
01 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Partitioned integration and coordination via the self-organising coordination regions pattern / Pianini D.;
Casadei R.; Viroli M.; Natali A.. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. -
ELETTRONICO. - 114:(2021), pp. 44-68. [10.1016/j.future.2020.07.032]

Published Version:

Partitioned integration and coordination via the self-organising coordination regions pattern

Published:
DOI: http://doi.org/10.1016/j.future.2020.07.032

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/776689 since: 2020-10-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.future.2020.07.032
https://hdl.handle.net/11585/776689

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Pianini, D., Casadei, R., Viroli, M., & Natali, A. (2020). Partitioned integration and
coordination via the self-organising coordination regions pattern. Future
Generation Computer Systems, 114, 44-68.

The final published version is available online at
https://dx.doi.org/10.1016/j.future.2020.07.032

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1016/j.future.2020.07.032
https://dx.doi.org/10.1016/j.future.2020.07.032

Partitioned Integration and Coordination via
the Self-organising Coordination Regions Pattern

Danilo Pianini∗, Roberto Casadei∗, Mirko Viroli, Antonio Natali

Department of Computer Science and Engineering,
Alma Mater Studiorum—Università di Bologna

Cesena, Italy

Abstract

In software engineering, knowledge about recurrent problems, along with
blueprints of associated solutions for diverse design contexts, are often cap-
tured in so-called design patterns. Identifying design patterns is particularly
valuable for novel and still largely unexplored application contexts such as the
Internet of Things, Cyber-Physical Systems, and Edge Computing, as it would
help keeping a balanced trade-off between generality and applicability, guiding
the mainstream development of language mechanisms, algorithms, architectures,
and supporting platforms. Based on recurrence of related solutions found in
the literature, in this work we present a design pattern for self-adaptive sys-
tems, named Self-organising Coordination Regions (SCR): its goal is to organise
a process of interconnecting devices into teams, to solve local tasks in cooper-
ation. Specifically, it is a decentralised coordination pattern for partitioned
integration and coordination of devices, which relies on continuous adaptivity
to context change to provide resilient distributed decision-making in large-scale
situated systems. It leverages the divide-and-conquer principle, partitioning (in
a self-organising fashion) the network of devices into regions, where internal co-
ordination activities are regulated via feedback/control flows among leaders and
subordinate nodes. We present the pattern, provide a template implementation
in the Aggregate Computing framework, and evaluate it through simulation of
two case studies in edge computing and hierarchical, heterogeneous networks.

Keywords: Coordination, Distributed Systems, Design Patterns,
Self-Organisation, Self-Improving Integration, Edge Computing, Aggregate
Programming

∗Corresponding authors
Email addresses: danilo.pianini@unibo.it (Danilo Pianini),

roby.casadei@unibo.it (Roberto Casadei), mirko.viroli@unibo.it (Mirko Viroli),
antonio.natali@unibo.it (Antonio Natali)

Preprint submitted to Future Generation Computer Systems October 29, 2020

1. Introduction

Emerging distributed computing scenarios, such as those envisioned in the
context of the Internet of Things (IoT), Cyber-Physical Systems (CPSs), and
Edge Computing, are generally characterised by large scale, heterogeneity, dy-
namicity, and openness. These aspects, taken together, lead to two main prob-5

lems. The first is a problem of integration: putting and re-arranging devices
together into a cohesive structure and network of interactions to effectively and
efficiently promote some system function. The second is an operational prob-
lem: harnessing complexity so as to be able to evolve systems by reacting to
change in a timely and cost-effective manner. Given the physical, logical, and10

temporal scales involved, addressing the above problems through static systems
specifications and human-in-the-loop approaches appears unfeasible.

In the vision of autonomic computing [1], this issue is to be addressed by
making a system itself responsible for interconnecting its own components (and
among the others, incorporating addition of new devices), and for making their15

cooperation fully-adaptive to continuous change (changes of context, faults, and
other inherent sources of dynamicity) following the high-level goals expressed by
the designers. Specifically, the case when autonomic behaviour is engineered
to achieve proper integration of system components, is referred to as the self-
integrating property, or putting it equivalently, as the problem of self-adaptive20

integration: the system should be instrumented by an autonomous process that
continuously creates or adjusts interactional structures and responsibilities in
order to promote the pursuing of system goals opportunistically from the set of
available devices or components. The significance of the problem is witnessed
by the Self-Improving System Integration (SISSY) initiative [2], which promotes25

the study of self-* approaches for systems of systems [3], interwoven systems [4],
and organic computing systems [5], where heterogeneity, real-time demands,
mutual influences, and unpredictability take over.

The problem of (self-)integration is especially relevant in emergent IoT-based
heterogeneous ecosystems and collaborative scenarios where networked ensem-30

bles of devices need to operate in their locality by coordinating activities and
decision making because, e.g., the information, rights, or resources available
at an individual device are not sufficient for it to autonomously carry out the
tasks at hand. There, indeed, structures should be continuously adjusted to
foster synergistic interactions supporting both individual and collective activ-35

ity. As fully peer-to-peer approaches tend to be globally inefficient, the pattern
that emerges in the literature [6, 7] for tackling this problem – especially for
networks that are large-scale, heterogeneous, and often also open and situated
– typically follows the divide-and-conquer principle: breaking the system into a
number of space-driven subsystems managed by leader devices that collect feed-40

back from (and enact decisions to) a subset of other participants (workers or
users). We call this pattern Self-organising Coordination Regions (SCR),
since it works through an internally-regulated, adaptive organisation of devices
in regions where activity is coordinated via feedback/control flows among mas-
ter and worker nodes. Examples of pattern usage, which provide motivation for45

2

the current work (and are reviewed in this paper), include self-adaptive software
architectures [8, 6], decentralised orchestration systems [9, 10], crowd manage-
ment [11, 12], robot swarm control [13], wireless sensor networks [14, 15], and
target tracking [16, 17]. We define the pattern by analysing and abstracting
from the large amount of corresponding related work, while at the same time50

exploring and documenting its variety of forms.
This paper provides the following contributions:

1. it presents and discusses a design pattern for partitioned integration and
coordination that aims at fostering adaptive, resilient self-integration in
large-scale situated systems;55

2. it proposes a possible decentralised, self-organising implementation of the
pattern in the aggregate computing framework [11] that sums to a compo-
sition of continuously self-adaptive collective behaviours; and

3. it shows the significance and applicability of the pattern through case stud-
ies in the context of layered network infrastructures and edge computing.60

Accordingly, this work can be considered as a contribution to the SISSY initia-
tive and its goals, addressing issues raised in the areas of design and architec-
ture (the pattern), cooperation and self-* mechanisms (aggregate computing),
and applications (edge computing and resource management in hierarchical net-
works).65

This article is an extended version of the conference paper [7], providing new
material which can be summarised in the following additional contributions: (i)
extensive literature research revealing more known uses of the pattern as well
as more related patterns; (ii) contextualisation of the work in the context of
SISSY; (iii) improved and extended description of the pattern, including a more70

complete treatment of its underlying mechanisms and extensions; and (iv) an
entirely new case study, demonstrating the usefulness of the pattern in (non-
spatially situated) hierarchical networks.

The organisation of the manuscript is as follows. Section 2 presents the target
context and provides motivation for the pattern by discussing its sub-patterns,75

related patterns, and known uses. Section 3 describes the SCR pattern by cov-
ering and detailing its goals, structural and dynamical dimensions, applicability
issues, variants, and terminology. Section 4 discusses implementation issues and
provides an implementation template of the pattern in the aggregate program-
ming framework as a functional composition of collective adaptive behaviours.80

Section 5 provides empirical evaluation on two diverse scenarios making for
use cases of the pattern. Finally, Section 6 draws conclusions and points out
directions for future work.

2. Motivation and Related Work

In this section, we draw motivation for the proposed pattern, in terms of85

(i) a class of problems in a specific context, (ii) the role of patterns in engi-
neering complex systems, and (iii) related work, including sub-patterns, related

3

patterns, and known uses. We first note there is a significant problem, across
various domains, of partitioned orchestration and self-integration in large-scale
distributed systems (Section 2.1). Though similar problems may have recurrent90

solutions in literature, it is only when those are recognised as a pattern that a
general and reusable understanding is achieved: we hence discuss sources and
implications of design patterns for self-* systems (Section 2.2). We then briefly
review the proposed SCR pattern, and contextually cover its sub-patterns (Sec-
tion 2.3), before comparing it to related patterns (Section 2.4). Finally, we95

provide evidence that SCR is indeed a pattern (in the sense of, e.g, [18]), due to
multiple previous independent occurrences in disparate domains (Section 2.5).

2.1. Context

We consider the context of coordination and self-integration in large-scale
distributed systems. Specifically, we focus on scenarios – e.g., pervasive com-100

puting, Collective Adaptive Systems (CAS), IoT, CPSs, and edge computing –
characterised by:

� Distribution. Typical assumptions made in concentrated systems cease to
hold: indeed, distribution of components inherently leads to concurrency,
lack of global time, independent failure, and availability issues [19]—with105

corresponding consequences.

� Situatedness. Components are immersed into an environment, and their
operations (activity and interaction) are based on a local context that typ-
ically represents a small subset of the entire environment. When such an
environment is physical, contexts often reflect spatiotemporal constraints110

of device location (e.g., inputs and outputs may be limited to physical
proximity), but this peculiarity could fade with partially or completely
logical environments (e.g., with cloud-based coordination).

� Heterogeneity. Components may differ by their nature (e.g., virtual or
physical), structure, computational power, energy requirements, control-115

lability, level of autonomy, ability and technology to interact with others,
and general dependability.

� Large scale. Systems may be too large to be manually operated or or-
chestrated by a centralised entity. In particular, this does not only affect
the technological and pragmatical level of engineering, but also at the120

logical and design level, where it becomes important to consider abstrac-
tions and architectural guidelines to intrinsically and smoothly address
the behaviour and quality attributes of systems in a scalable fashion.

More specifically, in such scenarios, a number of problem forces must be
dealt with. Heterogeneity creates asymmetry in individual capabilities, such125

that collaboration is essential to solve complex tasks, e.g., when the informa-
tion, rights, or resources available at an individual device are not sufficient for
it to autonomously carry out the whole task at hand. A locality principle holds

4

due to situation and context being key for both individual and collective activ-
ity: hence, the difficulty (and cost) of interaction (integration, collaboration)130

typically increases with the (physical or logical) distance between sources, pro-
cesses, and users. Also, the environment and system structure tend to be highly
dynamic (e.g., due to uncontrollable processes, mobility, or failure), and to pro-
mote integration of new components (devices, functions) on the fly, creating a
situation of constant change where the system stability is continuously endan-135

gered by perturbations. The unpredictability of the environment, together with
the locality of observations and the complexity (in terms of inter-dependencies)
of the phenomena to monitor and control (cf. emergence), fuel the uncertainty
in observations and planned courses of individual action. Finally, often nei-
ther full centralisation nor full decentralisation in control and decision making is140

possible or desirable—the former due to the introduction of a single point of fail-
ure and reduced scalability, the latter for the inherent complexity in achieving
consensus and globally optimised functions.

These problems are parts of the challenges identified in the context of the
SISSY initiative [2], which seeks to support solutions to effective and efficient145

cooperation among distributed, heterogeneous components. For instance, the
key role of coordination for integrating autonomous systems is recently anal-
ysed in [20], highlighting as main research challenges the degree of centrality as
well as the impact, overhead, and robustness of coordination. The problem of
self-integration characterised in [21], does include that of flexible management150

of interaction between heterogeneous components in large-scale distributed con-
figurations, and is exacerbated by the increasing interwoven structure [4] and
organic nature [22] of such systems.

2.2. Need for design patterns for self-* systems

Design patterns capture expert knowledge by describing reasoned solution155

blueprints for well-defined classes of repeatedly occurring problems in spe-
cific contexts [23] They are thus paramount in software engineering, as they
help harnessing complexity by characterising systems of forces arising in a
context, and strategies to resolve them [24]. Moreover, they introduce a com-
mon vocabulary, fostering the team communication, and rely on it to denote160

intents and properties of solutions, abstracting from implementation details,
and providing motivated guidance towards desired configurations [23]. In the
last decades, several classes of patterns have been discovered to promote effec-
tive design and implementation of software-based systems, collected in pattern
catalogues distilling experience, e.g., regarding object-oriented software [18], el-165

emental programming blocks [25], programming language implementation [26],
concurrent software design [27], enterprise integration [28], message-based sys-
tems [29, 30], programming with the event-loop [31], fault-tolerance [32] etc.
Additionally, patterns can be organised into taxonomies according to various
dimensions (e.g., by abstraction level into architectural, design patterns, and170

programming idioms [23]), can be considered in relation with other patterns
(e.g., through the relationships of combination, variance, and refinement [23])

5

and can be documented following multiple formats (e.g., the well-known Alexan-
drian [24], POSA [23], and GoF [18] formats).

In novel and still largely unexplored application contexts; such as the emerg-175

ing distributed computing scenarios envisioned by pervasive computing, IoT,
CPSs, and edge computing; identifying recurrent patterns can be extremely
valuable to mainstream development of language mechanisms, algorithms, ar-
chitectures and supporting platforms—keeping a balanced trade-off between
generality, applicability, and guidance. The various challenges emerging in180

these contexts are often addressed in related research fields, where particular ap-
proaches and paradigms are investigated, studied, and proposed, and for which
collections of patterns have sometimes been uncovered. Relevant examples of
these include early catalogues of multi-agent system architectures [33], multi-
agent organisational paradigms [34], biologically-inspired coordination [35, 36],185

collective adaptive behaviour [37], decentralised self-adaptation [8] and self-
adaptive coordination [38]. These patterns are usually presented at various
abstraction levels, ranging from principles to high-level components and for-
mally defined rules of evolution, and do not typically provide complete, general
solutions to the problem of complex adaptive behaviour in large-scale situated190

systems.
Importantly for the scope of this paper, the SISSY initiative recognises the

importance of architectural and design concepts to deal with mutual influence
between components, detect and represent emergent phenomena, and support
continuous self-reflection [2]. A set of architectural integration patterns in195

the context of autonomic computing was presented in [39]. They support the
resolution of integration-related conflicts within autonomic systems (internally)
as well as systems of autonomic systems (externally).

2.3. Partitioned integration and SCR as a pattern

In order to follow this section, we provide a summary of the pattern (also,200

refer to Figures 1 to 3), which is described in more detail in Section 3:

The SCR pattern organises the structure and dynamics of the sys-
tem, which is assumed to be a network of nodes with neighbouring
connections, as follows: a system-wide leader election process deter-
mines a set of leaders among a set of leader candidates; the system205

(or its environment) forms a self-adjusting set of regions, each one
regulated by a single leader; within each region, a feedback loop is
established, whereby the leader receives upstream information flows
from the members of the region (possibly leveraging intermediaries)
and emits a control information flow downstream.210

The SCR pattern addresses an important problem of self-* integration: the abil-
ity to create in a self-managed way dynamic (and continuosly changing) teams
of devices to solve in cooperation problems related to a given system locality (or
region). The task to solve is then carried on in each region through feedback-
and-control loops, between a leader and the other agents/devices in the region.215

6

This approach recurs in a number of scientific works and proposed solutions,
and is implemented variously. Some patterns presented in the aforementioned
catalogues [35, 37] constitute the foundations of the current work. Indeed, the
SCR pattern is a combination of three fundamental coordination (sub-)patterns:

� Multi-leader election. In distributed systems, it is sometimes useful to220

break symmetry, sparsely selecting some local centralisation points. This
pattern (also known as sparse choice) consists in the election of multiple
leaders to uniformly cover a logical or physical space.

� Information propagation. Communication patterns that abstract from im-
plementation details or networking protocols are essential in distributed225

systems. This pattern consists of propagating information from one or
more sources outward, independently of the underlying network structure.

� Information collection. This pattern consists of collecting information
from a set of sources into one sink, still abstracting from low-level details
and networking protocols.230

Situations where devices can fail or change are accounted for, coherently to the
self-organisation principle, by considering the aforementioned patterns as con-
tinuous processes, or at least as processes reactive [40] to failure or change. The
continual nature of the involved processes leads to information (updates) that
move continuously, as a logical stream (logically, net of potential optimisations),235

as captured by the information flow abstraction [41] as follows:

An information flow is a stream of information from source localities
towards destination localities and this stream is maintained and reg-
ularly updated to reflect changes in the system. Between sources and
destinations, a flow can pass other localities where new information240

can be aggregated and combined into the information flow.

Information flows are commonly implemented through processes in charge
of building and maintaining the communication paths. One notable exam-
ple of such processes, found in several works in the literature, is the gradi-
ent [38, 42, 43, 44], a self-healing [45] distributed data structure mapping any245

node of the system to its estimated distance from “source” points: it provides a
backhaul for controlling the directions of propagation and collection data flows.
Information flows can be naturally expressed in the library introduced in [37],
which fosters the definition of the collective behaviour of an ensemble of devices
through a composition of self-organising and self-stabilising coordination pat-250

terns, drawing inspiration from biology [35]. The aforementioned sub-patterns
are in fact considered “building blocks” in [11], where they are respectively
called (using terse names derived from the similar idea of S, K, I combinators
in λ-calculus) S (for Sparse-choice—i.e., a scattered selection from the set of
participating devices), G (for Gradient-cast—i.e., a multicast diffusing informa-255

tion along a gradient), and C (for Converge-cast—i.e., a multicast aggregating
information to a sink device).

7

2.4. Related patterns

A presentation of architectural patterns for integration in autonomic com-
puting systems can be found in [39]. These patterns support the resolution of260

conflicts arising when integrating autonomic components and systems together.
In SCR, conflicts are avoided by design within regions through the corresponding
leader nodes (similarly to the Controller and Hierarch patterns). The election
of leaders and formation of regions, instead, involve decentralised conflict res-
olution (similarly to the Collaboration pattern). Moreover, the SCR pattern265

provides a structure fostering meta-management (i.e., for adjusting the leaders
or regions configuration).

Very related to SCR is the Leader-Followers pattern applied, for instance, in
formation control [46], consensus [47], and tracking [48]; not to be confused with
the homonym pattern [27] originally proposed in the context of concurrency to270

efficiently organise a system of threads waiting for events on a shared set of
handles. In Leader-Followers, control in distributed and multi-agent system is
organised around leader agents which take the decisions for a group of agents
known as its followers. What SCR adds is an organisation in terms of multi-
ple leaders, dynamically elected to “effectively” cover a region of the (possibly275

logical) space.
So, in SCR there is a notion of spatial region. By considering a logical

space, the region could also be thought of as a way to group agents in order
to make them work efficiently on the distributed problem at hand. This is re-
lated to organisational patterns in multi-agent systems [34], which include, for280

instance: (i) network organisations or adhocracies, with complex and dynamic
structures; (ii) hierachies, with tree-like structures; (iii) holarchies, i.e., hier-
archically nested structures of holons (which are both wholes and parts) with
cross-tree interactions; (iv) coalitions, i.e., short-lived, goal-directed groups of
agents with the goal of maximising individuals’ utilities; (v) teams, i.e., sets of285

cooperative agents which have agreed to work together towards a common goal;
(vi) congregations, i.e., long-lived agent groupings, formed with no specific goal
in mind, aimed at facilitating the process of finding collaborators (cf., service
discovery); (vii) societies, i.e., long-lived, open organisations aimed at providing
consistency through social laws to facilitate coexistence and ordered-yet-flexible290

interaction; and (viii) federations, i.e., groups of agents which have ceded some
autonomy to a single delegate which represents the group and mediates interac-
tion with other groups. In particular, SCR – which could also be seen as a meta
organisational pattern – provides a way for expressing dynamic federations—
upon which a continuous, decentralised, leader-regulated process is established295

for coordinating local activity towards increasingly non-local benefits. Beside
federations, other organisational paradigms provide for specific aspects (e.g.,
stability of the regions, or coordination constraints) or variants of the pattern
(as covered in Section 3.9).

A well-known organisational meta-pattern for self-adaptive systems, envi-300

sioned in the context of autonomic computing, is MAPE [1]: it suggests structur-
ing the system feedback control loop into four components: Monitor, Analyse,

8

Plan, and Execute. Several MAPE patterns for organising the adaptation logic
in decentralised self-adaptive systems are described in [8]: although they are re-
lated and operate in a similar design context, they focus on internal organisation305

of system adaptivity, rather than on external application design. In particular,
consider the Regional Planning pattern [8], which consists in distributing Plan-
ning components to different “software regions” (i.e., loosely coupled software
subsystems); where they collect data from Analyse components (which are fed
by Monitoring components) and command Execute components for enaction310

of planned adaptations. SCR somewhat subsumes Regional Planning, from the
point of view of scope: it goes beyond the design of self-adaptation control loops
by covering various assignments of responsibilities to the participants and being
directly usable for application logic as well; e.g., leaders in SCR may gather
regional data, resolve contention, or propagate events.315

Similar to MAPE is the Observer/Controller (O/C) architectural pat-
tern [49] for observation and control of organic systems. In the O/C pattern, an
observer component collects information about a System under Observation/-
Control (SuOC), and interacts with a controller component that is responsible
of steering the emergent behaviour of the SuOC. In [50], variants of the O/C320

patterns are introduced, from fully centralised to fully decentralised designs.
The SCR pattern is mostly similar to a dynamic combination of the distributed
and multi-level variants of the O/C pattern, where the region is the abstraction
that reifies a two-level structure, and the leader is the component at the upper
level that evaluates and guides the self-organisation process at the lower level.325

The Multi-Scale Feedbacks pattern [6] deals with large-scale coordination in
hierarchical self-* systems. The pattern characterises a self-* system as a set
of entities, exposing observable features, that are associated with or compos-
ing other entities. Then, it defines micro-to-macro information abstraction and
macro-to-micro feedback as key functions between micro and macro features.330

Even though SCR can be applied to hierarchies and hierarchically, and shares
some similarities with Multi-Scale Feedbacks – e.g., inter-level feedbacks (down-
ward/upward causation) are comparable to SCR downstream and upstream in-
formation flows, assuming leaders are at a higher level than other agents –, the
two patterns have different goals and take different perspectives: while SCR335

focusses on coordination of decentralised activity and interactions, Multi-Scale
Feedbacks focusses on hierarchical design.

The SCR pattern also shares some similarities with clustering, the process
devoted to the creation of clusters, i.e., groupings of “similar” objects—typically
for data analysis and statistics, automatic classification, and community detec-340

tion. Indeed, the process of formation of regions does include a clustering pro-
cess, where leaders can be thought of as centroids. A region, in fact, could also
be called a cluster. However, the SCR pattern also specifies responsibilities and
dynamical processes within a multi-clustered system (see Section 3 for details),
where each cluster is to be regulated through a feedback loop.345

Other related abstractions can also be found, e.g., in the context of WSN
research. For instance, the notion of directed diffusion [51] models data prop-
agation and aggregation through localised interactions; the abstract region [52]

9

abstraction captures various communication patterns within sensor regions; and
logical neighbourhoods [53] support the definition of virtual sensors/actuators350

as well as localised interactions, through routing protocols that enable a no-
tion of neighbourhood that goes beyond physical proximity. Logical neighbour-
hoods leverage neighbourhood templates matching node attributes, similarly to
attribute-based communication paradigms [54]. Recent surveys [55, 56] cover
these and other related abstractions, aimed at managing dynamic groups (also355

called ensembles) of interacting entities, that may be adopted in implementa-
tions of the SCR pattern to deal with network-wide connectivity and commu-
nications.

2.5. Known Uses

Though in this paper we describe a novel conceptualisation into the SCR pat-360

tern, it is interesting to discuss various forms and uses of it that can be found in
the literature, and which justify its introduction as a pattern. Since terminol-
ogy can vary (see Section 3.10), we have indicated the terms used throughout
this paper as well as common synonyms and mappings in Table 1.

Decentralised service orchestration. In [9], SCR is used to design a decentralised365

service orchestration system; there, a workflow specification is split for scala-
bility and performance into sub-workflows executed by multiple collaborating
engines that are migrated to different network regions based on placement anal-
ysis.

WSN algorithms and middlewares. TCMote [14] is designed according to SCR.370

The system is organised in (possibly hierarchical) sensor regions governed by
leaders with higher capabilities than the other region nodes (called motes).
TCMote uses tuple channels for one-to-many and many-to-one communication
between region sensors and the region leader in a single-hop. In another WSN
middleware, TS-Mid [15], tuple space-based logical regions are used for power375

saving; there, regional leaders dispatch operations to normal nodes and transmit
results to sink nodes. Moreover, several works consider clustering and routing in
WSNs. In [57], a dynamic clustering scheme is proposed for self-configuration of
WSN nodes, with the goal of increasing energy-efficiency by optimising the sleep
times of nodes within each cluster based on traffic. The clusters (i.e., the regions)380

are formed by having nodes choose their cluster head (i.e., their leader) based
on closeness with respect to a signal strength metric. In [58], the K-medoids
algorithm is combined with affinity propagation to identify a set of cluster heads
(i.e., leaders) in order to support energy-efficient routing in WSNs. In [59], a
two-layered control scheme is introduced to support independent clustering and385

routing. Cluster heads collect and process data sensed from cluster members and
send data to a different cluster. Interestingly, this work considers overlapping
regions (see Section 3.9) where gateway nodes provide support for inter-cluster
communication.

10

Robot swarm control. In the swarm steering study described in [13], the au-390

thors leverage dynamically selected, human-controlled leaders to influence and
guide robot swarms towards dynamic goal regions. In [60], a distributed feed-
back mechanism à la SCR has been used to regulate wall construction: in this
approach, a mobile organiser robot leverages a light source to provide a “spatio-
temporal varying template” for the construction to be made; builder robots395

forage and deposit building materials, and may use flash signals to indicate
“frustration” in the building process, causing the organiser to move. In [61],
a SCR-like design with implicit leaders is used for formation control of UAV
(Unmanned Aerial Vehicle) swarms. In [62], a methodology for complex multi-
group coordination control is proposed, covering inter-group and intra-group400

formation (the latter adopting a leader-follower architecture), and leveraging a
notion of adaptive interactive force to deal with inter-group interaction.

Traffic light control. The framework [63] for decentralised traffic light control is
based on hierarchical multi-agent system organised as per SCR. Region agents
model regions of the traffic network. They consist of intersection agents (SCR405

leaders) that coordinate with other intersection agents and control a set of turn-
ing movement agents (SCR downstream process), which learn to behave collec-
tively and provide feedback at the corresponding intersection (SCR upstream
process).

Resource management. In [64], a hierarchical system for the management of410

resources in large-scale multi-agent domains is described. In this approach,
called Distributed Dispatcher Manager (DDM), agents are organised into teams
where communication is restricted to happen only between group subordinates
to the corresponding team leaders. Leaders, which can also be grouped to
form higher-order teams, collect information from subordinates and propagate415

resource assignments back. In another work, Mission-oriented Adaptive Place-
ment (MAP) [65], SCR is adopted to implement a resource management frame-
work for self-adaptive dispersal of computing services in multi-layer infrastruc-
tures. The approach leverages regional load balancing and inter-region coordi-
nation for global load balancing.420

Decentralised reinforcement learning. In [66], a decentralised approach to re-
inforcement learning is proposed that leverages a multi-level, supervision-based
organisation to coordinate the learning process: there, lower-level agents (called
subordinates) are grouped into clusters, depending on how much they interact
together, and report states and rewards to supervising agents (called super-425

visors), which in turn provide supervisory information to guide the learning
agents in the exploration of their state-action spaces.

Morphogenesis and nature mimicry. In [67], SCR is used to implement an al-
gorithm, inspired by the working of vascular systems of plants, for the dynamic
distribution of resources aimed at the regulation of morphogenetic processes.430

This is called Vascular Morphogenesis Controller (VMC). A VMC system con-
sists of an acyclic directed graphs where root nodes (i.e., the leaders) acquire

11

Figure 1: SCR from a structural perspective—see description in Section 3.4. Among the
set of candidate leaders (“gateway-like” grey nodes), one leader (“gateway-like” red nodes)
is elected per region (coloured area); intermediary nodes (grey squares) are not eligible for
leadership and mediate interaction between leaders and members (gray circles). Edges denote
connectivity links.

and distribute resources to leaves in a forward flow, and leaves, depending on
their environmental conditions, provide a backward flow of guiding signals used
to adjust the thickness of connections—influencing the amount of resources flow-435

ing in, which in turn affects creation and removal of nodes (cf., branching and
shedding in plants).

Other known uses. Instances of the pattern can be found in other works that
include distributed sensing [68], target counting [17], group management for
target tracking [16], situated problem solving [69], design of self-adaptation440

control loops [8] (as discussed above), crowd tracking and steering [11, 12] in
opportunistic IoT, as well as peer-to-peer clouds [10].

3. Self-Organising Coordination Regions

Self-organising Coordination Regions (SCR) is a particular way of designing
systems that are made of multiple, heterogeneous (by constitution, position, or445

role) components that must organise their activity in a logical or physical space.
Since it often recurs in the literature (see Section 2 for a detailed account), it
is, by definition, a pattern, which we describe in this section in a general and
systematic way (roughly following classical schemas for pattern presentation),
while also exploring and documenting its variety of forms. The pattern builds on450

12

a space-based divide-and-conquer principle, and organises structure and inter-
action to enable self-integration while providing a trade-off between simplicity,
flexibility, and efficiency.

3.1. Intent

The intent of the SCR pattern is to promote, in a self-organising fashion,455

the formation of dynamic groups of components, while taking into account the
context (as induced by the environment or problem space), as well as to regulate
individual- and group-level decision making.

3.2. Context

The pattern applies to distributed systems, possibly composed of heteroge-460

neous devices, in which neither full centralisation nor full decentralisation in
control and decision making is possible or desirable. Often, full centralisation
introduces a single point of failure and reduces scalability, as such, it can be un-
desirable for large-scale systems, or even for systems that start small but need
to dynamically scale up by need. Full decentralisation is inherently complex465

in achieving consensus and globally optimised functions; this is especially true
in case devices are heterogeneous. For more discussion about the situations in
which the pattern is most useful or applicable, refer to Section 3.6.

3.3. Name and Synonyms

The pattern has been given the name Self-organising Coordination Regions.470

This reflects the decentralised nature of the pattern, as well as its support for
coordination through scoped, endogenous, emergent structures and dynamics.
Another suitable name could be Decentralised Multi-Orchestration Loops, as
the pattern defines a decentralised coordination strategy for injecting multiple
orchestration points into a system, creating corresponding system partitions reg-475

ulated through feedback loops. In [70], the pattern was named SGCG, to denote
the chain of aggregate programming blocks that provides a possible implemen-
tation schema of the pattern (see Section 4). Following the Leader-Followers
distributed control pattern, another suitable name could be Leaders-Followers,
where the aspect of regional organisation is kept implicit.480

3.4. Structure and Participants

Structurally, the pattern is organised as of Figure 1. The system can be
logically represented as a network of nodes situated in spatially extended and
possibly dynamic structures called regions. These components can assume at
any time one or more of the following roles1:485

1Depending on the scenario and the particular instantiation of the pattern, the types of
entities involved may take specialised names, such as those reported in Table 1.

13

Pattern
term

Synonyms/specialised terms based on context

Networks
Master/Worker
Architecture

Cluster Man-
agement

Coordination Others

Leader

Hub,
Root[67],
Cluster
Head[58,
57, 59]

Master, Control
plane

Manager
Orchestrator[9],
Coordinator[69]

Principal,
Supervisor[66],
Organiser[60],
Centroid

Candidate
leader

Secondary mas-
ter

Backup man-
ager

Member
Node,
Leaf[67],
Sink[15]

Worker, Slave Agent
Component, Co-
ordinable

User, Follower,
Subordinate[66],
Member, Partici-
pant

Intermediary

Relay[10],
Gate-
way [59],
Link,
Router

Work queue
Channels, Con-
nectors

Forwarder, Mid-
dleman, Mediator

Region
Partition,
Cluster[57],
Community

Subtask (Sub-)Cluster Team, Coalition
Area[69], Divi-
sion, Subsystem,
Group

Table 1: Examples of specialised terminology for the pattern components in different contexts.
Some of the terms come from the known uses of the pattern summarised in Section 2.5.

� Candidate leader : a node that is eligible, by virtue of its position, re-
sources, or capabilities2 for being elected as leader of a group of nodes or
a region of space;

� Leader : a node, responsible for a region, which collects information from
other nodes in its region and enacts decisions within the region;490

� Member (of a region): a node (e.g., a user or worker node), subordinate to
a leader, that sends/receives information to/from the leader of the region
it is part of, possibly through intermediaries;

� Intermediary : a node that mediates interaction between leaders and mem-
bers.495

The regions may be logical or physical, may cover a part or the entirety of the
space, and may be strictly separated or overlapping. The intermediaries mediate
the interaction between leaders and members; sometimes, e.g., in peer-to-peer
networks, these may work as relays. Also, note that the two-layer organisation
of the pattern (into leaders and subordinates) is orthogonal to the (possibly500

flat or many-layer) structure of the underlying network of devices (cf. the case
study in Section 5.4).

3.5. Dynamics and Collaborations

The pattern is organised in four phases (graphically represented in Figure 2):

2Even though the pattern itself makes no assumption on the network structure, on an edge
deployment usually candidate leaders correspond to edge servers.

14

(a) Network of devices (b) Candidate leaders

(c) Leaders get elected (d) Region formation

(e) Information collection (f) Decision propagation

Figure 2: Series of snapshots showing the phases of the pattern.

15

Figure 3: SCR from a dynamical perspective—see description in Section 3.5. Notation: solid
arrows represent required inputs or unavoidable perturbations; dashed lines denote possible
feedback loops.

1. Election of leaders. Leaders are elected from the set of candidates. They505

will be in charge of coordinating the region members, e.g., by planning or
taking decisions.

2. Formation of regions. Each node is assigned to a single leader, thus cre-
ating regions.

3. Information flow from members to leaders. Member nodes stream data or510

updates regarding their local activities or perceived events to leaders; some
processing (typically data aggregation) can occur en-route—examples in-
clude sensor data, local events, service requests, or feedback information
for the assigned tasks.

4. Information flow from leaders to members. Leaders stream computation515

results to all members of their managed region—it may be a decision to be
enacted, a collective view to be propagated, instructions to be assigned,
and so on, depending on the use case.

Note that these phases, although presented sequentially, are actually dynamic
processes that happen concurrently and are related by input/output dependen-520

cies (see Figure 3). In particular, the leader election phase can be thought as
an active process that can react to perturbations by automatically revising the
selection of leaders (i.e., in a self-healing or self-adaptive way), consequently
causing a reshaping of regions (therefore, we can say that the pattern promotes
self-organisation). Then, as regions change, the processes of upstream communi-525

cation (collection) and downstream communication (propagation) need to adapt
to the new situation as well. Additional flexibility comes from the possibility of
equipping the system with feedback loops: information propagated by leaders
may induce an effect on workers that, in turn, is perceived by leaders through

16

collected data. This feedback may induce the system to self-configure itself,530

e.g., in order to fine tune the coarseness of the regional structure.
So, in its most general form, with a dynamic set of candidates and partic-

ipants, and no assumption on devices’ capabilities or network structure, the
pattern requires and promotes forms of self-organising coordination, hence the
“self-organising” in the pattern name. Nevertheless, it is possible to add as-535

sumptions on the structure of the system and specialise/optimise the pattern
to tackle the very situation at hand. These pattern specialisations do not al-
ter the self-organising nature of the pattern, though. Having self-organising
and non-self organising variants of the same patterns and algorithms is in fact
pretty common; as an example, consider the well known Bellman-Ford algo-540

rithm [71, 72]: besides the classic versions working on a graph, there exist
self-organising versions meant to operate on a distributed and dynamic set-
ting [45, 42]. Notably, variants supporting self-organisation can usually work in
a superset of the scenarios supported by their non-self-organising counterparts.

3.6. Applicability: when to apply545

The SCR pattern is encouraged in face of large-scale and situatedness, open-
ness, requirements of data locality (e.g., because of privacy or latency or energy
use), and balanced approach between centralisation and distribution. In par-
ticular, in many cases large-scale situated systems need to self-organise in such
a way that its components can be monitored and coordinated according to a550

view larger than local (such as in complex situation recognition), but cannot
take the risk of centralising in a single point of failure, nor can weigh down the
whole coordination effort on a single device. This is particularly challenging in
open systems, where leader candidates and nodes can join and leave the system
dynamically, the underlying network structure is unknown and changing over555

time, and failures are likely. In fact, under these circumstances, the system
may need to dynamically switch among configurations with a different count of
centralisation points, which rules out full centralisation while at the same time
making full decentralisation over-complex for low load situations.

Another key situation in which SCR finds natural application relates to het-560

erogeneity. In some systems (e.g. mixed edge-cloud deployments) differences
among devices reflect to different roles that the device can assume in the co-
ordination process. For instance, end devices may feature constraints (battery
use, data rate limits, computational capabilities) preventing their participation
as coordinators of the system or one of its parts.565

3.7. Applicability: when not to apply

Systems for which fully centralised or decentralised coordination is applica-
ble are not good candidates for SCR application. In these systems, forcing the
application of the pattern would result in degenerate cases. For instance, in a
system where decision making can be decentralised entirely, forcing the adop-570

tion of SCR would degenerate to electing every node as the leader of a region

17

containing solely itself hence introducing unjustified complexity and coordina-
tion cost. Similarly, on the opposite side of the spectrum, if centralised coor-
dination is either possible or necessary, and there are no issues of openness and
resilience (hence, the selected single leader is guaranteed to be available), SCR575

would represent an element of unnecessary complexity. In fact, even though in
principle SCR can be used to elect a single leader and establish upstream and
downstream communication, more effective options are usually available when
the assumption of dependable central leader holds.

The problem at hand must be partitionable into sub-problems (regions) and580

solved independently. Hierarchical variations of the pattern can provide support
for more complex cases, yet if the problem does not allow for partitioning, the
pattern cannot get applied but for the degenerate variant in which it is used
to elect a single leader. Other coordination patterns are recommended in these
cases.585

An important element to factor into the choice of whether or not to apply
SCR is dynamicity. With respect to approaches using full decentralisation,
SCR introduces a coordination overlay. If the system changes so quickly that,
for instance, leader election can’t be performed, or that up- and down-stream
communication channels can’t get established, then SCR could not be leveraged,590

and different approaches are to be applied. In particular, for the pattern to work,
it is required that it’s possible to elect a single leader per region. In case this
is not possible, e.g. due to missing support for such an operation from the
implementation platform, SCR cannot be applied. Moreover, until the region
leader is elected, the outcome of the computation is undefined: strict deadlines595

or guarantees over the transient dynamic of the pattern may make it unsuitable
for the scenario at hand.

3.8. Consequences

Hybrid decision making. Decisions are taken considering a tunable subset of the
whole system, de-facto creating a hybrid between centralised and decentralised600

decision making. The amount of decentralisation depends on the granularity of
the partitioning into regions: the more regions are created, the more control is
decentralised.

Reduced dependence from deployment and network structure. SCR creates a sort
of dynamic, adaptive network overlay structure on top of the existing commu-605

nication infrastructure. By merely organising application logic on that overlay,
the specific shape of the underlying network can be abstracted away, allowing
for easier porting to diverse setups (e.g. cloud, edge, purely P2P), as show in
Section 5.

Eventual consistency. Temporal mobility, loss of messages, and device failures,610

only temporarily affect the values collected in leaders, and hence, deviation from
the actual global view. This effect is more pronounced as more intermediaries
mediate interaction between leaders and subordinates.

18

Sub-network isolation. In most versions of the pattern found in the literature,
members belonging to different regions do not participate in the same sub-615

system (i.e., they do not exchange information); however, indirect commu-
nication may be implemented through inter-regional communication between
leaders. We note that sub-network isolation is a common but not necessary
consequence of the pattern application: in few cases, extended versions of the
pattern are presented that allow for inter-region communication (region over-620

lapping) [70].

3.9. Variants and extensions

Pre-established leader candidates. Heterogeneity could in some cases force the
set of candidate leaders to be predetermined, since part of the participants can-
not assume the role of leader. This assumption usually reduces the search space625

for leader election, leading to quicker convergence. This variant can actually be
seen a a special case of the pattern application.

Leader election with pre-established regions. In certain contexts, the regional
structure might be determined before leader election is performed, effectively
inverting the order of phases 1 and 2 (see Section 3.5). This could be desired630

when the problem space has natural boundaries. Such inversion of control
should simplify the task of leader election, by limiting the scope of that process
to each specific sub-region.

Interconnected leaders. In some scenarios, channels among different leaders can
be set up to enable more global, system-wide coordination and tackle needs going635

beyond those of individual regions. The connected leaders make up a group
used to define higher-level regions, leading to a kind of hierarchical organisation.
This variant is connected to Observer/Controller patterns as well as to multi-
agent organisational paradigms, as covered in Section 2.4. Notice that having
multiple leaders interact is expected to introduce integration conflicts [39], to640

be tackled, e.g., through collaboration, negotiation, and consensus.

Hierarchical organisation. The pattern is designed around a two-layer organi-
sation (with leaders and followers). However, it can be applied recursively: a
region can be split into sub-regions governed by sub-leaders, and so on. This
approach can be taken, e.g., to organise decision making at a finer granularity,645

or to deal with problems existing at different scales. Organising SCR hierarchi-
cally enables multiple levels of information aggregation and multilevel control.
This may turn useful in case a problem can’t be partitioned and resolved by a
single leader, but the solution only relies on aggregate data from subsections of
the whole system.650

Overlapping regions. When regions overlap, then a node can be part of more
than one region, which means that it could be required to follow more than one
leader. Overlapping regions can be created by not imposing the constraint that
a node must follow exactly one leader. Therefore, this variant introduces the

19

issue of arbitration, i.e., of how to resolve conflicting commands issued by dif-655

ferent leaders. When regions are created through distance-based gradients (see
Section 2.3), overlapping regions can be achieved by spawning one gradient pro-
cess (representing a region) per leader. Additionally, when regions are sustained
by concurrent process instances, the phases of upstreaming and downstreaming
are naturally scoped per process, namely per region, promoting isolation of re-660

gional activities. However, nodes that are members of multiple regions are in a
privileged position (together with those at the regional boundaries) to support
inter-regional communication and coordination.

Non-covering region set. In this variant, regions do not necessarily form a par-
tition of the space. This could also be thought of as a partition consisting of665

n − 1 leader-regulated regions and 1 free zone (i.e., a leader-free region). The
free zone may also be non-contiguous, meaning that there could actually be
multiple separate free zones. Such an approach could be used to promote
isolation between the regions.

3.10. A Note on Terminology670

Depending on the context or domain in which the pattern is used, or on
mere linguistic choices during design and analysis, the participants and other
structures (cf. Sections 3.4 and 3.5) of the pattern may be referred to with
specific names—such as those suggested in Table 1.

We use terms “leader” and “member” to stress that the system has two675

different kinds of entities, with asymmetry in their responsibilities, and that
suitable entities (“condidate leaders”) may be promoted as leaders through a
proper dynamic process (that might depend on contingencies of the situation).
These terms, indeed, denote roles that various types of entities may play when
viewing a system by the perspective of the pattern.680

We also introduce an entity called “intermediary” to capture aspects related
to communication between leaders and members. Indeed, members may not be
directly connected to leaders. In a network, such as a WSN or a peer-to-peer
network, an intermediary could be responsible merely of routing messages, and
hence may better be called a “relay” or “router”.685

We use term “region” to denote a priori or a posteriori structures where
leaders and members work. Depending on the application, this might denote a
“team” or another kind multi-agent organisational structure [34], be a “parti-
tion” (if a member belongs to exactly one region), or generally be a “subsystem”.

For instance, in [69], the SCR pattern is used to organise an ecosystem for690

situated problem solving, which could be instantiated, e.g., in a smart city main-
tenance scenario. The idea is that problems that arise are situated (i.e., they
have a location in space-time) and have to be found and solved in place. Leaders
are called “coordinators”, to stress their role in coordinating the problem solving
activity (coherently, regions are called “coordination areas”), whereas members695

are called “agents”, to stress they are largely autonomous and that potentially
include both (augmented) humans and robots. Agents come in two flavours,
“detectors” (responsible for detection of issues or problems to be solved) and

20

“solvers” (responsible for fixing detected issues). In this scenario, upstream
data includes “detected problems” and “capabilities” of the solvers, whereas700

downstream data includes “assignments” of problems to solvers.

4. Implementation

In this section, we discuss the implementing platform requirements to sup-
port the pattern, we describe some possible variants in the implementation
strategy of the four phases described in previous section (Section 4.1), and then705

provide a prototypical implementation strategy in the framework of Aggregate
Computing (Section 4.2).

4.1. Implementation Issues

4.1.1. Election of leaders and formation of regions

The goal of the election phase is usually a configuration of leaders that must710

be valid or optimised with respect to a particular property—e.g., uniformity in
spatial coverage (as of a smart city environment) or balancing of load (tasks,
workers). Consensus on leadership may involve centralised algorithms, or resort
to (more challenging) algorithms for distributed and asynchronous systems [73,
74]. Generally, not all devices are eligible for leader position. Indeed, there715

could be constraints or preferences concerning which nodes can be selected as
candidates for leadership. For instance, a system composed of both mobile and
static (non-mobile) nodes may restrict the set of candidate leaders to the latter
category of devices, e.g., because they are connected to a power outlet. In
general, in heterogeneous systems where devices feature very diverse resource720

availability and constraints, coordinators are preferably dependable nodes with
significant computational and network resources, and little or no power saving
concern—such as edge gateways or fog nodes. The choice is driven by the will
to minimise the cost for the leader election process, which is likely to be less
expensive if the elected leaders remain the same over time, hence promoting an725

upstream selection of candidates less likely to leave the system. Trust could
also be used to rate and therefore include/exclude nodes from the candidate set
based on observed activity [75], reifing a notion of trust community [76], whose
deeper investigation is left as an interesting future work. The election process
can be part of the system bootstrap process or be dynamically reconsidered,730

continuously or after a delay. The latter case is more common in the scenarios
where SCR is usually found, as often mobility, failures, or functional changes
in the operational context (e.g. load peaks, new sensor readings, unexpected
situations) may require the invalidation of the current leader configuration.

The association of a component to a certain region is generally a consequence735

of leader election, since components tend to follow their closest (according to an
arbitrary metric) leader. The problem is similar to membership in component-
based ensembles [77], which is sometimes tackled via attribute-based coordina-
tion. Another way to define a region (also used in the implementation schema

21

of Section 4.2) is based on the construction of a gradient (see Section 2.3) hav-740

ing the leaders as sources. Since each node computes the distance from the
closest leader, attaching its identity to the propagating information provides
for the creation of regions contextually with the propagation itself. The same
technique, also known as gradcast [78], can be used for spreading in the same
way arbitrary information—see Section 4.1.2. This propagation technique can745

be particularly valuable for implementing SCR, as it natively introduces a di-
rectionality structure, which can be leveraged not just for propagation, but for
collection (upstreaming) as well—see Section 4.1.3. When relying on gradients,
the case of multiple, overlapping regions, where components may participate to
multiple collectives, requires special handling, as natively a gradient propagated750

from multiple sources has no overlaps, but simply refers to the closest source.
To cope with this situation, a different gradient needs to get propagated from
each source. When the count of possibly overlapping regions is dynamic and
only known at runtime, abstractions for concurrent collective computations [70]
may prove useful.755

4.1.2. Information spreading (downstream)

When SCR is deployed, the most common ways of disseminating information
are gossip [79] and gradient-based information cast, also known with the short
name of gradcast [78].

Gossip protocols [79] are suitable for letting information flow from leaders to760

members, assuming that information is monotonic, i.e, that it can only change
in a single direction, as is the case, for instance, for timers, whose values can only
grow. This limitation however severely restricts the application range of pure
gossip, since many interesting use cases need to manipulate data that changes in
any direction, or for which it is not even meaningful to define ordering. When-765

ever information is not monotonic, gossip algorithms should get periodically
refreshed or reset (thus introducing perturbations), or overlapping replicates of
the algorithm should execute in parallel [80].

Gradient-based information spreading algorithms are based on the idea of
carrying information along with a monotonically-increasing (logical or physical)770

distance from the information source. They are suitable both for generating re-
gions once leaders are elected (by propagating a gradient from each leader and
selecting the closest) and for disseminating information from leaders to mem-
bers, implementing a downstream information flow. Several implementations
of the algorithm exist, ranging from distributed adaptive Bellman-Ford [44] to775

advanced versions and compound algorithms taking into account aspects like
time, speed, and acceleration of devices [81, 42, 78].

4.1.3. Information accumulation (upstream)

When no assumptions on the network structure can be made, information
accumulation is generally a tougher task than information spreading. As for780

spreading, accumulation can be realised by gossiping information such that the
leader is reached with messages from all nodes in the region: however, this effec-
tively works only in the case of small regions, as it usually involves a considerable

22

amount of resource utilisation. Moreover, the same limitations of monotonicity
of information discussed in section 4.1.2 for the spreading hold for accumulation785

as well.
A more scalable technique is based on building a spanning tree over the

network (locally selecting as parent the closest neighbour to the source), then
accumulating along such tree towards the leader. Spanning trees, however, are
highly fragile to changes in the network [82]: disruption and creation of links790

may lead to different configurations, making naive versions of this algorithm
unsuitable for scenarios with frequent network reshaping [37]. In these cases,
multi-path techniques aggregate information towards the source using multiple
spanning trees rather than a single one. They are usually more robust to changes
in the network structure, but take more time to converge in case of stable795

networks [37, 83].

4.1.4. Platform requirements

Actual implementations of design patterns can vary significantly depend-
ing on the language or platform (more generally, the substrate) meant to be
used to implement them. Sometimes, the evolution of substrates leads to eas-800

ier implementation or even direct support for a pattern. To better explain the
concept, we take as example the original work from Gamma et al. [18], whose
pattern were exemplified in C++. We note how almost a decade later, some
of the patterns could be implemented straightforwardly using aspect oriented
programming, e.g. with Java using AspectJ [84]. More recent languages embed805

common patterns into language constructs: for instance, Scala [85] offers lan-
guage support for creating singleton objects; and Kotlin provides a by keyword
to implement the delegation pattern. In short, different substrates mandate dif-
ferent implementation strategies for the same pattern, and SCR is no exception.

In particular, substrates offering easy means to:810

� partition devices into regions;

� elect a leader within a partition;

� diffuse information; and

� aggregate information to a sink

are good candidates for quick and easy implementations of the pattern. On the815

other hand, substrates which entirely forbid any of the aforementioned opera-
tions cannot enjoy SCR, but possibly can for some of its less interesting variants
(e.g., with a statically defined set of leaders, with no election at runtime, and
hence with reduced resilience to leader loss). One key requirement is the ability
to define regions in an either physical or logical space, which implies the ability820

to measure distances in such space. The metric is relevant for the effectiveness
of the pattern, as regions built with metrics not mapping any relevant charac-
teristic of the problem at hand may end up producing aggregates which cannot
achieve, or cannot achieve effectively, the coordination goals. The illustrative

23

implementation proposed in this paper in Section 4.2 conveniently picks one825

framework providing simple means to implement the constituent parts of the
pattern. Other frameworks in the research realm of organic computing, such as
DEECo [86], and network abstraction languages (see Section 2.4) such as Log-
ical Neighbourhoods [53] or SCEL [77] are in principle well suited to support
the pattern as well.830

4.2. Illustrative implementation

We propose an implementation schema for the pattern in the paradigm of
aggregate computing [11, 87]—used in next section as a basis for evaluating
a smart city case study. The reason for this choice is rooted in the rather
straightforward mapping between the sub-patterns of SCR and the building835

blocks available in existing aggregate computing languages, which allow for a
concise implementation.

4.2.1. Background: computational fields and Aggregate Computing

Aggregate computing is rooted on the idea of programming distributed sys-
tems from a global perspective, declaratively [11], by functional manipulation840

of distributed data structures called (computational) fields (time-evolving maps
from devices to values). The field calculus [88, 87] is the formal, universal,
minimal language for functionally composing and manipulating fields, based on
which domain-specific languages (DSL) like ScaFi [68] and Protelis [89] have
been introduced to specify, simulate and run self-organising behaviours and845

collective coordination logic. Similarly to organic computing [22], aggregate
computing also aims to address robust local-to-global behaviour by steering
emergence and balancing top-down control with decentralised, bottom-up pro-
cesses.

In the field calculus, a program describes a collective behaviour by neglecting850

the single-device viewpoint. However, the operational semantics [88] defines
how the single device can “continuously” process the program and sustain the
overall system behaviour, by cyclic steps encompassing: (i) assessment of a local
context (previous state, environment perception, collection of input messages
received so far); (ii) interpretation of the aggregate program against such a855

context (producing a new state, messages to be sent, and actions to be executed);
(iii) execution of actions and spread of messages to neighbours.

To show high-level examples of aggregate programming we consider ScaFi,
a Scala-internal [85] DSL exposing the primitive constructs of the field calculus
(as well as a library of higher-level functions). A detailed explanation of the860

field constructs goes beyond the scope of this paper; the interested reader is
encouraged to refer to [88] (for the field calculus) and [90] (for ScaFi). As an
example program to ground the discussion and grasp the key aspects of the
programming model, consider the following definition of a distanceTo block
(i.e., a self-healing gradient):865

def distanceTo(leader: Boolean, metric: ()=>Double) =
rep(Double.PositiveInfinity)

(distance => mux(leader)(0.0)(minHood(nbr(distance) + metric())))
870

24

In the ScaFi code to come, purple symbols are non-primitive aggregate build-
ing blocks, grey symbols are configuration parameters, and bold symbols de-
note methods for local activity to be tailored to the application. Function
distanceTo specifies a global behaviour: it takes a field of Booleans indi-
cating true on leaders and a metric associating a distance to any pair of875

neighbouring nodes, and expresses how to compute and returns a field mapping
each node with the minimum hop-by-hop distance from the nearest leader—most
specifically, by computing triangle inequality as detailed e.g. in [37, 42]. Indeed:
rep(init)(f) evolves continuously field init through function f (by a lo-
cal operational perspective this is achieved by repeated execution of function f880

against the local value for rep’s field, or init when no such value is present—
like on the first local execution); mux(c)(a)(b) uses Boolean field c to project
either a (where and when c is true) or b (otherwise); and minHood(e) folds
over each neighbourhood and selects the minimum value for expression e, com-
puted by replacing nbr(m) with the neighbour’s value for expression m. Just885

like any called aggregate function, distanceTo is to be interpreted by each
node of the network in repetitive rounds, resulting in a continuous process of
sensing the environment (to update the two inputs), receiving messages from
neighbours (containing their latest value of distance), and broadcasting val-
ues to neighbours (the local value of distance)—according to the operational890

semantics reported in [37]. Most importantly, distanceTo can be function-
ally composed with other similar blocks to achieve more complex behaviours
(like the SCR pattern), still resulting in the same sense-receive-broadcast(-act)
protocol: each message will transparently carry all the required information to
support the evaluation of each composed block.895

4.2.2. Pattern implementation schema

We are now ready to show an implementation schema for the proposed pat-
tern in ScaFi. Details on the syntax, as well as on the the implementation of
sub-patterns leveraged in the following code, can be found in [90]:

900

class SCR extends AggregateProgram with BlockG with BlockC with BlockS {
def main = {

// selects a field of leaders, with at least grain distance
val leader = branch(isCandidate) { S(grain) } { false }
// creates a gradient from leaders based on a given metric905

val potential = distanceTo(leader, metric)
// gathers localInput values towards leaders by aggregation
val convergeCast = C(potential, localInput, aggregationFun)
// on leaders, takes a local decision based on received data
val decision = decisionMaking(leader, convergeCast)910

// broadcast decisions and take action
val divergeCast = G(leader, potential, decision)
localAction(divergeCast)

}
}915

This code is a Scala-based script representing both the overall collective adap-
tive behaviour, as well as the code to be locally executed by each device to

25

sustain its part of computation of the SCR distributed algorithm. Function
names S (from sparse-choice), C (from converge-cast), and G (from gradient-920

cast) are inherited from the original work introducing self-stabilising building
blocks for aggregate programming [91, 37]. These names are thus used in the
proposed implementation. Function application branch(c){e1}{e2} per-
forms domain partitioning according to condition c (i.e., devices for which c is
true will run aggregate behaviour e1, otherwise e2): this is used to constrain925

the leader election process to the set of candidate leaders. Call S(g) activates
a decentralised leader election process yielding a Boolean field (assigned to lo-
cal variable leader) that is true in correspondence of active leaders [74]; in
particular, this form ensures that leaders are at a mean distance g between each
other. Notice that since the aggregate program is continuously run, a change in930

the leader set configuration (as induced by mobility or failure) would be han-
dled reactively, possibly electing new leaders or transferring leadership. Call
distanceTo(s,m) builds a self-healing gradient field (using metric m) from
devices where s is true; this is used to make device compute an estimate of
their minimum distance to the leaders, both for membership and for construct-935

ing a dynamic communication structure providing a direction for upstream and
downstream information flows. Call C(p,l,f) aggregates local values l via
function f along potential p: this implements an upstream information flow [83],
where l and f are application-specific. Call decisionMaking(r,d) is also
application-specific and depends on the role r of the device and the data d lo-940

cally available from the upstream. This decision can change across time based
on history and the change of inputs. Call G(s,p,d) propagates data d locally
available from sources s along the direction provided by potential p: this imple-
ments a downstream information flow used by leaders to enact their decision.
Finally, call localAction(d) is a local, application-specific behaviour based945

from the information downstream.
We stress that the provided schema is not just pseudocode but actual ScaFi

code that can be executed on a (simulated or real) network of devices. We also
observe that the schema does provide a structure for organising self-integration
processes, whose specifics can be defined via a proper selection and definition950

of parameters, application-specific functions, and code extensions.

5. Case studies

In this section, we show two possible uses of the SCR pattern in different
contexts a dynamic network of situated and mobile devices performing collec-
tive sensing, and a hierarchical networked system performing collaborative and955

dynamic task distribution. The former case shows how SCR can be used when
there is need to integrate systems dynamically, and maintain operativity in con-
texts with high dynamicity. The latter case applies the pattern to a more classic
network structure, showing its ability to perform on-the-fly online self-organising
integration of subsystems depending on their dynamic state.960

The goal of the evaluation is to showcase the suitability of SCR when self-
integration is required to deal with changes in the system, due to mobility of

26

users (in the first case) or changes in operating conditions (in the second case).
The way we demonstrate the applicability of the pattern is by exercising it in
simulation, and showing how the system is able to cope in a wide range of condi-965

tions. More precisely, we show how the pattern (if appropriately implemented)
is self-stabilising [37], namely, to obtain correct behavior no matter what ini-
tial state is given, and hence also to be able to attain correctness in face of a
disruption (in our cases, user mobility and a peak load).

In both case studies, we evaluate specific instances of the SCR pattern. Of970

course, this implies that the extrapolated numbers are strictly related to those
specific implementations, without claim of generality. However, evaluating these
implementations helps also shedding light on the pattern at large: in particular,
on the approach to adopt when dealing with variants using feedback loops (and
the importance of appropriately control such loops, as learned from control975

theory); on the potential effectiveness in diverse contexts (situated collective
systems and classic networked systems); as well as expectations about the overall
dynamic of the SCR-controlled system. More in general, in this section we
demonstrate that appropriate implementations of the pattern exist that keep
the promises of self-organisation and self-integration made in the first part of980

this paper. Our experiments and selected metrics are intended to show that
SCR (appropriately implemented) is:

1. resilient to changes of different nature (moving users in one case, a sudden
peak load in the other);

2. robust to changes in the specific parameters that regulate its behaviour;985

3. predictable in face of changes in control parameters; and

4. correctly reacting to transient conditions, i.e., continually operating in
constantly changing conditions, without showing resonant or unexpected
behaviour.

5.1. Background: Edge Computing990

Fog and Edge Computing [92, 93, 94] are emerging ICT paradigms that aim
to bring cloud-like functionality closer to the edge of the network, i.e., to where
end users and data sources reside (or, generally, to where computational intelli-
gence is mostly required—cf., IoT and CPS). This is highly desirable especially
in the following circumstances:995

(i) when the powerful, remote cloud is not accessible, e.g., because there is no
global Internet connectivity;

(ii) when the remote cloud is accessible but it cannot satisfy quality attributes
and requirements, for instance because of issues in data privacy or the in-
ability to set real-time guarantees due to high latencies in communication;1000

(iii) when the remote cloud is both accessible and useful but expensive, e.g., in
terms of subscription fees or network bandwidth.

27

That is, Edge Computing is in some cases a necessity, but in general it comple-
ments remote cloud computing with a whole new set of possibilities ranging from
infrastructure-level optimisations (from exploiting idle edge devices to filtering1005

data before upstreaming it to the cloud) to flexibility in service-level agreements
and robustness through decentralisation.

5.2. Implementation details, organisation, and reproducibility

This section summarises some details shared between the two cases. In both
cases, SCR has been implemented in Protelis [89], which has been favoured over1010

ScaFi (used in the examples presented in this manuscript for its more compact
and familiar syntax) as it comes with a larger and well tested library [78],
and, generally, with a more solid toolchain, allowing us to reuse well-tested
building blocks in the experiments (which, of course, have to deal with a larger
number of details). The implementations under test have been simulated1015

using Alchemist [95], an extensible event-driven discrete event simulator. In
Alchemist time is not marked by discrete ticks, but is instead continuous, evolved
by the succession of simulated events. It can be seen as a peculiar agent-based
simulator featuring a set of optimisations derived from stochastic Monte-Carlo
simulators; and has been used in a wide range of applications, ranging from1020

morphogenesis [96] to social sciences [97] to IoT applications such as crowd
tracking and steering [98]

For the first scenario, we executed 100 repetitions of the experiment for each
configuration in the cartesian product of the parameters’ values, varying dis-
placement of edge devices, initial position of users and their waypoints, and1025

execution times of devices. For the second scenario, we first executed 10 rep-
etitions of the experiment for each configuration in the cartesian product of
the parameters’ values, and we used the data to appropriately select the self-
integration algorithm parameters. Once these parameters got fixed, the search
space was reduced, and we executed 90 further repetitions with the selected1030

values. Data generated by simulation has been processed using Xarray [99]
and plotted using matplotlib [100]. For the sake of reproducibility, the experi-
ments have been entirely open sourced, and instructions have been provided for
re-executing them. The code includes a reference implementation of the SCR
pattern, all the material has been released on publicly accessible repositories34.1035

For the sake of conciseness and clarity, this paper analyses and discusses only a
selection of the whole data generated by the experiments and available on the
provided sources.

5.3. Resilient multimedia streaming on the edge

As a first scenario, consider multimedia processing contexts that involve1040

transmission and computation of user-generated video streams. Real-world
application examples may include, for instance, multi-view media generation

3https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-orchestration
4https://github.com/DanySK/Experiment-2019-FGCS-Self-Integration

28

https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-orchestration
https://github.com/DanySK/Experiment-2019-FGCS-Self-Integration

Figure 4: A snapshot of the first simulation in execution. Every device is represented as
a circle. Edge servers are also surrounded by a square, large and black for currently elected
leaders, smaller and greyed for unelected leaders (working as intermediaries). Colour of the
circles identifies the region the device is assigned to.

and fruition (e.g., for multiplayer gaming) [101] and metropolitan collabora-
tive surveillance [102]. In the past years, pervasive usage of multi-view and
360-degree-view video streams was largely discouraged by scarce tolerance to1045

delays and huge bandwidth requirements and usage [101]. However, telecom-
munication technology advances (cf. 5G and 6G) are mitigating the latency
and bandwidth issues. Additionally, relevance of low-latency video processing
will likely increase in the future thanks to applications like mobile augmented
reality [103]. The execution of such multimedia applications is to be supported1050

across the smart city environment, where users wearing mobile devices (such as
smartphones, or even augmented-reality gadgets) can move and interact with
cyber-physical components. The smart city infrastructure consists of a network
of static (non-mobile) edge servers, with which mobile devices can communicate.
The goal of the overall system is to self-organise to dynamically select a subset1055

of edge nodes (enough to sustain the computation) to work as local leaders, in-
tegrate user devices and other infrastructural components into leader-regulated
teams, collect and redirect the video streams from users to the corresponding
leader edge device, process the data gathered at the leader, and finally spread
downstream the result of the computation back to the users.1060

5.3.1. Experimental configuration

Concretely, our scenario is composed of multiple edge servers (specifically,
126) deployed in the centre of the Italian city of Cesena, participating the system
as leader candidates. They are displaced as an irregular grid, to emulate the

29

physical limitations of a real-world deployment, and their exact position on1065

the map varies across simulation runs. We dynamically elect a subset of these
candidates to work as leaders, and let the others participate the system as relays.
More precisely, edge servers elect a leader for every region with a radius of of
200 meters, competing using the S building block (namely, leveraging unique
identifiers to break symmetry, and preferring established leaders to novel ones1070

if in range, promoting stability).
The system’s goal is to collect data streams generated by users, aggregate

them, and diffuse the number of streams being processed to the whole region.
Users are modelled as devices moving along roads open to pedestrian traffic at
a constant speed of 1.4m/s. For detecting streets open to pedestrian traffic, we1075

rely on data obtained from OpenStreetMap [104]. Bidirectional communica-
tion is considered established between users and edge servers, and among edge
servers, if physical distance is within Wi-Fi range (100m). Users do not directly
communicate with each other. In this work, we do not consider signal attenu-
ation due to objects along the line-of-sight of Wi-Fi antennas, nor we consider1080

bandwidth capacity and data rate reduction due to concurrent access to the
shared communication medium. We deem a deep analysis of network details to
be out of the scope of this work, which aims instead at showcasing SCR uses, and
drawing conclusion that can shed light on the ability of the pattern to cope with
continuous change. In fact, an evaluation leveraging a more realistic network1085

model, including details such as signal propagation and attenuation, protocol
overheads, data rate reduction due to shared resources, and so on; would be
incredibly useful to have insights on a system prior to its actual deployment;
but would not add many valuable insights on the overall behaviour of SCR in
general—which is instead the primary goal of this work. To this end, we adopt1090

a simplified network model, assuming connectivity with the edge servers within
100m from the end device position. Our experiment timeline is the follow-
ing: the simulation begins with devices bootstrapping asynchronously; after 10
simulated minutes, we simulate a disruptive event: elected leaders suddenly fail
with probability ρ—e.g. as would happen due to a city-wise power shortage;1095

after further 10 minutes of system evolution, the simulation ends.
We compare a classic implementation of SCR pattern (as described in Sec-

tion 4) with a variant featuring a feedback loop. The latter, whose implemen-
tation schema is provided in the remainder of this section, tries to coordinate
the leaders in such a way that they resize their regions in the attempt to cover1100

approximately the same number of users, so as to reduce disparities in workload
that could cause slowdowns on overloaded edge servers. This self-organising
adaptation of region size is achieved by feeding back to the leader the count
of users being currently served, and using it in turn to decide how much to
compete with other leaders, with the idea that the more users are being served,1105

the weaker is the leader “claim” on its region, and hence the smaller is the
resulting region area. Feeding the served user count back to the algorithm
input directly, (as any unregulated control loop) may lead to oscillating and
possibly resonant behaviours, which we want to prevent. Hence we filter it
using an exponential backoff (a low pass filter), namely, the feedback value is1110

30

αut+(1−α)ut−1, where ut is the count of served users at time t, starting from 0
clients being served at bootstrap . The α parameter is the sole non self-tuning
part of the implemented instance of SCR, and requires manual tuning. Impact
of feedback loops on the actual implementation may vary widely, depending on
the specific feedback being implemented and on how easily the platform hosting1115

the SCR implementation can accomodate changes. In our case, changes w.r.t.
the classic implementation proposed in Section 4 were minor. A code snipped
exemplifying the feedback loop introduction is as follows:

class SCRFeedback extends AggregateProgram1120

with BlockG with BlockC with BlockS {
def main = {

val leader = branch(isCandidate) { S(grain) } { false }
rep(0) { clients =>
// low pass filtering via exponential backoff1125

val filtered = exponentialBackOff(clients, alpha)
// creates a gradient from leaders, setting the client count
// as bottom value, hence restricting the areas for leaders
// serving a large count of clients
val potential = distanceTo(leader, sourceValue = clients, metric)1130

val convergeCast = C(potential, localInput, aggregationFun)
// upstream aggregation counting the clients being served
val currentClients = C(potential, 1, _+_)
val decision = decisionMaking(leader, convergeCast)
val divergeCast = G(leader, potential, decision)1135

localAction(divergeCast)
currentClients

}
}

}1140

The most relevant change w.r.t. the code in Section 4.2.2 is the rep call wrap-
ping the pattern. This primitive is meant to retain state across computation
rounds, and it’s hence necessary to keep track of the number of clients being
actually served. In control theory terms, it is required to implement the inte-1145

gral part of the proportional-integral controller represented by the exponential
backoff.

We first search for good values for α in our scenario, by looking at how
different values affect the size of regions and their stability. We stress that
α is the only parameter that requires manual tuning, as it is related to the1150

specific kind of low-pass filter adopted for this case study. We then measure
performance and resilience for both the base and the optimal-α versions of SCR,
varying the number of users and ρ, and observe how many users are served
overall and by each edge server. A summary of the free variables for the case
study is given in Table 2; measures are instead summarised and explained in1155

Table 3.

5.3.2. Results

We initially measure the impact of the feedback system and how it behaves
with different values for α. Results are depicted in Figure 5, detailed analysis

31

Name Description Values
u Active user devices count [50, 100, 200, 500, 1000]
α Backoff algorithm parameter [0, 10−3, 10−2, 10−1, 1]
ρ Probability for a leader to shut down af-

ter 10 min
[0, 0.25, 0.5, 0.75, 1]

fb Determines whether the feedback loop
is enabled

[true, false]

Table 2: Free variables for the first scenario in exam.

Name Description Unit
E of feed-
back adjust-
ment

Mean of the feedback adjustment for every leader. It
measures how much the radius of the coordinated region
is extended. Lower values indicate larger regions.

m

σ of feed-
back adjust-
ment

Standard deviation of the feedback adjustment for every
leader. It is an indication of how much the radius of the
coordinated region varies among leaders. Higher values
indicate higher disparity in such values, meaning that
the feedback system is altering the region sizes more
intensively.

m

∑
of clients

per edge
server

Overall number of users being served. The ideal value
is the number of users in the system. Higher values in-
dicate streams being processed by multiple leaders (due
to users crossing the region boundaries), lower values
imply that some users are not being served.

users

σ of clients
per edge
server

Standard deviation of number of users served by each
leader. Indication of load balancing. Higher values in-
dicate that more computational capacity is required for
some leaders w.r.t. others. The lower, the better bal-
anced is the load.

users

Table 3: Measures for the first case study.

32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Simulated time (minutes)

0

20

40

60

80

100

120
E

of
 fe

ed
ba

ck
 a

dj
us

tm
en

t (
m

)
Evaluation of the feedback loop for varying

disabled
=0.001
=0.01

=0.1
=1
=0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Simulated time (minutes)

0

20

40

60

80

100

120

 o
f f

ee
db

ac
k

ad
ju

st
m

en
t (

m
)

Evaluation of the feedback loop for varying

disabled
=0.001
=0.01

=0.1
=1
=0

Figure 5: Evaluation of the backoff parameter α, which tunes the trade-off between reactivity
and stability. Values are averaged along all values of u and ρ. Setting α = 0 is equivalent
to disabling the feedback system, since new values are simply discarded: the first value to
get in the feedback loop is retained forever. Plugging the feedback directly, without any
filtering (α = 1), leads to high instability, with the system continuously oscillating. Among
the other values analysed, α = 0.01 shows a smooth behaviour, with an impact on the system
comparable to α = 0.1.

is provided in the figure caption. They show that, among the analysed values,1160

α = 10−2 works best.
We then evaluate correctness and performance of the algorithm both without

and with feedback enabled (α = 10−2). Figure 6 shows that the system is able
to serve all the users, actually overprovisioning some of them, since the handoff
between regions is not dealt with gracefully with an explicit session termination:1165

hence, nodes crossing the boundary between neighbouring regions may happen
to be served twice. This is not an issue for this specific scenario, as it actually
provides some resilience in case of movements along the border of the region, in
case the client is only temporarily transiting to a new region. It might however
be a concern for applications with hard requirements on the handoff of nodes1170

changing region, and highlights a more general issue of gracefully terminating
the session within a region, which is unsolvable in the general case, as e.g., a
device may turn off due to a depleted battery, then get on again in a different
area when the battery is replaced, hence being unable to execute a graceful
termination procedure.1175

Finally, resilience of the system to failures is analysed by observing the re-
sponse to sudden disruptions hitting the leaders. Data in Figure 7 indicates
that SCR reaches stability quickly after the disruption, even when it involves
a large fraction of previously elected leaders, and regardless of whether the
feedback system is implemented. At disruption time, the system enters an in-1180

consistent state, with several nodes not served and several others overserved, as
they participate multiple, quickly changing regions, with their streams getting
lost because of the time required to recover both regions and spanning trees
for data accumulation. The feedback system does not show a measurable im-
pact on resilience, however it improves load balancing (by allowing regions to1185

dynamically resize) both before and after disruption event.

33

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Simulated time (minutes)

101

102

103

 o
f c

lie
nt

s s
er

ve
d

System performance with active users (=1)

on-50
on-100
on-200
on-500
on-1000

off-50
off-100
off-200
off-500
off-1000

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Simulated time (minutes)

100

101

102

 o
f c

lie
nt

s p
er

 e
dg

e
se

rv
er

System performance with active users (=1)

on-50
on-100
on-200
on-500
on-1000

off-50
off-100
off-200
off-500
off-1000

Figure 6: System correctness. Warm colours show the system behaviour with no feedback,
cold colours with the feedback system enabled and α = 10−2. Both configurations are able to
cope with the system dynamics, serving all the users, and actually slightly “overserve” them.
This is due to a combination of network propagation and elaboration times and absence of
an explicit handoff procedure for leaving a region, resulting in users joining a different region
having their streams counted also in the region they left for a few seconds. The feedback
system provides benefits in terms of load balancing, as depicted in the right chart: the lower
σ means lower disparity among leaders in the number of served users.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Simulated time (minutes)

200

400

600

800

1000

 o
f c

lie
nt

s s
er

ve
d

System resilience to disruption (500 users)

on- =0.0
on- =0.25
on- =0.5
on- =0.75
on- =1.0

off- =0.0
off- =0.25
off- =0.5
off- =0.75
off- =1.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Simulated time (minutes)

5

10

15

20

25

30

35

 o
f c

lie
nt

s p
er

 e
dg

e
se

rv
er

System resilience to disruption (500 users)

on- =0.0
on- =0.25
on- =0.5
on- =0.75
on- =1.0

off- =0.0
off- =0.25
off- =0.5
off- =0.75
off- =1.0

Figure 7: System resilience to disruption. Both pattern configurations provide resilience:
the system is able to find new leaders shortly after a disruptive event, even when none of
the previously selected leaders remains available. The system with feedback achieves slighlty
better performance for smaller disruptions, but shows slower stabilisation times in the worst
case. As seen in Figure 6, the feedbacked system features visibly improved performance in
terms of load balancing, both before and after the disruptive event, and regardless the degree
of disruption.

34

Type CPU Logic cores MIPS5

System on chip Raspberry PI 2 4 16866

Edge server AMD Ryzen 7 1700X 16 38037
HPC AMD EPYC 7401P 48 80190

Table 4: Hardware specifications for the simulated compute network.

5.4. Dynamic device cluster formation in hierarchical networks

As a second scenario, consider a grid networked system, where devices are
more and more powerful towards the network core. End users are located to-
wards the edge of such network, equipped with devices that are computationally1190

weak relatively to the network core. Users generate computationally intensive
tasks, possibly more than their own device can promptly deal with: in such case,
they want to offload the task to another network device. This kind of hybrid task
allocation strategy (between purely local execution and full offloading to some
server) requires a pre-existing or dynamic form of integration between devices,1195

and then a collective agreement on which device should be in charge of execut-
ing the task at hand. A good task allocation system should balance the load
across the infrastructure, considering the current load for each network node,
and trying to minimize both latency (i.e., allocate the task as close as possible
to the requester) as well as resource consumption. The goal, in this scenario,1200

is to dynamically create clusters of devices, in which devices with less resources
can offload tasks to those suffering less computational pressure. To address the
important issue of “mastering continuous change”, this integration of devices
should be self-organising, with no supervisor node, resilient to disconnection of
devices and able to automatically integrate new members. Moreover, clusters1205

need to be able to form both vertically (i.e., among devices located along a path
towards the network core) and horizontally (i.e., among devices that compose
the same logical layer in the network).

5.4.1. Experimental configuration

We simulate a high performance computing infrastructure composed of a1210

three-layered hierarchical network of devices progressively more powerful to-
wards the core of the network. Specifically, the system features (i) 100 low
power, system-on-chip (SoC) devices at the edge of the network, (ii) 25 desktop
PC-level edge servers on the intermediate layer, and (iii) 10 high performance
computers (HPCs) at the network core. Device technical specifications are pro-1215

vided in Table 4, where computational power is expressed as millions of instruc-
tions per second (MIPS). Devices are connected by reliabile links, we do not
simulate packet loss due to network instability and assume a reliable transport

5As computed by the 7-zip compression tool benchmark, data from OpenBenchmark-
ing.org: http://archive.ph/UmNw1

6Data unavailable on OpenBenchmarking.org at writing time and obtained from:
http://archive.ph/PPTtH

35

http://archive.ph/UmNw1

Figure 8: Sequence of snapshots of the second case study. Nodes have progressively more
computational resources towards the core of the network (inner circle). Leader nodes are
identified by a black dot. Same color corresponds to same cluster. Colors are assigned
progressively to leaders by changing hue, hence clusters led by close leaders may appear
similar in color—yet of course any partition has always a single leader. Initially (top left),
under mild load, every device is able to provide for itself: each one is a leader, and deals
with its own tasks. Raising the task arrival frequency causes devices to form clusters (top
right), getting logically closer and self-integrating to more computationally free nodes. If the
pressure is higher than the overall infrastructure capacity, clusters may become very large
(bottom left). Inside clusters, the leading node changes depending on the current load: the
less busy and more powerful unit is the one accepting the next job.

36

protocol (e.g., TCP/IP). Figure 8 depicts the system, showing the network
topology as well.1220

All devices but HPCs generate tasks following a Poisson arrival process with
frequency λ. We stress the compute network by simulating a peak load of five
minutes:

λ =

{
10−3Hz 100s ≤ t ≤ 400s

λPHz otherwise

where t is the current time, and λP is the peak task frequency. Every task has
a size s, measured in millions of instructions. In case a task gets generated on a
device already waiting for the results of other 20 tasks to be completed, the task
gets dropped. This measure is in place to keep high λP values from crashing
the system by generating more tasks than the infrastructure could support.1225

The network is programmed with a SCR-based task allocation algorithm
written in Protelis and executed with a round frequency of 1Hz, working as
follows: devices can measure how much free available computational capacity
they have left (Pf) by counting how many cores are currently unoccopied. This
value is used as input of a low pass filter, an exponential backoff function, to
obtain the current perceived capacity:

Pp(t) =

{
Pf t ≤ 0s

αPf (t) + (1− α)Pp(t− 1) otherwise

As in the previous example, this allows some degree of control over sudden
changes of Pf . Devices use Pp as a distance estimator, computed only among
neighbouring nodes: the distance between two nodes is the minimum between
their values of Pp. The idea behind this choice is that the less computational
capacity is available, the more likely a device is to ask for help, i.e., to form1230

a cluster with others and offload the task to a leader. This peculiar distance
metric is measured in MIPS; it is unrelated with the actual device locality, and
generates a non-Euclidean space: in fact, the direct path between two nodes
with high capacity left could be longer than a path transiting through a third
device with very low capacity. Devices form clusters with all devices within some1235

distance g, where g is a parameter of the self-integration algorithm, and must
be choosen considering the actual devices composing the network. Although
techniques for estimating a “good” value for a network could be deployed (e.g.,
a method could be setting it to the minimum of the maximum capacity value
among all devices, while more refined methods could also consider the cores1240

count), in this case study we test for a number of pre-defined values. Overall,
in this scenario we have two non self-tuning parameters: α, with the exact
same meaning and for the same reasons of the parameter with the same name
described in Section 5.3.1; and g, which we assign a value statically, but that
could in principle get computed based on system’s metrics.1245

Inside a cluster, a single device is elected, based on an election biased to
favour devices with higher Pp. When a task is generated inside a cluster, it
is sent upstream to the leader, and, once completed, the result is sent back

37

downstream. The task allocation to a leader causes a reduction on its Pf , and
hence on its Pp: when too many tasks have been allocated, the leadership will1250

switch to another device inside the cluster with higher Pp.

Name Description Values
g Distance threshold

under which a de-
vice considers it-
self clustered with a
neighbour

[1300, 1400, 1500, 1600, 1700] MIPS

α Backoff algorithm
parameter

[0.01, 0.03, 0.1, 0.3, 0.9]

λp Task arrival peak
frequency

[10−3, 0.003, 10−2, 0.03, 0.1, 0.3, 1] Hz

s Task size [1, 10, 102, 103, 104] millions of instructions

Table 5: Free variables for the second scenario.

Name Description Unit
E[Pp] Mean across devices of the perceived available computa-

tion capacity.
MIPS

E[Pf] Mean across devices of the available computation capac-
ity.

MIPS

Ts Overall number of tasks completed successfully through-
out the experiment

tasks

dTs/dt Derivative of Ts tasks/s
Td Overall number of tasks dropped successfully throughout

the experiment
tasks

dTd/dt Derivative of Td tasks/s
Tw Overall number of tasks awaiting completion tasks
A Clusters count clusters

Table 6: Measures for the second case study. Derivatives are computed ex-post, namely,
simulations generate data for Ts and Td, and these data is then processed to compute its
derivative.

The process of self-integration into clusters is depicted in Figure 8. We
execute simulations starting at t = 0s and ending at t = 600s, varying g, α, λp,
and s—these free variables are summarised in Table 5. Values of g are selected
in a range that encompasses values close to the computational capacity of the1255

weakest node. Values of 1600 and below are slighlty lower, and imply that weak
devices will try to accomplish some work before asking for help; while 1700 is
slightly higher, thus making the weakest devices always seek for help before
even trying to solve a task themselves. Very high values for g would lead the
system to aggregate to a single cluster, selecting a single leader at a time, and1260

switching leader when its load status makes it worse than another device. For

38

each simulation run, we measure the number of task completed with success
(Ts) and dropped (Td) throughout the whole experiment, the number of tasks
currently awaiting completion (Tw), the number of clusters (A), and the mean
of Pp and Pf across all devices—metrics are summarised in Table 6.1265

5.4.2. Results

0 100 200 300 400 500 600
time (s)

0

200

400

600

800

T s
 (t

as
ks

)

Ts for diverse g when s=1000
1300
1400
1500
1600
1700

0 100 200 300 400 500 600
time (s)

0

50

100

150

200

250

300

T d
 (t

as
ks

)

Td for diverse g when s=1000
1300
1400
1500
1600
1700

0 100 200 300 400 500 600
time (s)

0

20

40

60

80

100

120

140

T w
 (t

as
ks

)

Tw for diverse g when s=1000
1300
1400
1500
1600
1700

0 100 200 300 400 500 600
time (s)

40

60

80

100

120

140

A
(a

llia
nc

es
)

A for diverse g when s=1000
1300
1400
1500
1600
1700

Figure 9: Effect of diverse values for the clustering threshold parameter g. Under the
conditions we used for tuning g (s = 1000 tasks), larger clusters improve performance (top left)
and reduce the number of failing tasks (top right). However, values larger than the maximum
computational capacity of peripheral nodes make them always part of a larger cluster (bottom
right). In this specific case, the devices at the network core are so much faster than those
populating the outermost layer that involving them in computations immediately allows for
much shorter task completion time (bottom left), and, consequently, better performance.

As first step, we use the first simulation results to tune the g and α pa-
rameters. The effect of varying g is depicted in Figure 9. Despite the value
guaranteeing better performance is the highest in the tested range, we did not
want to forcibly prevent weaker devices from operating in solitude. Since per-1270

formance are very similar among the other tested value, we choose g = 1500.
Next, we need to balance the reactivity of the system in order to achieve

fast adaptation while preventing oscillatory or resonant behaviours, namely, we
need to better understand the effect of modifying α. Data framed in Figure 10
show two interesting effects: first, performance reaches an optimum for α val-1275

ues in the [0.03, 0.1] range, then drops; higher values allow for larger clusters,
but they do not improve performance as they did when analysing the system
behaviour for diverse values of g, because the computational power of the sys-
tem is left unexploited. This phenomenon is most likely caused by the system

39

0 100 200 300 400 500 600
time (s)

0

200

400

600

800
T s

 (t
as

ks
)

Ts for diverse smoothing when s=1000
0.01
0.03
0.1
0.3
0.9

0 100 200 300 400 500 600
time (s)

0

50

100

150

200

250

300

350

T d
 (t

as
ks

)

Td for diverse smoothing when s=1000
0.01
0.03
0.1
0.3
0.9

0 100 200 300 400 500 600
time (s)

10000

11000

12000

13000

14000

E[
P f

] (
M

IP
S)

E[Pf] for diverse smoothing when P=0.3

0.01
0.03
0.1
0.3
0.9

0 100 200 300 400 500 600
time (s)

70

80

90

100

110

120

130

A
(a

llia
nc

es
)

A for diverse smoothing when s=1000
0.01
0.03
0.1
0.3
0.9

Figure 10: Effect of diverse values for the exponential backoff parameter α. The overall system
performance initially improves for larger α values, but then decreases for values greater than
0.1. The effect is noticeable by looking at the count of tasks successfully completed (top
left) and dropped (top right). This happens despite the count of dynamic clusters dropping
faster with a more reactive (bigger) α, and hence their size getting bigger (which usually
increases performance as discussed for Figure 9). However, there is no performance increase,
and the reason is clarified by the data depicted on the bottom left, showing the average
unused copmutational capacity of the system with a fixed task arrival peak rate λP = 0.3Hz:
despite few, large clusters, the power does not get exploited efficiently. This is usually a sign
of the system reconfiguring the integration too often, not providing enough time for the new
configuration to try to face the task peak load. Different α values obtain similar performance:
this provides evidence of the robustness of SCR (and of the proposed implementation) to
changes in control parameters.

self-configuring the integration too often, not providing enough time for the new1280

configuration to try to establish up- and down-stream and try to face the task
peak load. Despite 0.03 achieving the best performance overall, we decided to
favour higher responsiveness and used 0.1, which achieves similar results.

Once parameters are set, we can measure the algorithm performance in de-
tail, with the goal of showing how the SCR pattern can easily support self-1285

integration of subsystems. Figure 11 analyses the evolution of the number of
successfully completed tasks. Data show that the system automatically recon-
figures, creating clusters of devices and splitting load within them. Derivatives
show that the system is able to increasingly improve its response to higher load.
The complementary side of the analysis on task completion performance is sum-1290

marised in Figure 12, which shows how the system gives up tasks. First, it is
always able to successfully complete almost every tasks for s up to 100 MIPS
for any λP and for any s if λP ≤ 0.03. Beyond these thresholds, the system

40

0 100 200 300 400 500 600
time (s)

0

10

20

30

40

50

60

70

80

T s
 (t

as
ks

)
Ts for diverse s when P=0.001

1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

20

40

60

80

100

120

140

T s
 (t

as
ks

)

Ts for diverse s when P=0.01
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

50

100

150

200

250

T s
 (t

as
ks

)

Ts for diverse s when P=0.03
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

100

200

300

400

500

600

T s
 (t

as
ks

)

Ts for diverse s when P=0.1
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

200

400

600

800

1000

1200

1400

1600

T s
 (t

as
ks

)

Ts for diverse s when P=0.3
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

1000

2000

3000

4000

5000

T s
 (t

as
ks

)

Ts for diverse s when P=1
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

2

4

6

8

10

dT
s/d

t (
ta

sk
s/

s)

dTs/dt for diverse s when P=0.3
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

5

10

15

20

25

30

35

dT
s/d

t (
ta

sk
s/

s)

dTs/dt for diverse s when P=1
1
10
100
1000
10000

Figure 11: Top six charts depict successfully completed tasks for different task arrival peak
rates (one per chart, increasing left to right and top to bottom) and different task sizes
(coloured lines). Bottom two charts frame the ex-post differentiation over time for the charts
immediately above them. The self-aggregation system is able to cope with the traffic peak,
and responds by progressively, dynamically increasing its ability to successfully complete tasks
with time.

41

0 100 200 300 400 500 600
time (s)

0.04

0.02

0.00

0.02

0.04

T d
 (t

as
ks

)
Td for diverse s when P=0.03

1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0.04

0.02

0.00

0.02

0.04

dT
d/d

t (
ta

sk
s/

s)

dTd/dt for diverse s when P=0.03
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

5

10

15

20

25

30

T d
 (t

as
ks

)

Td for diverse s when P=0.1
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0.0

0.2

0.4

0.6

0.8

dT
d/d

t (
ta

sk
s/

s)

dTd/dt for diverse s when P=0.1
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

100

200

300

400

500

600

700

T d
 (t

as
ks

)

Td for diverse s when P=0.3
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

1

2

3

4

5

6

7

8

dT
d/d

t (
ta

sk
s/

s)

dTd/dt for diverse s when P=0.3
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

1000

2000

3000

4000

T d
 (t

as
ks

)

Td for diverse s when P=1
1
10
100
1000
10000

0 100 200 300 400 500 600
time (s)

0

5

10

15

20

25

30

dT
d/d

t (
ta

sk
s/

s)

dTd/dt for diverse s when P=1
1
10
100
1000
10000

Figure 12: Dropped tasks analysis. Left column shows the overall number of dropped tasks
for increasing peak task arrival frequency (from top to bottom) and task sizes (coloured lines).
Thinner lines, where present, show value ± standard deviation. Right column depicts, for
each chart on the left hand side, the ex-post differentiation over time. Data shows how the
system adapts to serve higher loads, and how only in case the requests actually overtake the
overall available capacity it begins to drop part of the submitted tasks.

42

0 100 200 300 400 500 600
time (s)

0

10

20

30

40

50

T w
 (t

as
ks

)

Tw for diverse P when s=10
0.001
0.003
0.01
0.03
0.1
0.3
1

0 100 200 300 400 500 600
time (s)

0

20

40

60

80

100

120

T w
 (t

as
ks

)

Tw for diverse P when s=100
0.001
0.003
0.01
0.03
0.1
0.3
1

0 100 200 300 400 500 600
time (s)

0

100

200

300

400

500

600

T w
 (t

as
ks

)

Tw for diverse P when s=1000
0.001
0.003
0.01
0.03
0.1
0.3
1

0 100 200 300 400 500 600
time (s)

0

100

200

300

400

500

600

T w
 (t

as
ks

)

Tw for diverse P when s=10000
0.001
0.003
0.01
0.03
0.1
0.3
1

Figure 13: Waiting queue evolution for increasingly high task sizes (from left to right and top
to bottom). Different colours represent different peak task arrival frequencies. The system
scales linearly. Episodes of sub-linear scaling that appear for greater task sizes and higher
frequencies are mostly due to dropped tasks (see Figure 12).

gracefully begins to drop tasks. As the differential charts show, the drop rate
grows sublinearly, confirming the progressively improving response to change1295

of the SCR-based self-integration algorithm. Finally, in Figure 13 the count of
enqueued tasks per node is reported. Data is consistent with the performance
and the after-peak recovery times depicted in the previous analysis.

6. Conclusion

In this paper, we introduce Self-organising Coordination Regions, a pattern1300

enabling self-integration via hybrid coordination, especially suitable to for dy-
namic, opportunistic scenarios where control and decision making cannot be
completely centralised nor fully decentralised. The pattern fits a problem of
growing relevance in a fashion particularly well suited for edge systems and for
deploying a coordination stance that covers more than pure locality yet without1305

requiring any global coordinator. In particular, it helps to tackle complex-
ity and integration challenges (introduced in Section 1) in large-scale, dynamic
systems amenable to hybrid control. It does so by combining the the divide-and-
conquer principle with a self-organisation process (dynamically sustaining a set
of leader-regulated regions and the corresponding inter- and intra-interactions)1310

that promotes self-improving integration. In particular: centralisation of de-
cision making responsibilities to a small set of leaders reduces contention and
the dispersal of non-local monitoring and control (such that most of the com-
ponents can operate on a local basis); the regional structure provides tunable
scopes for collaboration and the problem domain; and the feedback loops foster1315

self-* activities.

43

To show applicability and benefits, we also present two case studies in sit-
uated edge and hierarchical network computing, showing that the pattern is
able to create self-improving structures of semi-independent coordination re-
gions where feedback-based interactions regulate activity. The pattern is also1320

easily extensible: we show, e.g., how a simple feedback mechanism could be
devised to improve the load balancing across different leaders. We believe the
presented pattern, along with the proposed implementation leveraging the Ag-
gregate Computing framework and its library of reusable self-stabilising building
blocks can streamline the prototyping and development of a wide class of ad-1325

vanced coordination mechanisms, especially in the context of Edge Computing.
The contribution of this paper can be framed in the autonomic computing

(generally) and SISSY (specifically) research areas. By synthesising a significant
corpus of recurrent architectural problem/solution pairs into a recognisable and
well-documented pattern, it fosters design of adaptive cooperation for large-1330

scale, dynamic ecosystems in continuous operation. Moreover, we note that,
as happened with the pattern described in this paper, aggregate computing
captures a level of abstraction that very well fits with the problem of turning
“complex machinery” into coherent “building blocks”. This can favour the emer-
gence of new design patterns for distributed self-organising systems, which we1335

expect to identify in the contexts of complex situation recognition, distributed
learning, and distributed tracking of complex phenomena.

Specifically, as short-term future work, we would like to investigate variants
of the pattern, improve its analysis by a control-theoretical perspective, and
possibly follow research directions along the SISSY challenge, for instance those1340

related to learning and computational trust (e.g., on the line explored in [75,
76]).

References

[1] J. O. Kephart, D. M. Chess, The vision of autonomic computing, IEEE
Computer 36 (1) (2003) 41–50. doi:10.1109/MC.2003.1160055.1345

URL https://doi.org/10.1109/MC.2003.1160055

[2] K. L. Bellman, J. Botev, A. Diaconescu, L. Esterle, C. Gruhl, C. Landauer,
P. R. Lewis, A. Stein, S. Tomforde, R. P. Würtz, Self-improving system
integration - status and challenges after five years of SISSY, in: 2018
IEEE 3rd International Workshops on Foundations and Applications of1350

Self* Systems (FAS*W), Trento, Italy, September 3-7, 2018 [105], pp.
160–167. doi:10.1109/FAS-W.2018.00042.
URL https://doi.org/10.1109/FAS-W.2018.00042

[3] M. W. Maier, Architecting principles for systems-of-systems, Sys-
tems Engineering 1 (4) (1998) 267–284. doi:10.1002/(sici)1355

1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d.
URL https://doi.org/10.1002/(sici)1520-6858(1998)1:
4<267::aid-sys3>3.0.co;2-d

44

https://doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/FAS-W.2018.00042
https://doi.org/10.1109/FAS-W.2018.00042
https://doi.org/10.1109/FAS-W.2018.00042
http://dx.doi.org/10.1109/FAS-W.2018.00042
https://doi.org/10.1109/FAS-W.2018.00042
https://doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
http://dx.doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
http://dx.doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
http://dx.doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
https://doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
https://doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
https://doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d

[4] S. Tomforde, J. Hähner, H. Seebach, W. Reif, B. Sick, A. Wacker,
I. Scholtes, Engineering and mastering interwoven systems, in:1360

W. Stechele, T. Wild (Eds.), ARCS 2014 - 27th International Conference
on Architecture of Computing Systems, Workshop Proceedings, February
25-28, 2014, Luebeck, Germany, University of Luebeck, Institute of Com-
puter Engineering, VDE Verlag / IEEE Xplore, 2014, pp. 1–8.
URL http://ieeexplore.ieee.org/document/6775093/1365

[5] C. Müller-Schloer, H. Schmeck, T. Ungerer (Eds.), Organic Computing -
A Paradigm Shift for Complex Systems, Springer, 2011. doi:10.1007/
978-3-0348-0130-0.
URL https://doi.org/10.1007/978-3-0348-0130-0

[6] A. Diaconescu, L. J. D. Felice, P. Mellodge, Multi-scale feedbacks for large-1370

scale coordination in self-systems, in: 13th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, SASO 2019, Umea, Swe-
den, June 16-20, 2019, IEEE, 2019, pp. 137–142. doi:10.1109/SASO.
2019.00025.
URL https://doi.org/10.1109/SASO.2019.000251375

[7] R. Casadei, D. Pianini, M. Viroli, A. Natali, Self-organising coordination
regions: A pattern for edge computing, in: Nielson and Tuosto [106], pp.
182–199. doi:10.1007/978-3-030-22397-7_11.
URL https://doi.org/10.1007/978-3-030-22397-7_11

[8] D. Weyns, B. R. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Pre-1380

hofer, J. Wuttke, J. Andersson, H. Giese, K. M. Göschka, On pat-
terns for decentralized control in self-adaptive systems, in: R. de Lemos,
H. Giese, H. A. Müller, M. Shaw (Eds.), Software Engineering for Self-
Adaptive Systems II - International Seminar, Dagstuhl Castle, Ger-
many, October 24-29, 2010 Revised Selected and Invited Papers, Vol.1385

7475 of Lecture Notes in Computer Science, Springer, 2010, pp. 76–107.
doi:10.1007/978-3-642-35813-5_4.
URL https://doi.org/10.1007/978-3-642-35813-5_4

[9] W. Jaradat, A. Dearle, A. Barker, Towards an autonomous decentralized
orchestration system, Concurrency and Computation: Practice and Ex-1390

perience 28 (11) (2016) 3164–3179. doi:10.1002/cpe.3655.
URL https://doi.org/10.1002/cpe.3655

[10] R. Casadei, M. Viroli, Coordinating computation at the edge: a decen-
tralized, self-organizing, spatial approach, in: Fourth International Con-
ference on Fog and Mobile Edge Computing, FMEC 2019, Rome, Italy,1395

June 10-13, 2019, IEEE, 2019, pp. 60–67. doi:10.1109/FMEC.2019.
8795355.
URL https://doi.org/10.1109/FMEC.2019.8795355

[11] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the internet of
things, IEEE Computer 48 (9) (2015) 22–30. doi:10.1109/MC.2015.1400

45

http://ieeexplore.ieee.org/document/6775093/
http://ieeexplore.ieee.org/document/6775093/
https://doi.org/10.1007/978-3-0348-0130-0
https://doi.org/10.1007/978-3-0348-0130-0
https://doi.org/10.1007/978-3-0348-0130-0
http://dx.doi.org/10.1007/978-3-0348-0130-0
http://dx.doi.org/10.1007/978-3-0348-0130-0
http://dx.doi.org/10.1007/978-3-0348-0130-0
https://doi.org/10.1007/978-3-0348-0130-0
https://doi.org/10.1109/SASO.2019.00025
https://doi.org/10.1109/SASO.2019.00025
https://doi.org/10.1109/SASO.2019.00025
http://dx.doi.org/10.1109/SASO.2019.00025
http://dx.doi.org/10.1109/SASO.2019.00025
http://dx.doi.org/10.1109/SASO.2019.00025
https://doi.org/10.1109/SASO.2019.00025
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1007/978-3-030-22397-7_11
http://dx.doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-642-35813-5_4
http://dx.doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1002/cpe.3655
https://doi.org/10.1002/cpe.3655
https://doi.org/10.1002/cpe.3655
http://dx.doi.org/10.1002/cpe.3655
https://doi.org/10.1002/cpe.3655
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/FMEC.2019.8795355
http://dx.doi.org/10.1109/FMEC.2019.8795355
http://dx.doi.org/10.1109/FMEC.2019.8795355
http://dx.doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/MC.2015.261

261.
URL https://doi.org/10.1109/MC.2015.261

[12] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, M. Viroli, A
development approach for collective opportunistic edge-of-things services,
Inf. Sci. 498 (2019) 154–169. doi:10.1016/j.ins.2019.05.058.1405

URL https://doi.org/10.1016/j.ins.2019.05.058

[13] P. M. Walker, S. A. Amraii, N. Chakraborty, M. Lewis, K. P. Sycara, Hu-
man control of robot swarms with dynamic leaders, in: 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Chicago,
IL, USA, September 14-18, 2014, IEEE, 2014, pp. 1108–1113. doi:1410

10.1109/IROS.2014.6942696.
URL https://doi.org/10.1109/IROS.2014.6942696

[14] M. Dı́az, B. Rubio, J. M. Troya, A coordination middleware for wireless
sensor networks, in: Systems Communications 2005 (ICW / ICHSN /
ICMCS / SENET 2005), 14-17 August 2005, Montreal, Canada, IEEE1415

Computer Society, 2005, pp. 377–382. doi:10.1109/ICW.2005.5.
URL https://doi.org/10.1109/ICW.2005.5

[15] R. de Cássia Acioli Lima, N. S. Rosa, I. R. L. Marques, Ts-mid: Mid-
dleware for wireless sensor networks based on tuple space, in: 22nd In-
ternational Conference on Advanced Information Networking and Ap-1420

plications, AINA 2008, Workshops Proceedings, GinoWan, Okinawa,
Japan, March 25-28, 2008, IEEE Computer Society, 2008, pp. 886–891.
doi:10.1109/WAINA.2008.244.
URL https://doi.org/10.1109/WAINA.2008.244

[16] J. Liu, J. Liu, J. Reich, P. Cheung, F. Zhao, Distributed group man-1425

agement in sensor networks: Algorithms and applications to localiza-
tion and tracking, Telecommunication Systems 26 (2-4) (2004) 235–251.
doi:10.1023/B:TELS.0000029041.37854.92.
URL https://doi.org/10.1023/B:TELS.0000029041.37854.
921430

[17] D. Pianini, S. Dobson, M. Viroli, Self-stabilising target counting in wire-
less sensor networks using euler integration, in: 11th IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, SASO
2017, Tucson, AZ, USA, September 18-22, 2017 [107], pp. 11–20. doi:
10.1109/SASO.2017.10.1435

URL https://doi.org/10.1109/SASO.2017.10

[18] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, 1st Edition, Addison-Wesley
Professional, 1994.

[19] G. Coulouris, J. Dollimore, T. Kindberg, Distributed systems - con-1440

cepts and designs (3. ed.), International computer science series, Addison-
Wesley-Longman, 2002.

46

http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1016/j.ins.2019.05.058
https://doi.org/10.1016/j.ins.2019.05.058
https://doi.org/10.1016/j.ins.2019.05.058
http://dx.doi.org/10.1016/j.ins.2019.05.058
https://doi.org/10.1016/j.ins.2019.05.058
https://doi.org/10.1109/IROS.2014.6942696
https://doi.org/10.1109/IROS.2014.6942696
https://doi.org/10.1109/IROS.2014.6942696
http://dx.doi.org/10.1109/IROS.2014.6942696
http://dx.doi.org/10.1109/IROS.2014.6942696
http://dx.doi.org/10.1109/IROS.2014.6942696
https://doi.org/10.1109/IROS.2014.6942696
https://doi.org/10.1109/ICW.2005.5
https://doi.org/10.1109/ICW.2005.5
https://doi.org/10.1109/ICW.2005.5
http://dx.doi.org/10.1109/ICW.2005.5
https://doi.org/10.1109/ICW.2005.5
https://doi.org/10.1109/WAINA.2008.244
https://doi.org/10.1109/WAINA.2008.244
https://doi.org/10.1109/WAINA.2008.244
http://dx.doi.org/10.1109/WAINA.2008.244
https://doi.org/10.1109/WAINA.2008.244
https://doi.org/10.1023/B:TELS.0000029041.37854.92
https://doi.org/10.1023/B:TELS.0000029041.37854.92
https://doi.org/10.1023/B:TELS.0000029041.37854.92
https://doi.org/10.1023/B:TELS.0000029041.37854.92
https://doi.org/10.1023/B:TELS.0000029041.37854.92
http://dx.doi.org/10.1023/B:TELS.0000029041.37854.92
https://doi.org/10.1023/B:TELS.0000029041.37854.92
https://doi.org/10.1023/B:TELS.0000029041.37854.92
https://doi.org/10.1023/B:TELS.0000029041.37854.92
https://doi.org/10.1109/SASO.2017.10
https://doi.org/10.1109/SASO.2017.10
https://doi.org/10.1109/SASO.2017.10
http://dx.doi.org/10.1109/SASO.2017.10
http://dx.doi.org/10.1109/SASO.2017.10
http://dx.doi.org/10.1109/SASO.2017.10
https://doi.org/10.1109/SASO.2017.10

[20] V. Lesch, C. Krupitzer, S. Tomforde, Emerging self-integration through
coordination of autonomous adaptive systems, in: FAS*W@SASO/ICAC,
IEEE, 2019, pp. 6–9.1445

[21] K. L. Bellman, C. Gruhl, C. Landauer, S. Tomforde, Self-improving sys-
tem integration - on a definition and characteristics of the challenge, in:
FAS*W@SASO/ICAC, IEEE, 2019, pp. 1–3.

[22] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter,
F. Rochner, H. Schmeck, Organic computing - addressing complexity by1450

controlled self-organization, in: ISoLA, IEEE Computer Society, 2006, pp.
185–191.

[23] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns, Wiley,
1996.1455

[24] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns,
Buildings, Construction, Oxford University Press, 1977.
URL http://www.amazon.fr/exec/obidos/ASIN/0195019199/
citeulike04-21

[25] J. M. Smith, Elemental Design Patterns (Paperback), Addison-Wesley,1460

2012.

[26] T. Parr, Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages, 1st Edition, Pragmatic
Bookshelf, 2009.

[27] D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented1465

Software Architecture, Vol. 2: Patterns for Concurrent and Networked
Objects, Wiley, 2000.
URL https://www.safaribooksonline.com/library/
view/pattern-oriented-software-architecture/
9781118725177/1470

[28] G. Hohpe, B. Woolf, Enterprise Integration Patterns, The Addison-Wesley
Signature Series, Prentice Hall, 2004.
URL http://books.google.com.au/books?id=dH9zp14-1KYC

[29] V. Vernon, Reactive Messaging Patterns with the Actor Model: Appli-
cations and Integration in Scala and Akka, 1st Edition, Addison-Wesley1475

Professional, 2015.

[30] R. Kuhn, B. Hanafee, J. Allen, Reactive Design Patterns, Manning, 2017.
URL https://books.google.it/books?id=tYPAsgEACAAJ

[31] M. Casciaro, Node.js Design Patterns, 2nd Edition, Community Experi-
ence Distilled, Packt, 2016.1480

URL https://books.google.it/books?id=Ys4GBgAAQBAJ

47

http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
http://books.google.com.au/books?id=dH9zp14-1KYC
http://books.google.com.au/books?id=dH9zp14-1KYC
https://books.google.it/books?id=tYPAsgEACAAJ
https://books.google.it/books?id=tYPAsgEACAAJ
https://books.google.it/books?id=Ys4GBgAAQBAJ
https://books.google.it/books?id=Ys4GBgAAQBAJ

[32] R. Hanmer, Patterns for Fault Tolerant Software, Wiley Publishing, 2007.

[33] S. Hayden, C. Carrick, Q. Yang, et al., Architectural design patterns for
multiagent coordination, in: 3rd Int. Conf. on Agent Systems, Vol. 99,
1999, p. .1485

[34] B. Horling, V. R. Lesser, A survey of multi-agent organizational
paradigms, Knowledge Eng. Review 19 (4) (2004) 281–316. doi:10.
1017/S0269888905000317.
URL https://doi.org/10.1017/S0269888905000317

[35] J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Viroli,1490

J. L. Arcos, Description and composition of bio-inspired design patterns:
a complete overview, Natural Computing 12 (1) (2013) 43–67. doi:10.
1007/s11047-012-9324-y.
URL https://doi.org/10.1007/s11047-012-9324-y

[36] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro, F. Ducatelle,1495

L. M. Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Montre-
sor, et al., Design patterns from biology for distributed computing, ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 1 (1) (2006)
26–66.

[37] M. Viroli, G. Audrito, J. Beal, F. Damiani, D. Pianini, Engineering1500

resilient collective adaptive systems by self-stabilisation, ACM Trans.
Model. Comput. Simul. 28 (2) (2018) 16:1–16:28. doi:10.1145/
3177774.
URL https://doi.org/10.1145/3177774

[38] T. D. Wolf, T. Holvoet, Design patterns for decentralised coordination in1505

self-organising emergent systems, in: S. Brueckner, S. Hassas, M. Jelasity,
D. Yamins (Eds.), Engineering Self-Organising Systems, 4th International
Workshop, ESOA 2006, Hakodate, Japan, May 9, 2006, Revised and In-
vited Papers, Vol. 4335 of Lecture Notes in Computer Science, Springer,
2006, pp. 28–49. doi:10.1007/978-3-540-69868-5_3.1510

URL https://doi.org/10.1007/978-3-540-69868-5_3

[39] S. Frey, A. Diaconescu, I. Demeure, Architectural Integration Patterns for
Autonomic Management Systems, in: 9th IEEE International Conference
and Workshops on the Engineering of Autonomic and Autonomous Sys-
tems (EASe 2012), Novi Sad, Serbia, 2012.1515

URL https://hal.telecom-paris.fr/hal-02286263

[40] M. Magnaudet, S. Chatty, What should adaptivity mean to interactive
software programmers?, in: F. Paternò, C. Santoro, J. Ziegler (Eds.),
ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, EICS’14, Rome, Italy, June 17-20, 2014, ACM, 2014, pp. 13–22.1520

doi:10.1145/2607023.2607028.
URL https://doi.org/10.1145/2607023.2607028

48

https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.1017/S0269888905000317
https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
http://dx.doi.org/10.1145/3177774
http://dx.doi.org/10.1145/3177774
http://dx.doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1007/978-3-540-69868-5_3
https://doi.org/10.1007/978-3-540-69868-5_3
https://doi.org/10.1007/978-3-540-69868-5_3
http://dx.doi.org/10.1007/978-3-540-69868-5_3
https://doi.org/10.1007/978-3-540-69868-5_3
https://hal.telecom-paris.fr/hal-02286263
https://hal.telecom-paris.fr/hal-02286263
https://hal.telecom-paris.fr/hal-02286263
https://hal.telecom-paris.fr/hal-02286263
https://doi.org/10.1145/2607023.2607028
https://doi.org/10.1145/2607023.2607028
https://doi.org/10.1145/2607023.2607028
http://dx.doi.org/10.1145/2607023.2607028
https://doi.org/10.1145/2607023.2607028

[41] T. D. Wolf, T. Holvoet, Designing self-organising emergent systems based
on information flows and feedback-loops, in: Proceedings of the First
International Conference on Self-Adaptive and Self-Organizing Systems,1525

SASO 2007, Boston, MA, USA, July 9-11, 2007, IEEE Computer Society,
2007, pp. 295–298. doi:10.1109/SASO.2007.16.
URL https://doi.org/10.1109/SASO.2007.16

[42] G. Audrito, R. Casadei, F. Damiani, M. Viroli, Compositional blocks for
optimal self-healing gradients, in: 11th IEEE International Conference1530

on Self-Adaptive and Self-Organizing Systems, SASO 2017, Tucson, AZ,
USA, September 18-22, 2017 [107], pp. 91–100. doi:10.1109/SASO.
2017.18.
URL http://doi.ieeecomputersociety.org/10.1109/SASO.
2017.181535

[43] A. Lluch-Lafuente, M. Loreti, U. Montanari, Asynchronous distributed
execution of fixpoint-based computational fields, Log. Methods Comput.
Sci. 13 (1). doi:10.23638/LMCS-13(1:13)2017.
URL https://doi.org/10.23638/LMCS-13(1:13)2017

[44] S. Dasgupta, J. Beal, A lyapunov analysis for the robust stability of an1540

adaptive bellman-ford algorithm, in: 55th IEEE Conference on Decision
and Control, CDC 2016, Las Vegas, NV, USA, December 12-14, 2016,
IEEE, 2016, pp. 7282–7287. doi:10.1109/CDC.2016.7799393.
URL https://doi.org/10.1109/CDC.2016.7799393

[45] J. Beal, J. Bachrach, D. Vickery, M. M. Tobenkin, Fast self-healing gradi-1545

ents, in: Proceedings of the 2008 ACM Symposium on Applied Computing
(SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008, 2008, pp. 1969–1975.
doi:10.1145/1363686.1364163.
URL https://doi.org/10.1145/1363686.1364163

[46] F. Li, Y. Ding, K. Hao, A dynamic leader-follower strategy for multi-robot1550

systems, in: 2015 IEEE International Conference on Systems, Man, and
Cybernetics, Kowloon Tong, Hong Kong, October 9-12, 2015, IEEE, 2015,
pp. 298–303. doi:10.1109/SMC.2015.64.
URL https://doi.org/10.1109/SMC.2015.64

[47] W. Ren, R. W. Beard, Distributed Consensus in Multi-vehicle Cooper-1555

ative Control - Theory and Applications, Communications and Control
Engineering, Springer, 2008. doi:10.1007/978-1-84800-015-5.
URL https://doi.org/10.1007/978-1-84800-015-5

[48] C. Yan, H. Fang, Observer-based distributed leader-follower tracking con-
trol: A new perspective and results, CoRR abs/1904.00338. arXiv:1560

1904.00338.
URL http://arxiv.org/abs/1904.00338

49

https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1109/SASO.2007.16
http://dx.doi.org/10.1109/SASO.2007.16
https://doi.org/10.1109/SASO.2007.16
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
http://dx.doi.org/10.1109/SASO.2017.18
http://dx.doi.org/10.1109/SASO.2017.18
http://dx.doi.org/10.1109/SASO.2017.18
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.23638/LMCS-13(1:13)2017
http://dx.doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.1109/CDC.2016.7799393
https://doi.org/10.1109/CDC.2016.7799393
https://doi.org/10.1109/CDC.2016.7799393
http://dx.doi.org/10.1109/CDC.2016.7799393
https://doi.org/10.1109/CDC.2016.7799393
https://doi.org/10.1145/1363686.1364163
https://doi.org/10.1145/1363686.1364163
https://doi.org/10.1145/1363686.1364163
http://dx.doi.org/10.1145/1363686.1364163
https://doi.org/10.1145/1363686.1364163
https://doi.org/10.1109/SMC.2015.64
https://doi.org/10.1109/SMC.2015.64
https://doi.org/10.1109/SMC.2015.64
http://dx.doi.org/10.1109/SMC.2015.64
https://doi.org/10.1109/SMC.2015.64
https://doi.org/10.1007/978-1-84800-015-5
https://doi.org/10.1007/978-1-84800-015-5
https://doi.org/10.1007/978-1-84800-015-5
http://dx.doi.org/10.1007/978-1-84800-015-5
https://doi.org/10.1007/978-1-84800-015-5
http://arxiv.org/abs/1904.00338
http://arxiv.org/abs/1904.00338
http://arxiv.org/abs/1904.00338
http://arxiv.org/abs/1904.00338
http://arxiv.org/abs/1904.00338
http://arxiv.org/abs/1904.00338
http://arxiv.org/abs/1904.00338

[49] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, H. Schmeck, Towards
a generic observer/controller architecture for organic computing, in: GI
Jahrestagung (1), Vol. P-93 of LNI, GI, 2006, pp. 112–119.1565

[50] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-
Schloer, U. Richter, H. Schmeck, Observation and control of organic sys-
tems, in: Organic Computing, Springer, 2011, pp. 325–338.

[51] C. Intanagonwiwat, R. Govindan, D. Estrin, J. S. Heidemann, F. Silva, Di-
rected diffusion for wireless sensor networking, IEEE/ACM Trans. Netw.1570

11 (1) (2003) 2–16. doi:10.1109/TNET.2002.808417.
URL https://doi.org/10.1109/TNET.2002.808417

[52] M. Welsh, G. Mainland, Programming sensor networks using abstract
regions, in: R. T. Morris, S. Savage (Eds.), 1st Symposium on Networked
Systems Design and Implementation (NSDI 2004), March 29-31, 2004,1575

San Francisco, California, USA, Proceedings, USENIX, 2004, pp. 29–42.
URL http://www.usenix.org/events/nsdi04/tech/welsh.
html

[53] L. Mottola, G. P. Picco, Logical neighborhoods: A programming abstrac-
tion for wireless sensor networks, in: DCOSS, Vol. 4026 of Lecture Notes1580

in Computer Science, Springer, 2006, pp. 150–168.

[54] Y. A. Alrahman, R. De Nicola, M. Loreti, Programming interactions in
collective adaptive systems by relying on attribute-based communication,
Sci. Comput. Program. 192 (2020) 102428.

[55] J. Beal, S. Dulman, K. Usbeck, M. Viroli, N. Correll, Organizing the1585

aggregate: Languages for spatial computing (2012). arXiv:1202.5509.
URL http://arxiv.org/abs/1202.5509

[56] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From
distributed coordination to field calculus and aggregate computing, J. Log.
Algebraic Methods Program. 109.1590

[57] S. Raghuwanshi, A. Mishra, A self-adaptive clustering based algorithm for
increased energy-efficiency and scalability in wireless sensor networks, in:
2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE
Cat. No. 03CH37484), Vol. 5, IEEE, 2003, pp. 2921–2925.

[58] J. Wang, Y. Gao, K. Wang, A. K. Sangaiah, S. Lim, An affinity1595

propagation-based self-adaptive clustering method for wireless sensor net-
works, Sensors 19 (11) (2019) 2579.

[59] E. Sakhaee, K. Leibnitz, N. Wakamiya, M. Murata, Bio-inspired layered
clustering scheme for self-adaptive control in wireless sensor networks, in:
2009 2nd International Symposium on Applied Sciences in Biomedical and1600

Communication Technologies, IEEE, 2009, pp. 1–6.

50

https://doi.org/10.1109/TNET.2002.808417
https://doi.org/10.1109/TNET.2002.808417
https://doi.org/10.1109/TNET.2002.808417
http://dx.doi.org/10.1109/TNET.2002.808417
https://doi.org/10.1109/TNET.2002.808417
http://www.usenix.org/events/nsdi04/tech/welsh.html
http://www.usenix.org/events/nsdi04/tech/welsh.html
http://www.usenix.org/events/nsdi04/tech/welsh.html
http://www.usenix.org/events/nsdi04/tech/welsh.html
http://www.usenix.org/events/nsdi04/tech/welsh.html
http://www.usenix.org/events/nsdi04/tech/welsh.html
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509

[60] R. L. Stewart, R. A. Russell, A distributed feedback mechanism to regulate
wall construction by a robotic swarm, Adaptive Behaviour 14 (1) (2006)
21–51. doi:10.1177/105971230601400104.
URL https://doi.org/10.1177/1059712306014001041605

[61] L. He, P. Bai, X. Liang, J. Zhang, W. Wang, Feedback formation con-
trol of UAV swarm with multiple implicit leaders, Aerospace Science and
Technology 72 (2018) 327–334. doi:10.1016/j.ast.2017.11.020.
URL https://doi.org/10.1016/j.ast.2017.11.020

[62] R. Haghighi, C. Cheah, Multi-group coordination control for robot1610

swarms, Automatica 48 (10) (2012) 2526–2534. doi:10.1016/j.
automatica.2012.03.028.
URL https://doi.org/10.1016/j.automatica.2012.03.028

[63] J. Jin, X. Ma, Hierarchical multi-agent control of traffic lights based on
collective learning, Eng. Appl. of AI 68 (2018) 236–248. doi:10.1016/1615

j.engappai.2017.10.013.
URL https://doi.org/10.1016/j.engappai.2017.10.013

[64] O. Yadgar, S. Kraus, C. L. O. Jr., Hierarchical information combination
in large-scale multiagent resource management, in: M. Huget (Ed.), Com-
munication in Multiagent Systems, Agent Communication Languages and1620

Conversation Polocies, Vol. 2650 of Lecture Notes in Computer Science,
Springer, 2003, pp. 129–145. doi:10.1007/978-3-540-44972-0\
_6.
URL https://doi.org/10.1007/978-3-540-44972-0_6

[65] A. Paulos, S. Dasgupta, J. Beal, Y. Mo, K. D. Hoang, L. J. Bryan, P. P.1625

Pal, R. E. Schantz, J. Schewe, R. Sitaraman, A. Wald, C. Wayllace,
W. Yeoh, A framework for self-adaptive dispersal of computing services,
in: IEEE 4th International Workshops on Foundations and Applications
of Self* Systems, FAS*W@SASO/ICCAC 2019, Umea, Sweden, June 16-
20, 2019 [108], pp. 98–103. doi:10.1109/FAS-W.2019.00036.1630

URL https://doi.org/10.1109/FAS-W.2019.00036

[66] C. Zhang, V. R. Lesser, S. Abdallah, Self-organization for coordinating de-
centralized reinforcement learning, in: W. van der Hoek, G. A. Kaminka,
Y. Lespérance, M. Luck, S. Sen (Eds.), 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto,1635

Canada, May 10-14, 2010, Volume 1-3, IFAAMAS, 2010, pp. 739–746.
URL https://dl.acm.org/citation.cfm?id=1838304

[67] P. Zahadat, Self-adaptation and self-healing behaviors via a dynamic dis-
tribution process, in: IEEE 4th International Workshops on Foundations
and Applications of Self* Systems, FAS*W@SASO/ICCAC 2019, Umea,1640

Sweden, June 16-20, 2019 [108], pp. 261–262. doi:10.1109/FAS-W.
2019.00072.
URL https://doi.org/10.1109/FAS-W.2019.00072

51

https://doi.org/10.1177/105971230601400104
https://doi.org/10.1177/105971230601400104
https://doi.org/10.1177/105971230601400104
http://dx.doi.org/10.1177/105971230601400104
https://doi.org/10.1177/105971230601400104
https://doi.org/10.1016/j.ast.2017.11.020
https://doi.org/10.1016/j.ast.2017.11.020
https://doi.org/10.1016/j.ast.2017.11.020
http://dx.doi.org/10.1016/j.ast.2017.11.020
https://doi.org/10.1016/j.ast.2017.11.020
https://doi.org/10.1016/j.automatica.2012.03.028
https://doi.org/10.1016/j.automatica.2012.03.028
https://doi.org/10.1016/j.automatica.2012.03.028
http://dx.doi.org/10.1016/j.automatica.2012.03.028
http://dx.doi.org/10.1016/j.automatica.2012.03.028
http://dx.doi.org/10.1016/j.automatica.2012.03.028
https://doi.org/10.1016/j.automatica.2012.03.028
https://doi.org/10.1016/j.engappai.2017.10.013
https://doi.org/10.1016/j.engappai.2017.10.013
https://doi.org/10.1016/j.engappai.2017.10.013
http://dx.doi.org/10.1016/j.engappai.2017.10.013
http://dx.doi.org/10.1016/j.engappai.2017.10.013
http://dx.doi.org/10.1016/j.engappai.2017.10.013
https://doi.org/10.1016/j.engappai.2017.10.013
https://doi.org/10.1007/978-3-540-44972-0_6
https://doi.org/10.1007/978-3-540-44972-0_6
https://doi.org/10.1007/978-3-540-44972-0_6
http://dx.doi.org/10.1007/978-3-540-44972-0_6
http://dx.doi.org/10.1007/978-3-540-44972-0_6
http://dx.doi.org/10.1007/978-3-540-44972-0_6
https://doi.org/10.1007/978-3-540-44972-0_6
https://doi.org/10.1109/FAS-W.2019.00036
http://dx.doi.org/10.1109/FAS-W.2019.00036
https://doi.org/10.1109/FAS-W.2019.00036
https://dl.acm.org/citation.cfm?id=1838304
https://dl.acm.org/citation.cfm?id=1838304
https://dl.acm.org/citation.cfm?id=1838304
https://dl.acm.org/citation.cfm?id=1838304
https://doi.org/10.1109/FAS-W.2019.00072
https://doi.org/10.1109/FAS-W.2019.00072
https://doi.org/10.1109/FAS-W.2019.00072
http://dx.doi.org/10.1109/FAS-W.2019.00072
http://dx.doi.org/10.1109/FAS-W.2019.00072
http://dx.doi.org/10.1109/FAS-W.2019.00072
https://doi.org/10.1109/FAS-W.2019.00072

[68] R. Casadei, M. Viroli, Programming actor-based collective adaptive
systems, in: A. Ricci, P. Haller (Eds.), Programming with Actors -1645

State-of-the-Art and Research Perspectives, Vol. 10789 of Lecture Notes
in Computer Science, Springer, 2018, pp. 94–122. doi:10.1007/
978-3-030-00302-9_4.
URL https://doi.org/10.1007/978-3-030-00302-9_4

[69] R. Casadei, C. Tsigkanos, M. Viroli, S. Dustdar, Engineering resilient1650

collaborative edge-enabled iot, in: E. Bertino, C. K. Chang, P. Chen,
E. Damiani, M. Goul, K. Oyama (Eds.), 2019 IEEE International Con-
ference on Services Computing, SCC 2019, Milan, Italy, July 8-13, 2019,
IEEE, 2019, pp. 36–45. doi:10.1109/SCC.2019.00019.
URL https://doi.org/10.1109/SCC.2019.000191655

[70] R. Casadei, M. Viroli, G. Audrito, D. Pianini, F. Damiani, Aggregate
processes in field calculus, in: Nielson and Tuosto [106], pp. 200–217.
doi:10.1007/978-3-030-22397-7_12.
URL https://doi.org/10.1007/978-3-030-22397-7_12

[71] A. Shimbel, Structure in communication nets, in: Proceedings of the Sym-1660

posium on Information Networks (New York, 1954), Polytechnic Press of
the Polytechnic Institute of Brooklyn, 1955, pp. 199–203.

[72] R. Bellman, On a routing problem, Quarterly of Applied Mathematics
16 (1) (1958) 87–90. doi:10.1090/qam/102435.
URL https://doi.org/10.1090/qam/1024351665

[73] S. D. Stoller, Leader election in asynchronous distributed systems, IEEE
Trans. Computers 49 (3) (2000) 283–284. doi:10.1109/12.841132.
URL https://doi.org/10.1109/12.841132

[74] Y. Mo, J. Beal, S. Dasgupta, An aggregate computing approach to self-
stabilizing leader election, in: 2018 IEEE 3rd International Workshops on1670

Foundations and Applications of Self* Systems (FAS*W), Trento, Italy,
September 3-7, 2018 [105], pp. 112–117. doi:10.1109/FAS-W.2018.
00034.
URL https://doi.org/10.1109/FAS-W.2018.00034

[75] R. Casadei, A. Aldini, M. Viroli, Towards attack-resistant aggregate com-1675

puting using trust mechanisms, Sci. Comput. Program. 167 (2018) 114–
137.

[76] S. Edenhofer, S. Tomforde, J. Kantert, L. Klejnowski, Y. Bernard,
J. Hähner, C. Müller-Schloer, Trust communities: An open, self-organised
social infrastructure of autonomous agents, in: Trustworthy Open Self-1680

Organising Systems, Autonomic Systems, Springer, 2016, pp. 127–152.

[77] G. Cabri, N. Capodieci, L. Cesari, R. De Nicola, R. Pugliese, F. Tiezzi,
F. Zambonelli, Self-expression and dynamic attribute-based ensembles in

52

https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1007/978-3-030-00302-9_4
http://dx.doi.org/10.1007/978-3-030-00302-9_4
http://dx.doi.org/10.1007/978-3-030-00302-9_4
http://dx.doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1109/SCC.2019.00019
http://dx.doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-030-22397-7_12
http://dx.doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1090/qam/102435
http://dx.doi.org/10.1090/qam/102435
https://doi.org/10.1090/qam/102435
https://doi.org/10.1109/12.841132
http://dx.doi.org/10.1109/12.841132
https://doi.org/10.1109/12.841132
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034
http://dx.doi.org/10.1109/FAS-W.2018.00034
http://dx.doi.org/10.1109/FAS-W.2018.00034
http://dx.doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1007/978-3-662-45234-9_11
https://doi.org/10.1007/978-3-662-45234-9_11
https://doi.org/10.1007/978-3-662-45234-9_11

SCEL, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications of
Formal Methods, Verification and Validation. Technologies for Mastering1685

Change - 6th International Symposium, ISoLA 2014, Imperial, Corfu,
Greece, October 8-11, 2014, Proceedings, Part I, Vol. 8802 of Lecture
Notes in Computer Science, Springer, 2014, pp. 147–163. doi:10.1007/
978-3-662-45234-9_11.
URL https://doi.org/10.1007/978-3-662-45234-9_111690

[78] M. Francia, D. Pianini, J. Beal, M. Viroli, Towards a foundational
API for resilient distributed systems design, in: 2nd IEEE Interna-
tional Workshops on Foundations and Applications of Self* Systems,
FAS*W@SASO/ICCAC 2017, Tucson, AZ, USA, September 18-22, 2017
[109], pp. 27–32. doi:10.1109/FAS-W.2017.116.1695

URL http://doi.ieeecomputersociety.org/10.1109/FAS-W.
2017.116

[79] K. Birman, The promise, and limitations, of gossip protocols, Operating
Systems Review 41 (5) (2007) 8–13. doi:10.1145/1317379.1317382.
URL https://doi.org/10.1145/1317379.13173821700

[80] D. Pianini, J. Beal, M. Viroli, Improving gossip dynamics through over-
lapping replicates, in: A. Lluch-Lafuente, J. Proença (Eds.), Coordina-
tion Models and Languages - 18th IFIP WG 6.1 International Confer-
ence, COORDINATION 2016, Held as Part of the 11th International
Federated Conference on Distributed Computing Techniques, DisCoTec1705

2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, Vol. 9686
of Lecture Notes in Computer Science, Springer, 2016, pp. 192–207.
doi:10.1007/978-3-319-39519-7_12.
URL https://doi.org/10.1007/978-3-319-39519-7_12

[81] G. Audrito, F. Damiani, M. Viroli, Optimal single-path information prop-1710

agation in gradient-based algorithms, Sci. Comput. Program. 166 (2018)
146–166. doi:10.1016/j.scico.2018.06.002.
URL https://doi.org/10.1016/j.scico.2018.06.002

[82] Y. Mo, J. Beal, S. Dasgupta, Error in self-stabilizing spanning-tree es-
timation of collective state, in: 2nd IEEE International Workshops on1715

Foundations and Applications of Self* Systems, FAS*W@SASO/ICCAC
2017, Tucson, AZ, USA, September 18-22, 2017 [109], pp. 1–6. doi:
10.1109/FAS-W.2017.112.
URL http://doi.ieeecomputersociety.org/10.1109/FAS-W.
2017.1121720

[83] G. Audrito, S. Bergamini, F. Damiani, M. Viroli, Effective collective
summarisation of distributed data in mobile multi-agent systems, in:
E. Elkind, M. Veloso, N. Agmon, M. E. Taylor (Eds.), Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent

53

https://doi.org/10.1007/978-3-662-45234-9_11
https://doi.org/10.1007/978-3-662-45234-9_11
http://dx.doi.org/10.1007/978-3-662-45234-9_11
http://dx.doi.org/10.1007/978-3-662-45234-9_11
http://dx.doi.org/10.1007/978-3-662-45234-9_11
https://doi.org/10.1007/978-3-662-45234-9_11
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.116
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.116
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.116
http://dx.doi.org/10.1109/FAS-W.2017.116
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.116
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.116
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.116
https://doi.org/10.1145/1317379.1317382
http://dx.doi.org/10.1145/1317379.1317382
https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-39519-7_12
http://dx.doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1016/j.scico.2018.06.002
http://dx.doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1016/j.scico.2018.06.002
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.112
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.112
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.112
http://dx.doi.org/10.1109/FAS-W.2017.112
http://dx.doi.org/10.1109/FAS-W.2017.112
http://dx.doi.org/10.1109/FAS-W.2017.112
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.112
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.112
http://doi.ieeecomputersociety.org/10.1109/FAS-W.2017.112
http://dl.acm.org/citation.cfm?id=3331882
http://dl.acm.org/citation.cfm?id=3331882
http://dl.acm.org/citation.cfm?id=3331882

Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, Interna-1725

tional Foundation for Autonomous Agents and Multiagent Systems, 2019,
pp. 1618–1626.
URL http://dl.acm.org/citation.cfm?id=3331882

[84] J. Hannemann, G. Kiczales, Design pattern implementation in java and as-
pectj, in: Proceedings of the 2002 ACM SIGPLAN Conference on Object-1730

Oriented Programming Systems, Languages and Applications, OOPSLA
2002, Seattle, Washington, USA, November 4-8, 2002, 2002, pp. 161–173.
doi:10.1145/582419.582436.
URL https://doi.org/10.1145/582419.582436

[85] M. Odersky, T. Rompf, Unifying functional and object-oriented program-1735

ming with scala, Commun. ACM 57 (4) (2014) 76–86. doi:10.1145/
2591013.
URL https://doi.org/10.1145/2591013

[86] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil,
Deeco: An ensemble-based component system, in: Proceedings of the1740

16th International ACM Sigsoft Symposium on Component-Based Soft-
ware Engineering, CBSE ’13, Association for Computing Machinery, New
York, NY, USA, 2013, p. 81–90. doi:10.1145/2465449.2465462.
URL https://doi.org/10.1145/2465449.2465462

[87] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From1745

field-based coordination to aggregate computing, in: G. D. M. Serugendo,
M. Loreti (Eds.), Coordination Models and Languages - 20th IFIP WG
6.1 International Conference, COORDINATION 2018, Held as Part of
the 13th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018. Proceed-1750

ings, Vol. 10852 of Lecture Notes in Computer Science, Springer, 2018,
pp. 252–279. doi:10.1007/978-3-319-92408-3_12.
URL https://doi.org/10.1007/978-3-319-92408-3_12

[88] G. Audrito, M. Viroli, F. Damiani, D. Pianini, J. Beal, A higher-order
calculus of computational fields, ACM Trans. Comput. Log. 20 (1) (2019)1755

5:1–5:55. doi:10.1145/3285956.
URL https://doi.org/10.1145/3285956

[89] D. Pianini, M. Viroli, J. Beal, Protelis: practical aggregate program-
ming, in: R. L. Wainwright, J. M. Corchado, A. Bechini, J. Hong (Eds.),
Proceedings of the 30th Annual ACM Symposium on Applied Comput-1760

ing, Salamanca, Spain, April 13-17, 2015, ACM, 2015, pp. 1846–1853.
doi:10.1145/2695664.2695913.
URL https://doi.org/10.1145/2695664.2695913

[90] M. Viroli, R. Casadei, D. Pianini, Simulating large-scale aggregate mass
with alchemist and scala, in: M. Ganzha, L. A. Maciaszek, M. Paprzycki1765

54

http://dl.acm.org/citation.cfm?id=3331882
https://doi.org/10.1145/582419.582436
https://doi.org/10.1145/582419.582436
https://doi.org/10.1145/582419.582436
http://dx.doi.org/10.1145/582419.582436
https://doi.org/10.1145/582419.582436
https://doi.org/10.1145/2591013
https://doi.org/10.1145/2591013
https://doi.org/10.1145/2591013
http://dx.doi.org/10.1145/2591013
http://dx.doi.org/10.1145/2591013
http://dx.doi.org/10.1145/2591013
https://doi.org/10.1145/2591013
https://doi.org/10.1145/2465449.2465462
http://dx.doi.org/10.1145/2465449.2465462
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-319-92408-3_12
http://dx.doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
http://dx.doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/2695664.2695913
http://dx.doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.15439/2016F407
https://doi.org/10.15439/2016F407
https://doi.org/10.15439/2016F407

(Eds.), Proceedings of the 2016 Federated Conference on Computer Sci-
ence and Information Systems, FedCSIS 2016, Gdańsk, Poland, Septem-
ber 11-14, 2016, Vol. 8 of Annals of Computer Science and Information
Systems, IEEE, 2016, pp. 1495–1504. doi:10.15439/2016F407.
URL https://doi.org/10.15439/2016F4071770

[91] J. Beal, M. Viroli, Building blocks for aggregate programming of self-
organising applications, in: Eighth IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014,
London, United Kingdom, September 8-12, 2014, 2014, pp. 8–13. doi:
10.1109/SASOW.2014.6.1775

URL https://doi.org/10.1109/SASOW.2014.6

[92] F. Bonomi, R. A. Milito, J. Zhu, S. Addepalli, Fog computing and its
role in the internet of things, in: M. Gerla, D. Huang (Eds.), Proceedings
of the first edition of the MCC workshop on Mobile cloud computing,
MCC@SIGCOMM 2012, Helsinki, Finland, August 17, 2012, ACM, 2012,1780

pp. 13–16. doi:10.1145/2342509.2342513.
URL https://doi.org/10.1145/2342509.2342513

[93] L. M. V. González, L. Rodero-Merino, Finding your way in the fog: To-
wards a comprehensive definition of fog computing, Computer Communi-
cation Review 44 (5) (2014) 27–32. doi:10.1145/2677046.2677052.1785

URL https://doi.org/10.1145/2677046.2677052

[94] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and
challenges, IEEE Internet of Things Journal 3 (5) (2016) 637–646. doi:
10.1109/JIOT.2016.2579198.
URL https://doi.org/10.1109/JIOT.2016.25791981790

[95] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of com-
putational systems with ALCHEMIST, J. Simulation 7 (3) (2013) 202–
215. doi:10.1057/jos.2012.27.
URL https://doi.org/10.1057/jos.2012.27

[96] S. Montagna, D. Pianini, M. Viroli, A model for drosophila melanogaster1795

development from a single cell to stripe pattern formation, in: Pro-
ceedings of the ACM Symposium on Applied Computing, SAC 2012,
Riva, Trento, Italy, March 26-30, 2012, 2012, pp. 1406–1412. doi:
10.1145/2245276.2231999.
URL https://doi.org/10.1145/2245276.22319991800

[97] V. D. Florio, M. Bakhouya, A. Coronato, G. D. Marzo, Models and con-
cepts for socio-technical complex systems: Towards fractal social organi-
zations, Systems Research and Behavioral Science 30 (6) (2013) 750–772.
doi:10.1002/sres.2242.
URL https://doi.org/10.1002/sres.22421805

55

http://dx.doi.org/10.15439/2016F407
https://doi.org/10.15439/2016F407
https://doi.org/10.1109/SASOW.2014.6
https://doi.org/10.1109/SASOW.2014.6
https://doi.org/10.1109/SASOW.2014.6
http://dx.doi.org/10.1109/SASOW.2014.6
http://dx.doi.org/10.1109/SASOW.2014.6
http://dx.doi.org/10.1109/SASOW.2014.6
https://doi.org/10.1109/SASOW.2014.6
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2677046.2677052
https://doi.org/10.1145/2677046.2677052
https://doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1145/2677046.2677052
https://doi.org/10.1145/2677046.2677052
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2245276.2231999
https://doi.org/10.1145/2245276.2231999
https://doi.org/10.1145/2245276.2231999
http://dx.doi.org/10.1145/2245276.2231999
http://dx.doi.org/10.1145/2245276.2231999
http://dx.doi.org/10.1145/2245276.2231999
https://doi.org/10.1145/2245276.2231999
https://doi.org/10.1002/sres.2242
https://doi.org/10.1002/sres.2242
https://doi.org/10.1002/sres.2242
https://doi.org/10.1002/sres.2242
https://doi.org/10.1002/sres.2242
http://dx.doi.org/10.1002/sres.2242
https://doi.org/10.1002/sres.2242

[98] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, M. Vi-
roli, Modelling and simulation of opportunistic iot services with ag-
gregate computing, Future Generation Comp. Syst. 91 (2019) 252–262.
doi:10.1016/j.future.2018.09.005.
URL https://doi.org/10.1016/j.future.2018.09.0051810

[99] S. Hoyer, J. Hamman, xarray: N-D labeled arrays and datasets in Python,
Journal of Open Research Software 5 (1). doi:10.5334/jors.148.
URL http://doi.org/10.5334/jors.148

[100] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing In Sci-
ence & Engineering 9 (3) (2007) 90–95. doi:10.1109/MCSE.2007.55.1815

[101] K. Bilal, A. Erbad, Edge computing for interactive media and video
streaming, in: Second International Conference on Fog and Mobile Edge
Computing, FMEC 2017, Valencia, Spain, May 8-11, 2017, IEEE, 2017,
pp. 68–73. doi:10.1109/FMEC.2017.7946410.
URL https://doi.org/10.1109/FMEC.2017.79464101820

[102] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, A. Puliafito,
R. Buyya, Metropolitan intelligent surveillance systems for urban areas
by harnessing iot and edge computing paradigms, Softw., Pract. Exper.
48 (8) (2018) 1475–1492. doi:10.1002/spe.2586.
URL https://doi.org/10.1002/spe.25861825

[103] M. de Sá, E. F. Churchill, Mobile augmented reality: A design perspective,
in: Human Factors in Augmented Reality Environments, Springer, 2012,
pp. 139–164. doi:10.1007/978-1-4614-4205-9_6.
URL https://doi.org/10.1007/978-1-4614-4205-9_6

[104] M. M. Haklay, P. Weber, Openstreetmap: User-generated street maps,1830

IEEE Pervasive Computing 7 (4) (2008) 12–18. doi:10.1109/MPRV.
2008.80.
URL https://doi.org/10.1109/MPRV.2008.80

[105] 2018 IEEE 3rd International Workshops on Foundations and Applications
of Self* Systems (FAS*W), Trento, Italy, September 3-7, 2018, IEEE,1835

2018.
URL https://ieeexplore.ieee.org/xpl/conhome/8598461/
proceeding

[106] H. R. Nielson, E. Tuosto (Eds.), Coordination Models and Languages
- 21st IFIP WG 6.1 International Conference, COORDINATION 2019,1840

Held as Part of the 14th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Den-
mark, June 17-21, 2019, Proceedings, Vol. 11533 of Lecture Notes in Com-
puter Science, Springer, 2019. doi:10.1007/978-3-030-22397-7.
URL https://doi.org/10.1007/978-3-030-22397-71845

56

https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
http://dx.doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
http://doi.org/10.5334/jors.148
http://dx.doi.org/10.5334/jors.148
http://doi.org/10.5334/jors.148
http://dx.doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/FMEC.2017.7946410
https://doi.org/10.1109/FMEC.2017.7946410
https://doi.org/10.1109/FMEC.2017.7946410
http://dx.doi.org/10.1109/FMEC.2017.7946410
https://doi.org/10.1109/FMEC.2017.7946410
https://doi.org/10.1002/spe.2586
https://doi.org/10.1002/spe.2586
https://doi.org/10.1002/spe.2586
http://dx.doi.org/10.1002/spe.2586
https://doi.org/10.1002/spe.2586
https://doi.org/10.1007/978-1-4614-4205-9_6
http://dx.doi.org/10.1007/978-1-4614-4205-9_6
https://doi.org/10.1007/978-1-4614-4205-9_6
https://doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/MPRV.2008.80
https://ieeexplore.ieee.org/xpl/conhome/8598461/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8598461/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8598461/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8598461/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8598461/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8598461/proceeding
https://doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7
http://dx.doi.org/10.1007/978-3-030-22397-7
https://doi.org/10.1007/978-3-030-22397-7

[107] 11th IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, SASO 2017, Tucson, AZ, USA, September 18-22, 2017, IEEE
Computer Society, 2017.
URL https://ieeexplore.ieee.org/xpl/conhome/8063636/
proceeding1850

[108] IEEE 4th International Workshops on Foundations and Applications of
Self* Systems, FAS*W@SASO/ICCAC 2019, Umea, Sweden, June 16-20,
2019, IEEE, 2019.
URL https://ieeexplore.ieee.org/xpl/conhome/8785421/
proceeding1855

[109] 2nd IEEE International Workshops on Foundations and Applications of
Self* Systems, FAS*W@SASO/ICCAC 2017, Tucson, AZ, USA, Septem-
ber 18-22, 2017, IEEE Computer Society, 2017.
URL https://ieeexplore.ieee.org/xpl/conhome/8063634/
proceeding1860

57

https://ieeexplore.ieee.org/xpl/conhome/8063636/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063636/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063636/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063636/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063636/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063636/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8785421/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8785421/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8785421/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8785421/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8785421/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8785421/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8785421/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8785421/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063634/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063634/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063634/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063634/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063634/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063634/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063634/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8063634/proceeding

