined in Eq. (4), where both the 𝑈𝐻𝑖
 and the 

𝑃𝑃𝑅𝐻𝑖
 represent the cost criterion (a lower value is better), 𝑈 

and 𝑃𝑃𝑅̅̅ ̅̅ ̅̅  represent the mean value of the CPU utilization and 

PPR of all hosts in the data center, respectively. 

  

 

 

2

1

2

1

1

               
1

i

i

j

i

j

H

H
N

H

j

H

N

H

j

U U
Score

U U
N

PPR PPR

PPR PPR
N






 












        (4) 

The pseudo-code of the MCUHD is shown in Algorithm 2; 

its complexity is 𝑂(𝑚), where 𝑚 is the number of hosts. The 

benefits of the MCUHD is its ability to detect underload host 

with minimum CPU utilization and PPR, to ensure the 

minimization of energy consumption and performance 

degradation. 

Algorithm 2: Host underload detection 

Input: Host List 

Output: Under loaded Host 

1. Highest Score ← 𝑀𝐼𝑁 
2. For each host in Host List do { 

3.     If Overload Host List Contains host { 

4.         Continue 

5.     } 

6.     If Switched-Off Host List Contains host { 
7.         Continue 

8.     } 

9.     Scorehost ← score the host according to Eq. (4) 

10.     If Scorehost > Highest Score{ 

11.         Highest Score = Scorehost 

12.         Under loaded Host = host 
13.     } 

14. } 
15. Return Under loaded Host 

C.  VM SELECTOR 

Once an overloaded host is detected, the VM selector will 

select VMs from that host and migrate them to other hosts. 

Most existing approaches are heuristics based on the greedy 

strategy, often leading to suboptimal results.  

In this study, we formulate the VM selection problem 

(VMSP) as a 0-1 knapsack problem (0-1KP) and develop a 

VM selection algorithm, called MDT, based on dynamic 



 

7 
 

programming to obtain the optimal solution in polynomial 

time. 

1) PROBLEM FORMULATION 

The objective of the VM selection algorithm is to quickly 

eliminate the hotspots in the overloaded host while 

minimizing the duration of live migration, which is 

dependent on the amount of data transfer [9]. Therefore, the 

constraint optimization model for the VMSP can be defined 

as follows: 

 

1

1 1

      min  

. .

     ,   0,1 ,1



 

    



 

n

i i

i

n n

i i i i

i i

v x

s t

w w x C x i n

    (5)          

where 𝐶  is the upper CPU-utilization threshold of the 

overloaded host that can be calculated using Eq. (3); 𝑥𝑖 

represents the question of whether or not to select the 𝑣𝑚𝑖 

and migrate from the overloaded host; 𝑥𝑖 = 1  indicates 

“move”, and 𝑥𝑖 = 0  indicates “retain”; 𝑤𝑖  and 𝑣𝑖  are the 

CPU and memory utilization of 𝑣𝑚𝑖, respectively. 

Lemma 1. If 𝑦𝑖 = 1 − 𝑥𝑖, then 
1

min
n

i i

i

v x


  is equivalent to 

1

max
n

i i

i

v y


 . 

Proof. Because 
1 1 1

n

i i

i

n n

i i i

i i

v x v y v
  

    , and 
1

n

i

i

v


 is a 

constant representing the total amount of memory used by 

the VMs that reside on the overloaded host. Therefore, when 

1

n

i i

i

v x


 takes the minimum value, 
1

n

i i

i

v y


  gets the 

maximum value, and vice versa. Therefore,
1

min
n

i i

i

v x


  is 

equivalent to 
1

max
n

i i

i

v y


 . 

According to Lemma 1, the constraint optimization model 

of VMSP can be rewritten as follows: 

         

 

1

1

      max  

. .

     ,   0,1 ,1





   





n

i i

i

n

i i i

i

v y

s t

w y C y i n

           (6) 

where can be formally described as a 0-1KP: given the 

knapsack capacity 𝐶 (𝐶 > 0), the weight and value of the i-

th item 𝑤𝑖  and 𝑣𝑖  (𝑤𝑖 > 0 , 𝑣𝑖 > 0 , 1 ≤ 𝑖 ≤ 𝑛) , it is 

necessary to find out a n-element 0-1 vector 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑛} , 𝑦𝑖 ∈ {0,1} , 1 ≤ 𝑖 ≤ 𝑛 , which makes 

∑ 𝑤𝑖𝑦𝑖  
𝑛
𝑖=1 ≤ 𝐶; it is also necessary to maximize ∑ 𝑣𝑖𝑦𝑖  

𝑛
𝑖=1 . 

By solving 0-1KP, vector Y can be obtained, and the final set 

of migratable VMs can be achieved through 1⃗ − 𝑌. 

2) THE PROPOSED ALGORITHM FOR VM SELECTION 

We adopt the dynamic programming method introduced in 

[41] to solve the  0-1KP, and on this basis, propose our VM 

selection algorithm, named MDT. In the MDT, the VMs are 

conceived as items; the size of the CPU and memory 

requested by the VM are conceived as the weight and value 

of the item, respectively; the upper CPU utilization threshold 

of the host is conceived as the knapsack capacity. To 

facilitate the solution of the 0-1KP, we referred to the load 

data set in CoMon project [38] and discretized the resource 

utilization of the VM and server into positive integers within 

the range of 0 to 100 by the rounding method. To obtain the 

0-1 vector, 𝑌, the MDT uses matrix V[n][C] to record the 

placement status of the items in a recursive process; the 

calculation formula of the elements in V[n][C] is defined as 

shown in Eq. (7). 

 

0,                                                =0 or =0

[ ][ ] [ 1][ ],                                          

max [ 1][ ], [ 1][ ] ,    j

i

i i i

i  j

V i j V i j j w

V i j V i j w v w




  
     

 (7) 

where V[𝑖][𝑗] represents the maximum value of the first i 

items loaded into the knapsack with a capacity of j. Finally, 

the VMs to be migrated are the items that could not be 

loaded into the knapsack. This approach not only ensures the 

overloaded hosts quickly eliminates the hotspot incurred by 

the CPU shortage but also can minimize the total memory 

consumed by the VMs to be migrated. In other words, we 

restore an overloaded host back to the normal state with the 

minimum amount of data transfer. 

Algorithm 3: VM selection 

Input: Overloaded Host 
Output: Migratable VM List 

1. 𝑉𝑀 𝐿𝑖𝑠𝑡 ← Get VMs From Overloaded Host 
2. 𝑁 ← Obtain Size of VM List 
3. 𝐶 ← Calculate Upper Threshold for Overloaded Host 
4. 𝑌 = {𝑦𝑖|𝑦𝑖 = 0,1 ≤  𝑖 ≤ 𝑁}  
5. For i = 1 to N do { 
6.     For j = 0 to C do { 

7.         If j < 𝑤𝑖 
8.             V[i][j] = V[i-1][j] 

9.         Else 

10.             V[i][j] = MAX(V[i-1][j], V[i-1][j-𝑤𝑖] + 𝑣𝑖) 
11.         } 
12. } 

13. j = C 

14. For i = N to 1 { 
15.     If V[i][j] > V[i-1][j] { 

16.         𝑦𝑖−1 = 1 

17.         𝑗 = 𝑗 − 𝑤𝑖 
18.     } 

19. } 

20. For each 𝑦𝑖 in Y { 

21.     If 1 − 𝑦𝑖 = 1 
22.         Add i-th VM in VM List to Migratable VM List  

23. }    
24. Return Migratable VM List 

The pseudo-code of the MDT is shown in Algorithm 3, 

and its time and space complexity is 𝑶(𝒏 × 𝑪), where 𝒏 is 



 

8 
 

the number of the items (i.e. VMs), and 𝑪 is the capacity of 

the knapsack. 

D.  VM ALLOCATOR 

The objective of the VM allocator is to find a new placement 

for the VMs to be migrated to minimize energy consumption 

due to allocation. 

The VM placement can be seen as a multi-capacity bin-

packing problem [9], [27]. One popular policy used in [9] is 

the PABFD, which sorts all the VM in decreasing order of 

their current CPU utilizations and then allocates each VM to 

a host that triggers the least increase in the power 

consumption following the allocation. However, there is a 

potential problem in this approach. As mentioned earlier, the 

lower the PPR of the host is, the lower the performance, and 

the more likely it is to become overloaded over the next time 

series. The existing PABFD approach does not account for 

the host's PPR when allocating the VM; thus, it is possible to 

assign a VM to a host with a low PPR but a high workload, 

which can increase the frequency of migration. To obtain the 

optimal VM placement, we extend the existing PABFD 

approach by considering the PPR of heterogeneous hosts, 

allocating a VM to a host with a higher PPR while ensuring 

the least increase in energy consumption. The core idea 

behind this is that the high-PPR hosts consume less energy 

per operation, compared to the others, and they have greater 

resource capacity, which can decrease the frequency of live 

migration [19].    

The modified algorithm of PABFD is shown in Algorithm 

4. The complexity of the algorithm is 𝑂(𝑛 × 𝑚), where 𝑚 is 

the number of hosts and 𝑛 is the number of VMs that have to 

be allocated. 

Algorithm 4: VM placement 

Input: Host List, VM List 

Output: Migration Map 
1. Host Categorized Based on PPR 

2. N ← Obtain Number of Host Category 
3. For each VM in VM List { 

4.     Minimum Power ← Max 

5.     Allocated Host ← NULL 
6.     For n=N to 1 do { 

7.         For each host in Category n do { 
8.             If host has Enough Resource for VM { 

9.                 Power ← Estimate Power Consumption caused by this 
                                   allocation 

10.                 If Power < Minimum Power { 

11.                     Minimum Power = Power 
12.                     Allocated Host = host 

13.                 } 
14.             } 

15.         } 

16.         If Allocated Host ≠ NULL { 
17.             Add (VM, Allocated Host) to Migration Map 

18.             Break 
19.         } 

20.     } 

21. } 
22. Return Migration Map 

V. EVALUATION METRICS 

To evaluate the efficiency of the proposed algorithms based 

on four commonly used metrics: energy consumption, live 

migration cost, SLAV, and ESV. 

A.  ENERGY CONSUMPTION 

With the development of multi-core CPUs and virtualization, 

the power consumption ratio of CPUs is constantly 

decreasing [9]. In addition, modern hosts are typically 

equipped with large memory that tend to dominate the power 

consumption in a host [22]. This fact, combined with the 

difficulty of modeling power consumption in modern data 

centers, makes building precisely analytical models a 

complex research problem [9]. Therefore, instead of using an 

analytical model of power consumption by a server, we 

utilize real data on power consumption provided by the 

results of the SPECpower benchmark [10], as shown in 

Table II.  
However, because the workload of the server is not always 

exactly at levels that are integer multiples of 0.1, it is 

necessary to propose a reasonable estimation method to 

obtain the energy consumption of the server functioning at 

any utilization level. Without loss of generality, we assume 

that power consumption increases linearly between two 

adjacent workload values in Table II. Consequently, linear 

interpolation can be used to approximate the energy 

consumption of the server under any workload, as shown in 

Eq.(8).  

   
   ( )


  



h l

l l

h l

P U P U
P U U U P U

U U
         (8)                     

In Eq.(8), U is the given CPU utilization, and 𝑈𝑙 and 𝑈ℎ 

are two adjacent workload values in Table  II satisfy the 

equation, 𝑈𝑙 ≤ 𝑈 ≤ 𝑈ℎ  and 𝑈ℎ − 𝑈𝑙 = 0.1 , 𝑃(𝑈𝑙)  and 

𝑃(𝑈ℎ)  are the energy consumption of the host when the 

workload is 𝑈𝑙 and 𝑈ℎ, respectively. 

                             

  

   

  

   

-1

1

 

1 *

*

              =  * 
2

1 *

2





   
 
 
 
 
 

  
 
 





l

f

T

server
T

s p

N s p

p

n

s p

E P U t dt

P U T n T

P U T n T

T

P U T n T

  (9)                               

According to Eq.(8), the total energy consumption of the 

server during the active period can be calculated using 

Eq.(9), where 𝑈(𝑡)  represents the CPU utilized by the 

server at time t; N (𝑁 ≥ 2 ) is the number of workload 

samples taken when the server is running;  𝑇𝑝  is the 

sampling period; and 𝑇𝑓  and 𝑇𝑙  represent the time of the 

first and last sampling, respectively, in conformity with 

𝑇𝑙 = 𝑇𝑓 + (𝑁 − 1)𝑇𝑝. 



 

9 
 

Finally, the energy consumption of the data center during 

operation can be expressed as Eq.(10), where m is the 

number of hosts in the datacenter, d is the number of days 

over which the experiment is performed, 𝑬𝒔𝒆𝒓𝒗𝒆𝒓(𝒊, 𝒋) 

represents the energy consumption of the i-th server on the j-

th day. 

1 1

( , )
 


m d

datacenter server

i j

E E i j                       (10) 

B.  LIVE MIGRATION COST 

The live migration of VMs makes it possible to transfer a 

VM from the source node to the destination node with 

minimum downtime and no suspension. Although the live 

migration is transparent to end users, it can cause 

performance degradation of applications running in the VM 

[13]. To quantify the cost of live migrations, the migration 

time and performance degradation experienced by a 𝑉𝑀𝑗 are 

given in (11) and (12), as proposed in [9], and the total 

transmitted data during the entire migration is formulated as 

Eq. (13). 

j

j

m

j

M
T

B
                                    (11) 

 
0

0

  

0.1  dt


  
mj

j

t T

d j
t

C u t                    (12)

            
1

n

m j

j

Data M


                       (13) 

where 𝑇𝑚𝑗
 is the time taken to complete the migration, 𝐶𝑑𝑗

 is 

the total performance degradation by 𝑉𝑀𝑗, 𝐷𝑎𝑡𝑎𝑚 is the total 

amount of transmitted data, 𝑡0 is the commencement time of 

migration, 𝑢𝑗(𝑡)  is the CPU utilization of 𝑉𝑀𝑗 ; 𝑀𝑗  is the 

memory consumption of 𝑉𝑀𝑗 ; 𝐵𝑗  is the available network 

bandwidth; and 𝑛 is the number of migrated VMs. 

C.  SLA VIOLATION  

The QoS is an extremely important indicator for assessing 

the cloud platform’s efficiency. Owing to the different 

applications run by VMs applied by different users and their 

varied demands on bandwidth, response time, and throughput, 

it is necessary to define a load-independent metric to evaluate 

the SLAV for the VMs deployed in the data center [17]. In 

this study, a modified version of the SLAV metric proposed 

in [9] is defined in Eq. (14), which is calculated by 

combining the SLA violation time per active host (SLATAH) 

and performance degradation due to migrations (PDM), as 

defined in Eq. (15). 

SLAV SLATAH PDM                         (14)

1 1

1 1
,   PDM=

ji

i j

QN
ds

i ja r

CT
SLATAH

N T Q C 

             (15) 

In the default SLATAH introduced in [9], 𝑇𝑠𝑖
 is defined as 

the total time during which the capacity of the host 𝑖 is taxed 

to the maximum, leading to an SLA violation. In a real 

scenario, however, it is possible that the workload taxes the 

physical node’s capacity to the maximum. but the VM is 

properly provisioned. In addition, oversubscription is a 

common practice in cloud computing; it enables the 

providers to allocate more resource to users beyond the 

actual capacity of their hosts, provided that they do not break 

SLAs. On account of this, we modify the 𝑇𝑠𝑖
 in Eq. (15) into 

the total time during which allocated resource to the VM 𝑖 is 
lower than the user’s requested resource when the host is 

maximally utilized. 𝑇𝑎𝑖
 is the total time of the host 𝑖 being in 

the active state; 𝑄 is the number of VMs; 𝐶𝑑𝑗
 is the estimate 

of the performance degradation of the 𝑉𝑀𝑗  caused by 

migrations; 𝐶𝑟𝑗
 is the total CPU capacity demanded by the 

VM 𝑗 during its lifetime; and 𝑁 is the number of hosts. 

D.  ENERGY-SLAV  

The objective of the dynamic VM consolidation is to 

minimize energy consumption and SLA violations. To 

evaluate the comprehensive performance of the proposed 

algorithms, a metric introduced in [9] that is the product of 

the energy consumption and SLAV is adopted, as shown in 

Eq. (16). 

 datacenterESV E SLAV                          (16) 

VI. EXPERIMENTAL EVALUATION 

To confirm the effectiveness of the proposed method, we 

have performed experimental evaluations in both real and 

simulated environments. In the real environment, we 

implemented our algorithms on a small-scale cloud platform 

built with OpenStack [32], with the aim of proving its 

reliability and superiority in real infrastructure. In the 

simulated environment, we built a large-scale simulation 

cloud platform using CloudSim [33] and experimented with 

our algorithms using real workload datasets to evaluate the 

scalability of the proposed algorithms in large-scale cloud 

datacenters. 

A.  EXPERIMENTAL SETUP 

1)  EXPERIMENTAL SETTINGS — VALIDATION ON 

OPENSTACK IN REAL CLOUD ENVIRONMENT 

To evaluate the reliability and superiority of the proposed 

method in the real cloud datacenter, a heterogeneous cloud 

platform based on OpenStack and Ceph [34] is constructed; it 

consists of one control nodes, six computing nodes, and three 

storage nodes, as shown in Figure 3. The components of the 

global manager layer are deployed on the control node, the 

cluster manager resides on each computing node, and the 

shared cloud storage system is built based on Ceph in the 

storage node.  

The functionality of each component in the proposed 

framework is implemented by invoking OpenStack's Restful 

API using Java language, and the scheduling interval of the 

resource allocation algorithms is set to 10 min. The cluster 

manager collects the host resource usage information using 



 

10 
 

OSHI [35], a free JNA-based operating system and hardware 

information library for Java, and it samples the VM resource 

usage information through the ceilometer [36], the native 

resource monitoring component of OpenStack. The data 

acquisition intervals of the physical machines and the VM 

are 30 s and 3 min, respectively. 

OpenStack

Keystone,Glance,Neutron,N

ova-api...

MySql

Global Manager

Host,Detector ,VM 

Selector...

Computer1

Nova-compute , 

VMM, Local 

Manager...

Computer2

Nova-compute , 

VMM, Local 

Manager...

Computer6

Nova-compute , 

VMM, Local 

Manager...

   

Ceph-Monitor OSD1 OSD2

External Network Management Network Storage Network

External Network Management Network Storage Network

 
FIGURE 3  Cloud Platform Architecture in Real Environment 

TABLE I 
CHARACTERISTICS OF HOSTS 

Host CPU model 

(Intel) 

Cores Frequenc

y (MHz) 

RAM 

(GB) 

PPR 

Computer1/2 

Computer3/4 
Computer5/6 

E5-2660 

E5-2470 
  E5-2609 

40 

24 
12 

2200 

2300 
2000 

256 

32 
128 

5244 

3501 
2019 

TABLE II 

POWER CONSUMPTION OF HOSTS FOR DIFFERENT LOAD LEVELS IN WATTS 

Load Computer1/2 Computer3/4 Computer5/6 

Idle 

10% 
20% 

30% 

40% 
50% 

60% 

70% 
80% 

90% 

100% 

97.1 

107 
118 

128 

138 
151 

163 

176 
189 

217 

232 

52.7 

61.5 
66.9 

72.9 

80.8 
90.8 

102 

112 
119 

143 

156 

99.6 

138 
153 

169 

187 
209 

231 

249 
278 

311 

325 

The characteristics of the computing nodes are presented 

in Table I. The energy consumption data of the physical 

machines, as shown in Table II, are obtained by performing 

experiments on the host with SPECpower_ssj2008 [10]. In 

Table III, three types of VMs specifications that correspond 

to Alibaba ECS VMs, are used (memory was reduced 

because of bandwidth limitations in the experimental 

environment). 

TABLE III  
SPECIFICATIONS OF VMS IN REAL ENVIRONMENT 

To create opportunities for dynamic consolidation, a 

random amount of CPU pressure was imposed on the VM at 

each moment of state-changes using LinuxStress [37]. 

Because the exponential distribution is frequently used to 

model the interval between the state-changes in continuous 

processes, we sample from an exponential distribution with a 

given rate parameter (in this experiment, we assume that the 

CPU usage of a VM changes once every 30 s) to determine 

the time of the next CPU utilization change. 

To verify the effectiveness of the proposed algorithms in 

different resource allocation states of the cloud platform, we 

divide the experimental process into three phases, each 

lasting for one day, as shown in Table IV. 

Under-Subscription: In this phase, 35 VMs with different 

specifications are launched, and the number of CPU core 

requests was 90, less than the total number of CPU cores of 

the cloud platform. 

Adequate-Subscription: In this phase, 56 VMs with 

different specifications are launched, and there were 152 

CPU core requests, equivalent to the total number of CPU 

cores of the cloud platform. 

Over-Subscription: In this phase, 75 VMs with different 

specifications are launched, and the number of CPU core 

requests are 200, greater than the total number of CPU cores 

on the cloud platform. 

During the experiment, the history length of the time series 

used in the WMA policy is 30; the upper threshold of CPU 

utilization for the optimum host is set to be 96%, and the 

over-allocation ratio of CPU resource in OpenStack is 

defined as 1.5. To ensure repeatable experimental 

environment, the initial placement of the VMs conformed to 

the default policy of OpenStack. 

TABLE IV 
EXPERIMENTAL PROCESS IN REAL ENVIRONMENT 

Experimental 

Period 

Number and 

Flavor of VM Requested 

CPU Cores 

Resource 
Allocation 

Phases Num Flavor 

1st day 

20 Micro 

90 
Under-

Subscription  
10 Small 
5 Med 

2nd day 

26 Micro 

152 
Adequate-

Subscription  
20 Small 
10 Med 

3rd day 

40 Micro 

200 
Over- 

Subscription  
20 Small 
15 Med 

2) EXPERIMENTAL SETTINGS—VALIDATION ON 

CLOUDSIM  

Scalability is an important metric for evaluating the 

effectiveness of algorithms. Due to the difficulty of 

conducting repeatable large-scale experiments using real 

infrastructures, simulations have been chosen as the realistic 

way to evaluate the scalability of the proposed algorithms. 

Flavor Type Med Small Micro 

Cores 4 3 2 
Memory (MB) 

Disk (G) 

1024 

30 

528 

15 

256 

10 

javascript:;
javascript:;


 

11 
 

CloudSim, a commonly used simulation tool in cloud 

computing, has been chosen for our simulation. In CloudSim, 

we first simulated a large-scale computing cluster composed 

of 900 heterogeneous physical hosts, including 300 HP 

ProLiant DL360 Gp4, 300 HP ProLiant ML110 G4, and 300 

HP ProLiant ML G5, to focus on the performance of the 

proposed approach in general scenarios. Then, a cloud 

computing environment with three geographically distributed 

clusters is constructed to focus on the specific 

communication overhead of the multiple data centers.  

The specifications of each cluster and characteristics of the 

hosts are presented in Tables V and VI, respectively. Each 

host is modeled to have 1 GB/s network bandwidth, and the 

bandwidth between different clusters is 100 MB/s. The 

energy consumption data is provided by the results of the 

SPECpower benchmark [10]. As shown in Table VII, five 

types of VMs specifications that correspond to Amazon EC2 

are used. 

TABLE V 
SPECIFICATION OF CLUSTERS IN SIMULATED ENVIRONMENT 

Cluster ProLiant Gp4 ProLiant G4 ProLiant G5 

Cluster1 

Cluster2 
Cluster3 

0 

100 
300 

0 

100 
0 

300 

100 
0 

TABLE VI 

CONFIGURATION OF HOSTS IN SIMULATED ENVIRONMENT 

Host CPU model Cores Frequency 

(MHz) 

RAM 

(GB) 

ProLiant Gp4 

ProLiant G4 
ProLiant G5 

Intel 930 

Intel 3040 
Intel 3075 

2 

2 
2 

3400 

1860 
2600 

6 

4 
4 

TABLE VII 

SPECIFICATION OF VMS IN SIMULATED ENVIRONMENT 

VM Type Large Med Small Micr

o 

Nano 

Processor (Mips) 
Memory (MB) 

Bandwidth(GB/s) 

2500 
2048 

1 

2000 
2048 

1 

1000 
1024 

1 

500 
1024 

1 

250 
512 

1 

It was important to use a real workload for the simulation 

experiment; thus, we have used real workload traces with a 

sampling time of 30 days, as obtained from the CoMon 

project [38] and Google clusterdata-2011-2 [43] to evaluate 

the scalability of our approach. In the dataset, the VMs’ 

workload-trace usage data is reported every 5 min from 

thousands of VMs, and the date of each day is shown in 

Table VIII. It is worth mentioning that the tasks in Google 

workload traces in real environment are not running within 

VM, but in Linux containers. To facilitate simulation, we 

characterize and cluster the tasks of Google workload traces 

based on the job ID and machine ID of the tasks and assume 

that each job consisting of tasks with the same job ID is 

assigned to run in a separate VM. During the simulations, 

each VM is randomly assigned a workload trace from one of 

the VMs from the corresponding day. The history length of 

the time series used in the WMA technique is equal to 30; the 

upper threshold of CPU utilization for the optimum host is 

set to 98%. 

TABLE VIII 
WORKLOAD DATA CHARACTERISTICS  

workload 

datasets 
Date 

Number of 

VMs 
Mean (%) SD (%) 

CoMon 
Project  

Workload  

Trace (see 
[9]) 

03/03/2011 

06/03/2011 
09/03/2011 

22/03/2011 

25/03/2011 
03/04/2011 

09/04/2011 

11/04/2011 
12/04/2011 

20/04/2011 

1052 

898 
1061 

1516 

1078 
1463 

1358 

1233 
1054 

1033 

12.31 

11.44 
10.70 

9.26 

10.56 
12.39 

11.12 

11.56 
11.54 

10.43 

17.09 

16.83 
15.57 

12.78 

14.14 
16.55 

15.09 

15.07 
15.15 

15.21 

Google 

Workload  

Trace 

1st day 
2nd day 

3rd day 

4th day 
5th day 

6th day 

7th day 
8th day 

9th day 

10th day 
11th day 

12th day 

13th day 
14th day 

15th day 

16th day 
17th day 

18th day 

19th day 
20th day 

1657 
1657 

1657 

1657 
1657 

1657 

1657 
1657 

1657 

1657 
1657 

1657 

1657 
1657 

1657 

1657 
1657 

1657 

1657 
1657 

7.22 
6.93 

6.96 

6.86 
6.93 

6.86 

7.01 
6.99 

6.96 

6.84 
6.9 

6.92 

6.92 
6.89 

6.9 

6.83 
6.83 

6.83 

6.94 
6.97 

13.36 
12.64 

12.72 

12.52 
12.63 

12.5 

12.9 
12.7 

12.76 

12.46 
12.77 

12.68 

12.57 
12.55 

12.55 

12.44 
12.59 

12.58 

12.66 
12.74 

B.  COMPARISON STUDY AND DISCUSSION 

We compare our approach, RACC-MDT, with the existing 

approaches: (1) Local regression and minimum migration 

time policy (LR-MMT) [9]; (2) VM-based dynamic threshold 

and minimum correlation of host utilization policy (VDT-

UMC) [14]; (3) Dynamic threshold and maximum-fit policy 

(DTH-MF) [19]. These approaches are selected, because they 

are the most popular VM consolidation algorithms. 

Furthermore, they are similar to our research that considers 

the four phases of energy-aware consolidation process. 

1) VALIDATION ON OPENSTACK 

• Energy Consumption Comparison 

The comparison results of energy consumption under 

different resource allocation phases are shown in Figure 4. In 

details, when the resource allocation of the cloud platform is 

in the phase of under-subscription and adequate subscription, 

the two algorithms, RACC-MDT and DTH-MF, that 

consider the effect of the PPR of heterogeneous hosts have 

the lowest energy consumption while the algorithms that do 

not consider the PPR have a higher energy consumption. 

When the cloud platform is in the phase of over-subscription, 

the energy consumption of the data center varies slightly 

under the four approaches.  

The reason for the above results is that in the initial 

process of VM allocation, computer3 and computer4 are 

configured with the minimum memory resource compared 

with others in cluster (but the PPRs of computer3 and 

computer4 are greater than those of computer5 and 

computer6); therefore, when the cloud platform is in the 



 

12 
 

phase of Under-Subscription and Adequate-Subscription, a 

small number of VMs are allocated in computer3 and 

computer4, which drastically reduces the CPU utilization of 

computer3 and computer4. LR-MMT and VDT-UMC take 

the CPU utilization of physical host and the number of VMs 

in physical host as evaluation metrics for underloaded host 

detection. Thus, computer3 and computer4, with their higher 

PPR values, were detected as the hosts with insufficient load. 

In contrast, RACC-MDT and DTH-MF account for the CPU 

utilization and the PPR difference between heterogeneous 

hosts; computer5 and computer6, with the lower PPRs, will 

be detected as underloaded hosts, which consequently have 

helped improve the power efficiency of the entire data center. 

When the cloud platform is in the phase of Over-Subscription, 

there are many VMs and higher workload in each host. It is 

difficult to find suitable hosts to reallocate all VMs in the 

underloaded host. Thus, the four approaches have similar 

effects in terms of energy-saving. 
 

FIGURE 4.  Energy Consumption Comparison 

 
FIGURE 5.  Average CPU Utilization and Shutoff Time of Each Computing Node in Different Experimental Phases 

The results shown in Figure 5 can be seen as evidence for 

the above analysis. Figure 5 describes the average CPU 

utilization and shutdown time of each computing node under 

different resource allocation stages. It is found that in each 

stage of the experiment, under the RACC-MDT and DTH-

MF approaches, the resource utilization efficiency and active 

0

5

10

15

20

25

30

35

Under-Subscription Adequate-Subscription Over- Subscription

E
n

er
g
y
(k

W
h

)

RACC-MDT DTH-MF LR-MMT VDT-UMC



 

13 
 

time of high PPR hosts are higher than that of low PPR hosts, 

while the LR-MMT and VDT-UMC approaches only have 

this characteristic in the Under-Subscription phase. Figure 6 

describes the average CPU utilization of the whole data 

center under different workloads. Under the same load, it is 

found that two algorithms RACC-MDT and DTH-MF 

considering the effect of the PPR of heterogeneous hosts 

have the lowest CPU utilization. 

 
FIGURE 6.  Average CPU Utilization of the Data Center Under Different 

Loads 

It should be noted that although the DTH-MF policy 

accounts for the PPR differences of heterogeneous hosts, it 

migrates the VM to the hosts with the highest PPR and the 

lowest resource utilization in the VM allocation stage, which 

does not guarantee the minimum increment of energy 

consumption in the data center. The lowest energy 

consumption belongs to RACC-MDT (18.175 kWh) in 

comparison with DTH-MF (18.811 kWh), LR-MMT (21.316 

kWh) and VDT-UMC (22.556 kWh). 

• Live Migration Cost Comparison 

The comparison results of the number of VM migrations in 

different experimental stages are shown in Figure 7. It is 

found that our approach RACC-MDT outperforms the DTH-

MF and LR-MMT; however, the VDT-UMC outperforms it, 

except in the over-subscription phase.  

The RACC-MDT outperforms the VDT-UMC because the 

former takes the number of VMs into account for host 

underload detection; the RACC-MDT, on the other hand, 

focuses on the total amount of data transfer when selecting 

VMs from the overloaded host. This is also evident in Figure 

8. Although the number of VM migrations is least under the 

VDT-UMC algorithm, the amount of data transfer is more 

than that of the RACC-MDT. Compared with the VDT-

UMC, the RACC-MDT reduces the amount of data transfer 

by an average of 7.97%. Furthermore, compared with the 

existing approaches, the RACC-MDT reduces data transfer 

by 29.1%, compared to the DTH-MF, and 24.9%, compared 

to the LR-MMT. 

 

FIGURE 7.  Number of VM Migrations Comparison 

 
FIGURE 8.  Amount of Data Transfer Comparison 

• SLA Violation Comparison 

Figure 9 demonstrates the comparison results of the SLAV 

metric. It suggests that in the under-subscription phase, the 

SLAV did not differ significantly across the four approaches; 

however, in the adequate-subscription and over-subscription 

phases, the proposed solution, RACC-MDT, and the VDT-

UMC in [14] have the lowest SLAV, compared to the LR-

MMT and DTH-MF.  

The above results may be attributed to the fact in the 

under-subscription phase, the VMs are few, and the 

workload on each host is low; therefore, the probability of 

SLAV occurring is low. However, in the adequate-

subscription and over-subscription phases, as the number of 

VMs and the workload on each host increase, the effects of 

0

10

20

30

40

50

60

70

80

90

Under-Subscription Adequate-Subscription Over- Subscription

A
v
g
  

C
P

U
  
U

ti
li

za
ti

o
n

RACC-MDT DTH-MF LR-MMT VDT-UMC

0

100

200

300

400

500

600

700

800

Under-Subscription Adequate-Subscription Over-Subscription

N
u

m
b

er
o

f
V

M
M

ig
ra

ti
o

n

RACC-MDT DTH-MF LR-MMT VDT-UMC

0

2

4

6

8

10

12

14

Under-Subscription Adequate-Subscription Over-Subscription

A
m

o
u

n
t

o
f

D
at

a
T

ra
n

sf
 (

M
B

) 
*
1

0
4

RACC-MDT DTH-MF LR-MMT VDT-UMC



 

14 
 

the four approaches on reducing SLA violations, in 

conformity with the definition of SLAV, become more 

apparent. From Eq. (14), SLAV is obtained by multiplying 

the SLATAH and PDM; thus, by reducing one of the 

variables (SLATAH or PDM), the final answer (SLAV) is 

also reduced. As shown in Figures 7 and 8, we conclude that 

the RACC-MDT and VDT-UMC reduced the amount of data 

transfer and the number of live migration, respectively, the 

implication of each being that less PDM is obtained. 

Therefore, the SLAV is reduced. 

 
FIGURE 9.  SLAV Comparison 

• Energy-SLA Violations Comparison 

The ESV metric comparison is shown in Figure 10. The 

value of the ESV metric is inversely proportional to better 

performance of the approach. It is found that, regardless of 

the current status of resource allocation on the cloud platform, 

the proposed RACC-MDT has the lowest results. Compared  

with the existing approaches (LR-MMT, DTH-MF, VDT-

UMC), the average ESV of the RACC-MDT over three days 

decreased by 11.4%, 12.7%, and 11.2%, respectively. This 

observation accords with the Figure 4 and Figure 8. 

Additionally, the proposed WMA model is more accurate 

than the existing approaches, which significantly improves 

the output results. 

FIGURE 10.  ESV Comparison 

2) VALIDATION ON CLOUDSIM 

The comparison results of the evaluation metrics in the 

single-cluster simulated environment are shown in Figures 

11–16. It is found that the proposed method, RACC-MDT, 

offers significant advantages for minimizing energy 

consumption (Figures 11 and 12) and total data transfer 

(Figure 13), which further proves the effectiveness of the 

RACC-MDT in improving energy efficiency and reducing 

data traffic in data centers.  

 
FIGURE 11.  Energy Consumption Comparison of Different Approaches in Simulated Environment 

0

1

2

3

4

5

Under-Subscription Adequate-Subscription Over-Subscription

S
L

A
V

*
1

0
-6

RACC-MDT DTH-MF LR-MMT VDT-UMC

0

2

4

6

8

10

12

14

Under-Subscription Adequate-Subscription Over-Subscription

E
S

V
*
1

0
-5

RACC-MDT DTH-MF LR-MMT VDT-UMC

100

120

140

160

180

200

220

240

260

E
n

er
g
y
(k

W
h

)

RACC-MDT DTH-MF LR-MMT VDT-UMC



 

15 
 

          
FIGURE 12. Average Energy Consumption of Different Approaches                 FIGURE 13. Average Data Transfer of Different Approaches 

 
FIGURE 14.  Number of Live Migration of Different Approaches in Simulated Environment 

 
FIGURE 15.  SLA Violations of Different Approaches in Simulated Environment 

90

100

110

120

130

140

150

160

170

180

A
v
g
 E

n
er

g
y
(k

W
h

)

CoMon Google

90

140

190

240

290

340

390

440

A
m

o
u

n
t 

o
f 

D
at

e 
T

ra
n

sf
(T

B
)

Comon Google

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u

m
b

er
 o

f 
L

iv
e 

M
ig

ra
ti

o
n

RACC-MDT DTH-MF LR-MMT VDT-UMC

0

1

2

3

4

5

6

7

8

S
L

A
V

 *
1

0
-5

RACC-MDT DTH-MF LR-MMT VDT-UMC



 

16 
 

 FIGURE 16.  ESV of Different Approaches in Simulated Environment 

The comparison results of the SLAV (Figure 15) are 

different from those in the real environment. It is found that, 

although our approach, the RACC-MDT, is better than the 

DTH-MF and LR-MMT, it is worse than the VDT-UMC. 

We attribute this finding to the excessively small resource 

utilization of each VM in the datasets (as shown in Table 

VIII, average CPU utilization is far below 15%); thus, the 

resource use of the data center is inefficient; furthermore, 

most of the VMs selected to be migrated in the VM selection 

phase are from underloaded hosts. The VDT-UMC takes the 

number of VMs into account when detecting underloaded 

hosts; therefore, it can effectively decrease the number of 

VMs migration in the consolidation process (this is evident 

from Figure 14), which consequently reduces the SLAV 

caused by VM migration. In the real environment, due to the 

small number of VMs and physical machines, the above 

characteristics are not obvious. 

The comparison results based on the ESV metric (Figure 

16) suggests that the proposed RACC-MDT has the least 

values in most of the conditions. Specifically, compared with 

the existing LR-MMT, DTH-MF, VDT-UMC, the average 

ESV of the RACC-MDT in 30 days decreased by 40.88%, 

28.66%, and 6.14%, respectively.   

TABLE IX 
PAIRWISE COMPARISONS OF ESV VALUES BY USING PAIRED T TESTS 

Approach 1 
(ESV*10-3) 

Approach 2 
(ESV*10-3) 

95% CI P value 

RACC-MDT 

(3.56) 
LR-MMT (6.03) 

(-3.0722, -

2.1789) 
2.3*10-8 

RACC-MDT 
(3.56) 

DTH-MF(5) (-2.7667, -
1.4456) 1.5*10-5 

RACC-MDT 

(3.56) 
VDT-UMC (3.8) 

(-0.5902, -

0.1490) 3.3*10-4 

LR-MMT (6.03) DTH-MF (5) (0.0892, 
0.9496) 2.1*10-4 

LR-MMT (6.03) VDT-UMC (3.8) 
(1.9218, 

2.5902) 4.8*10-9 

DTH-MF (5) VDT-UMC (3.8) 
(1.9218, 
2.5902) 5.5*10-5 

Table IX shows the results based on the paired t-tests of 

the ESV values under the four approaches. The results show 

that there is a statistically significant difference between 

these approaches, and the proposed approach, RACC-MDT, 

best minimizes the ESV value. 

In the geographically distributed cloud computing 

environment, due to the smaller bandwidth between different 

clusters, we focus on the communication overhead, including 

the amount of data transfer between different clusters and 

SLA violation during the VMs migration. 

TABLE X 

AMOUNT OF DATA TRANSFER BETWEEN DIFFERENT CLUSTERS 

Data Flow 
Direction 

Amount of Data Transfer (TB) 

RACC-MDT DTH-MF  LR-MMT VDT-UMC 

Cluster1→2 19.3 21.3 39.4 31.6 

Cluster1→3 7.4 10.5 28.7 17.3 

Cluster2→1 54.6 48.9 42.9 36.5 

Cluster2→3 14.8 20.7 29.6 28.7 

Cluster3→1 49.5 61.1 59.3 40.1 

Cluster3→2 31.6 47.8 74.2 27.3 

Total 177.2 216.3 274.1 181.5 

The comparison results of the amount of data transfer 

between the different clusters are shown in Table X (Cluster 

𝑖 → 𝑗  represents the direction of data transmission from 

cluster i to cluster j). It is observed that the RACC-MDT 

approach is manifestly better than the DTH-MF and LR-

MMT, and slightly better than the VDT-UMC. More 

specifically, compared with the existing approaches, the 

amount of data transfer between the different clusters using 

the RACC-MDT approach is less by 18.1% (compared to the 

DTH-MF), 35.3% (compared to the LR-MMT), and 2.6% 

(compared to the VDT-UMC). 

1

2

3

4

5

6

7

8

9

10

11

E
S

V
*
1

0
-3

RACC-MDT DTH-MF LR-MMT VDT-UMC



 

17 
 

This may be attributed to the fact that our approach, the 

RACC-MDT, focuses on the total amount of data transfer 

when selecting the VMs from the overloaded host, and 

migrating the VMs to a host with higher PPR, which can 

decrease the frequency of live migration. The amount of data 

transfer results shown in Cluster1 → 2, Cluster1 → 3 and 

Cluster2→3 buttress the above analysis. 

 
FIGURE 17.  SLAV Comparison in Multi-cluster Simulation Environment  

Figure 17 demonstrates the comparison results of the 

SLAV metric in the multi-cluster simulation environment. It 

suggests that that the proposed RACC-MDT has the least 

values in most of the conditions. Compared with the existing 

DTH-MF, LR-MMT, and VDT-UMC, the average SLAV of 

the RACC-MDT in 30 days decreased by 5%, 24%, and 44%, 

respectively. This result is basically consistent with that in 

the single cluster environment. 

It is noteworthy that we did not analyze energy 

consumption indicators in the multi-cluster environment. 

This is because the approach proposed in this paper is based 

on the inherent characteristics (i.e. PPR) of the hosts, 

allocating a VM to a host with the higher PPR while ensuring 

the least increase in energy consumption. The core idea 

behind this is that the high-PPR hosts consume less energy 

per operation, compared to the others. Therefore, it is 

independent of the number of servers in the data center, the 

geographical distribution, and the type and size of the task. 

VII. CONCLUDING REMARKS AND FUTURE 
DIRECTIONS 

This study presents a novel adaptive framework for VM 

consolidation based on the resource utilization and the 

consideration of the PPR of heterogeneous hosts to resolve 

the trade-off between the energy and performance in cloud 

data centers. The proposed approach can detect overloaded 

hosts based on the RACCT algorithm, select VMs based on 

the MDT algorithm, determine the underloaded hosts based 

on the MCUHD algorithm, and find the VM placement based 

on the modified algorithm of PABFD algorithm. We have 

used performance metrics including energy consumption, the 

total amount of transmitted data, SLAV, and ESV to evaluate 

the efficiency of the proposed approach. We have compared 

our approach with the state-of-the art existing approaches 

(LR-MMT, VDT-UMC, DTH-MF), and experimental 

evaluation has been conducted in both real and simulated 

environments. The results show that the RACC-MDT is 

reliable, scalable and can significantly reduce the energy 

consumption, compared to the existing approaches, while 

maintaining the SLA violations at a reasonable level.  

This study has mainly investigated the general but critical 

problem of VM consolidation, namely, the trade-off between 

energy consumption and SLA violation. In a geographically 

distributed computing environment, the resource cost, SLA 

definition, and virtualization technology differ significantly 

across the different clusters. Therefore, the future work will 

be focused on improving the robustness of the proposed 

framework against resource consolidation constraints among 

different clusters. 

ACKNOWLEDGMENT 

This research was supported by the National Natural 

Science Foundation of China (Grant NO.61472139) and the 

Newton Fund Institutional Links under the Newton-Ungku 

Omar Fund partnership of UK (Grant ID. 332438911, The 

grant is funded by the UK Department of Business, Energy, 

and Industrial Strategy (BEIS) and the Malaysian Industry-

Government Group for High Technology; it was delivered 

by the British Council. For further information, please visit 

www.newtonfund.ac.uk.) 

The authors would like to thank the reviewers, who 

provided constructive comments on the earlier version of 

this paper. 

REFERENCES 
[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, “Cloud 

computing and emerging IT platforms: Vision, hype, and reality for 
delivering computing as the 5th utility,” Future Generation Computer 

Systems, vol. 25, no. 6, pp. 599–616, 2009. 

[2] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. 

McKee, “1000 islands: an integrated approach to resource 

management for virtualized data centers,” Cluster Computing, vol. 

12, no. 1, pp. 45–57, 2008. 
[3] J. Koomey, “Growth in data center electricity use 2005 to 2010,” A 

report by Analytical Press, completed at the request of The New 

York Times, Sep. 2011.  
[4] A. Ender, “Energy Efficiency in Data Centers,” IEEE ComSoc 

Technical Committees Newsletter, Nov. 13, 2019. 

[5] A. Shehabi, S. J. Smith, E. Masanet, et al, “Data center growth in the 
United States: decoupling the demand for services from electricity 

use”, Environmental Research Letters, vol. 13, no. 12, 2018. 

[6] L. A. Barroso, U. Hölzle, “The case for energy-proportional 
computing,” Computer, vol. 40, no. 12, pp. 33–37, 2007. 

[7] X. Fan, W. D. Weber, L. A.  Barroso, “Power provisioning for a 

warehouse-sized computer,” In: ACM SIGARCH Computer 
Architecture News, vol. 35, no. 2, pp. 13-23, 2007. 

[8] C, Clark, K, Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. 

Pratt, A. Warfield, “Live migration of virtual machines,” In: Proc. of 
the 2nd USENIX Symp on Networked Systems Design & 

Implementation (NSDI 2005), Boston, MA, USENIX Association, 

Berkeley 
[9] A. Beloglazov, R. Buyya, “Optimal online deterministic algorithms 

and adaptive heuristics for energy and performance efficient dynamic 

0

1

2

3

4

5

6

7

8

9

RACC-MDT DTH-MF LR-MMT VDT-UMC

S
L

A
V

 *
1

0
-5

http://www.newtonfund.ac.uk/


 

18 
 

consolidation of virtual machines in cloud data centers,” Concurr 
Comput Pract Exp, vol. 24, no. 13, pp. 1397–1420, 2012. 

[10] Standard Performance Evaluation Corporation. 

https://www.spec.org/power_ssj2008/results/. 
[11] E. Oikonomou, D. Panagiotou, A. Rouskas, “Energy-aware 

Management of Virtual Machines in Cloud Data Centers,” 

Proceedings of the 16th International Conference on Engineering 
Applications of Neural Networks (INNS), ACM, pp. 1-6, 2015. 

[12] A. Beloglazov, J. Abawajy, R. Buyya, “Energy-aware resource 

allocation heuristics for efficient management of data centers for 
cloud computing,” Future Generation Computer Systems, vol. 28, no. 

5, pp. 755–768, 2012. 

[13] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, “Cost of virtual 
machine live migration in clouds: a performance evaluation,” In: 

Cloud computing. Lecture notes in computer science, vol. 59, no.31, 

pp. 254–265, 2009. 

[14] A. Horri, M. S. Mozafari, G. Dastghaibyfard “Novel resource 

allocation algorithms to performance and energy efficiency in cloud 

computing,” Journal of Supercomputing, vol. 69, no. 3, pp. 1445–
1461, 2014. 

[15] Chen Wei, Zhihua Hu, Yougan Wang, “Exact algorithms for energy-

efficient virtual machine placement in data centers,” Future 
Generation Computer Systems, vol. 106, pp. 77–91, 2020. 

[16] H. Li, G. Zhu, C. Cui, H. Tang, Y. Dou, C. He, “Energy-efficient 

migration and consolidation algorithm of virtual machines in data 
centers for cloud computing,” Computing, vol. 98, no. 3, pp. 303-317, 

2016. 
[17] E. Arianyan, H. Taheri, S. Sharifian, “Novel heuristics for 

consolidation of VMs in cloud data centers using multi-criteria 

resource management solutions,” Journal of Supercomputing, vol. 72, 
no. 2, pp. 688–717, 2016. 

[18] I. Hwang, M. Pedram, “Hierarchical, portfolio theory-based VM 

consolidation in a compute cloud,” IEEE Transactions on Services 
Computing, vol. 99, no.1, 2016. 

[19] S. Y. Z. Fard, M. R. Ahmadi, S. Adabi, “A dynamic VM 

consolidation technique for QoS and energy consumption in cloud 
environment,” J Supercomput, vol. 73, no. 10, pp. 4347–4368, 2017. 

[20] Neeraj Kumar Sharma, G. Ram Mohana Reddy, “Multi-Objective 

Energy Efficient Virtual Machines Allocation at the Cloud Data 
Center,” IEEE Transactions on Services Computing, vol. 12, no. 1, 

pp. 158–171, 2019. 

[21] Z. Li, X. Yu, L. Yu, et al, “Energy-efficient and quality-aware VM 
consolidation method,” Future Generation Computer Systems, vol. 

102, pp.789–809, 2020. 

[22] L. Minas, B. Ellison, “Energy Efficiency for Information Technology: 
How to Reduce Power Consumption in Servers and Data Centers,” 

Intel Press, vol. 68, no. 3, pp. 154-158, 2009. 

[23] P. A. Dinda, “The statistical properties of host load,” Languages, 

Compilers, and Run-Time Systems for Scalable Computers, vol. 

1511, no. 4, pp. 319-334, 1998. 

[24] Z. Xiao, W. Song, Q. Chen, “Dynamic resource allocation using 
virtual machines for cloud computing environment,” IEEE 

Transactions on Parallel & Distributed Systems, vol. 24, no. 6, pp. 

1107–1117, 2013. 
[25] D. Yang, J. Cao, J. Fu, J. Wang, J. Guo, “ A pattern fusion model for 

multi-step-ahead CPU load prediction,” Journal of Systems and 

Software, vol. 86, no. 5, pp. 1257–1266, 2013. 
[26] G. J. Eidleman, “Z scores-A Guide to failure prediction,” The CPA 

Journal, vol. 65, no. 2, pp. 52, 1995. 

[27] N. Sharma, R. M. Guddeti, “Multi-Objective Energy Efficient 
Virtual Machines Allocation at the Cloud Data Center,” IEEE 

Transactions on Services Computing, 2016. 

[28] F. Fahimeh, P. Tapio, L. Pasi, et al, “Energy-Aware VM 
Consolidation in Cloud Data Centers Using Utilization Prediction 

Model,” IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 

524–536, 2019. 
[29] B. Shuja-ur-Rehman, I. Waheed, L. B. Josep, C. David, “Adaptive 

sliding windows for improved estimation of data center resource 

utilization,” Future Generation Computer Systems, vol. 104, pp. 
212–224, 2020. 

[30] Y. Gao, H. Guan, Z. Qi, Y. Hou, L. Liu, “A multi-objective ant 
colony system algorithm for virtual machine placement in cloud 

computing,” Journal of Computer and System Sciences, vol. 79, no. 

8, pp. 1230-1242, 2013 
[31] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. 

Porres, H. Tenhunen, “Using ant colony system to consolidate VMs 

for green cloud computing,” IEEE Transactions on Services 
Computing vol. 8, no. 2, pp. 187-198, 2015. 

[32] K. Jackson. “OpenStack cloud computing cookbook,” Ehu Es, 2013. 

[33] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. DeRose, R. Buyya, 
“CloudSim: a toolkit for modeling and simulation of cloud 

computing environments and evaluation of resource provisioning 

algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 
23-50, 2011. 

[34] S. A. Weil, S. A. Brandt, E. L. Miller, et a1, “Ceph: A scalable, high-

performance distributed file system,” Proceedings of the 7th 

symposium on Operating systems design and implementation. 

USENIX Association, pp. 307-320, 2006. 

[35] OSHI. https://github.com/oshi/oshi 
[36] M. A. Sharma, M. O. Joshi, “Openstack Ceilometer Data Analytics 

& Predictions,” IEEE International Conference on Cloud Computing 

in Emerging Markets, pp. 182-183, 2017. 
[37] StressLinux. https://www.stresslinux.org/ 

[38] K. Park, V. S. Pai, “CoMon: a mostly-scalable monitoring system for 

PlanetLab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 
1, pp. 65-74, 2006. 

[39] S.B. Shawa, et al, “Use of proactive and reactive hotspot detection 
technique to reduce the number of virtual machine migration and 

energy consumption in cloud data center,” Computers and Electrical 

Engineering, pp. 241-254, 2015. 
[40] Y.  Chang, C. Gu, F. Luo, et al. "Energy Efficient Resource Selection 

and Allocation Strategy for Virtual Machine Consolidation in Cloud 

Datacenters," IEICE Transactions on Information and Systems, pp. 
1816-1827, 2018. 

[41] Martello S , Toth P . Knapsack problems: algorithms and computer 

implementations. John Wiley & Sons, Inc. 1990. 
[42] A. Beloglazov, R. Buyya, “Managing Overloaded Hosts for Dynamic 

Consolidation of Virtual Machines in Cloud Data Centers under 

Quality of Service Constraints,” IEEE Transactions on Parallel & 
Distributed Systems, vol. 24, no. 7, pp. 1366-1379, 2013. 

[43] Goole Cluster Workload traces. https://github.com/google/cluster-

data/blob/master/ClusterData2011_2.md 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

https://www.spec.org/power_ssj2008/results/
https://link.springer.com/book/10.1007/3-540-49530-4
https://link.springer.com/book/10.1007/3-540-49530-4
https://github.com/oshi/oshi
https://www.stresslinux.org/

