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Abstract

We propose a novel resilient drone service composition framework for delivery

in dynamic weather conditions. We use a skyline approach to select an opti-

mal set of candidate drone services at the source node in a skyway network.

Drone services are initially composed using a novel constraint-aware determin-

istic lookahead algorithm using the multi-armed bandit tree exploration. We

propose a heuristic-based resilient service composition approach that adapts to

runtime changes and periodically updates the composition to meet delivery ex-

pectations. Experimental results prove the efficiency of the proposed approach.

Keywords: DaaS, Service selection, Service composition, Adaptive lookahead,

Service recomposition, Resilient composition

1. Introduction

Drones have gained great attention for civil applications from both aca-

demic and industrial domains [1]. The wide range of applications and services

offered by drones show the extensive utilization of drones in various sectors in-

cluding search and rescue, real-time monitoring, aerial surveillance, structural

inspection, and delivery of goods [2] [3]. Several large corporations such as

Amazon, DHL, and Google have shown a growing interest in using drones for
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package delivery [4]. The attractive features of commercial drone delivery are

higher efficiency, cost-effectiveness, and higher flexibility compared to terrestrial

transportation [5].

The service paradigm [6] provides powerful mechanisms to abstract the func-

tional and non-functional or Quality of Service (QoS) properties of a drone as

Drone-as-a-Service (DaaS) [7]. The functional property of a DaaS describes the

delivery of a package from a given source to a destination following a skyway

network. The non-functional properties of a DaaS are battery capacity, flight

range, payload, and speed. Drone delivery services usually operate in a skyway

network to avoid no-fly zones and restricted areas. A skyway network is com-

posed of skyway segments between any two particular nodes following the drone

flying regulations such as visual line-of-sight [8]. The nodes are assumed to be

the delivery targets or recharging stations.

The practicality of drone delivery services is limited by a diverse range of

intrinsic and extrinsic factors [9]. The intrinsic factors are the inherited drone’s

limitations such as limited battery capacity, limited flight range, and constrained

payload. The extrinsic factors are related to the drone service environment such

as highly dynamic operating environment and constraints on recharging pads

at the stations. The maximum flight range of a delivery drone with full payload

weight varies from 3 to 33 km [10]. The battery capacity, speed, payload weight,

and weather conditions influence the flight range of a drone [11].

To the best of our knowledge, existing research mainly focuses on the schedul-

ing and routing of drones by formulating the problem as Travelling Salesman

Problem (TSP) [12] and Vehicle Routing Problem (VRP) [11]. A single drone

routing problem with fuel constraints is studied to minimize the total fuel con-

sumption in [13]. The proposed approach is limited to generating routes for

only a single drone with a finite number of stations. Detailed analysis on max-

imizing the profitability and minimizing the drone delivery time is presented in

[9]. This approach mainly focuses on battery management of a drone delivery

service. However, existing approaches do not consider recharging constraints

and the stochastic nature of drone delivery services. A drone may need multiple
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times of recharging its battery at intermediate stations for persistent delivery

services in long-distance areas. The arrival of the drone services at a recharging

station is usually stochastic in nature [14]. Each station has usually a finite

number of recharging pads. Therefore, the availability of recharging pads may

not be guaranteed.

Our previous work [15] is the first to focus on the recharging constraints of

drone services using the service paradigm. In our previous work, we proposed

a novel DaaS composition framework considering the recharging constraints of

drone services. In this context, recharging at intermediate stations leads to the

composition of DaaS services. The composition provides a means to aggregate

the skyway segment services from source to destination [16]. We formulated

the problem of constraint-aware DaaS composition as a multi-armed bandit tree

exploration problem. We assumed that both the intrinsic and extrinsic factors

are deterministic, i.e., we know a priori about the available drone services, their

QoS properties, and the service environment. Multiple DaaS services instan-

tiated by different drones, operating in the same skyway network at the same

time, may cause congestion in the network. We defined congestion as the total

waiting time require a drone for the availability of recharging pad at a certain

station [10]. To avoid congestion within the network, we proposed a looka-

head heuristic-based multi-armed bandit approach to compose drone services

minimizing the delivery time and cost.

However, our previous work does not consider the failures in drone services

in dynamic weather conditions. In real-world settings, the drone service envi-

ronment is highly dynamic in nature [17]. The QoS properties of drone services

may fluctuate due to the changes in the airflow pattern [18]. For example, a

drone service may arrive late due to strong headwind or may not find a recharg-

ing pad available on a certain recharging station due to recharging constraints

and stochastic arrival of other drone services. As a result, the drone service

may no longer provide the required QoS and fail. Therefore, the initial deter-

ministic composition plan may become non-optimal and need to be replanned

to deal with changing weather conditions and recharging constraints. Failure
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is a natural phenomenon in service composition. To the best of our knowledge,

no prior work has addressed the failure of drone service composition during the

delivery operation. In this paper, we extend our previous DaaS composition

framework [7] [15] by adapting the failures in DaaS composition. Our objective

is to propose a resilient DaaS composition framework.

We compose the DaaS services and build an initial composition plan using

our deterministic approach. The drone services are required to reach certain

intermediate stations at a specific time during the delivery operation. The

position and time of a drone service are of paramount importance for the smooth

execution of the delivery operation. Failure in DaaS composition means to fail

in executing the initial deterministic composition plan. For example, a drone

service DaaS1 needs to reach a recharging station S1 at 02:30 pm. The smooth

execution of subsequent drone services depends on the current drone service

and the movement of other drone services. The early or late arrival of DaaS1

may affect the other drone services and require to change the initial plan. The

early arrival of a drone service at an intermediate recharging station does not

necessarily mean to support the initial composition plan. This early arrival may

result in long waiting time for the availability of recharging pad. Failure to meet

constraints of a composite plan may result in the failure of partial or complete

composite drone service.

We propose a resilient composition of drone services for delivery considering

the recharging constraints and uncertain weather conditions. In this context,

resilient means that DaaS composition eventually delivers the package to the

destination by adapting failures in the initial deterministic composition plan.

The recharging time, weather conditions, and arrival (or departure) of one drone

influence the execution plan of other drones at each station. We assume that

the available drone services are initially deterministic, i.e., there is a knowl-

edge about the availability of drone services and their QoS values a priori. The

real-time delivery operation transforms the deterministic drone services to dy-

namic and stochastic drone services. The service environment is dynamic and

the availability of recharging pads may not be guaranteed. We analyze the local

4



impact of a failed drone service. We then locally recompose the initial com-

position plan using a novel adaptive lookahead heuristic-based approach. Our

proposed approach finds the best composition plan from the current position to

the next intermediate station where no change to the initial plan has occurred.

This process continues until the delivery of the package to the destination.

The main contributions of this paper are as follows:

• A formal model to represent constraint-aware DaaS services.

• A Skyline approach for DaaS selection in delivery.

• A resilient drone service composition approach considering recharging con-

straints and uncertain weather conditions.

• A new heuristic-based local service recomposition algorithm using adap-

tive lookahead approach.

• A custom drone simulation model for simulating the experiments.

• An evaluation using a real-world dataset to show the efficiency and effec-

tiveness of the proposed model.

Motivating Scenario

We use a typical drone delivery scenario as our motivating scenario. Drones

deliver the packages within Sydney, Australia. Suppose a drone delivery service

provider company is planning to deliver a package from Richmond to Cronulla

(89 km). The maximum service distance of a typical delivery drone ranges from

3 to 33 km. The payload weight and wind speed also affect the flight range of a

drone. The Bureau of Meteorology (BoM)1 provides the real-time information

of wind speed and direction for the Sydney area which helps in determining the

flight range of a drone. Multiple times of recharge may be required to serve

the delivery request. Avoiding the strong wind areas and the congestion of

1http://www.bom.gov.au/nsw/observations/sydney.shtml
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Figure 1: Skyway network for drone-based package delivery considering failures

drones at recharging stations is of paramount importance for time-optimal and

cost-effective delivery services.

We construct a skyway network following the Civil Aviation Safety Authority

(CASA)2 drone flying regulations such as avoiding no-fly zones and restricted

areas. The nodes of the skyway network are the rooftops of high-rise buildings

within the Sydney area. Each node can be a recharging station or a delivery

target. Each rooftop has a finite number of recharging pads where a drone

can land and recharge. To avoid compatibility issues and present a realistic

scenario, we assume that there is no handover of packages at the intermediate

stations, i.e., the same drone delivers the package from source to destination.

The stochastic arrival of drone services may cause dynamic congestion at certain

nodes, i.e., all recharging pads are occupied. Avoiding the congested nodes

would result in faster delivery services.

Suppose Yasir needs a package to be delivered within the shortest period

of time. If we ignore the uncertainties, e.g., wind effect and the congestion

at the stations (i.e., busy recharging pads) and assume that the services are

deterministic, the problem would be reduced to finding the shortest path (the

2https://www.casa.gov.au/drones/rules
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composition of skyway segments) from the source to the destination within the

skyway network. However, this greedy approach has a higher probability to

fail under uncertain conditions in the real-world environment. For example,

the initial delivery plan may be highly affected by strong wind in an area or

other arriving drone services at a certain station. Fig. 1 presents the skyway

network for drone delivery with recharging stations, uncertain wind conditions,

and failures at intermediate stations.

Our objective is to design a smart resilient approach to deal with the effects

of failures in the initial deterministic composition plan. This smart resilient

approach adapts to the failures automatically, handles the effects of failures, and

ensures the on-time package delivery. The brute-force approach considers all the

possible compositions to find the best composition plan. However, this approach

is highly time-consuming as finding all the possible compositions may produce

exponential search space. As a result, we consider the local recomposition

approach which updates the initial composition plan when a failure occurs in the

initial plan at an intermediate recharging station. We use an adaptive lookahead

heuristic-based approach which performs the local optimizations instead of the

replanning from scratch or global optimization, i.e., finding the impact of failure

in next couple of nodes (relative to the direction of the destination).

2. Related Work

To the best of our knowledge, there exists no similar resilient drone service

composition approach in the literature considering the dynamic weather con-

ditions. The proposed framework combines concepts from two separate areas:

(1) routing and scheduling of drones and (2) failure detection and recovery in

composite services. In this section, we overview related work in these two areas.

2.1. Routing and Scheduling of Drones

Several studies address the routing and scheduling problems for drone de-

livery services. Most of the existing research work focuses on using drones in
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combination with ground vehicles for last-mile delivery. A hybrid framework

for ground vehicle and drone was first studied in [19]. They proposed two new

approaches for drone-assisted parcel delivery problem to minimize the total de-

livery time. In the first approach, a drone is launched from the ground vehicle

to serve a customer while a ground vehicle is serving another customer. After

serving the customer, the drone meets with the ground vehicle in a rendezvous

location. In the second approach, the ground vehicle and the drone are sepa-

rately operated, i.e., the ground vehicle and drone perform dedicated deliveries.

It is concluded that the speed of a drone is an important consideration in de-

termining its flight range [19]. The proposed approach is tested for small-sized

customer instances up to 20. The proposed hybrid approach requires road access

for ground vehicles to make deliveries, i.e., not suitable for remote areas where

there is no road infrastructure.

A single drone routing problem is examined considering multiple refuelling

depots in [13] where a drone can refuel at any depot. The objective of this

study is to minimize the total fuel consumption for visiting all the customers.

It is assumed that drone will never run out of fuel during the journey to a

customer. The problem is modelled using Mixed Integer Linear Programming

(MILP) formulation. An approximation algorithm is proposed for solving the

problem. The proposed approach is tested for 6 depots and 25 targets only. The

proposed model does not consider the temporal logic constraints. The proposed

approach is restricted to generating delivery routes for only a single drone, i.e.,

not scalable to be used for multiple drones.

Two multi-trip VRPs problem is proposed considering solely drones to per-

form deliveries [11]. The objective is to minimize delivery time and operational

cost. They proposed an energy consumption model based on the relationship

between battery capacity and payload weight. Simulated annealing (SA) meta-

heuristic and MILP solver are used to find sub-optimal solutions for the drone

delivery problem. The service area for drone deliveries is limited because all

drones are restricted to dispatch from and return to a single depot. The actual

flight time, drone speed, and uncertain weather conditions are not taken into
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account in the proposed model. The proposed approach does not consider the

field recharging which limits the coverage and applicability.

An energy consumption model is presented for automated drone delivery

services in [20]. They assumed that drones can perform multi-package deliveries

in a predefined service area. The drone fleet size is optimized by analyzing the

impact of payload weight and flight range considering battery capacity. They

explore the relationship between four variables (working period, drone speed,

demand density of service area, and battery capacity) to minimize the total

costs of the drone delivery system. The study indicated that the long hours of

operation would benefit both service providers and customers. They found that

drone deliveries are more cost-effective in areas with high demand densities.

This study does not consider the dynamic congestion conditions at recharging

stations and uncertain weather conditions.

A scheduling model is presented to support persistent drone delivery services

in [21]. The relationship between the intrinsic factors such as payload and flight

range is considered for the effective use of drone delivery services. Multiple

service stations are assumed to replenish batteries of drones during the delivery

operation. A MILP formulation is presented to model the problem and solved

using a heuristic approach. An exact solution through MILP and a heuristic

algorithm are provided. It is assumed that the recharging time at the service sta-

tion is constant, which is not realistic in practical applications. The flight time

is assumed as a function of payload weight. In real-world problems, the flight

time depends upon the payload weight, drone speed, and environmental weather

conditions such as wind speed and temperature. The proposed solutions do not

take into account the extrinsic factors such as dynamic operating environment,

recharging constraints at each station, the influence of one drones recharging on

other drones, congestion conditions at each station, uncertain weather condi-

tions, and failures in drone delivery services. Hence, a heuristic-based approach

is required which incorporates the aforementioned real-world aspects of drone

delivery services.
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2.2. Failure Detection and Recovery in Composite Services

Many research works discuss the problem of failure detection and recovery

in composite services [22, 23, 24, 25, 26, 27]. In [22], a service failure recovery

approach is presented using subgraph replacement of services containing a failed

service. They first represent the composite services as directed graphs. They

pre-calculate the subgraphs and then rank them to speed up the recovery process

at the time of failure. The subgraph calculation is time-expensive as it considers

all possible compositions of all the component services. The subgraph of a failed

service is replaced by the best-ranked alternative subgraph. The replacement

patterns simply consider the functional and non-functional differences between

the new subgraph and replaced subgraph containing the failed service. The

proposed approach is highly time-consuming and limited to considering only

the sequential digraphs.

A region-based service reconfiguration approach is proposed to repair multi-

ple failed services and satisfy the original end-to-end QoS constraints in [25]. A

reconfiguration region is composed of one or more failed services. When one or

more services in a service composition fail at runtime, they try to replace only

those failed services. The proposed approach uses Mixed Integer Programming

(MIP) to recompose each region until all regions have a satisfactory composition.

Generally, MIP methods are very effective when the size of the problem is small.

However, these methods suffer from poor scalability due to the exponential time

complexity of the applied search algorithms.

Yu and Lin [27] proposed two algorithms to solve service failures. The pro-

posed algorithms compose offline backup service paths for each component ser-

vice. When a component service incurs a failure, the predecessor of the failed

service quickly switches to a backup path to skip the failed service. However, the

proposed approach does not consider the QoS in the execution of the composite

service. Also, the approach presented can only handle a single point of failure.

Because of the dynamic nature of services, the availability of the backing up

processes may not be guaranteed when failure happens.

A two-phase approach is proposed for the recovery of failed composite ser-

10



vices in [26]. The two proposed phases are the offline phase and the online

phase. In the offline phase, the subgraphs of services are calculated and added

to a composite service registry. The offline phase pre-calculations can quicken

the replacement. The online phase refers to the execution of composite ser-

vices. Found subgraphs are ranked according to the semantic description of

their component services. The online phase comprises forward and backward

approaches. Forward recovery approach attempts to reach the original goal of

the composite service by retrying or replacing components and continuing the

process. If the forward approach fails to accomplish, the backward approach is

applied. The proposed recovery approach does not consider the QoS-awareness

capabilities and the dynamism of the execution context environment to adapt

the most appropriate recovery strategy.

Recomposition is a naive solution to handle the problem of service execution

time failures [28]. However, it is extremely time-consuming which is undesired.

A repair approach based on planning graphs is proposed as an alternative to

recomposition in [24]. Repair is a form of heuristic and guided partial recompo-

sition. Repair is time-efficient compared to recomposition while generates solu-

tions of similar quality. The proposed approach is restricted to the composition

of deterministic services with simple composition requirements. The presented

technique does not consider the QoS criteria, which simplifies the problem. In

[29], the service composition problem is transformed into a non-deterministic

planning problem for creating workflows with contingency plans. The before-

hand planning for failures saves execution time. However, the generation of all

possible alternative composition plans is a time-consuming process.

A constraint-aware failure recovery approach is proposed to explore the re-

liability of service composition in [30]. Existing approaches do not consider the

constraint verification failures in composite services. They predict failures in-

side a composite service to reduce the number of service rollbacks upon failure

recovery. The proposed solution includes a planning-based service composition

approach and a constraint-processing method. The planning-based algorithm

constructs constraint-aware composite service plans. The constraint-processing
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method proceeds with constraint verification in constructed composite service.

The proposed approach is restricted to only a small number of possible solutions,

i.e., inefficient for a very large number of plans.

An adaptive composition approach is proposed to handle the service changes

occurring at runtime, for both repair and optimisation purposes [17]. The pro-

posed approach adapts to changes as soon as possible in parallel to the execution

process. In this way, the interruption time reduces, the chances of a successful

recovery increase, and the most optimal solution is produced according to the

current state of the environment. The results show that the proposed approach

manages to recover from unexpected situations with minimal interruption, even

with frequent changes or in the cases where interference with execution is non-

preventable.

The service paradigm is leveraged to abstract the line segment as a ser-

vice (e.g., a bus service) for multi-modal travel purposes in [31, 32]. A service

composition framework is proposed for composing spatio-temporal line segment

services. A novel spatio-temporal A*-based algorithm is proposed to compose

the services. It is assumed that the services are deterministic, i.e., time and

availability are unknown in advance. A failure-proof composition approach for

Sensor-Cloud services is presented in [16] considering the dynamic features such

as position and time. The proposed approach is based on D*Lite algorithm to

deal with the changes in QoS of Sensor-Cloud services at runtime.

A spatio-temporal service model is proposed for drone services in [7]. A

drone delivery function over a line segment in a skyway network is abstracted

as a service. A spatio-temporal service model is also proposed for drone de-

livery services. A spatio-temporal service selection and composition algorithm

is proposed to compose line segment services considering QoS properties. The

battery capacities and recharging constraints are not considered in the proposed

model. A constraint-aware deterministic drone service composition approach is

proposed in [15]. The proposed approach considers the recharging constraints

at each station. A skyline approach is presented to select an optimal set of

drone services. The drone service composition problem is formulated as a multi-
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armed bandit tree exploration problem. A lookahead heuristic-based algorithm

is developed to compose the selected services. However, the dynamic service

environment, the uncertain weather conditions, and the failure in drone services

at runtime are not considered in the proposed approach. To the best of our

knowledge, this paper is the first attempt to model the influence of recharging

constraints in a drone service environment and resilient composition of drone

delivery services.

3. Constraint-Aware System Model for Drone Services

We propose a constraint-aware system model for drone delivery services.

The proposed model includes four main parts: (1) Skyway Network, (2) Drone

Services, (3) Effects of Wind Speed and Direction in DaaS, and (4) Constraint-

Aware Model for Drone Delivery Services.

3.1. Skyway Network

In this section, we describe the structure of the skyway network in which

drone delivery services operate. Let D = {d1, d2, . . . , dn} be a set of n drones

and T = {t1, t2, . . . , tm} be a set of m delivery targets. The skyway network is

represented as an undirected graph G = (V,E), where V is a set of vertices (or

nodes) each of which represents a target and E is a set of edges each of which

represents a skyway segment service joining any two vertices. We assume that

each vertex is also a recharging station. Each node is assumed to have a finite

number of recharging pads. B is a set of battery capacities for all the drones.

The travelling cost and battery consumed in travelling from node i to j are

represented by cij and bij respectively. The battery consumption of the drone

has a proportional relationship with payload weight, the distance travelled by

the drone, and the wind speed and direction.

3.2. Drone Services

We formally defined a model for drone services in our previous work [7].

The proposed model includes the formal definitions of DaaS, DaaS composite
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service, and DaaS composition problem as follows.

Definition 1: Drone-as-a-Service DaaS. A DaaS is defined as a delivery

function of a drone which takes a package from a pickup location to a delivery

location (i.e., longitude and latitude) having a start time and an end time and

meeting a set of QoS attributes (e.g., flight range). A DaaS is a 3-tuple <

DaaS id,DaaSf , DaaSq >, where

• DaaS id is a unique drone service ID,

• DaaSf represents the delivery function of a drone over a skyway segment.

The location and time of a DaaS are 2-tuples < locs, loce > and < ts, te >,

where

– locs and loce represent the pickup location and the delivery location,

– ts and te represent the start time and the end time,

• DaaSq is an n-tuple < q1, q2, . . . , qn >, where each qi represents a quality

parameter of a DaaS, e.g., flight range.

Definition 2: Composite DaaS Service CS. A CS is required if a single

DaaS service is not able to fulfil the delivery request. A CS is an aggregation

of atomic drone services which are combined to satisfy a user’s request. The

QoS attributes for CS are derived from aggregating the corresponding QoS

attributes of atomic DaaS services. For example, the delivery cost of a CS is

the summation of delivery costs of all atomic DaaS services in a CS. A CS is a

3-tuple < CSID,CSF,CSQ >, where

• CSID is a concatenation of each component DaaS DaaSi ∈ CS, i.e.,

CSID = concat(DaaSi.id)

• CSF is a set of functions {f1(DaaS1), f2(DaaS2), . . . , fn(DaaSn)}, where

each fi represents the function of corresponding component DaaS DaaSi ∈

CS

• CSQ is an m-tuple < Q1, Q2, . . . , Qm >, where each Qj denotes an ag-

gregated value of jth quality parameter of component DaaS DaaSi ∈ CS.
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Definition 3: DaaS Composition Problem. For a given set of DaaS

SDaaS = {DaaS1, DaaS2, ..., DaaSn} services in a skyway network, the DaaS

composition problem is to compose the services for delivering a package from a

pickup location to a delivery location in minimum time.

3.3. Effects of Wind Speed and Direction in DaaS

The wind is a major environmental factor affecting the drone’s performance

and flight behaviour [33]. The wind effect that causes the drone to drift in a

certain direction is studied in [34]. They designed a method based on a modified

accelerated A* algorithm to take the wind effects into account and generate

reachable states. It is assumed that the wind is constant which does not reflect

the real-world scenarios. A deadline-constrained routing scheme is presented for

delivery drones in [35]. The objective of this study is to minimize the energy

consumption under wind conditions.

We consider the effects of wind speed and direction in dynamic weather

conditions. Highly random nature of wind speed and direction (i.e., headwind

and tailwind) greatly influences the battery consumption rate and flight range

of the drone [36] [37]. We present a model to determine the impact of wind

speed and direction on the travel time of a drone. The travel time of a drone

increases with headwind and reduces with the tailwind. We calculate the effects

of wind speed and direction on travel time using a method in [38] for a drone

travelling from node i to j as follows.

δ = θij − θWS (1)

A = WS. cos(180− δ) (2)

C = WS. sin(180− δ) (3)

B =
√
AS2 − C2 (4)

GS = A+B

= WS. cos(180− δ) +

√
AS2 −WS2. sin2(180− δ)

(5)

Tij =
dij
GS

(6)
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where,

• θij = bearing from node i to j

• θWS = wind bearing

• δ = course correction angle

• WS= wind speed

• A = headwind/tailwind. When

|δ| < 90, A is negative and de-

notes headwind. When 90 <

|δ| ≤ 180, A is positive and de-

notes tailwind.

• C = wind adjustment angle

• B = wind adjustment angle

• AS = air speed

• GS = ground speed

• dij = distance between node i

and j

• Tij = travel time from node i to

j

3.4. Constraint-Aware Model for Drone Delivery Services

In this section, we first present our previous constraint-aware DaaS com-

position model for drone delivery services. The constraint-aware composition

means to compose the drone services knowing the availability of recharging pads

at intermediate stations and the arrival of other drone services. In our previous

work [15], we assume all the drone services and service environment are deter-

ministic, i.e., the QoS attributes of drone services, the availability of recharging

pads, and the trajectory of other drone services are all known beforehand. Our

objective was to compose the drone services avoiding the congested recharging

stations and delivering the packages in the shortest time. However, such an

assumption of the deterministic service environment is not realistic in practice.

The QoS may fluctuate and fail due to the dynamic nature of drone services and

changing wind patterns. We relax the assumption of the deterministic service

environment. We consider that the service environment is stochastic and flight

time may vary with the changing wind conditions and the arrival of other drone

services.

We compose the drone services to generate an initial service composition

plan using our previous deterministic approach. Different types of drones have
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varying payloads, flight ranges, and battery capacities. There is a constraint

that the same drone delivers the package from source to destination. A drone

can either recharge, wait, or travel from one station to the next station. The

deterministic approach estimates the arrival time, waiting time, and recharging

time of each drone at a specific recharging station. The initial composition plan

adapts to the failures dynamically occurred at runtime. Here, failure means the

late or early arrival of drones than the scheduled arrival in the initial plan. This

failure may have a cascading effect to the execution of subsequent drone services,

thus affecting the initial composition. Therefore, a resilient DaaS composition

framework is required to ensure the on-time delivery of drone services.

4. Drone Service Selection using Skyline Approach

The first step to compose drone services is the selection of appropriate candi-

date services. For this purpose, we consider several drone services from multiple

service providers. The QoS properties of drone services distinguish among func-

tionally equivalent services. Some of the available drones may not carry the

package because of its higher weight. Therefore, we use the difference between

the payload capacity of the drone and package weight to filter out the candidate

drone services. We use skyline approach [39][40] to further reduce the number

of candidate drone services by selecting only the non-dominated services. Sky-

line computation speeds up the service selection process and selects the services

with best QoS attributes. Skyline approach is also used to deal with the uncer-

tainty of service in the process of selection [41]. A multi-attribute optimization

technique, called service skyline computation, guarantees to provide the best

user-desired service providers [42].

For a given set DaaS = {DaaS1, DaaS2, . . . , DaaSn} of functionally similar

drone services and a set Q = {q1, q2, . . . , qm} of QoS attributes, we present

formal definitions of drone service domination and service skyline as follows.

Definition 4: Drone Service Domination. The domination relationship

between a drone service DaaSi ∈ DaaS and another drone service DaaSj ∈
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Table 1: A set of functionally similar Drone services

Drone service Flight time (min) Flight range (km) Recharging time (hours) Is skyline?

DaaS1 20 0.8 1.5 No

DaaS2 20 56 2 Yes

DaaS3 25 8 1 Yes

DaaS4 30 7 1.5 No

DaaS5 20 1.6 1.5 No

DaaS6 18 0.8 1.5 Yes

DaaS7 120 100 2 Yes

DaaS8 20 3 1 Yes

DaaS9 27 7 1 No

DaaS10 40 1.9 1.5 No

DaaS11 22 5 1.5 Yes

DaaS12 24 8 1.5 Yes

DaaS is defined as DaaSi ≺ DaaSj , if ∀qk ∈ Q, qk(DaaSi) � qk(DaaSj), and

∃ql ∈ Q, ql(DaaSi) ≺ ql(DaaSj) where ≺ denotes better than and � denotes

better than or equal to relationship.

Definition 5: Service Skyline. The service skyline comprises a set of

drone services, denoted by SKYDS , that are not dominated by any other drone

service, i.e., SKYDS = {DaaSi ∈ DaaS|¬∃DaaSj ∈ DaaS : DaaSj ≺ DaaSi}.

We compute the skyline using the following three QoS properties: (1) flight

time (in minutes) represents the time duration a drone can fly with battery

charged to its capacity, (2) flight range (in kilometres) represents the distance

a drone can travel with full capacity charge, and (3) recharging time (in hours)

for 0 to 100% recharge. We use Block Nested Loop (BNL) algorithm [39] for

skyline computation. The non-dominated skyline services are obtained by repet-

itive scanning of the candidate drone services. The BNL algorithm can be used

for any dimensionality without requiring any indexing or storage. It performs

well most of the time for dealing with our low dimension and small domain

range data. Table 1 presents an example of skyline computation for function-

ally similar drone services that are differed in QoS properties. For instance,

a drone service DaaS7 dominates another drone service DaaS9 according to

aforementioned domination relationship. The “Is skyline?” column illustrates

the outcome of skyline computation.
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Figure 2: Resilient Drone Service Composition Framework

5. Resilient Drone Service Composition Framework

We divide the resilient drone service composition framework into two cate-

gories: (1) Constraint-Aware Drone Service Composition using Lookahead and

(2) Resilient Drone Service Composition using Adaptive Lookahead. Fig 2

presents an overview of the resilient drone service composition framework. The

initial offline composition is provided by constraint-aware drone service com-

position in a deterministic fashion. While the resilient online composition is

carried out to handle the dynamic failures in the initial offline composition at

runtime.

5.1. Constraint-Aware Drone Service Composition using Lookahead

We formulate the constraint-aware drone service composition as the multi-

armed bandit tree [43] exploration problem. In multi-armed bandits, an arm

denotes an action or a choice which is initially unknown to the player. If the

arms are deterministic, i.e., known beforehand, the problem would be reduced

to the selection of arms with the highest reward. We assume that the drone

services and the services environment are initially deterministic. Our target is to
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Figure 3: An example of a state tree

maximize the reward by selecting optimal arms. A drone can take the following

set of actions at each station: recharge, wait, or travel from one station to the

next. These actions generate a large set of possible states. Fig. 3 presents an

example of a temporal state tree. We formally define a state as follows:

Definition 5: State. A state is a tuple of < NodeID, T imeStamp >,

where

• NodeID is a unique node identifier,

• TimeStamp represents the arrival time of drone at a certain node.

For the sake of simplicity, we consider that the states are known beforehand.

In case of immediate state selection, the temporal optimal neighbour state may

lead to a non-optimal state, e.g., long waiting time due to congestion at the

next station.

The selection and composition of optimal drone services from a large number

of candidate services is a challenging task. The uncertainty is the main issue in

a DaaS composition. In many cases, an immediate optimal service may lead to

a non-optimal service. For example, we have a skyway network where node 1
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Figure 4: State selection without lookahead

is the source node and node 5 is the destination node. Here we find a temporal

optimal neighbour leading to a non-optimal state. Temporal optimal means

taking towards destination faster. As shown in Fig. 3, the service of state [2, t1]

is optimal but the overall delivery time is more compared to state [3, t2]. This

uncertainty can cause long delays for drones to deliver packages. Looking for

all possible service compositions or deep tree exploration is not computationally

feasible to find the best composition. The time complexity for such problems

is exponential. Hence, we need a heuristic-based solution to find the optimal

composition of drone services.

We propose a lookahead heuristic-based solution to the multi-armed bandit

tree exploration problem. The selection of optimal actions in a DaaS compo-

sition is performed by looking ahead of neighbour services. We consider the

current waiting time, expected waiting time, and flight time to the destination

for selection of optimal drone services. The term lookahead means considering

the next-to-adjacent states while making the state selection decision. Fig. 4 and

5 illustrate the difference between without lookahead and with one lookahead

based service (state) selection. Without lookahead considers only the neighbour
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Figure 5: State selection with one lookahead

optimal states which leads to an overall non-optimal solution. Using lookahead

heuristic provides more information to select the overall optimal states. We

build our initial composition plan using the aforementioned lookahead strategy.

But, this approach does not take into account the runtime failures in the exe-

cution of the initial composition plan such as uncertain weather conditions. We

need a resilient composition approach for drone services to ensure the in-time

package delivery.

5.2. Resilient Drone Service Composition using Adaptive Lookahead

The underlying initial DaaS composition approach is formulated as a multi-

armed bandit problem [15]. Multi-armed bandits are a special type of sequential

decision problems which demonstrate exploration and exploitation trade-offs

and produce maximum rewards under uncertainty [44]. The exploration refers

to trying each possible action to find an optimal reward. In contrast, exploita-

tion refers to trying the actions that are believed to provide higher payoffs in the

future. We focus on the constraints at recharging stations and dynamic weather

conditions. However, multi-arm bandits are generally proposed for tree-based

search exploration in the context of combinatorial optimization [45]. An exact
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approach such as MILP does not naturally fit to solve such exploratory opti-

mization [46]. MILP approaches are usually applied in solving deterministic

linear optimization problems [47]. While heuristic-based lookahead [48], genetic

algorithm [49], and tabu search [50] are usually used for exploratory optimiza-

tion problems. We focus on the adaptive lookahead heuristic-based approach

which is typically used to solve combinatorial multi-armed bandit problems [51].

The heuristics are widely used in multi-armed bandit literature and provide sub-

stantially more efficient solutions than traditional optimization approaches [52].

Therefore, we focus on exploring a heuristic-based solution for the composition

of drone services.

The stochastic arrival of other drone services at intermediate stations and the

changes in wind pattern influence the initial composition plan. As a result, the

established composition plan may become non-optimal and fail. Such failures

may impact on the initial composition in two ways: (1) local impact (2) global

impact. The term local impact means the effect of failure propagates to a certain

number of recharging stations. The rest of the plan is still recoverable. The term

global impact refers to the propagation of failure effect till the destination.

We propose a resilient drone service composition using adaptive lookahead

heuristic-based approach. The resilient means that the delivery operation is

successfully carried out even the established composition plan adapts to the

failures. We require a lookahead algorithm to handle time-varying constraints

and weather conditions. The adaptive lookahead performs lookahead accord-

ing to the type of failure occurred rather than a fixed number of lookaheads.

There is only one difference between an adaptive lookahead and a standard

lookahead algorithm: the distance in adaptive lookahead is no longer a fixed

length but varies with the propagation effect of the failures. Once the adaptive

lookahead finds the distance of failures, we locally recompose the drone services

from the current station to the next failure-free station. The state selection

using adaptive lookahead approach is shown in Fig. 6. The selective states of

initial composition plan are represented by green colour. Failure occurs at node

3 which requires the recomposition of services. We recompose the services until
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Figure 6: State selection using adaptive lookahead

the next state where no change is observed. Fig. 7 presents an example of initial

service composition, failed service, and its impact on other services. We first

compute an initial offline composition plan from source to destination, denoted

by a sequence of solid line arrows connecting green colour nodes. The initial

composition plan avoids the congested recharging stations (yellow colour nodes)

for faster delivery services. A failed service is represented by a red colour node

and its impact on the next services in the initial plan is shown by orange colour

nodes. The formal definitions of failure, service failure, and resilient service

composition are given as follows.

Definition 6: Failure. A failure is defined as the deviation from expected

(specified) behaviour. In some cases, the failure may result in the termination

of the ability to perform the required function.

Definition 7: Service Failure. Service failure is defined as an event that

occurs when the delivered service deviates from the correct service. For example,

a drone service DaaSi is specified to reach a station Stationj at 04 : 00 pm. If
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DaaSi reaches at Stationj before or after 04 : 00 pm, we say that the service is

failed.

Definition 8: Resilient Service Composition. Resilience refers to the

ability or capacity of a system to adapt to dynamic changes (failures) without

deviating from the expected behaviour. Resilient service composition is a mech-

anism for handling the failures occurred at runtime. When one or more services

fail at runtime, the resilient service composition approach locally or partially

recomposes the failed services to deliver the expected behaviour.

Fig 2 illustrates the process of resilient drone service composition. We first

execute the initial offline composition plan. The failure detection module peri-

odically checks for any failures at each station. Each drone service has a certain

deadline for each station defined in the initial offline plan. We compare the

current arrival time of a drone service with an expected arrival time given by

the established plan. In the case of the early or late arrival of a drone service,

the failure is detected. The failure analysis module finds the number of services
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Algorithm 1 Resilient Drone Service Composition Algorithm

1: procedure Execute Init Plan(InitComp)

2: DaaScur ← InitComp[start]

3: DaaSdst ← InitComp[end]

4: while DaaScur 6= DaaSdst do

5: Execute initial composition plan

6: Monitor the execution to find the failed services

7: fd← failure detection (DaaScur.te, curT ime)

8: if fd then

9: DaaSaffected ← failure analysis (InitComp,DaaScur)

10: LocalComp← recompose (InitComp,DaaScur, DaaSaffected, curT ime)

11: InitComp← update plan (InitComp,LocalComp,DaaScur)

12: end if

13: DaaScur ← InitComp[next DaaS]

14: end while

15: end procedure

affected due to failure. The failure may affect the execution of a couple of next

drone services. The adaptive lookahead tree exploration module guarantees the

exploration of all possible alternatives to the failed service. Finally, we locally

recompose the explored alternatives to mitigate the effect of failure. The re-

composition of drone services at the intermediate station obtains an optimal

composite service in minimal computational time.

Algorithm 1 provides the details of the proposed approach as follows. The

algorithm generates a resilient composition of drone services using an initial

composition plan as input. The first and last component services in the initial

plan are the source and destination locations (Lines 2-3). We execute the initial

plan and monitor periodically for any failure at runtime (Lines 4-6). The initial

plan is executed smoothly until a failure is detected (Line 7). The actual arrival

time at each station is compared with the expected arrival in the initial plan. If

a failure is detected, the failure analysis algorithm computes the affected (i.e.,
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Algorithm 2 Failure Analysis

1: procedure failure analysis(InitComp,DaaScur)

2: failedDaaS ← 1

3: Find first congested node CongNode from DaaScur to the destination

4: if CongNode then

5: DaaSaffected ← compute number of services from DaaScur to

CongNode

6: end if

7: for each DaaS ∈ InitComp from DaaScur do

8: td← compute time difference between actual and expected DaaS

9: if td ≥ 0 then

10: failedDaaS ← failedDaaS + 1

11: else

12: break

13: end if

14: end for

15: return min(DaaSaffected, failedDaaS)

16: end procedure

failed) drone services (Line 9). Algorithm 2 presents the details of the failure

analysis algorithm. We find the first congested node in the initial plan from

the failed service until the destination. If a congested node is found, we simply

compute the number of services from the current failed service to the congested

node. Moreover, we find the first unaffected service from the failed service until

the destination. We calculate the difference between the first failed service and

unaffected service in the initial plan. The minimum of distance (i.e., nodes)

is selected from the congested node and unaffected service. We consider the

congested node for failure analysis because the delay of service failure results

in less waiting time at a congested node. For example, a service failure causes

15 minutes delay to the initial composition plan. Let’s assume that there is a

congestion node in the initial plan ahead of failed service. The waiting time on
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Algorithm 3 Recomposition of Drone Services

1: procedure recompose((InitComp,DaaScur, Ldadapt, curT ime))

2: srcLocal = DaaScur

3: dstLocal = InitComp[DaaScur.index+ Ldadapt]

4: startT ime = curT ime

5: newComp = find optimal comp (G,RP,D, srcLocal, dstLocal, w,

Ldadapt,WS, θWS , startT ime)

6: return newComp

7: end procedure

the congested node is 25 minutes for the availability of recharging pad. In such

a case, the waiting time will be reduced to 10 minutes because of 15 minutes

delay from failed service. The adaptive lookahead distance is equivalent to the

number of affected drone services for exploration of all possible alternatives. We

recompose the services from the failed position to next unaffected drone service

using recompose algorithm (Line 10). The details of recompose algorithm are

given in Algorithm 3. The recompose algorithm composes the services locally

by calling the find optimal comp function which is same as our drone service

selection and composition algorithm in [15]. Finally, the new locally composed

drone services update the inconsistent affected services in our initial composition

plan. This process continues until the package is delivered to the destination.

An alternative to the use of local recomposition is to replicate the delay in the

initial service composition till the destination. This alternative approach may

result in longer delays, and in some cases, the package may not be delivered.

6. Experiments and Results

We evaluate the effectiveness of the proposed resilient drone service compo-

sition approach in this section. A set of experiments are conducted to assess

the performance of the proposed approach. We compare the proposed approach

with a baseline (i.e., Brute-Force) approach and a without lookahead approach.
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The most important features of the drone delivery services are the shortening

of the delivery time and cost reduction. The delivery cost is a function of drone

travelling distance. Therefore, we mainly focus on three evaluation metrics: (1)

delivery time, (2) computation time, and (3) distance travelled. All the experi-

ments are conducted on an Intel Core i9-9900X processor (3.50 GHz) with 32.0

GB memory under Windows 10. Python is used to implement the algorithms.

6.1. Experimental Setup

Simulation tools offer a faster, cost-effective, and safe approach to assess the

performance of possible solutions before physical testing. There exists several

simulators for drones, e.g., AirSim [53], Gazebo [54], and JMavSim [55]. These

simulators are not specifically designed for drone delivery services over skyway

networks with recharging stations. For example, AirSim does not model drone

energy consumption in dynamic environments [56]. Energy is a scarce resource

in drones that affects the entire delivery operation. The AirSim platform does

not implement payload effects on the power consumption of the drone. The

failures in delivery services are not considered in AirSim. The skyway network

for drone delivery services is also not a part of the AirSim platform. As the

centre of our paper is the drone-based delivery platform, we implement a custom

drone-based delivery simulation model for the experiments. In future, we plan

to deploy a skyway network and delivery management framework on AirSim for

greater reachability to the research community.

We design a custom drone simulation model using tools from drone energy

consumption model [57], weather model [58], operations research, i.e., delivery

service management [59], and 2D path planning [60]. The simulation model

consists of the following modules (as shown in Fig. 8): (a) controller, (b) energy

module, (c) flight path module, (d) weather module, (e) request dispatcher, (f)

failure detection module, (g) failure recovery module, and (h) skyway network.

The controller module ensures the long-term stability of drone delivery services.

It keeps track of all types of manoeuvres in the dynamic environment. The con-

troller realizes the desired composition objectives by handling more and more
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Figure 8: Structure of drone simulation model

services at each step. The energy module simulates the energy consumption of

a drone service travelling from one recharging station to the next station. The

energy consumption is calculated using the method in [57]. An initial flight

path is generated using our existing deterministic offline composition approach.

The flight path module contains the composed services and position informa-

tion of the drone services operating in the skyway network. The flight path is

updated to maintain the resilience of composite services under dynamic weather

conditions. The changing weather conditions influence the initial composition

plan. The weather module is in charge of generating weather data for the whole

simulation. The request dispatcher module takes care of receiving drone service

requests from users. The current implementation of drone simulation model

deals with single package delivery service request. The failure detection module

monitors the execution of the initial composition plan. If a failure occurs due

to dynamic weather conditions or stochastic arrival of other drone services, it

notifies the failure recovery module. The failure recovery module is responsible

for the execution of two main actions: (1) estimation of the failure impact and

(2) local recomposition of affected drone services. As there is no 3D graphics

involved (to simulate 3d drones), we do not require high capacity GPU. The
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Table 2: Dataset Description

Attribute Description Example

value

Drone

name

Represents the manufacturer of the drone DJI M200 V2 3

Payload Represents the weight a drone can carry (in

kilograms)

1.45 kg

Flight time Represents the time a drone can fly with full

payload capacity (in minutes)

24 min

Range Represents the distance a drone can cover

with full payload capacity (in kilometres)

32.4 km

Speed Represents the flying speed of a drone with

full payload capacity (in kilometres per

hour)

81 km/h

Recharging

time

Represents the time required by a drone for

recharging from 0% to 100% (in hours)

2.24 hours

simulation environment and composition algorithms are written in Python.

We use NetworkX [60] python library to construct the topology of the sky-

way network. We model the multiple delivery drones operating in the same

skyway network. We evaluate the proposed approach using a real drone dataset

[61]. The dataset contains the trajectories of drones, which include data for co-

ordinates, altitude, and timestamps. We augment a dataset for different types

of drones considering the flight range, payload, battery capacity, speed, and

recharging time. The details of the dataset are given in Table 2. The efficiency

of the proposed framework depends on the values of the environmental vari-

ables. Table 3 describes the environmental variables used in the experiments.

The number of drones varies from 50-80 for varying sizes of the skyway net-

3https://www.dji.com/au/matrice-200-series-v2/info#specs
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Table 3: Experiment Variables

Variable Value

Number of drones [50, 80]

Number of nodes (or recharging stations) [10, 60]

Number of recharging pads at each station 5

Number of DaaS services [500, 2500]

Number of generated requests 1500

Average battery consumption rate with 1 kg package 25%/10 km

Number of sources 1 (random)

Number of destinations 1 (random)

Frequency of failures (% times the total nodes) [10, 50]

Experiment run (% times the total nodes) 10

work. We assume that each node is a recharging station. The number of nodes

(i.e., recharging stations) varies from 10-60 for all approaches. Each recharging

station has a finite number of recharging pads. The number of skyway segment

DaaS services depends upon the size of the skyway network and the number of

interconnected nodes. The proposed approach focuses on the single package de-

livery services from a given source to a destination. Each experiment starts with

a random source and a destination point. The service failures occur randomly

at runtime. The frequency of failures in each experiment varies from 10-50%

times the total number of nodes. The effect of each failure varies from a couple

of subsequent nodes to the destination node. We conducted the experiments for

10% times the total number of nodes and computed the average results.

6.2. Baseline Approach

To the best of our knowledge, this paper is the first attempt for a resilient

drone service selection and composition in dynamic weather conditions. To

evaluate our proposed approach, we compare the resilient drone service compo-

sition algorithm with Brute-Force algorithm. The Brute-Force approach is an
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all-paths search method. We apply the Brute-Force approach as a baseline to

generate the ground truth of optimal compositions. We use Brute-Force in two

phases of experiments to find optimal service compositions. In the first phase of

experiments, Brute-Force approach finds all the possible compositions of drone

services from a given source to a destination. We then select an optimal com-

position based on the QoS parameters of drone services. In the second phase

of experiments, Brute-Force approach is used for the global recomposition of

services to handle the service failures at runtime. Global recomposition refers

to composing services from the failed point until the destination. Whenever a

service failure occurs, Brute-Force approach finds all the possible compositions

from current failed service until the destination. Finding all possible composi-

tions of drone services is time exponential which is undesired. This significantly

reduces the performance of Brute-Force approach to find optimal drone service

composition and limits its use for large-scale problems.

6.3. Without Lookahead Approach

We use without lookahead approach in comparison to the proposed looka-

head heuristic-based approach. The without lookahead approach behaves simi-

lar to a greedy shortest path algorithm. It always selects the least travel distance

services leading towards the destination. The without lookahead approach has

a higher probability to fail under dynamic weather conditions. For example, the

initial composition plan and expected delivery time may be highly affected by

adverse wind. Because of its greedy nature, the without lookahead is fast com-

pared to baseline Brute-Force approach and the proposed lookahead approach.

Sometimes, the selection of least travel distance services leads to the congested

nodes which may result in longer delays for the availability of recharging pads.

6.4. Results and Discussion

The proposed approach performs composition of selective services based on

certain parameters to reach the destination faster. We first generate an initial

service composition plan and compare the Brute-Force, without lookahead, and
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Figure 9: Average computation time
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Figure 10: Average delivery time

lookahead approaches. We consider three evaluation parameters for comparison

as follows: (1) average computation time, (2) average delivery time, and (3)

average distance travelled. We then compare the Brute-Force and adaptive

lookahead heuristic-based approaches dealing with the runtime service failures.

6.4.1. Results for Initial Offline Service Composition

1) Average Computation Time: The baseline Brute-Force approach is

not time-efficient. The computational time for drone service composition using

Brute-Force approach is very high in comparison to without lookahead and pro-

posed lookahead heuristic-based approaches. The computation time increases

due to the increasing number of possible compositions for drone services. Fig. 9

compares the average computation time for Brute-Force, without lookahead, and

proposed heuristic-based approaches. We observe that the proposed approach

significantly outperforms the Brute-Force approach by drastically reducing the

computational time. This is because the proposed approach avoids expensive

computations by looking ahead once per neighbour state. The computation time

varies for composing drone services depending upon the number of lookaheads.

The higher the number of lookaheads we have, the more computational time is

required to compose drone services.

2) Average Delivery Time: The delivery time of a drone service includes

the flight time, recharging time, and waiting time. The selection of a right drone
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Figure 11: Average distance travelled
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Figure 12: Average computation time

service is of paramount importance as it ensures the availability of recharging

pads ahead of time minimizing the overall delivery time. Fig. 10 shows the

efficiency of the proposed lookahead approach compared to Brute-Force and

without lookahead approaches. The Brute-Force provides the exact solution as

it finds all possible compositions. Our proposed approach obtains a near-optimal

solution compared to Brute-Force approach. However, the time complexity of

the proposed approach is much better than the baseline Brute-Force approach.

Our proposed approach delivers the package 36% faster than without lookahead

approach. The without lookahead approach selects the services without antic-

ipating the congestion conditions ahead which results in higher delivery time

compared to our proposed approach. Our proposed approach uses a lookahead

search strategy to reduce recharging and waiting times.

3) Average Distance Travelled: Some studies investigate the costs as-

sociated with drone delivery [4]. The drone delivery cost for a package of 2 kg

within a 10 km range is estimated at 10 cents in [5]. For simplicity, we use the

distance travelled by a drone as a cost function. Due to dynamic recharging

constraints and wind conditions, the immediate drone services with least travel

distance cost may lead to congested nodes. Fig. 11 shows the average travel dis-

tances chosen by Brute-Force, without lookahead, and proposed heuristic-based

approaches. The without lookahead approach always selects the least travel

35



distance services, therefore, ends in higher delivery time. The Brute-Force ap-

proach always considers the least delivery time services leading towards the

destination. Our proposed lookahead approach makes a decision based on next-

to-adjacent node congestion information which results in 6% improvement in

delivery cost than the baseline approach.

6.5. Results for Resilient Online Composition

When a service failure occurs at any point during the execution, we recom-

pose the services to meet the delivery demands. We use the Brute-Force ap-

proach for the global recomposition of drone service. While we propose adaptive

lookahead heuristic-based local recomposition of affected drone services. In this

context, global recomposition refers to the recomposition of services from failure

point until the destination. The local recomposition refers to the recomposition

of only the affected services in the initial composition plan.

1) Average Computation Time: The Brute-Force approach is highly

time-consuming which is undesired. Whenever a failure occurs, it finds all

possible compositions from failure point until the destination. The adaptive

lookahead approach finds the best alternative composition from failure point

until the next unaffected drone service in the initial composition or the next

congested node. In the case of congested node selection, the failure effect on

delivery time is compensated by subtracting it from waiting time at that node.

Fig. 12 plots the computation times of the baseline Brute-Force approach and

the proposed heuristic-based approach. The computation time increases along

with the number of services, which is an expected result. The computational

complexity of our proposed approach is more consistent over time and less de-

pendent on the network size. It is impractical to use the baseline approach in

real-world scenarios as it is exhausted for large scale problems.

2) Average Delivery Time: The delivery time for drone services is highly

uncertain when a single drone service cannot fulfil the user’s requirements. The

inter-dependencies on recharging constraints by other drones affect the overall

delivery time of a drone service. At each station, the number of recharging pads

36



0 1 0 2 0 3 0 4 0 5 0 6 0
0

4 0

8 0

1 2 0

1 6 0

2 0 0
Av

g. 
De

liv
ery

 Ti
me

 (m
in)

N u m b e r  o f  N o d e s

 A d a p t i v e  L o o k a h e a d  A p p r o a c h
 B r u t e - F o r c e
 I n i t i a l  P l a n

Figure 13: Average delivery time
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Figure 14: Average distance travelled

are limited which can be occupied by other drones for long time periods. Fig. 13

shows the comparison of the Brute-Force approach and the proposed approach

compared to the initial plan. It shows that the local recomposition provides

a near-optimal solution in a significantly shorter period of time compared to

the Brute-Force approach. In some cases, only a single composition is possible

from a failed point until the destination. In such cases, we simply replicate the

delay effect of failures to the subsequent services. We observe that sometimes

the Brute-Force approach finds better alternate composition than the original

initial plan.

3) Average Distance Travelled: When a service failure occurs, the re-

composition approach finds alternate routes to ensure the resilient delivery of

drone services. In some cases, the travel distances may vary significantly com-

pared to the original plan. Fig. 14 plots the average travel distances chosen by

Brute-Force and the proposed heuristic-based approaches on top of the initial

composition plan. We observe that the performance of our proposed approach

is almost linear up to 40 nodes in terms of travelling distance and maintains a

notable trend even for a higher number of nodes. Our proposed approach saves

a substantial amount of time to generate near-optimal solutions.

4) Effects of Failure Rate: We analyze the effects of the increasing num-

ber of failure rates on the resilience of delivery time and travel distance. Fig. 15
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Figure 15: Average delivery time
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Figure 16: Average distance travelled

and 16 plots the effects of different rates of failures on the average delivery time

and distance travelled for the baseline Brute-Force approach and the proposed

adaptive lookahead heuristic-based approach. We observe that the proposed

approach finds optimal or near-optimal solutions for the increasing number of

failure rates. The performance of our proposed approach is close to the Brute-

Force approach even when the failure rate is high. Experiments based on the

different failure rates demonstrate the effectiveness of our proposed approach in

terms of delivery time and distance travelled (i.e., delivery cost).

6.6. Lessons Learned

We observed several unique features from our experiments with resilient

composition during drone delivery operations. First, drones are vulnerable to

weather conditions such as wind. The dynamic changes in the service environ-

ment may significantly influence the initial composition plan. Second, we may

have a high failure rate of drone services due to dynamic weather conditions.

The proposed adaptive recomposition algorithm can provide computationally

efficient and near-optimal solutions in the dynamic environment. Moreover, the

adaptive recomposition algorithm provides significantly better solutions when

the number of services is small. Third, the computational complexity of the

adaptive recomposition algorithm remains consistent even when the network

size becomes large. Fourth, the use of local recomposition techniques over global
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recomposition techniques provides better practical solutions especially in terms

of computational complexity. Finally, the use of global recomposition is imprac-

tical in real-world scenarios as it exhausts for large scale delivery networks.

7. Conclusion

We propose a resilient service composition framework for drone-based deliv-

ery considering the recharging constraints and dynamic weather conditions. An

optimal set of candidate drone services is selected using the skyline approach

at the source node in a skyway network. We present a formal model to rep-

resent constraint-aware drone services. We propose a deterministic lookahead

algorithm to build an initial offline composition plan. We develop a heuristic-

based resilient service composition algorithm that adapts to changes in service

behaviour at runtime. We run several experiments to illustrate the performance

of the proposed approach in comparison to Brute-Force and without lookahead

approaches. We found that the proposed approach is runtime efficient and pro-

duces significantly better results than the Brute-Force and without lookahead

approaches. Moreover, the proposed approach guarantees the resilience of de-

livery services for the increasing number of failure rates. Hence, it is a more

practical solution in real-world applications of drone delivery services.

A key limitation of the proposed approach is that the proposed approach

does not take into account the handover of packages among different drones at

intermediate recharging stations. The handover of packages to spare drones at

intermediate recharging stations may assist in minimizing the overall delivery

time. We plan to apply new optimization techniques for the handover initiation,

the selection of the optimal drone service, and the handover management among

different drones. The behaviour of a drone depends on wind patterns such as

tailwinds and headwinds in different geographical areas. Another limitation

of the proposed approach is that it does not incorporate the changing wind

patterns into the drone service model. The proposed approach only focuses on

the effects of wind speed and direction on the drone service composition plan.
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There are several weather conditions that can affect a drone’s performance such

as precipitation (e.g., rain, snow, hail, and sleet), temperature, cloud cover, and

visibility. We intend to consider the effects of different weather conditions on

the performance of a drone and exploit deep learning techniques for predicting

and forecasting weather patterns. A single drone can deliver multiple small

packages from a warehouse to desired destinations in one trip. The proposed

resilient composition approach is limited to generate solutions for single package

delivery by a drone from a given source to a destination. As future work, we

plan to explore different adaptive techniques to extend the proposed approach

for multi-package deliveries in a dynamic environment.
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