
A metaheuristic method for joint task scheduling and
virtual machine placement in cloud data centers

ALBOANEEN, Dabiah, TIANFIELD, Huaglory, ZHANG, Yan and
PRANGGONO, Bernardi <http://orcid.org/0000-0002-2992-697X>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/27210/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ALBOANEEN, Dabiah, TIANFIELD, Huaglory, ZHANG, Yan and PRANGGONO,
Bernardi (2020). A metaheuristic method for joint task scheduling and virtual machine
placement in cloud data centers. Future Generation Computer Systems, 115, 201-
212.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A Metaheuristic Method for Joint Task Scheduling and
Virtual Machine Placement in Cloud Data Centers

Dabiah Alboaneena,∗, Huaglory Tianfieldb, Yan Zhangb, Bernardi Pranggonoc

aComputer Science Department, College of Science and Humanities, Imam Abdulrahman
Bin Faisal University, P.O.Box 31961, Jubail, Kingdom of Saudi Arabia

bDepartment of Computing, Glasgow Caledonian University, Glasgow, United Kingdom
cDepartment of Engineering and Mathematics, Sheffield Hallam University, Sheffield,

United Kingdom

Abstract

The virtual machine (VM) allocation problem is one of the main issues in the
cloud data centers. This article proposes a new metaheuristic method to opti-
mize joint task scheduling and VM placement in the cloud data center called
JTSVMP. The JTSVMP problem composed of two parts, namely task schedul-
ing and VM placement, is carried out by using metaheuristic optimization al-
gorithms (MOAs). The proposed method aims to schedule task into the VM
which has the least execution cost within deadline constraint and then place
the selected VM on most utilized physical host (PH) within capacity con-
straint. To evaluate the performance of the proposed method, we compare
the performance of task scheduling algorithms only with others that integrate
both task scheduling and VM placement using MOAs, namely the basic glow-
worm swarm optimization (GSO), moth-flame glowworm swarm optimization
(MFGSO) and genetic algorithm (GA). Simulation results show that optimiz-
ing joint task scheduling and VM placement algorithm leads to better overall
results in terms of minimizing execution cost, makespan and degree of imbalance
and maximizing PHs resource utilization.

Keywords: Cloud, Data center, Metaheuristic, Task scheduling, Virtual
machine placement

1. Introduction

Cloud computing is a model for delivering on-demand computational ser-
vices and resources such as computing power and data storage over the Internet
[1]. Cloud computing provides resources as virtual machines (VMs) on-demand
to users and executes their tasks in a way that meets quality of service (QoS)

∗Corresponding author
Email address: dabuainain@iau.edu.sa (Dabiah Alboaneen)

Preprint submitted to Future Generation Computer Systems September 14, 2020

requirements. Virtualization technology improves energy efficiency in data cen-
ter by reducing the number of hardware in use and increase the utilization of
resources by loading more than one virtual machine (VM) on a physical host
(PH). Cloud provider need to schedule users’ tasks into VMs and carefully place
these VMs to physical hosts (PHs) in a way that considers both providers’ and
the users’ optimization objectives.

Cloud computing utilizes data center to provide these services. It is predicted
that by 2021, 94% of workloads will be managed by cloud data centers [2]. In
a cloud data center, resources management can be done at two levels: (i) The
first level is the task scheduling [3]; in this level each user’s task is mapped
onto suitable VM. When users’ tasks need to be scheduled, users usually sign a
service level agreement (SLA) with cloud provider. SLA is a contract between
user and cloud provider on the expected service quality. In the SLA, the QoS
requirements of the users should be clearly defined such as, the deadline of
each task, budget, and service security level. Each cloud user has to decide
which and how many VMs need to be provisioned before actually requesting and
paying for the service. Hence, tasks scheduling directly affects the performance
of cloud computing since inefficient tasks scheduling can lead to revenue loss,
performance degradation and SLA violation. (ii) The second level is the VM
placement [4]. VMs need to be placed in PHs that is capable of providing
the required resources (i.e., processor, memory, and disk space). Therefore, the
optimal VM placement plays an important role in improving resource utilization
in a cloud computing environment.

The two levels are connected via VMs. Although VMs play an important
role, we argue that VMs are just a tool for mapping users’ tasks to PHs. The
major users’ aim is to find PHs for their tasks. On the other hand, providers’ aim
is to utilize their infrastructure by accommodating tasks for users. Therefore,
task scheduling and VM placement problems influence each other.

Task scheduling in cloud computing can be modeled as a bin-packing prob-
lem and they are a non-deterministic polynomial-time hard (NP-hard) problem
[5][6]. This problem becomes more challenging with the increase complexity of
the cloud computing environment. Generally, it is difficult to develop algorithms
to produce optimal solutions within a short time. Recently, using metaheuristic
algorithms to deal with task scheduling and VM placement has received in-
creasing attention due to the ability of the algorithms to provide near-optimal
solutions within a reasonable time [7].

Previous works in this area, focused mostly on task scheduling such as [8] or
VM placement such as [9] [10] [11] [12] as a separate problem. Both problems
need to be addressed and integrated in order to produce an efficient solutions
for both cloud users and providers.

In this article we investigate the research question:”to what extent joint task
scheduling and VM placement can increase the performance in terms of execu-
tion cost, makespan, degree of imbalance and resource utilization?” To answer
the research question, both task scheduling and VM placement are integrated
and modeled as one optimization problem, called joint task scheduling and VM
placement (JTSVMP). Metaheuristic optimization algorithms (MOA) are then

2

used to solve this integrated problem and produce a schedule defining not only
the task to VM mapping but also the VM to PH mapping. Integrating VM
placement algorithm with task scheduling is more complicated under the task -
VM - PH architecture, which causes three challenges:

(i) Which VM should be selected for a task?

(ii) Which PH should be selected for a VM?

(iii) How to simultaneously integrate the VM - PH placement to task - VM
scheduling?

In summary, the key contributions of this article are as follows:

(i) Integration of task scheduling and VM placement as one optimization prob-
lem to produce better optimization of resource utilization in cloud data
center. Specifically, the relationship between task, VM and PH is con-
sidered and the two-level architecture (i.e., task - VM and VM - PH) is
extended to a three-level architecture (i.e., task - VM - PH).

(ii) Developing of MOA-based task scheduling under the three-level architec-
ture (i.e., task - VM - PH). The proposed algorithm aims to simultane-
ously optimize the execution cost while meeting the deadline constraint
when scheduling tasks to VMs, and to optimize the resource utilization of
PHs when placing the VMs in PHs.

(iii) Performance evaluation of the proposed JTSVMP method through simu-
lations. We compare the performance of task scheduling algorithms only
with others that integrate both task scheduling and VM placement using
MOAs, namely the basic glowworm swarm optimization (GSO), moth-
flame glowworm swarm optimization (MFGSO) and genetic algorithm
(GA). Simulation results show that optimizing joint task scheduling and
VM placement leads to better overall results in terms of minimizing exe-
cution cost, makespan and degree of imbalance (DoI) and maximizing PHs
resource utilization.

(iv) Statistical validation of the obtained results against that of GSO, MFGSO
and GA using significance test. We use Wilcoxons rank-sum test.

The remainder of this article is arranged as follows. Section 2 presents the
related work on tasks scheduling and VM placement in cloud data center using
metaheuristic algorithms. Section 3 describes scheduling models and problem
formulation. The proposed MOA is presented in Section 4. Section 5 presents
the experimental evaluation. Finally, Section 6 draws the conclusion and future
work.

3

Table 1: Existing metaheuristic algorithms for task scheduling and VM placement

Reference Task
schedul-
ing

VM
place-
ment

Optimization algorithm

[13] [14] [15] [16] X GA
[17] [18] [19] X ACO
[20] X PSO
[21] [22] X Hybrid of PSO & SA
[23] X Stochastic hill climbing
[24] X ABC, PSO, ACO
[25] X Hybrid of GA & ACO
[26] X SOS
[27] [28] [29] [30] [31] [30] X GA
[32] [33] X SA
[34] [35] X BBO
[36] [37] [38] [39] X PSO
[40] [41] [42] [43] [44] [45] [46] X ACO

2. Related Work

In this section, related studies on task scheduling and VM placement in cloud
computing using metaheuristic algorithms are presented. A significant amount
of research has focused on task scheduling and VM placement as shown in Table
1.

2.1. Metaheuristic Algorithms for Task Scheduling in Cloud Computing

Task scheduling based on GA has been studied widely in [13][14][15][16]. Zhu
et al. use hybrid GA algorithm to solve only load balancing when scheduling
tasks in cloud computing [16].

Task scheduling based on ant colony optimization (ACO) algorithm for load
balancing and minimizing the average execution time is studied in [17]. Simu-
lation results showed that the proposed algorithm outperformed first come first
serve (FCFS) and the basic ACO algorithms.

A similar study by Tawfeek et al. also use ACO to minimize the execution
time of tasks and the simulation results showed that the ACO outperformed
FCFS and round robin (RR) algorithms [18].

ACO is improved to get a better performance when scheduling tasks in the
cloud computing. The simulation results showed that the proposed algorithm
had a good performance in minimizing the execution time and balancing the
load [19].

Task scheduling in view of both the task execution time and the system
resource utilization based on an improved particle swarm optimization (PSO)
algorithm is proposed in [20].

In [21] and [22], a hybrid of PSO and simulated annealing (SA) is imple-
mented on CloudSim to schedule tasks in the cloud. The results showed that

4

the proposed algorithms can reduce the average execution time of task and
increase resource utilization.

In [23], a stochastic hill climbing algorithm is used to schedule tasks to VMs.
Simulation results based on CloudAnalyst simulator showed the efficiency of the
proposed algorithm when compared to RR and FCFS algorithms.

In [24], three different metaheuristics approaches (i.e., artificial bee colony
(ABC), PSO and ACO) have been evaluated for cloud task scheduling. The
proposed algorithms are better in minimizing the total execution time compared
to LTF, random and FCFS algorithms. Moreover, ABC algorithm outperformed
other algorithms. The PSO and ACO came in second level and third level,
respectively.

Discrete version of Symbiotic Organism Search (SOS) algorithm for optimal
scheduling of tasks on cloud resources called DSOS is proposed in [26]. Simula-
tion results revealed that DSOS outperforms PSO for task scheduling problems
particularly for large search space.

Moreover, integrating ACO algorithm with GA for scheduling tasks is pro-
posed by Dai et al. This algorithm considered multiple QoS constraints in the
scheduling process and it has superior performance in balancing resources and
minimizing execution time [25].

However, these algorithms mainly focused on improving the execution time
and resource utilization when scheduling tasks to VMs. Moreover, the execution
time did not include the waiting time of tasks while in our algorithm we consider
the execution time, waiting time, and execution cost of tasks.

2.2. Metaheuristic Algorithms for VM placement in Cloud Computing

In metaheuristics approaches, different algorithms have been proposed for
optimizing VM placement in cloud computing. One of the main objectives
considered by most existing researches is the energy consumption. GA [27], SA
[32] [33], biogeography-based optimization (BBO) [34], PSO [36] [37] and ACO
[40] [41] are used for energy-efficient VM placement. On the other hand, some
researches focused on maximizing the performance rather than minimizing the
energy [47].

Moreover, the trade-off between minimizing the energy and maximizing the
performance is an important issue and needs to be addressed when formulating
the VM placement problem. GA [28] [29] [30] [31], SA [48], PSO [38] [39], ACO
[42] [43] [44] [45] [46] and BBO [35] are used to solve VM placement problem
for energy and performance purposes.

2.3. Motivation

One of the identified gaps associated with existing studies in optimizing re-
source scheduling in cloud computing is that existing research works consider
managing and scheduling resources in data center at two different levels sep-
arately: (i) task scheduling; (ii) VMs placement. Therefore, an optimal VMs
placement plays an important role in improving resource utilization in a cloud
computing environment.

5

However, researchers often addressed and evaluated the two levels individ-
ually by developing two-level architecture for optimizing tasks scheduling only
for cloud users’ benefit or for optimizing VMs placement for cloud providers’
benefit.

The major users’ aim is to find PHs for their tasks and the cloud providers’
aim is to utilize their infrastructure by accommodating tasks for users. There-
fore, task scheduling and VM placement problems effect each other.

The proposed three-level architecture addresses the identified research gap
by developing a generalized architecture for simultaneously optimizing the two
levels, i.e., tasks scheduling and VMs placement to obtain a better results for
both cloud users and cloud providers. MFGSO [49] algorithm is applied to
optimize JTSVMP under the three-level architecture (i.e., task-VM-PH).

In our earlier works, GSO algorithm has been applied for dynamic VM place-
ment only [50] and for task scheduling only [51]. In this article, the integration
of task scheduling and VM placement problems, as one optimization problem is
proposed in order to produce better optimization of resource scheduling in cloud
data center. Hence, the relationship between task, VM, and PH is considered
and the existing two-level architecture (task - VM and VM - PH) is extended
to a three-level architecture (task - VM - PH).

The rationale behind our proposed architecture is to schedule tasks to least
executed cost VMs in such a way that tasks sequentially executed in the VM
complete before their deadlines. In addition, placing the VMs on most utilized
PHs to reduce the number of active PHs.

3. System Model and Problem Formulation

In this section, the architecture of JTSVMP in cloud-based data center is de-
scribed. Mathematical models that represent the scheduling, cost and resource
utilization models are presented. The problem of scheduling tasks to VMs with
considering placing VMs to PHs given the constraints is considered as well.

Figure 1 depicts the architecture of JTSVMP in cloud-based data center.
The architecture consists of three layers: users layer, scheduling layer, and com-
puting resource layer. In the users layer, users dynamically submit their tasks
to cloud providers in a given time interval.

The targeted system is a large-scale data center. The computing resource
layer consists of heterogeneous PHs where each PH hosts a set of heterogeneous
VMs via the corresponding virtual machine monitor (VMM). Having heteroge-
neous VMs with varied processing speeds and memory, indicating that a task
executed on different VMs will lead in varying execution cost. Each PH has a lo-
cal monitor, a software module, which is responsible for collecting -from VMM-
run-time statistics of each PH, including PH status and resource utilization of
all VMs in a PH and reports them to the task scheduler.

The scheduling layer consists of a task scheduler and VM placement algo-
rithm. Task scheduler is responsible for scheduling tasks to VMs and then the
VM placement algorithm is responsible for placing selected VMs to PHs.

6

Figure 1: Task scheduling and VM placement

Our aim is to schedule tasks to VMs in order to achieve lower execution cost
of tasks while meeting the deadline of tasks. As a result, the deadline is equal
to the expected execution time of the tasks to be scheduled on each VM. The
task scheduler first calculates the completion time required to execute the task
on each VM which is based on the execution time and waiting time of task.
The execution time is calculated based on the ratio of the length of task which
is received from the user side as a number of instructions and the processing
speed of VM which is received from the local monitor side in terms of million
instructions per second (MIPS). If the completion time of executing task is
within the task deadline, then the task can be executed on the VM. After that,
the task scheduler calculates the execution cost of task in each available VM.
To minimize the execution cost of the task, task scheduler decides which VM
has the least execution cost for executing the task and meets the requirements
of each task.

The VM placement algorithm is responsible of placing the selected VM on
PH. Here, the VM placement algorithm calculates the CPU utilization of each
PH by considering the total and the available CPU and then allocates the VM
on the most utilized PH in order to maximize the resource utilization. Finally,

7

Table 2: Amazon EC2 instance types and prices

VM type MIPS Pe Capacity Price ($/Hour)
Type 1 (sml) 500 4 2000 $0.34
Type 2 (med) 1000 7 7000 $0.5
Type 3 (lrg) 1500 20 30000 $0.6

the task scheduler will return the result of execution to user when all tasks are
completed.

3.1. Tasks Model

Set of tasks is defined as T = {T1, T2, ..., Ti, ..., TM}, where i ∈ [1,M] and M
is the total number of tasks. Each task Ti is described as Ti(szi, dei, ai), where
szi, dei and ai represent the task size that is measured by million of instructions
(MI), task deadline and start time of task Ti, respectively.

3.2. Virtual Machines Model

Set of VMs is defined as VM = {vm1, vm2, ..., vmj , ..., vmV }, where j ∈ [1, V]
and V is the total number of VMs. Each vmj is described as vmj(cvj , P ricej), where
cvj is the VM processing capacity which is expressed in terms of million instructions
per second (MIPS) that is subject to

∑V
j=1 cvj ≤ cpk. This information is used in the

proposed algorithm to calculate the execution time of a task on a given VM. Pricej
is the amount of payment spent for using a vmj per hour. We consider three types
of VMs offered by the cloud provider to the user as {vmsml, vmmed, vmlrg}, and each
VM type has different processing capacity and price. (Table 2 shows Amazon EC2
pricing model1).

3.3. Physical Hosts Model

Set of PHs is defined as PH = {ph1, ph2, ..., phk, ..., phP }, where k ∈ [1, P] and P
is the total number of PHs. Each phk is described as phk(cpk), where cpk is the PH
processing capacity which is expressed in terms of MIPS.

3.4. Cost and Time Models

We assumed that the cost of each VM within a cloud is dynamically affected based
on the VMs performance type, which means a more powerful VM is always more costly.

Cost indicates the total amount the user needs to pay to cloud provider for renting
the VMs. Minimizing the cost is one of the optimization parameters for user favor. It
should be considered when formulating the task scheduling problem.

The unit of time in which the pay-per-use model is specified by the cloud provider;
any partial utilization of the leased VM is charged as if the full-time period was
consumed. For instance, if unit of time is 60 minutes, when a VM is used for 61
minutes the user will have to pay for 120 minutes.

A widely used model to calculate the cost is based on the execution time of task
and the cost of VM per unit of time as used in [52] and [50]. Therefore, The execution

1http://aws.amazon.com/ec2/instance-types/

8

Figure 2: Task scheduling lifetime

cost ECij of Ti is defined as multiplication of the price of vmj and the completion
time of Ti, that is,

ECij = Pricej ∗
CTij

3600
(1)

where Pricej is the price of vmj and CTij is the completion time of executing task Ti

on vmj .
If the completion time CTij is within the deadline, Ti can be executed. Otherwise,

Ti cannot be executed. As seen in Figure 2, the execution time is the time that VM
takes to execute the task. Waiting time is the time difference between task start time
and task execution time. Hence, the completion time that vmj will take to execute Ti

can be calculated as Eq.2.

CTij = ai + ETij (2)

where ai is the start time of Ti and ETij is the time of executing Ti on vmj at a given
time t.

A widely used model to estimate the execution time is based on the task size and
the processing speed of VMs. The execution time ETij is calculated as Eq.3.

ETij =
szi
cvj

(3)

where szi is the number of instructions that Ti will need to execute on vmj and cvj is
the processing speed of vmj , which can be calculated as Eq.4.

cvj = (Pej ∗mipsj) (4)

where Pej is the number of processors in vmj , mipsj is million instructions per second
of each processor in vmj .

3.5. Resource Utilization Model

The resource (i.e., CPU) utilization u of phk for a given time t is calculated by
Eq.5.

uk(t) =

∑V
j=1 vpjk ∗ cvj

cpk
(5)

where vpjk is a binary variable indicating whether vmj is assigned to phk or not.
The value of vpjk = 1 if vmj is assigned to phk, otherwise it is 0. cvj and cpk are the
processing speed of vmj and phk, respectively.

9

Table 3: Notations
Notation Definition
i Index for tasks
M Total number of tasks
j Index for VMs
V Total number of VMs
k Index for PHs
P Total number of PHs
szi Size of Ti

dei Deadline of Ti

ai Start time of Ti

ECij Execution cost of executing Ti on vmj

Tvij Variable indicates whether Ti is assigned to vmj

CTij Completion time of executing Ti on vmj

Tcpui CPU demand of Ti

Tmemi Memory demand of Ti

Tneti Network bandwidth demand of Ti

cvj Capacity of vmj

Pej Total number of processors in vmj

mipsj MIPS of each processor in vmj

Pricej Price of vmj

V cpuj CPU demand of vmj

V memj Memory demand of vmj

V netj Network bandwidth demand of vmj

selectedV m Index for the selected VM
cpk Capacity of phk

uk CPU utilization of phk

vpjk Variable indicates whether vmj is assigned to phk

Pcpuk CPU capacity of phk

Pmemk Memory capacity of phk

Pnetk Network bandwidth capacity of phk

3.6. Problem Formulation

In this article, we consider scheduling independent tasks in cloud based data cen-
ter comprising heterogeneous VMs and PHs. In this section, we introduce objective
function and constraints considered in the problem.

The objective is to determine a plan for task scheduling and VM placement in
order to minimize both the execution cost ECij of tasks and the available MIPS of
PHs AMjk as below:

min f = ECAM = (ECij(t) ∗ 0.5) + (AMjk(t) ∗ 0.5) (6)

Task Scheduling Constraints
(i) A task must be assigned to one VM, i.e.,

∀i ∈ {1, 2, ...,M},
∑V

j=1
Tvij(t) = 1 (7)

where i is index of task, j is index of VM and Tvij(t) is a binary value representing
whether Ti is assigned to vmj at given time t.

(ii) Ensures that each task is finished before its deadline, i.e.,

∀i ∈ {1, 2, ...,M}, CTij ≤ dei (8)

10

where dei is the deadline of task Ti and CTij is the completion time of executing
task Ti on vmj .

(iii) The total requirements resources of all tasks hosted on VM should not exceed
the maximum capacity of the VM resources, i.e.,

∀j ∈ {1, 2, ..., V },
∑M

i=1
Tcpui ∗ Tvij ≤ V cpuj (9)

∀j ∈ {1, 2, ..., V },
∑M

i=1
Tmemi ∗ Tvij ≤ V memj (10)

∀j ∈ {1, 2, ..., V },
∑M

i=1
Tneti ∗ Tvij ≤ V netj (11)

where Tcpui, Tmemi and Tneti are CPU, memory and network bandwidth
demands of Ti, respectively. V cpuj , V memj and V netj are CPU, memory and
network bandwidth capacities of vmj , respectively.

(iv) Tasks are real-time and independent of each other.

(v) All the tasks of CPU intensive.

(vi) Each task is allowed to be processed on any given available VM that meets the
requirements of tasks.

(vii) The execution time of each task is VM-dependent.

(viii) Each task must be completed without interruption once started (non-preemptable).
So, if more than one task comes at the same time, then one task will wait in the
queue until previously task completed its execution.

(ix) Each VM can be provisioned to more than one task.

VM Placement Constraints
(i) A VM must be assigned to one PH, i.e.,

∀j ∈ {1, 2, ..., V },
∑P

k=1
vpjk(t) = 1 (12)

where j is index of VM, k is index of PH and vpjk(t) is a binary value representing
whether vmj is assigned to phk at given time t.

(ii) The total resources of a VM cannot exceed the capacity of the PH resources, i.e.,

∀k ∈ {1, 2, ..., P},
∑V

j=1
V cpuj ∗ vpjk(t) ≤ Pcpuk (13)

∀k ∈ {1, 2, ..., P},
∑V

j=1
V memj ∗ vpjk(t) ≤ Pmemk (14)

∀k ∈ {1, 2, ..., P},
∑V

j=1
V netj ∗ vpjk(t) ≤ Pnetk (15)

where V cpuj , V memj and V netj are CPU, memory and network bandwidth
demands of vmj , respectively. Pcpuk, Pmemk and Pnetk are CPU, memory
and network bandwidth capacities of phk , respectively.

11

Figure 3: Joint task scheduling and VM placement

4. Solving JTSVMP by Metaheuristic optimization Algorithm

This section presents the proposed metaheuristic method for JTSVMP, composed
of task scheduling and VM placement problems in cloud data centers.

The pseudo code of the two level architecture, task scheduling based-MOA, is
shown in Algorithm 1. The proposed architecture integrates two levels namely task
scheduling (level 1) and VM placement (level 2) by using MOAs. Figure 3 depicts the
working principle of JTSVMP. The pseudocode of the MOA-based JTSVMP is shown
in Algorithm 5.

The input parameters of the MOA-based JTSVMP include vmList, taskList and
phList details. Each individual of MOA represents a VM and the location of VM is the
execution cost; thus, the dimension of the individual is equal to the number of VMs.
MOA parameters are initialized (line 1). When task i needs to be processed, a VM vmj

is randomly initialized (lines 3− 4). Then, for each task i that needs to be scheduled
(line 5), on each VM vmj in the vmList (line 7), calculate the fitness of vmj as per its
execution cost (line 8). Then, the movement will be updated (line 9). The best suited
vm selectedV m is selected to schedule the task (line 10). Furthermore, the selectedV m
will be placed to a most utilized PH phk (line 11) and then ECAM is calculated (line
12). Finally, the algorithm will be terminated if there is no improvement in reducing
the ECAM from the last iteration (line 15).

Metaheuristic algorithms which are applied to solve JTSVMP are, GSO and the
hybrid GSO with MFO which is called, MFGSO. In GSO, the initial population is
randomly generated, while in MFGSO, MFO is integrated to initialize the initial pop-
ulation of GSO instead of randomization. It is worth to mention that MFGSO has
better performance than GSO in terms of reducing of being trapped into local optima
and to speed up the convergence.

GSO algorithm is applied to search for VM that minimizes the execution cost. Each
glowworm represents a VM and the luciferin of VM is the execution cost. According
to the nature of glowworms, they always move towards their neighbors having higher
luciferin than its own. But in our algorithm, a VM is attracted towards its neighbor
which has lowest execution cost, which is reverse of the characteristics of the glowworm.

12

Task Scheduling based-GSO
The movement function of GSO algorithm is presented in Algorithm 2. The lu-

ciferin `j(t) (i.e., execution cost) of vmj will be updated (line 1 in Algorithm 2). The
neighbor set Nj(t) will be calculated through getV mNeighbours(vmj , nt) (line 2 in
Algorithm 2), it contains VMs which have a lower execution cost than the original
one and can meet the deadline of executing the Ti. The size of the neighbor set nt is
predefined by the user.

The luciferin of each other VM `n(t) will be calculated (line 3 in Algorithm 3). If
a VM vmn has less execution cost than the original VM vmj and if it can meet the
deadline of the task dei, then this VM vmn will be added to the neighbor list Nj as a
neighbour of VM vmj (lines 4− 6 in Algorithm 3).

The neighbor which has highest probability among neighbors n∗j will be selected
to schedule the task (lines 3−5) and the location of VM vmj is updated (line 6). After
that, the radial range radiusj which defines the neighbor set will be updated (line 7).

Task Scheduling based-MFGSO
The movement function of MFGSO algorithm is presented in Algorithm 4. In

MFGSO, MFO algorithm is used to initialize the initial population of GSO. The moths
are considered as the candidate VMs. Flames are the best positions of VMs that are
obtained so far by the VM. The number of flames NF will be decreased in each iteration
(line 1). The fitness values of each moth and flame are obtained (lines 2− 4). Flames
are sorted based on its fitness values (execution cost) and saved in F in case of first
iteration. However, in next iteration, F is the sorted of merge moths and best flames
from previous iteration (line 5). Next, positions of moths are updated (lines 7 − 15).
The moth’s current optimal position, Mj(t + 1) is obtained (line 15). Then, the
current optimal position obtained from MFO, vmj(t) and corresponding fitness value
fit(vmj(t)) as the initial values of GSO algorithm are set. GSO is used to exploit the
best solutions (lines 16− 24).

Algorithm 1: Task scheduling based-MOA

Input: vmList, taskList
Output: selectedV m

1 Set parameters of MOA
2 Set t = 1
3 for Ti ∈ taskList do
4 Initialize vmj randomly

5 for Ti ∈ taskList do
6 while termination condition not met do
7 for vmj ∈ vmList do
8 fit(vmj(t)) = Pricej ∗ CTij
9 vmj(t+ 1) = mh movement(fit(vmj(t)), vmj(t))

10 selectedV m = vmj(t+ 1)

11 t = t+ 1

12 taskList = taskList− i
13 return selectedV m

13

Algorithm 2: Function mh movement(fit(vmj(t)), vmj(t)) in GSO al-
gorithm

1 `j(t) = (1− λ)`j(t− 1) + γfit(vmj(t))
2 Nj(t) = getV mNeighbours(vmj , nt)
3 for nεNj do

4 pjn(t) =
`n(t)−`j(t)∑

nεNj(t)
`n(t)−`j(t)

5 n∗j = arg maxnεNj(t){pjn(t)}

6 vmj(t+ 1) = vmj(t) + ζ

(
vmn∗j (t)−vmj(t)
||vmn∗j (t)−vmj(t)||

)
7 radiusj(t+ 1) =

min{max radius,max{0, radiusj(t) + β(max# neighbour − |Nj(t)|)}}

Algorithm 3: Function getV mNeighbours(vmj , nt)

1 Nj → NULL
2 while n ≤ nt do
3 `n(t) = Pricen ∗ CTin
4 if `n(t) < `j(t) then
5 if ||CTin(t)− CTij(t)|| ≤ dei then
6 Nj ← n

14

Algorithm 4: Function mh movement(fit(vmj(t)), vmj(t)) in MFGSO
algorithm

1 NF = round(V − t ∗ V−1
ITER)

2 for j = 1 : V do
3 Evaluate fit(mothj)
4 Evaluate fit(flamej)

5 F (t) = sort(F (t− 1),M(t)) with the flames and moths fitness values
from best to worst

6 φ = −1 + t ∗ ((−1)/T)
7 for j =1:V do
8 for s = 1 :NF do
9 ν = (φ− 1) ∗ rand+ 1

10 Dj(t) = |Fj(t)−Mj(t)|
11 if j ≤ NF then
12 Mj(t+ 1) = S(Mj(t), Fj(t)) = Dj(t) ∗ ebν . cos(2πν) + Fj(t)

13 if j > NF then
14 Mj(t+ 1) = S(Mj(t), FNF (t)) = Dj(t) ∗ ebν . cos(2πν) + FNF (t)

15 vmj(t) = Mj(t+ 1)

16 for j= 1: V do
17 `j(t) = (1− λ)`j(t− 1) + γfit(vmj(t))

18 for j = 1: V do
19 for each nεNj(t) do

20 pjn(t) =
`n(t)−`j(t)∑

nεNj(t)
`n(t)−`j(t)

21 n∗j = arg maxnεNj(t){pjn(t)}

22 vmj(t+ 1) = vmj(t) + ζ

(
vmn∗j (t)−vmj(t)
||vmn∗j (t)−vmj(t)||

)
23 radiusj(t+ 1) =

min{max radius,max{0, radiusj(t)+β(max# neighbour−|Nj(t)|)}}
24 Mj(t+ 1) = vmj(t+ 1)

15

Algorithm 5: MOA-based JTSVMP

Input: vmList, taskList, phList
Output: selectedV m

1 Set parameters of MOA
2 Set t = 1
3 for Ti ∈ taskList do
4 Initialise vmj randomly

5 for Ti ∈ taskList do
6 while termination condition not met do
7 for vmj ∈ vmList do
8 fit(vmj(t)) = Pricej ∗ CTij
9 vmj(t+ 1) = mh movement(fit(vmj(t)), vmj(t))

10 selectedV m = vmj(t+ 1)
11 Place selectedV m to phk
12 ECAM = (ECij ∗ 0.5) + (AMjk ∗ 0.5)

13 t = t+ 1

14 taskList = taskList− i
15 return selectedV m

Table 4: Settings of data center

Parameter RAM Storage BW VM scheduler VMM
Value 2 GB 1 TB 10 GB Time-shared Xen

Table 5: Settings of PHs

PH Processor Pe MIPS
PH-A Intel Core 2 Extreme X6800 2 27079
PH-B Intel Core i7 Extreme 3960X 6 177730

16

Table 6: Parameter settings of the algorithms

Algorithm Notation Description of the parameter Value
- N Number of population 50
- R Number of experimental runs 10

GSO λ Luciferin decay coefficient 0.4
γ Luciferin enhancement coefficient 0.6
β Rate of the neighbourhood range 0.08
max# neighbour No. of neighbours 5
max radius Maximum range 8
ζ Step size of moving 0.03
` Initial luciferin 0.05

MFGSO b Constant defining the shape of the logarithmic spiral 1
GA pc Crossover probability 0.8

pm Mutation probability 0.2
- Selection mechanism Roulette Wheel

5. Experimental Evaluation

5.1. Simulation Setup

CloudSim 3.0.3 toolkit [53] is used to evaluate the proposed architecture. CloudSim
is widely used to simulate cloud system components such as data centers, tasks and
VMs. It supports policies for tasks scheduling, VMs placement and selection, power
models for data center resources and provides different types of workloads. We modeled
an Infrastructure-as-a-Service (IaaS) provider offering a single data center, eight PHs
with two different types and four VMs with three different types based on current
Amazon EC2 offerings as shown in Table 2. The characteristics of data center and
PHs are shown in Tables 4 and 5, respectively. Tasks are generated randomly and from
a standard formatted workload of a NASA Ames Research center [54]. NASA Ames
iPSC/860 set logs is one of the widely used formatted workloads for evaluating the
performance of distributed systems [54] [55]. NASA Ames iPSC/860 set log contains
information of 14,794 tasks. Different sizes of task are used started with 100 tasks to
500 tasks.

The algorithms that are compared include the basic GSO, MFGSO and GA in
two different scenarios, when considering tasks scheduling only and when integrating
VM placement with task scheduling, JTSVMP. In the experiments, we follow the
recommended value of parameters for GSO and GA algorithms as presented in Table
6 [56] [57].

5.2. Simulation Results and Discussion

The proposed architecture of integrating task scheduling and VM placement are
evaluated in this section. The evaluation considers two workloads: random and real
workloads. Two scenarios is considered: the first scenario is task scheduling only and
the second scenario is the integration of task scheduling and VM placement. The
performance metrics are: execution cost, makespan, DoI and the resource utilization
of PHs.

17

Table 7: Execution cost (EC)

Workload No. of tasks GSO MFGSO GA IGSO IMFGSO IGA
Random 100 9.757 6.231 5.023 7.426 3.4 3.01

200 18.480 15.26 10.183 14.912 12.10 8.37
300 27.203 22.75 16.518 22.318 18.44 12.26
400 35.950 29.35 19.170 29.769 24.22 15.9
500 44.769 36.68 24.264 37.193 30.11 17.56

NASA Ames iPSC/860 100 219.850 178.01 87.015 184.789 165.43 56.33
200 438.878 388.65 315.158 407.039 364.29 243.27
300 745.878 512.55 409.220 526.302 418.07 298.46
400 837.146 533.99 558.309 543.468 441.65 464.02
500 1063.140 589.04 586.473 606.234 500.30 503.80

Execution Cost
Table 7 presents the results of execution cost in the random and NASA Ames

iPSC/860 workloads for GSO, MFGSO, GA, integration GSO (IGSO), integration
MFGSO (IMFGSO) and integration GA (IGA) algorithms.

According to the type of the VM used to run a task and the time required to
complete the task, the execution cost of task can be calculated using Eq.1. Assuming
the number of VMs is fixed as 4 VMs and the number of tasks is gradually increased
from 100 to 500 tasks.

It can be seen from Table 7 that MFGSO outperforms the basic GSO algorithm
in both workloads when generating different number of tasks. Moreover, GA has the
best results in both workloads. Regards the effect of JTSVMP, in both workload
IGSO, IMFGSO and IGA have less execution cost than the GSO, MFGSO and GA,
respectively, which means the JTSVMP leads to improve the performance in terms
of minimizing the execution cost of tasks. The average execution cost minimization
by IGSO was 16% − 43% less than that of GSO for 100 through 500 instances of
tasks respectively. The average execution cost minimization by IMFGSO was 15% −
45% less than that of MFGSO for 100 through 500 instances of tasks respectively.
Moreover, IGA outperforms all algorithms in terms of minimizing execution cost in
both workloads for most number of tasks. In addition, the execution cost of tasks
increases over increasing number of tasks.

Makespan
Makespan or the completion time is the time when the execution of last task is

finished. Measuring the makespan is important as minimizing makespan will help to
minimize the EC and meets the deadline of task.

Figures 4a and Figure 4b show the results of makespan in the random and NASA
Ames iPSC/860 workloads for GSO, MFGSO, GA, IGSO, IMFGSO and IGA algo-
rithms.

Assuming the number of VMs is fixed as 4 VMs and the number of tasks is gradually
increased from 100 to 500 tasks. The y axis shows the effect on makespan of increasing
the number of tasks as shown in Figure 4a and Figure 4b.

It can be seen from Figure 4a and Figure 4b that the makespan increases over
increasing number of tasks. In addition, JTSVMP can improve the performance of

18

algorithms in terms of minimizing the makespan. IMFGSO outperforms all other algo-
rithms in minimizing the makespan in both types of workload. The average makespan
minimization by IGSO was 4% − 14% less than that of GSO for 100 through 500 in-
stances of tasks respectively. The average makespan minimization by IMFGSO was
5%−17% less than that of MFGSO for 100 through 500 instances of tasks respectively.

Degree of Imbalance (DoI)
The degree of imbalance measures the imbalance among VMs. It describes the

amount of load distribution among the VMs regarding to their execution competencies.
It can be calculated as in Eq. 16 below.

DoI =
CTijmax− CTijmin

CTijavg
(16)

where CTijmax, CTijmin and CTijavg are the maximum, minimum and average
completion time of executing task i among total VMs.

The small value of DoI informs that the load of the system is more balanced and
efficient. The average degree of imbalance of each algorithm with the number of tasks
varying from 100 to 500 in random and real workloads is shown in Figure 5a and Figure
5b. It can be seen from Figure 5a and Figure 5b that JTSVMP leads to improve the
performance in terms of VMs load balancing. IGSO, IMFGSO and IGA outperformed
GSO, MFGSO and GA, respectively in terms of minimizing the DoI.

Resource Utilization
This metric shows how PHs is utilized as maximizing the PHs utilization is pre-

ferred. Figures 6a and 6b show the results of the resource utilization of PHs in the
random and NASA Ames iPSC/860 workloads for GSO, MFGSO, GA, IGSO, IM-
FGSO and IGA algorithms.

Assuming the number of VMs is fixed as 4 VMs and the number of tasks is fixed
to 500 tasks. The y axis shows the effect on resource utilization of PHs of different
algorithms as shown in Figures 6a and 6b. It can be seen from Figure 6a and Figure 6b
that IGSO, IMFGSO and IGA have better resource utilization of PHs than the GSO,
MFGSO and GA, respectively, due to the IGSO, IMFGSO and IGA take the resource
utilization into consideration when scheduling tasks to the suitable VMs, while GSO,
MFGSO and GA consider only the execution cost within the deadline of tasks. Hence,
the JTSVMP leads to improve the performance in terms of maximizing the resource
utilization of PHs.

Wilcoxon Signed-rank Test
To further evaluate the performance of the metaheuristic algorithms, the non-

parametric statistical test Wilcoxons rank-sum test [58] is carried out at 5% significance
level to check whether the improvement achieved by the JTSVMP architecture with
integrated algorithms (IGSO, IMFGSO and IGA) is statistically significant or not.
Wilcoxon signed-rank test is a non-parametric statistical test of non-independent data
from only two groups. This test is carried out to examine the null hypothesis that two
samples come from the same population (difference in means is equal to 0) against the
alternative hypothesis, especially that a population tends to have larger values than
the other. The advantage of the Wilcoxon rank sum test, compared to other tests like
the t-test, is that it is more robust to outliers and heavy tail distributions.

19

(a) Random workload

(b) NASA Ames iPSC/860 workload

Figure 4: Makespan

20

(a) Random workload

(b) NASA Ames iPSC/860 workload

Figure 5: Degree of Imbalance

21

(a) Random workload

(b) NASA Ames iPSC/860 workload

Figure 6: Resource utilization

22

Table 8: P-values of the Wilcoxon test of algorithms based on average execution cost (framed
where p ≥ 0.05)

Workload No. of tasks IGSO vs GSO IMFGSO vs MFGSO IGA vs GA

Random 100 0.0555 0.0511 0.0300

200 0.0300 0.0300 0.0555
300 0.0200 0.0200 0.0200
400 0.0200 0.0200 0.0200
500 0.0200 0.0200 0.0200

NASA Ames iPSC/860 100 0.0611 0.0634 0.0423
200 0.0423 0.0320 0.0300
300 0.0030 0.0300 0.0020
400 0.0030 0.0300 0.0300

500 0.0020 0.0510 0.0300

Table 8 lists the p values obtained by the test using GraphPad Prism software
between algorithms with JTSVMP architecture and with task scheduling only in each
workload. Generally, p-values less than 0.05 give a strong evidence against the null
hypothesis, which proves the significant difference between algorithms at a level of
5%. It can be observed from Table 8 that the p-values confirm that the improvement
made by IGSO over GSO, IMFGSO over MFGSO and IGA over GA are statistically
significant for most cases in both workloads in terms of average execution cost.

6. Conclusion and Future Work

In this article, we studied the integration of task scheduling and VM placement
problems. MOA was implemented to schedule independent tasks to VMs and place
VMs on PHs. Execution cost, makespan, DoI and resource utilization were measured
and the integration of task scheduling and VM placement was found to be better than
the considering task scheduling only. The JTSVMP integrated algorithms (IGSO, IM-
FGSO and IGA) have less execution cost and less makespans than the GSO, MFGSO
and GA. The average execution cost minimization by IGSO was 16%− 43% less than
that of GSO for 100 through 500 instances of tasks respectively. The average exe-
cution cost minimization by IMFGSO was 15% − 45% less than that of MFGSO for
100 through 500 instances of tasks respectively. The average makespan minimization
by IGSO was 4%− 14% less than that of GSO for 100 through 500 instances of tasks
respectively. The average makespan minimization by IMFGSO was 5%−17% less than
that of MFGSO for 100 through 500 instances of tasks respectively. The JTSVMP
integrated algorithms (IGSO, IMFGSO and IGA) also have higher resource utilization
of PHs than the GSO and MFGSO. Possible future research may investigate more
aspects of the JTSVMP such as security and reliability.

References

[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality

23

for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616, 2009.

[2] Cisco. Cisco global cloud index: Forecast and methodology, 2016–2021 white
paper, Nov. 2018.

[3] Mohit Kumar, SC Sharma, Anubhav Goel, and SP Singh. A comprehensive
survey for scheduling techniques in cloud computing. Journal of Network and
Computer Applications, 2019.

[4] Mohammad Masdari, Sayyid Shahab Nabavi, and Vafa Ahmadi. An overview of
virtual machine placement schemes in cloud computing. Journal of Network and
Computer Applications, 66:106–127, 2016.

[5] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic placement of virtual
machines for managing sla violations. In Integrated Network Management, 10th
IFIP/IEEE Int. Symp. on, pages 119–128. IEEE, 2007.

[6] Thiago AL Genez, Luiz F Bittencourt, and Edmundo RM Madeira. Workflow
scheduling for saas/paas cloud providers considering two sla levels. In IEEE
Network Operations and Management Symp., pages 906–912. IEEE, 2012.

[7] Brendan Jennings and Rolf Stadler. Resource management in clouds: Survey and
research challenges. Journal of Network and Sys. Management, 23(3):567–619,
2015.

[8] Marco Polverini, Antonio Cianfrani, Shaolei Ren, and Athanasios V Vasilakos.
Thermal-aware scheduling of batch jobs in geographically distributed data cen-
ters. IEEE Transactions on cloud computing, 2(1):71–84, 2013.

[9] Guiyi Wei, Athanasios V Vasilakos, Yao Zheng, and Naixue Xiong. A game-
theoretic method of fair resource allocation for cloud computing services. The
journal of supercomputing, 54(2):252–269, 2010.

[10] Fei Xu, Fangming Liu, Hai Jin, and Athanasios V Vasilakos. Managing perfor-
mance overhead of virtual machines in cloud computing: A survey, state of the
art, and future directions. Proceedings of the IEEE, 102(1):11–31, 2013.

[11] Jixian Zhang, Xutao Yang, Ning Xie, Xuejie Zhang, Athanasios V Vasilakos, and
Weidong Li. An online auction mechanism for time-varying multidimensional
resource allocation in clouds. Future Generation Computer Systems, 2020.

[12] Lena Mashayekhy, Mahyar Movahed Nejad, Daniel Grosu, and Athanasios V
Vasilakos. An online mechanism for resource allocation and pricing in clouds.
IEEE transactions on computers, 65(4):1172–1184, 2015.

[13] Chenhong Zhao, Shanshan Zhang, Qingfeng Liu, Jian Xie, and Jicheng Hu. Inde-
pendent tasks scheduling based on genetic algorithm in cloud computing. In 5th
Int. Conf. on Wireless Communications, Networking and Mobile Comp., pages
1–4. IEEE, 2009.

[14] Sung Ho Jang, Tae Young Kim, Jae Kwon Kim, and Jong Sik Lee. The study
of genetic algorithm-based task scheduling for cloud computing. Int. Journal of
Control and Automation, 5(4):157–162, 2012.

24

[15] Miao Zhang, Yang Yang, Zhenqiang Mi, and Zenggang Xiong. An improved
genetic-based approach to task scheduling in inter-cloud environment. In Ubiqui-
tous Intelligence and Comp. and IEEE 12th Intl. Conf. on Autonomic and Trusted
Comp. and IEEE 15th Intl. Conf. on Scalable Comp. and Communications and
Its Associated Workshops, IEEE 12th Intl. Conf. on, pages 997–1003. IEEE, 2015.

[16] Kai Zhu, Huaguang Song, Lijing Liu, Jinzhu Gao, and Guojian Cheng. Hybrid
genetic algorithm for cloud computing applications. In Services Comp. Conf.,
IEEE Asia-Pacific, pages 182–187. IEEE, 2011.

[17] Kun Li, Gaochao Xu, Guangyu Zhao, Yushuang Dong, and Dan Wang. Cloud
task scheduling based on load balancing ant colony optimization. In 6th Annual
ChinaGrid Conf., pages 3–9. IEEE, 2011.

[18] Medhat A Tawfeek, Ashraf El-Sisi, Arabi E Keshk, and Fawzy A Torkey. Cloud
task scheduling based on ant colony optimization. In Comp. Engineering & Sys.,
8th Int. Conf. on, pages 64–69. IEEE, 2013.

[19] Weifeng Sun, Ning Zhang, Haotian Wang, Wenjuan Yin, and Tie Qiu. Paco: A
period aco based scheduling algorithm in cloud computing. In Cloud Comp. and
Big Data (CloudCom-Asia), Int. Conf. on, pages 482–486. IEEE, 2013.

[20] Zhanghui Liu and Xiaoli Wang. A pso-based algorithm for load balancing in
virtual machines of cloud computing environment. In Int. Conf. in Swarm Intel-
ligence, pages 142–147. Springer, 2012.

[21] Shaobin Zhan and Hongying Huo. Improved pso-based task scheduling algorithm
in cloud computing. Journal of Info. & Computational Science, 9(13):3821–3829,
2012.

[22] Hussein S Al-Olimat, Mansoor Alam, Robert Green, and Jong Kwan Lee.
Cloudlet scheduling with particle swarm optimization. In Communication Sys.
and Network Tech., 5th Int. Conf. on, pages 991–995. IEEE, 2015.

[23] Brototi Mondal, Kousik Dasgupta, and Paramartha Dutta. Load balancing in
cloud computing using stochastic hill climbing-a soft computing approach. Pro-
cedia Tech., 4:783–789, 2012.

[24] Gamal F Elhady and Medhat A Tawfeek. A comparative study into swarm in-
telligence algorithms for dynamic tasks scheduling in cloud computing. In IEEE
7th Int. Conf. on Intelligent Comp. and Info. Sys., pages 362–369. IEEE, 2015.

[25] Yangyang Dai, Yuansheng Lou, and Xin Lu. A task scheduling algorithm based
on genetic algorithm and ant colony optimization algorithm with multi-qos con-
straints in cloud computing. In Intelligent Human-Machine Sys. and Cybernetics,
7th Int. Conf. on, volume 2, pages 428–431. IEEE, 2015.

[26] Mohammed Abdullahi, Md Asri Ngadi, et al. Symbiotic organism search optimiza-
tion based task scheduling in cloud computing environment. Future Generation
Computer Sys., 56:640–650, 2016.

[27] Mohamed Amine Kaaouache and Sadok Bouamama. Solving bin Packing Problem
with a Hybrid Genetic Algorithm for VM Placement in Cloud. Procedia Computer
Science, 60:1061–1069, 2015.

25

[28] Jing Xu and Jose AB Fortes. Multi-objective virtual machine placement in
virtualized data center environments. In Green Comp. and Communications,
IEEE/ACM Int. Conf. on & Int. Conf. on Cyber, Physical and Social Comp.,
pages 179–188. IEEE, 2010.

[29] Chao Liu, Chenyang Shen, Sitian Li, and Sinong Wang. A new evolutionary multi-
objective algorithm to virtual machine placement in virtualized data center. In
Software Eng. and Service Science, 5th IEEE Int. Conf. on, pages 272–275. IEEE,
2014.

[30] Shahram Jamali and Sepideh Malektaji. Improving grouping genetic algorithm
for virtual machine placement in cloud data centers. 4th Intl. Conf. on Computer
and Knowledge Eng., pages 328–333, 2014.

[31] Christina Terese Joseph, K Chandrasekaran, and Robin Cyriac. Improving the ef-
ficiency of genetic algorithm approach to virtual machine allocation. In Computer
and Communication Tech., Int. Conf. on, pages 111–116. IEEE, 2014.

[32] Yongqiang Wu, Maolin Tang, and Warren Fraser. A simulated annealing algo-
rithm for energy efficient virtual machine placement. IEEE Intl. Conf. on Sys.,
Man, and Cybernetics, pages 1245–1250, 2012.

[33] Nima Khalilzad, Hamid Reza Faragardi, and Thomas Nolte. Towards energy-
aware placement of real-time virtual machines in a cloud data center. In High
Performance Comp. and Communications, IEEE 7th Int. Symp. on CSS, IEEE
12th Int. Conf. on ICESS, IEEE 17th Int. Conf. on, pages 1657–1662. IEEE,
2015.

[34] H. M. Ali and Daniel C. Lee. A biogeography-based optimization algorithm for
energy efficient virtual machine placement. IEEE Symp. on Swarm Intelligence,
pages 1–6, 2014.

[35] Qinghua Zheng, Rui Li, Xiuqi Li, and Jie Wu. A Multi-objective Biogeography-
Based Optimization for Virtual Machine Placement. 15th IEEE/ACM Intl. Symp.
on Cluster, Cloud and Grid Comp., pages 687–696, 2015.

[36] Shangguang Wang, Zhipiao Liu, Zibin Zheng, Qibo Sun, and Fangchun Yang.
Particle swarm optimization for energy-aware virtual machine placement opti-
mization in virtualized data centers. Intl. Conf. on Parallel and Dist. Sys., pages
102–109, 2013.

[37] An-ping Xiong and Chun-xiang Xu. Energy Efficient Multiresource Allocation of
Virtual Machine Based on PSO in Cloud Data Center. Mathematical Problems
in Eng., 2014:1–8, 2014.

[38] Jipeng Gao and Gaoming Tang. Virtual Machine Placement Strategy Research.
Intl. Conf. on Cyber-Enabled Dist. Comp. and Knowledge Discovery, (2):294–297,
2013.

[39] Seyed Ebrahim Dashti and Amir Masoud Rahmani. Dynamic VMs placement
for energy efficiency by PSO in cloud computing. Journal of Experimental &
Theoretical Artificial Intelligence, pages 1–16, 2015.

26

[40] E Feller, L Rilling, and C Morin. Energy-Aware Ant Colony Based Workload
Placement in Clouds. Grid Comp., 12th IEEE/ACM Intl. Conf. on, pages 26–33,
2011.

[41] Xiao-Fang Liu, Zhi-Hui Zhan, Ke-Jing Du, and Wei-Neng Chen. Energy aware
virtual machine placement scheduling in cloud computing based on ant colony
optimization approach. In Proc. of the conf. on Genetic and evolutionary com-
putation, pages 41–48. ACM, 2014.

[42] Fahimeh Farahnakian, Adnan Ashraf, and Tapio Pahikkala. Using Ant Colony
System to Consolidate VMs for Green Cloud Computing. IEEE Trans. on Services
Comp., 8(2):187–198, 2015.

[43] Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N Calheiros, and Rajkumar
Buyya. Virtual machine consolidation in cloud data centers using aco meta-
heuristic. In Euro-Par Parallel Processing, pages 306–317. Springer, 2014.

[44] Yongqiang Gao, Haibing Guan, Zhengwei Qi, Yang Hou, and Liang Liu. A multi-
objective ant colony system algorithm for virtual machine placement in cloud
computing. Journal of Computer and Sys. Sciences, 79(8):1230–1242, 2013.

[45] Medhat A Tawfeek, Ashraf B El-Sisi, Arabi E Keshk, and Fawzy A Torkey. Virtual
machine placement based on ant colony optimization for minimizing resource
wastage. Communications in Computer and Info. Science, 488:153–164, 2014.

[46] Mohammadhossein Malekloo and Nadjia Kara. Multi-objective ACO virtual ma-
chine placement in cloud computing environments. IEEE Globecom Workshops,
pages 112–116, 2014.

[47] Jian Kang Dong, Hong Bo Wang, Yang Yang Li, and Shi Duan Cheng. Virtual
machine placement optimizing to improve network performance in cloud data
centers. Journal of China Universities of Posts and Tele., 21(3):62–70, 2014.

[48] Antonio Marotta and Stefano Avallone. A simulated annealing based approach
for power efficient virtual machines consolidation. In Cloud Comp., IEEE 8th Int.
Conf. on, pages 445–452. IEEE, 2015.

[49] Dabiah Ahmed Alboaneen, Huaglory Tianfield, and Yan Zhang. Moth-flame
glowworm swarm optimisation. Multiagent and Grid Systems, 15(3):305–326,
2019.

[50] Dabiah Ahmed Alboaneen, Huaglory Tianfield, and Yan Zhang. Glowworm
swarm optimisation algorithm for virtual machine placement in cloud comput-
ing. In Ubiquitous Intelligence & Comp., Advanced and Trusted Comp., Scalable
Comp. and Communications, Cloud and Big Data Comp., Internet of People,
and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
Intl IEEE Conf., pages 808–814. IEEE, 2016.

[51] Dabiah Alboaneen, Huaglory Tianfield, and Yan Zhang. Glowworm swarm opti-
misation based task scheduling for cloud computing. In Proc. of the Int. Conf. on
Internet of Things and Cloud Comp.,(Cambridge, 22-23 Mar), pages 1–7. ACM,
2017.

27

[52] Anqi Xu, Yang Yang, Zhenqiang Mi, and Zenggang Xiong. Task scheduling
algorithm based on pso in cloud environment. In Ubiquitous Intelligence and
Comp. and IEEE 12th Intl Conf on Autonomic and Trusted Comp. and IEEE 15th
Intl Conf on Scalable Comp. and Communications and Its Associated Workshops,
IEEE 12th Intl Conf on, pages 1055–1061. IEEE, 2015.

[53] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1):23–50, 2011.

[54] Dror G Feitelson, Dan Tsafrir, and David Krakov. Experience with using the
parallel workloads archive. Journal of Parallel and Dist. Comp., 74(10):2967–
2982, 2014.

[55] Mohammed Abdullahi, Md Asri Ngadi, Salihu Idi Dishing, Barroon Isma’eel Ah-
mad, et al. An efficient symbiotic organisms search algorithm with chaotic opti-
mization strategy for multi-objective task scheduling problems in cloud computing
environment. Journal of Network and Computer Applications, 133:60–74, 2019.

[56] KN Krishnanand and Debasish Ghose. Glowworm swarm based optimization al-
gorithm for multimodal functions with collective robotics applications. Multiagent
and Grid Sys., 2(3):209–222, 2006.

[57] John H Holland. Genetic algorithms and the optimal allocation of trials. SIAM
Journal on Comp., 2(2):88–105, 1973.

[58] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin,
1(6):80–83, 1945.

28

