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Abstract

In an IoP environment, edge computing has been proposed to address
the problems of resource limitations of edge devices such as smartphones
as well as the high-latency, user privacy exposure and network bottleneck
that the cloud computing platform solutions incur. This paper presents a
context management framework comprised of sensors, mobile devices such as
smartphones and an edge server to enable high performance, context-aware
computing at the edge. Key features of this architecture include energy-
efficient discovery of available sensors and edge services for the client, an
automated mechanism for task planning and execution on the edge server,
and a dynamic environment where new sensors and services may be added
to the framework. A prototype of this architecture has been implemented,
and an experimental evaluation using two computer vision tasks as example
services is presented. Performance measurement shows that the execution of
the example tasks performs quite well and the proposed framework is well
suited for an edge-computing environment.

Keywords: Internet of People, Ambience Intelligence, Internet of Things,
Edge Intelligence

1. Introduction

Bringing context-aware computing to mobile smartphones promises to
unlock a range of interesting applications from smart personal digital assis-
tants to accurate health monitoring and contextualized ads. However, mobile
technology is still far from fully achieving this vision as many challenges to
provide accurate and efficient context-aware computing on mobile devices
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remain unsolved. First, the data collected by mobile devices often suffer
from noise that leads to huge degradation of the classifier accuracy. Take for
example a mobile device with a camera that is not fully facing the object
to perform object recognition or a microphone that is somewhat far from
an important audio context (e.g. laughter [1] or a cough [2]). Also, mobile
devices can suffer from disadvantageous positions which can also lead to in-
accurate classification such as a mobile device buried inside a pocket or a
purse. Second, variations in context [3] of when and where the sample for
classification is collected makes it difficult to use generic pre-trained classi-
fiers in mobile environments. For example, a classifier trained with images
taken in bright environment would perform poorly in a dark environment.
Likewise, an audio classifier that is trained with high-volume audio clips
would perform poorly when classifying low-volume audio clips. The third
challenge when it comes to adapting context-aware computing comes from
the limited energy of mobile devices. Despite continuous efforts in improving
battery technology by the manufacturers of mobile devices, these devices will
remain limited in their energy (and computing) capability when compared to
their tethered counterparts. Consequently, it is impractical to solely depend
on the mobile device to perform these tasks as this will drain the device’s
battery thereby negatively impacting user experience. To address the afore-
mentioned challenges, researchers have looked at utilizing the abundance of
resources in the cloud to train deeper (and hence more accurate) classifiers
and perform the classification required for ambience intelligence tasks. More
recently, researchers proposed the concept of pushing the capabilities of the
cloud to the edge of the network [4], namely edge computing, to address the
problems of high-latency, user privacy exposure and network bottleneck that
the cloud computing paradigm suffers from.

Inline with the edge computing paradigm, in this work, we propose that
the availability of an edge server provides a unique and an unprecedented op-
portunity to bring context-aware mobile computing to fruition by addressing
the above stated challenges. The edge server is a server node that is installed
at the edge of the network with dedicated resources to perform data pro-
cessing and computation offloading for ambience intelligence tasks needed to
achieve context-awareness. We propose to utilize the edge server as a trusted
and smart coordinator between mobile devices. A mechanism is established
to allow mobile devices to act on behalf of their users by registering their
capabilities and negotiating the execution of ambience intelligence tasks with
the edge server. Consequently, the edge server utilizes this broad information
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to devise execution plans to serve these tasks ensuring best-effort in terms of
accuracy and energy efficiency. The design choice of allowing mobile devices
to act as proxies for their owners in the environment follows the Internet
of People (IoP) principle [5, 6] seen as a better model for serving the ever
expanding network edge.

In particular, in this paper we propose a framework for context-aware
computing for an edge environment for enabling context-aware IoP applica-
tions. This framework allows mobile clients to discover the sensors and the
services provided at an edge environment in an energy efficient manner. In
addition, it allows clients to contribute sensor data as well as new service
tasks to be executed at the edge server. The edge server is a central coor-
dinator in this framework responsible for keeping an updated repository of
available sensors and services, advertising these available sensors/services so
that mobile clients can discover them and make use of them, and efficiently
planning for service computation on client’s behalf. The framework auto-
mates the entire process of edge server maintaining an updated repository
of available sensors/services, sensor/service advertisement and discovery, ex-
ecution planning and interactions with the mobile clients. To demonstrate
the efficacy of the proposed framework, we have implemented a prototype of
the proposed framework using BLE as the communication medium between
clients and the edge server, WiFi as the communication medium between
IoT sensors and the edge server, and object recognition and face recognition
services as example ambience intelligence tasks. Performance measurements
from this prototype show that the proposed framework is well suited for an
edge computing environment to support context-aware IoP applications.

2. Related Work

This research sets at the intersection of three recent research thrusts under
the umbrella of ubiquitous computing. Hence, we divide this literature review
section into three main parts to place our work in proper perspective.

2.1. The Internet of People

The IoP paradigm [5, 6] is an extension on top of the current Internet
and Internet of Things architectures that advocate a user-centric approach
for building and organizing networks on the edge. In essence, using this
approach, user devices will move from being mere consumers of services to
participating in self-organizing communities that act on behalf of the forming
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users to achieve a form of collective intelligence [7]. This in turn is envisioned
to achieve substantial benefits from accurate sensing to faster execution times
and preserving user privacy. The architecture we propose in this work builds
on the same concept where mobile devices can act collectively on behalf
of their users in joining coordination networks. However, a distinguishing
factor for our work is the employment of an edge server to play central role
in coordinating devices. In addition to its powerful computing capabilities
and physical proximity to IoT nodes, the edge server has a birds-eye-view of
the IoT environment that we utilize to devise smarter collaboration plans.

Another architecture to serve the IoP paradigm is built using cloud com-
puting and microservices architecture [8] to aid in the development of IoT
and people applications. Our proposed solution is similarly inspired by the
IoP paradigm but we employ edge computing rather than the cloud while
having different objectives (i.e. accuracy and energy efficiency) in mind.

2.2. Opportunistic Computing

The concept of opportunistic computing [9] proposes that mobile devices
with physical proximity can work towards, and share the burden of common
tasks. A key underlying assumption here is that collaborating nodes will
be interested in achieving a common goal. CoMon [10] presented a solution
based on opportunistic computing with the goal of allowing nearby mobile
devices to take turns in monitoring a context of shared interest. Partici-
pating devices would save energy by splitting the burden among them. We
share the same goal (i.e. context monitoring) with CoMon but depend in
our architecture on the edge server as the coordinator for arranging between
mobile devices. Microcast [11] also utilizes collaborations between smart-
phones to split up video streaming task assuming that co-located users are
watching the same content. Panorama [12] is another system that is based
on collaborative computing. However, in addition to nearby mobile devices,
Panorama considers available edge and cloud resources to further minimize
the task allocated to battery powered devices.

2.3. Edge Computing, Edge Intelligence and Computer Vision

Edge computing proposes to push the computing capabilities of the cloud
to the edge of the network to serve delay sensitive tasks. Our architecture
is inspired by this approach, but we take one step further by performing
coordination through the edge server. We start by describing works that
take similar approach as ours in utilizing an edge server for coordination.
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Privacy mediators [13] proposed to use edge servers for coordination role.
However, the primary goal is to mediate between the privacy policy of the IoT
owner and the privacy preferences of mobile users in the environment. Also,
DeepCham [3] is a solution that is mediated using an edge server. The goal
of DeepCham is to improve the accuracy of object recognition by allowing
mobile devices to contribute training samples in order to cater for different
contexts during classification. More recently, authors in [14] proposed an
edge-based architecture where devices on the edge connected in P2P fashion
run a semantic operating system to take the role of managing the sensors and
actuators they own. IoT applications running on cloud or edge servers would
then contact these devices to gain access to those sensors and actuators.

In this paper, in addition to the role of coordination, we utilize the edge
server for execution of ambience intelligence tasks at the edge of network. A
recent survey paper underscored the importance of this concept, named edge
intelligence [15], and described challenges and future directions to observe it.
In general, edge servers (a.k.a. cloudlets) provide high-bandwidth and low-
latency access to resources needed to provide highly responsive services to
mobile and IoT applications [16]. This is particularly important for the delay
sensitive augmented and virtual reality applications. For example, an archi-
tecture involving edge servers was utilized to provide computation offloading
for a cognitive assistance application for the elderly [17]. This application
performs object, face and text recognition on live images taken by a Goolge
Glass device to offer guidance to users. Furthermore, edge servers were lever-
aged to run computer vision algorithms on live feeds of surveillance cameras
[18, 19]. Proposed use case includes automatically identifying people, objects
or events of special interest to take necessary public safety measures.

3. Architecture

We design a context management framework that at its core benefits from
the edge server as a central coordinator with sufficient computing capabil-
ities to perform administrative work as well as accept offloaded tasks from
mobile devices. An overview of the architecture of the framework is shown
in Figure 1. Mainly, the framework design consists of software services run-
ning on edge server(s) and mobile devices. The software services perform the
planning and coordination for the execution of ambience intelligence tasks
across available assets. We use the term assets here to refer to both available
IoT sensors in the environment as well as software components that can be
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Figure 1: Framework Architecture

used for performing intelligence tasks. For example, to perform object recog-
nition, the needed assets are a camera facing the event to take an image and
a software component such as a pre-trained Deep Neural Network (DNN) to
perform inference on the image. In order to be able to devise efficient ambi-
ence intelligence execution plans, the framework gathers information about
the available sensors in the environment. These sensors could be transiently
available mobile sensors or tethered sensors that are installed as part of the
IoT environment. We consider various ownership types and design the frame-
work such that we benefit from any possible sensor that can be accessed to
derive the context. The following sensor ownership schemes are supported
by the framework:

• Mobile-connected sensors: these sensors are either embedded in-
side the mobile device or connected to the mobile device via short
range wireless protocols. Both types of sensors have the advantage of
proximity to the sensor owner but are likely susceptible to inaccuracies
of carrying positions. The framework considers both types to optimize
for accuracy. As shown in the figure, our framework adapts the BLE
protocol, which is the de facto communication protocol for the personal
devices forming personal area network (PAN). As mentioned in the in-
troduction, a key principle in our design is to allow the mobile device

6



to negotiate and execute plans on behalf of the user. Hence, the mobile
device will play the central role in the BLE communication by forming
a star topology to form a bridge between the PAN devices on one side
and the edge server on the other side. Consequently, the mobile device
is capable of gathering information about all sensors on its side and on
the edge side to select the sensor that is more suitable to perform the
ambience intelligence task.

• Edge-connected sensors: these sensors are installed in the environ-
ment and are likely owned by the edge deployment owner. Examples
include a surveillance camera that also includes a microphone or a mo-
tion detector, temperature sensor or a light sensor. Those sensors are
likely tethered, however, it is possible that they are not facing the event
of interest directly or are far from the event. Hence, it is important to
consider data from those sensors as well as from the mobile sensors dur-
ing the planning phase to increase the chances of finding good quality
sensor data to perform the ambience intelligence task.

The framework includes a Sensor Discovery module running on both the
mobile device and the edge server. This module keeps a list of on-board
sensors on the mobile device and adds to the list new sensors connected
through BLE. On the edge server side, newly installed IoT sensors that are
typically connected through Wi-Fi can be registered with the framework by
the IoT owner. Sensors on both lists are polled periodically to check any
disadvantageous factors and sensor information gets updated accordingly in
the Assets database at both ends. The polling process performs predefined
simple checks that can mark a sensor as useless for a particular task. For
example, a noisy environment for the audio sensor or a dark environment for
the camera sensor. For edge servers the server can send heartbeat messages
via Wi-Fi interface to check the status of the sensors.

In addition to checking sensor information, the framework includes a Task
Quality Profiling service that is responsible for tracking performance metrics
for the software components that perform intelligence tasks (i.e. DNN Mod-
ules). This service builds a model to predict the execution time for the
software component given the input task size [20, 12], which is beneficial
for time performance optimization decisions when deciding the distributed
execution plan. In addition, any identifying information to execute the task
along with performance metrics of execution accuracy are also stored in the
Assets database to be used as part of the optimization process that is carried
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Figure 2: Functional Model

by the Edge Task Execution Coordinator. Note here that the mobile device,
acting as a proxy for the user during the planning process exchanges infor-
mation from its Assets database with the Edge Task Execution Coordinator.
The latter uses the information gathered from the edge server and the mo-
bile device to devise the best execution plan. The framework also includes
Context database where logs of discovered contexts that are calculated by
the edge intelligence task are saved for retrieval by mobile devices. Section 4
describes the protocol employed to collect assets information along with the
type of the information collected.

Finally, it is important to mention that we choose to implement the com-
munication between the mobile device and the edge server to be carried
using the Bluetooth Low Energy BLE protocol. This choice enables the mo-
bile device to discover services on the edge server and exchange bursts of
negotiation information with it retrieved from its own Assets database in an
energy efficient manner as will be described in Section 5.
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4. Protocol Design

4.1. Functional Model

Performing the central role of coordination in an IoT environment re-
quires the edge server to maintain updated information about all available
assets. Consequently, this information could be used in conjunction with the
information exchanged with user mobile devices to devise the most efficient
plan according to the current situation. Figure 2 depicts the functional model
employed by the framework to be able to maintain environment information.
The functional model describes the processes of the system and the flow of
information between these processes. Upon starting the system, the frame-
work running on the edge server sends inquiry messages to registered domain
sensors (Inquire tethered sensors). Those sensors are sometimes tethered IoT
sensors (i.e. connected to power supply) that are owned by the edge environ-
ment owner. In addition, they are likely connected with the edge server using
WiFi. Examples include a surveillance camera or a temperature sensor. In
addition, the framework performs an inquiry about available ambience in-
telligence software components that are installed on the edge server (Inquire
edge intelligence tasks). This check helps the framework to track available
services on the edge server in order to expose those services for discovery and
reuse by mobile applications. Note here the wide range of ambience intelli-
gence tasks such as computer vision, emotion analysis and sound analysis.
This means that it is impractical to assume that they are all available on
the edge server. Therefore, the framework employs a mechanism where it
collects information about available services on the edge server to be used in
the planning phase.

After collecting information for both sensors and edge intelligence tasks,
the gathered information is passed for updating assets information in the
assets database. Next, a summary of this information is encoded as service
universally unique identifiers (UUIDs) in BLE advertisement packets that are
broadcast as assets information in the BLE information beacons emitted by
the edge server. This process of assets information discovery and broadcast
is repeated periodically as indicated by the dashed arrow in order to help
the edge server maintain current information about edge intelligence tasks
and sensors. Information collected periodically about assets is described
in details in Section 4.2. We note that encoding assets as UUIDs in BLE
beacons emitted by the edge server brings great energy savings to mobile
devices when discovering edge environment services. BLE allows the mobile
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device to search for UUIDs of interest in the background. This means that
the mobile device can search for a sensor (e.g. camera) or a service (e.g. face
detection) while in sleep mode and only wake up when the desired service is
discovered.

Different components of the framework are also triggered based on mobile
devices interaction with the system. When a mobile device discovers the edge
server they can either subscribe to an ongoing intelligence task or invoke
a new task. The availability of these tasks is learned from BLE beacons
sent by the edge server. In case of a new task, the framework plans the
new intelligence task using current assets information stored in the assets
database in conjunction with assets information supplied by the mobile node
to decide on the best execution plan. After that, the tasks information in the
tasks database is updated to reflect that this task is currently running. Such
updates are required in order to piggyback potential requests for the same
intelligence task originating from other users. Subsequently, the execution
time of an ongoing task requires merely reading the recent result of the task
assuming that the result is not stale as per the user application requirements.
We reflect on time performance for executing ongoing and new tasks using
two computer vision tasks, namely object and face recognition, as example
ambience intelligence tasks in Section 5. Finally, the framework executes the
edge intelligence task resulting from the plan and results are forwarded using
BLE to requesting mobile device.

4.2. Assets information

The framework considers both the sensors and the ambience intelligence
tasks’ code as assets that are used when preparing the best execution plan.
Hence, various features for these two types of assets must be gathered from
the environment and exchanged during the planning phase. The JSON files
containing the information of each asset type are shown in Figure 3. Note
here that choosing the right ontology to track and exchange assets infor-
mation within an IoT network is related to the open research problem of
interoperability in IoT. Various data formats are promoted in literature to
tackle this problem [21] and we chose to adopt the Amazon AWS IoT stan-
dard [22] with some additions to fit our design. Using this standard, devices
that sense and act are called things while ambience intelligence tasks are
represented by jobs.

The JSON file for things (i.e. sensor) is shown on the left. It con-
tains identifying information about the sensor such as the type (attribute:
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{
"thing":{

"thingTypeName":string,
"thingName”:string,
"attributes":{

"tethered":"y/n",
"mobile":"y/n",
"qualityValues":[

"value1":number,
…

"valueN":number
],
"coordinates":{

"x":number,
"y":number,
"z":number

}
}

}
}

{
”job":{

”jobId":string,
"createdAt":number,
”alternativeSensors":[

"thingTypeName":string,
…

"thingTypeName":string
],
"periodic":"y/n",
"timePeriod":string,
"result":string,
"lastUpdatedAt":number,
"subscribers":[

"userId":string,
…

"userId":string
]

}
}

Figure 3: Assets JSON Representation

thingTypeName) and the unique name chosen by the user (attribute: thing-
Name). In addition, the framework tracks many features for the sensor that
are grouped under attributes. First, it is important to know if the sensor
is tethered, because energy saving for tethered sensors will not be of high
priority. Conversely, mobile sensors are likely battery-powered and should
be of lower priority for use so as to save energy. Furthermore, the JSON
file contains multiple values related to the quality of the sensor that depend
on the type of the sensor (attribute: qualityValues). For example, an im-
age sensor can have a brightness value as a quality check for the ability of
the sensor to be used at the moment for classification. On the other hand,
volume or background noise can be the quality measures corresponding to
audio sensors. The coordinates of the sensor can also be beneficial in case the
coordinates of the measured event are known to assess the distance bewteen
the sensor and the event, e.g. closer the sensor is to the event, better the
quality it provides for the sensed data. Referring back to Figure 3, the JSON
file for the intelligence task (i.e. job in AWS IoT notation) is shown on the
right. It lists multiple alternative sensors as possible sensors for a particular
job (attribute: alternativeSensors). This helps the framework eliminate dis-
advantageous sensors based on quality checks while still being able to execute
the task in hand using an alternative sensor with good quality values. It is
also important to track whether the job is periodic, the time period of the job
and the subscribers. This information is used to repeat the job and send the
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results to subscribers. The timestamp of the last result from executing the
job (attribute: lastUpdatedAt) is also tracked to allow subscribes to inspect
the timeliness of the result.

4.3. Coordination of Ambience Intelligence Task Execution

This section provides an example of how the execution of an ambience
intelligence is coordinated by the framework. Upon receiving a request for ex-
ecuting a task, the framework performs planning to decide the set of sensors
and devices suitable for executing it. This decision is impacted by the cur-
rent context. For example, let’s consider a mobile application that requires
discovering the identity of the people in a room. This task could possibly be
executed in several different coordinated execution scenarios. One possible
scenario could be to take a picture using the mobile device’s camera and
send it to the edge server for face recognition. Another scenario could be
to access a nearby surveillance camera to get the needed picture. The first
scenario could be problematic in case the smartphone is not in a good carry
position (e.g. it is inside the user pocket). Hence, the framework would fall
back to the surveillance camera access scenario. To select from these two
scenarios the framework begins by inspecting the suitable sensors for the job
listed in the job’s JSON document described in Section 4.2. Then, a quality
check is performed for each sensor by comparing the current value (i.e. image
brightness for the camera) with accepted quality value stated in the JSON
document for the sensor (or thing). Accordingly, the camera sensor with the
accepted quality is the one chosen for the job.

5. Experimental Evaluation

5.1. Implementation Prototype

Figure 4 depicts a prototype that we implemented for the architecture
described in Section 3. In this prototype, we focus on the performance for the
interaction between the edge server and mobile device, and between cloud
and the camera, and use two computer vision tasks as example ambience
intelligence tasks. Implementation of information gathering and planning is
left out as a future work as we believe that it is worth its own full study. A
MacOS-based laptop is used to represent the edge server. The edge server
is installed by the edge environment owner (e.g. house or business owner)
to bring computation power and storage closer to the users with low latency
when compared to accessing cloud resources.
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Figure 4: Prototype Implementation

The prototype includes an Android mobile device that acts as the proxy
for the user by negotiating the execution of application intelligence task re-
quests with the edge server without user intervention. Example of application
intelligence tasks requests include emotion detection or speech recognition on
sound clips, and face or object recognition on images or videos, which usu-
ally requires running compute intensive pre-trained models. We have imple-
mented an Android client to discover and call the edge intelligence tasks on
the server using BLE. For full implementation we run the framework code on
the mobile device inside an Android service [23]. This allows the framework
to run in the background and accept delegation from mobile applications to
execute ambience intelligence tasks. Finally, a 2MP Web Camera (Ardu-
CAM ESP8266 UNO [24]) is connected to the edge server via WiFi interface.
An ESP2866 board is used to enable the microcontroller within the cam-
era to communicate with the edge server over Wi-Fi. Table 1 describes the
components of the prototype we have implemented.

As mentioned in Section 3, the mobile device acts in BLE central role to
discover and subscribe to the services of the edge server which acts in BLE
peripheral role. We used bleno [25], which is written using Node.js to imple-
ment the BLE peripheral role on MacOS. Using this module, the edge server
encodes the presence of its services in wireless broadcasts that can be heard
by nearby mobile devices. It is worth noting that BLE allows devices in cen-
tral mode (i.e. mobile devices) to scan for a particular service using its UUID
while in sleep mode, thereby drastically minimizing the energy required for
the detection of edge services. The prototype utilized BLE 4 to enable this
energy efficient discovery and messages exchange. BLE 4 allows multiple
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Table 1: Testbed

Title Type Function Scenario Used
MacBook Air Hardware Edge computing server Both

Motorola Moto
E smartphone

Hardware
Mobile IoT device requesting
services from the edge server

Both

ArduCAM
ESP8266 [24]

Hardware Web camera connected to LAN
Face

Recognition

Android Client Software
Mobile user client requesting
ambience intelligence tasks

Both

Bleno [25] Software
Node.js library for implementing

BLE peripheral on Mac OSX
Both

Object Recognition
DNN [26]

Software
DNN running on edge server to
perform object recognition tasks

Object
Recognition

Face Recognition
DNN [27]

Software
DNN running on edge server using

Docker container to perform
face recognition tasks

Face
Recognition

Google Cloud
Vision API [28]

Software
Cloud service for performing object

recognition tasks
Object

Recognition

central devices to connect with a peripheral device (i.e. the edge server), to
coordinate and execute multiple services simultaneously. Our prototype only
used BLE for messages exchange, hence the bandwidth limitations of BLE 4
were not applicable. The latest BLE 5 [29] improved on BLE 4 with double
the bandwidth and 4-fold increase in communication range. This improve-
ment can bring performance benefits for solutions that depend on BLE as in
our framework.

The implementation of object recognition on the edge server uses Ten-
sorflow [30] and is written using python. We used a pre-trained AlexNet
model that has its weights stored in a file of size of 200MB. This file needs
to be loaded in order to perform object recognition (i.e. inference) on im-
ages. As for face recognition, we ran a python-based face recognition docker
image [27] on the edge server. This docker image provides API endpoints
for adding faces to the database as well as to inquire about faces. We note
here that there are many techniques in literature for optimizing performance
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Figure 6: Time measurements for read-
ing object recognition results from the
edge server when the server has access
to GC vision API vs loading and execut-
ing a locally stored model.

(i.e. size, accuracy and execution time) of DNNs and these techniques are
are orthogonal to our work.

As we can see, in the prototype we implemented, the edge server has three
interfaces. The first interface is with the client over BLE with which a client
discovers and subscribes to edge services, the second interface is with the
sensors in the environment over WiFi, and the third interface is with cloud.
We have conducted several experiments to evaluate the performance of each
of these interfaces as discussed below.

5.2. Edge Server - Client Interaction

In our first experiment, we used object recognition on images stored on the
edge server as the ambience intelligence task. This generic scenario resembles
a mobile application interested in receiving tags naming individual objects
identified from an image. Similar to object recognition, we envision wide
range of ambience intelligence tasks to be deployed on edge servers to support
the edge intelligence vision [15]. In this scenario, images are assumed to
be available on the edge server, which is quite reasonable assuming that a
surveillance camera is periodically uploading images to the edge server for
analytics including object recognition. There are multiple plausible scenarios
covered in our measurements in Figure 5 and Figure 6 in regards to the status
of the object recognition result on the edge server. The first scenario occurs
when the timestamp of the result of the latest object recognition is acceptable
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for the requesting mobile application (result ready). In case this is not true,
the framework can either request to perform object recognition locally (local
DNN) or upload the image to Google cloud vision API [28] (cloud DNN)
depending on the availability of Internet access to reach the APIs.

Since the prototype we implemented is distributed in nature, we focus in
our evaluation on the time performance for executing these different scenar-
ios. First, we report the time delay in executing two milestones for interac-
tions between the edge server and the mobile device. The two milestones are
the interrogation time and the result reading time. The interrogation time
is the time elapsed between discovering the presence of the edge server from
the broadcasts to the time the mobile device is ready to invoke the services
offered by the edge server. This time is related to the mechanics of how BLE
works in which services and their characteristics must be learned before com-
municating through them. On the other hand, the reading time includes the
interrogation time plus the time needed to finally receive the object recogni-
tion result. Both of these timings are measured from the mobile device (i.e.
user) side. We report in each experiment the average results from running
the same experiment five times along with the standard error shown on the
bars.

We see in Figure 5 that the interrogation time takes an average of 260
milliseconds. Whereas, the read time when the result is ready on the edge is
472 milliseconds. Since we report aggregate times, this result means that the
read time also includes the interrogation time. The object recognition code
stores the fresh result obtained periodically in a text file and the read time
is the time required to open the file and encode the result in the response for
the read request issued through BLE by the mobile device.

5.3. Edge Server - Cloud Interaction

If the mobile client doesn’t accept the object recognition result after
checking the timestamp, an image recognition request is sent by the edge
server to Google cloud vision API to obtain the object recognition result
on a latest image available on the edge server. The average time required
to obtain object recognition results from the API and report it back to the
mobile device is 3847 milliseconds (See Figure 5).

Another option other than calling the Google cloud vision API is to use
a locally pre-trained model that is stored on the edge server. We report in
Figure 6 a comparison between calling the Google cloud vision API against
loading and executing the local model. The average time for loading and
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Figure 7: Time measurements for the
stages of loading and executing a pre-
trained object recognition model (Local
DNN).
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Figure 8: Time measurements for the
various stages involved in the face recog-
nition scenario.

executing the pre-trained model and returning the result to the mobile client
is 23964 milliseconds. Needless to say, the delays involved in the process of
loading and executing the pre-trained model will not be tolerated by clients
and the solution to this problem is to preload the pre-trained model and use
it for inference whenever required. To reflect to the reader the time penalty
when only inference is required, we report the major milestones for loading
and executing the pre-trained model in Figure 7. We notice from the figure
that this process is dominated by the model loading time which is expected
due to the huge size of the file storing the model weights at around 200MB.
However, the image loading time plus inference time is only 989 milliseconds.
Hence, when we combine the results from Figure 6 and Figure 7, we see that
the best option in case the latest object recognition result available on the
server is expired is to call a preloaded pre-trained model, which will add a
performance penalty of less than a second (i.e. inference only). However, this
approach requires preloading various pre-trained DNN models pertaining to
different ambience intelligence tasks to the edge server memory to be ready
to serve client requests for ambience intelligence tasks.

5.4. Edge Server - Camera Interaction

We now look at the performance when the edge server interacts with the
camera. Unlike the previous experiment, we do not assume that images are
already available on the edge server. Instead, on receiving a service request,
the edge server interacts with the camera and retrieves an image on which
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Figure 9: Time performance for face
recognition when performing face detec-
tion, face recognition for a single face,
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the edge.
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Figure 10: Time performance for face
recognition when processing a small,
medium, and large size files using a pre-
loaded face recognition service on the
edge.

it performs face recognition. This experiment consists of the client first dis-
covering and subscribing to the services of the edge server via BLE, the edge
server capturing an image from the camera over Wi-Fi, and then performing
face recognition locally and returning a result to the client. Figure 8 shows
the performance for various stages involved in this experiment. First, the
interrogation time to discover and subscribe to the edge service took 459.4
milliseconds. Image capture time from the camera over WiFi was very fast.
It took only 10.4 milliseconds to report the image to the edge server from
the camera. In this experiment, the captured image had only one face, and
it took an average of 475.8 milliseconds for the face recognition to recognize
this face and report the identity of the person in the image. Finally, the over-
all read time for receiving the face recognition result back at the requesting
mobile client over BLE is 3550.2 milliseconds.

In order to gain insight into how the number of faces in the captured image
and image sizes impact the performance, we repeated this experiment for two
different scenarios. First, we increased the number of faces in the captured
image. Figure 9 shows the performance when there are one face and two faces
in the image respectively reported alongside the situation when there are no
faces in the image (i.e. only face detection algorithm is executed). As we can
see, the number of faces in the image increases the recognition time in which
each new face adds about 360 milliseconds after face detection. Figure 10
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shows the impact of image size. As we can see, as the image resolution and
thereby the image size increases, the face recognition time increases as well.
We utilized the default image resolution of the camera, which reported a small
image of an average size of 8KB only. As can be seen in the figure, the time
it takes to perform face recognition on this image when there is one face is
475.8 milliseconds. However, assuming that the area to be monitored for face
recognition is wider, higher image resolutions are required. From the same
figure we can see that when the image resolution is increased to 75KB (10x),
the time it takes to recognize the face increases by around 90 milliseconds.
Increasing the image size (i.e. resolution) furthermore to 300KB leads to
significant increase in the face recognition time to 1.3 seconds. We learn
from these results that it is vital that the distributed edge services must be
designed keeping time efficiency in mind in order to preevnt any negative
impact on the responsiveness of requesting applications.

6. Conclusion and Future Work

This paper presents an architecture that is based on edge computing and
the IoP paradigm to devise efficient collaboration plans to execute ambience
intelligence tasks. Using BLE, mobile devices discover services on the edge
server and exchange necessary information about their capability. The edge
server utilizes this information along with other information about its capa-
bility and available sensors in the environment in the planning process. We
implemented a prototype of the architecture using object recognition and
face recognition as two examples of intelligence tasks. Time measurements
demonstrate that the cost of inference for these tasks is quite good. We plan
as a future work to perform full implementation of the architecture and in-
volve PAN devices in the picture to capture performance metrics related to
periodic information gathering and the planning phases.
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