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Abstract

In artifact-centric business process models it is usually assumed that the
specification of the activities requires stating all the effects of the activity
execution over the information base (i.e. over the artifacts it handles). In
particular, these effects have to deal with integrity constraint enforcement to
ensure a proper treatment of integrity constraints during activity execution.
Manually specifying this treatment is a difficult, expensive and error-prone
task, because of the inherent difficulty of getting rid of all the implication
entailed by the constraints and also of the way to properly handle it.

In this paper, we advocate for separating constraint handling from the
specification of activities in such a way that only the effects of the activity
over the artifacts have to be defined (without needing to care about the
constraints). Then, we propose an approach to automatically generate an
extension to the original business process model that allows identifying at
run-time the additional updates that have to be applied to the information
base to repair all constraint violations caused by the activity execution.
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1. Introduction

Information and processes are the two main assets of any organization
[1, 2]. Information is related to the data defined through the artifacts man-
aged by the business, together with the constraints that impose conditions
on this data and which are directly drawn from the requirements of the do-
main of the organization. Processes correspond to the services offered by the
organization to perform its business, together with the associations which
establish restrictions over the order of execution of these services.

Recently, artifact-centric business process modeling, which advocates a
sort of middle ground between a conceptual formalization of dynamic sys-
tems and their actual implementation, has been recognized as an appropriate
approach to specify the business of an organization since it allows specifying
data, processes and the link among them; and because it has shown to be
quite effective in practice [3, 4, 5, 6].

Despite the variety of existing proposals to specify artifact-centric Busi-
ness Process Models (BPMs), there is a large consensus that any of them
must contain a conceptual model for data, such as a UML class diagram
[7], which always includes a set of integrity constraints ; and a model for the
processes, expressed, e.g. in BPMN [8, 9]. Then, several alternatives exist
regarding the way to establish the link between data and processes. However,
this is usually achieved through the formal specification of the effects that
the execution of an activity causes in the contents of the information base.

Several proposals assume that process activities are specified through
OCL operation contracts [10]. Thus, for instance, linking data and processes
in this way has shown to be a feasible and practical way to achieve automatic
executability of artifact-centric BPMs [11]. Other languages might be chosen
to establish the link, but the crucial point here is to choose a language whose
expressiveness is, essentially, first-order logics (i.e., relational algebra), as
it happens with the OCL expressions mostly used [12]. The approach we
present in this paper is independent of the language used to specify process
activities although we use OCL in our examples.

Little has been said and analyzed regarding how the specification of pro-
cess activities should handle the integrity constraints in the data model. Until
now, the usual approach is to assume that the specification of the behaviour
of the process activities should ensure that no integrity constraint is violated
after its execution (or, otherwise, the activity should be rolled back).

However, the business process and the data model can evolve indepen-
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dently one from the other. Therefore, in the current approach, changes in
the requirements leading over the data may require modifying the business
process model, at least with regards to the specification of process activi-
ties, without the business of the organization having suffered any variation.
Moreover, trying to state, at design time, the intended runtime behaviour
of an activity not to violate any integrity constraint is not only difficult and
error-prone, but even impossible in certain situations. For this reason, best
practices for requirements specification suggest that this is not an appropri-
ate approach for the sake of facilitating requirements definition, modifiability
and consistency [13].

We propose in this paper a novel approach aimed at automatically han-
dling integrity constraints. In our approach, the definition of the process
activity has to incorporate only the intrinsic changes over the data required
by the business, while dealing with the constraints is left out at execution
time through an automatic repairing mechanism. That makes business pro-
cess definition much easier and allows the process and the data models to
evolve independently.

Since constraints can be repaired in several ways, the domain expert (i.e.
the person executing the process) should be allowed to choose at execution
time the most appropriate action to apply in each situation. Note that the
chosen repair can lead to another violation which, in turn, requires additional
repairing. Selecting repairs blindly can easily lead to a wrong decision and
should be avoided.

To properly deal with this phenomenon, we realized that the sequence
of actions required to repair a constraint can be seen as a process. Then,
all potential sequences of repairing actions may be modeled as a BPM itself.
Therefore, given a constraint violation, we build a BPM-like model that shows
all possible ways to repair it. Then, the domain expert may use this extended
model to select the proper repairing actions by having a global sense of all
the repair implications. By inspecting the model, the domain expert can see
which is the shortest path to reach consistency, which is the way to avoid a
certain undesired repairing action, etc., and choose the repair(s) accordingly.

Given an artifact-centric BPM, where the data is described through a
data model containing integrity constraints and the behavior of the activ-
ities is described in terms of modifications over this data model, we can
automatically compute, at design time, the whole chain of activities that,
when executed, will repair constraint violations. Therefore, we can extend
the original BPM model by considering the flow of additional activities that
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have to be performed to preserve integrity constraints. This extension can
be computed for each activity of the original BPM. Since the computation of
the extended BPM model is performed at design time, it does not negatively
impact the performance of the original process execution.

Moreover, by modelling the repairing process as a kind of BPM, the pro-
cess designer may customize these models at design time to forbid some
undesired repairing paths or certain updates. Then, the user may use the
resulting BPM at execution time to determine how to deal with constraint
violations. When the execution of the extended model is finished, the execu-
tion of the business process will continue as specified in the original BPM.

The work proposed here grows from an initial proposal we presented in
[14], where we outlined the technicalities regarding how to achieve this au-
tomatic behaviour. In this paper, we extend the technical contribution by
providing an in-depth explanation of the treatment of the logics behind our
approach, a discussion about the execution termination for the generated
BPMN models, and a simplification of the generated BPMN model through
activity merging. Moreover, we provide a different perspective of our work
related to the use of our approach in practice and the advantages it provides
to the organizations.

The remainder of the paper is structured as follows. Section 2 motivates
our approach and introduces our running example. Section 3 defines basic
concepts. Sections 4 and 5 explain in detail the technicalities of our contribu-
tion. Finally, sections 6 and 7 deal with the related work and the conclusions,
respectively.

2. Motivation

We will motivate the need to separate the management of the business
process from the treatment of integrity constraints using the following ex-
ample. Assume a business process to decide whether an assistant professor
with a temporal contract should be hired permanently or fired. This is a
regular process we may encounter in different universities. The BPM dia-
gram in Figure 1 states the typical activities performed to hire an assistant
professor, and the order in which they should be executed. Almost identical
BPM diagrams would be used by other universities pursuing the same goal.

Note that the process starts when an assistant professor is hired. Then,
the time event states that a certain period of time after that hiring he has to
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Figure 1: BPMN diagram for permanently hiring or firing an assistant professor

be evaluated for tenure. In particular, three evaluations are performed in par-
allel regarding his publications, his teaching and other activities performed
while in their role of assistant professor. Once this is done, the commission
writes a report justifying the decision taken and then the assistant is either
promoted to a tenure or fired.

Making this decision requires having some data about the assistant, both
regarding his activity (i.e. publications, teaching, faculty management, etc.)
and work situation. Figure 2 specifies the fragment of this data regarding
work situation. Note that the system stores information about current and
former professors, and for current professors it states whether they are assis-
tant or tenured. Moreover, assistant professors must have a supervisor which
has to be a current professor.

The information regarding the activity of a current or former professor
would be associated to the Professor class so that it is not lost when the
professor ceases his activity at the University. For the sake of simplicity, this
information is not shown in the diagram because it does not change when
a professor is promoted or fired. We also omit the attributes in the figure
because they are not relevant for our discussion.

Note that the class diagram contains several graphical constraints stating
conditions that each state of the information base should satisfy. Thus, for
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Figure 2: Fragment of the class diagram stating work situation

instance, the Current and Former classes are disjoint, i.e. a professor cannot
be both at the same time, and all professors are either current or former; as
stated by the disjoint/complete constraint at the top of the hierarchy. The
same applies to assistant and tenured professors. Moreover the multiplicity
constraint at the supervisor end states that an assistant is supervised by
exactly one current professor. These constraints respond to specific business
requirements of each university and may vary from one to another but are
independent of the BPM which might the same for all universities.

We also have to specify an operation contract for each activity in the
BPMN diagram to define the link between the BPM and the class diagram.
We will concentrate here on the behaviour of the activities OfferTenuredCon-
tract and FireAssistant.

OfferTenuredContract does not pose any particular problem as far as the
treatment of constraints goes, because switching the professor from Assistant
to Tenured (and deleting the information regarding his supervisor) is enough
to achieve the goal and it will never violate any constraint. So, this behaviour
can be defined by means of the following OCL contract:

OfferTenuredContract(a: Assistant)
post: a.oclIsTypeOf(Tenured) and not a.oclIsTypeOf(Assistant)

However, things become more complex when having to specify FireAssis-
tant. Here, switching the professor from Assistant to Former (and deleting
the information regarding his supervisor) is enough to achieve the business
goal. However, a constraint will always be violated if applying only this
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update to the information base. Note that because of this firing and given
that the fired assistant may act as a supervisor of other assistants (this is
not forbidden in our data model), we should ensure that all these assistants
are assigned to a new a supervisor to satisfy the minimum 1 multiplicity
constraint.

Assuming that the business process designer would realize of this situation
(which is not trivial at all), he would start then the hard task of having to
specify at design time which is the appropriate way to handle this potential
violation during process execution. In particular, it is impossible for him to
know which will be the most appropriate professors during process execution
to substitute the fired one or the conditions under which they will be selected.
Note also that this decision of having to look for new supervisors has nothing
to do with the business process itself which remains valid.

One possible way to solve this problem would be to assume that a single
current supervisor will take care of all substitutions. Then, we could specify it
through the following contract. However, it is clear that this is not necessarily
a good solution to apply whenever someone is fired, but it is impossible to do
something better given the rigidity of current proposals for process activity
specification.

FireAssistant(a: Assistant , c: Current)
post: a.oclIsTypeOf(Former) and not a.oclIsTypeOf(Current) and

a.supervised@pre ->forAll(s | s.supervisor = c)

This way of understanding the operation contracts corresponds to a strict
interpretation [15]. A strict interpretation assumes passive behavior of op-
erations, since it prevents an operation from being applied if an integrity
constraint is violated (although both its preconditions and postconditions
are satisfied).

Things become even more difficult within this approach when require-
ments evolution is taken into account. Assume, for instance, that after some
years it is decided that all tenured professors should supervise an assistant.
This constraint could be specified in OCL as follows:

context Tenured inv allSupervising:
self.supervised -> notEmpty ()

This evolution is not related to the business process of promoting a pro-
fessor, which remains the same, but to the changing conditions that the uni-
versity imposes over its professors. Therefore, no changes should be applied
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to the BPM. However, current approaches require changing the specification
of OfferTenuredContract because in addition to changing the assistant to
tenured it is required to assign him now an assistant to supervise. Again,
as before, the problem relies on deciding who this assistant will be at design
time.

Further evolution may then require that all supervisors should be tenured,
as stated by the following OCL constraint. This would imply additional
changes, again difficult to identify and to specify, on both OfferTenuredCon-
tract and FireAssistant.

context Assistant inv supervisorIsTenured:
self.supervisor.oclIsTypeOf(Tenure)

We have seen so far the strong drawbacks of having to incorporate the
treatment of constraints into the specification of the activities. However, we
can overcome them by considering an extended interpretation of operation
contracts [15] and delaying the treatment of constraints at execution time as
we propose to do through the techniques proposed in this paper.

An extended interpretation of an operation assumes that the operation,
when executed, not only applies the specified behavior in its contract but
also all the necessary changes to ensure that no constraint is violated. That
is, the operation entails some repairing reactive behavior. In this way, there
is no need to specify additional effects in the postcondition to deal with
constraints. As a consequence, the evolution of the requirements over the
data model will not affect at all the BPM and the definition of its activities.

According to this proposal, the following simple OCL contracts would
be enough to specify initially the behaviour of OfferTenuredContract and
FireAssistant and should not be modified because of evolution.

OfferTenuredContract(a: Assistant)
post: a.oclIsTypeOf(Tenured) and not a.oclIsTypeOf(Assistant)

FireAssistant(a: Assistant)
post: a.oclIsTypeOf(Former) and not a.oclIsTypeOf(Assistant)

Then, the approach we propose in this paper would suffice to properly
handle at execution time possible integrity constraint violations entailed by
the execution of these activities. In this way we make BPM specification
simpler and more appropriate to the actual behaviour of the organizations.
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3. Basic Concepts

In this section, we give an overview of the logic background and notation
used throughout the paper.

Terms, atoms and literals A term t is either a variable or a con-
stant. An atom is formed by a n-ary predicate p together with n terms, i.e.,
p(t1, ..., tn). We may write p(t) for short. If all the terms t of an atom are
constants, we say that the atom is ground. A literal l is either an atom p(t),
a negated atom ¬p(t), or a built-in literal ti ω tj, where ω is an arithmetic
comparison (i.e., <,≤,=, 6=).

Derived/base predicates A predicate p is said to be derived if the
boolean evaluation of an atom p(t) depends on one or more derivation rules,
otherwise, it is said to be base. A derivation rule is a rule of the form:

∀t. p(th)← φ(t)

Where th ⊆ t. In the formula, p(th) is an atom called the head of the rule
and φ(t) is a conjunction of literals called the body. We assume all derivation
rules to be safe (i.e., all the variables appearing in the head or in a negated or
built-in literal of the body also appear in a positive literal of the body) and
non-recursive. Given several derivation rules with predicate p in its head,
p(t) is evaluated to true if and only if one of the bodies of such derivation
rules is evaluated to true.

We extend the notion of base/derived predicates to atoms and literals.
That is, when the predicate of some atom/literal is base, we say that such
atom/literal is base too, otherwise, we say that it is derived.

Instance, and instantiation A ground atom of some base predicate p
is called an instance of p. Then, a finite set I of instances of one or more
predicates is called an instantiation.

Substitution A substitution σ is a set of the form {x1/t1, ..., xn/tn} where
each variable xi is unique. The domain of a substitution is the set of all xi
and is referred as dom(σ). We say that σ is ground if every ti is a constant.
The literal lσ is the literal resulting from simultaneously substituting any
occurrence of xi in l for its corresponding ti. Similarly, we define the con-
junction φσ as the conjunction resulting from simultaneously applying the
substitution σ to all the literals of φ.

Denial constraints A denial constraint is a rule of the form:

∀t. φ(t)→ ⊥
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Where φ is a conjunction of (possibly derived) literals and ⊥ is an atom
that evaluates to false. We suppose all denial constraints to be safe (i.e., each
variable appearing in a negated or built-in literal also appears in a positive
literal). Intuitively, the left hand side (LHS) of a denial constraint express a
condition that should never be satisfied by an instantiation.

Disjunctive embedded dependencies A disjunctive embedded depen-
dency (ded) is a rule of the form:

∀t. φ(tφ)→
∨
i=1..n

∃yi. ψi(ti, yi)

where all literals are positive and base. It is important to highlight that
n might be 0, and thus, the right-hand side might be empty. In such case, we
use the convention that the empty disjunction evaluates to false [16] and write
⊥ to represent so. Note that deds are a kind of tuple-generating dependencies
allowing disjunctions in the right hand side.

4. Generating violation handling extensions in BPM

We describe in this section our approach for automatically embedding the
reactive behaviour into the original BPMN model specified by the business
designer. We provide first a general overview of the approach, and then
explain in detail the six steps that have to be performed. Finally, we provide
a discussion about the practicality of our approach in a real life setting.

4.1. Overview
When executing any process activity, a violation of a constraint can occur.

As we have seen, this violation can be repaired by considering additional
updates to perform. However, this may in turn violate other constraints
again, thus, forcing the execution of more updates to preserve the consistency
of the information base. This is the inherent difficulty of the problem of
integrity constraint repairing.

Fortunately, the constraints that might be violated when repairing other
constraints can be determined at design time; i.e., we can identify them by
inspecting the constraints’ definition itself, without considering the contents
of the information base. Indeed, several approaches build a dependency-
graph showing this relation among the constraints [17, 18]. So, the idea is
that, to repair a constraint violation C and to ensure that no other constraint
has been violated, we have to repair C, check the constraints pointed out by
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C and repair them if necessary (which might require inspecting and repairing
other constraints, recursively).

In essence, our idea is that we can see the dependency graph as a BPMN
diagram establishing which activities have to be carried out (and in which
order) to repair a constraint violation. That is, each activity in the dia-
gram stands for an update to apply in order to repair a constraint violation.
Then, this activity is followed by those additional activities that repair the
constraint that might have been violated because of the previously applied
data update. When we reach the final BPM end event, we are sure that the
initially violated constraint has been repaired, and that it has been repaired
in such a way that no other constraint is now violated.

More in detail, our method uses the following steps which will be further
explained in the remainder of this section:

1. Translating integrity constraints into RGDs. Repair-generating depen-
dencies (RGDs) are logic formulas that, given an information base state
and a data update, derive new updates that must be applied to repair
a constraint violation [19]. In this step, we translate the constraints
into the corresponding RGDs.

2. Building the dependency-graph of RGDs. When executing RGDs to
derive new updates, one RGD can cause the violation of another con-
straint, thus triggering the execution of another RGD. In the dependency-
graph, we explicitly show this interaction, i.e., which RGDs might trig-
ger other RGDs.

3. Associating each activity to the affected part of the dependency-graph.
Given an activity in the initial BPMN, its execution can only violate
some constraints, thus triggering only some specific RGDs from the
dependency-graph. In this step, we automatically prune all those RGDs
that can never be triggered.

4. Translating the dependency-graph fragment into a BPMN diagram. In-
tuitively, RGDs are translated as activities in the BPMN diagram and
the dependency-graph edges determine the flow between them.

5. Merging activities. Given the activities, it is possible to merge some of
them in order to reduce the size of the BPMN diagram. The rationale
behind merging activities is that some of them are always executed
consecutively, which means that they can be merged into a single one
that executes the overall effect.
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6. Customization. Finally, the BPM designer can decide to prune some
of the suggested ways to repair a constraint in the BPMN diagram.
Indeed, our method generates all possible activities that can be applied
to repair a violation. However, it may be the case that some of them
are not desirable in the domain. In this step, we show how to prune at
design time the undesired repair actions.

In this way, for each activity in the initial BPMN model, we compute
its BPM extension which guarantees that, when executed, it checks and
repairs all violations that may occur. This extension could then be integrated
in the original BPM through a CASE tool, and be used at run time to
repair constraint violations through a process executor, such as [11]. The
visualization of the computed BPMN model extension is out of the scope of
this paper which concentrates on how to automatically obtain and execute
this extension.

It is worth mentioning also that, although we use BPMN and UML/OCL
in our examples, other notations, like service blueprints for instance, might
be used as well as long as they are detailed enough to be executed [20]. In
particular, we only need these notations to be translatable into first-order
logics, which is the basic framework of our approach.

It is well-known that a BPM instance execution is not transactional since
it is usually implemented as a sequence of database transactions. Thus, the
state of the world may change due to concurrent process execution during
a repair execution introducing more inconsistencies or an activity execution
may fail. Nevertheless, in this paper we assume that two tasks cannot be
executed simultaneously, as they might interact to cause a constraint vio-
lation, and this is one limitation of our approach. Therefore, in such cases,
these tasks should be serialized. An approach for detecting non-parallelizable
activities due to constraint conflicts can be found at [21], but an in-depth
analysis of concurrency is left out for further work.

4.2. Translating UML/OCL constraints into RGDs
RGDs are tuple-generating dependencies that, given an information base

state and a set of updates, derive new updates that perform a repair of
a constraint violation [19]. RGDs can be automatically obtained from the
UML/OCL constraints in the conceptual schema by performing the following
three steps:

1. Translating UML/OCL constraints into denials
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2. Incorporating events into denials
3. Transform event rules into RGDs

Note that, although we only talk about integrity constraints in this paper,
the UML/OCL languages allow for the definition of structural constraints
regarding the information model but also semantic constraints, such as the
business rules required by the organization. Some examples of these semantic
constraints have been shown in our motivating example. The advantage of
our approach is that we can treat all of them uniformly.

4.2.1. Translating UML/OCL constraints into denials
A denial is a rule stating that a certain condition (as given by the ex-

pression in its body) can never hold in an information base state. I.e. they
define situations that can never happen as well as integrity constraints do.
Denials are specified as logic rules with ⊥ in its head.

UML/OCL constraints, i.e. textual constraints defined in OCL and graph-
ical and implicit constraints in the UML schema, can be automatically trans-
lated into denials as given in [17]. The rationale behind is that most UML and
OCL constraints are equivalent to first order logics [12], and every first-order
constraint can be rewritten as a denial [22].

As an example, consider the UML specialization constraint stating that
each Assistant is a Current professor, and the implicit referential constraint
stating that each Supervisor is also a Current professor. They can be trans-
lated to the following denials:

Assistant(x) ∧ ¬Current(x)→ ⊥
Supervises(x, y) ∧ ¬Current(x)→ ⊥

Intuitively, the first rule states that, if there is an Assistant x, but x
does not appear as a Current professor, then there is a constraint violation.
Similarly, the second rule specifies that if x supervises y, but x is not a
Current professor, then, there is also a constraint violation.

We assume in this paper that constraints in the conceptual schema are
specified by means of the UML/OCLuniv subset [23]. This entails two main
advantages: 1) it ensures that the generated process extensions will always
terminate despite the loops that can appear in the BPM (as we will show
in Section 5.2); 2) obtaining RGDs is much simpler for UML/OCLuniv than
for general UML/OCL. It is worth mentioning, however, that denials can be
obtained from any first-order equivalent language.
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We consider that all UML/OCL constraints are translated into denials
as given in [17] except for minimum multiplicity constraints whose rewriting
into RGDs will be made adhoc as explained later.

4.2.2. Incorporating events into denials
Denials only refer to the contents of the information base, but they do not

take into account the update that can lead to the violation of the condition
they define. Therefore, they do not provide enough information to embed in
the BPM the required reactive behaviour. We need to incorporate events,
i.e. updates, into the denials with this purpose.

An update of the information base may be either an insertion, denoted
by the event ιP (a) or a deletion, denoted by δP (a). Given a fact P (a) in
the current information base and the events in the update, we can deduce
whether P (a) will hold in the new, updated, information base according to
the following event rule equivalences [24]:

PN (x) ≡ ιP(x) ∨ P(x) ∧ ¬δP(x)

¬PN (x) ≡ δP(x) ∨ ¬P(x) ∧ ¬ιP(x)

The first rule states that a fact P (x) will be true in the new state (denoted
by PN(x)) if and only if an insertion event ιP (x) happens in the update
or if P (x) was already true in the old state and it has not been deleted
(P (x) ∧ ¬δP (x)). The rule for ¬PN(x) works similarly.

Event rule equivalences are sound and complete to define the truth value
of a fact after the application of an update. Sound in the sense that the
changes they define are correct and complete because no other rule is needed
to define all possible changes. They can be understood as a sort of "frame
axioms" to specify that all facts not affected by the events are not changed
while executing that update [25].

We can incorporate events into denials by replacing each literal in the
initial denial by the previous event rule equivalences and then transforming
the result into conjunctive normal form. In this way we will obtain several
rules with events for each denial. They correspond to the different ways an
update can violate the condition stated by the denial.

When we apply the replacement given by the equivalence event rules to
the denials in our running example we obtain:
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ιAssistant(x) ∧ ¬Current(x) ∧ ¬ιCurrent(x)→ ⊥
Assistant(x) ∧ ¬δAssistant(x) ∧ δCurrent(x)→ ⊥
ιAssistant(x) ∧ δCurrent(x)→ ⊥

ιSupervises(x, y) ∧ ¬Current(x) ∧ ¬ιCurrent(x)→ ⊥
Supervises(x, y) ∧ ¬δSupervises(x, y) ∧ δCurrent(x)→ ⊥
ιSupervises(x, y) ∧ δCurrent(x)→ ⊥

The first three rules ensures that an update will not violate the constraint
that nobody can be an assistant but not a current professor. The first rule
states that if x has been inserted as an assistant, but he was not current
before nor inserted as such, then the constraint is violated. The second one
prevents an assistant to be deleted as current but not as an assistant. The
third one specifies that it is not possible to insert an assistant but delete him
as current in an update. Rules for the second constraint behave in a similar
way.

4.2.3. From event rules to RGDs
Once we have incorporated events into the denials, the RGDs for each

denial can be easily obtained moving the negated events from the left hand
side (LHS) of the rule to its right hand side (RHS). This corresponds to
following the logical equivalence A ∧ ¬p→ C ≡ A→ C ∨ p.

Applying this transformation to the rules in our running example we
obtain the following RGDs:

ιAssistant(x) ∧ ¬Current(x)→ ιCurrent(x) (1)
Assistant(x) ∧ δCurrent(x)→ δAssistant(x) (2)
ιAssistant(x) ∧ δCurrent(x)→ ⊥ (3)

ιSupervises(x, y) ∧ ¬Current(x)→ ιCurrent(x) (4)
Supervises(x, y) ∧ δCurrent(x)→ δSupervises(x, y) (5)
ιSupervises(x, y) ∧ δCurrent(x)→ ⊥ (6)

RGD 1 states that if a new Assistant x is inserted when x is not a Current
professor, then it must also be inserted that x is a Current professor to
ensure that the information base state does not violate the constraint that
nobody can be an assistant but not to be a current professor. RGD 2 behaves
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in a similar way by repairing the constraint through a deletion of x as an
Assistant.

RGD 3 is not properly a repair-generating dependency since it specifies a
situation where no additional event can be applied to satisfy the constraint.
This is so because the events in the update are contradictory and cannot
be applied together. In this case, we have that it is not possible to insert
someone as an assistant and delete him as a current professor at the same
time. In general, any RGD with ⊥ in the head cannot be repaired.

RGDs 4, 5 and 6 behave in a very similar way.
It is worth noting that not all RGDs are deterministic since some viola-

tions can be repaired in different ways. RGDs capture this non-determinism
by means of disjuncts and existential variables in the RHS.

Disjunctions in the RGDs will appear when moving several negated events
from the LHS to the RHS of a rule. For instance, obtaining the RGDs for
the completeness constraint that states that each Current professor is either
Assistant or Tenured will give raise to the following RGD with disjunctions
in its head:

δAssistant(x) ∧ ¬Tenured(x) ∧ Current(x)→ δCurrent(x ) ∨ ιTenured(x ) (7)

Intuitively, this RGD states that if we delete an assistant professor, we
either also delete him as current professor or insert him as tenured. As before,
this RGD would be obtained by translating first the constraint into a denial,
incorporating events into the denial and moving negated event literal in the
LHS to its RHS.

All UML/OCLuniv constraints are translated to RGDs as we have ex-
plained so far. The only exception are the minimum multiplicity constraints
1 in the conceptual schema. In this case we propose making a direct trans-
lation to RGDs, as we did in [19].

As an example, the multiplicity constraint stating that each assistant is
supervised by one current professor would give raise to the following RGDs:

ιAssistant(x)→ ιSupervises(y , x ) (8)
δSupervises(y, x) ∧ ¬OtherSuper(x)→ δAssistant(x) ∨ ιSupervises(z, x) (9)
OtherSuper(x)← Supervises(z, x) ∧ ¬δSupervises(z, x)

The first rule states that, when inserting a new assistant professor x, we
should also insert a supervisor y for x. The second RGD detects a violation if
we delete a supervisor y of an assistant professor x, and x does not have any
other supervisor. This is detected through the OtherSuper derivation rule
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(defined below rule 9)1, which specifies that x will have another supervisor
if it has a supervisor z that is not being deleted.

Note that RGD 9 is non-deterministic since it requires choosing between
deleting the assistant professor x, or adding a new supervisor z for him/her.
The second choice is non-deterministic since we can chose different values for
z (i.e. its value is not bounded by the LHS of the rule).

Given a general minimum multiplicity constraint 1 for member M2 of an
association A between M1 and M2, we will always obtain non-deterministic
RGDs (and a derivation rule) defined by the following pattern:

ιM1 (m1 )→ ιA(m1 ,m2 )

δA(m1,m2) ∧ ¬OtherM1 (m1)→ δM1 (m1) ∨ ιA(m1,m
′
2)

OtherM1(m1)← A(m1,m
′
2) ∧ ¬δA(m1,m

′
2)

It is worth noting that in our approach existential variables will only
appear in an RGD when translating UML minimum multiplicities.

Given the domain where the business process has been defined, it is likely
that some of the events will never happen. For instance, Professor objects are
never deleted in our example since we keep a historical track of professorships
(thus moving them from current to former when they leave). For this reason,
some of the RGDs we obtain can be simplified (by removing the literals
corresponding to those events that will never happen) or even removed if
they only refer to all such events.

The events that do not happen in a domain can be drawn from the UML
class diagram itself. When a class/association A is add-only, the event of
deleting an instance of A cannot take place. Similarly, if a class/association
A is frozen, no insertion nor deletion event on A can be in the update. In
our example, Professor is an add-only class.

4.3. Building the dependency-graph of RGDs
Given a set of RGDs, we can build a dependency-graph which shows the

RGDs that may trigger the execution of other RGDs. For instance, assume
that a process removes an assistant professor x. RGD 7 states that we have
to additionally choose between inserting x as tenured or deleting x as current.
If we opt for deleting x as current professor, we can trigger all RGDs having

1Don’t confuse RGDs (generating new tuples to be inserted/deleted, denoted by →),
with derivation rules (deducing contents of the information base, denoted by ←).
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δAssistant(x) ∧ 
¬Tenured(x) ∧ Current(x)

ιTenured(x)

δCurrent(x)
δCurrent(x) ∧
Supervises(x,y) 

δSupervises(x,y)

δCurrent(x) ∧
Assistant(x) 

δAssistant(x)

Figure 3: Dependency graph for RGDs 7, 2, and 5

δCurrent in its LHS. This happens with RGDs 2 and 5, for instance. Then,
we have that RGD 7 can trigger RGDs 2 and 5.

For the sake of self-completeness, we summarize in the following how to
build a dependency-graph from a set of RGDs as proposed in [18].

The dependency-graph contains a round vertex (called constraint-vertex )
for each LHS of a RGD, and also a square vertex for each structural event in
the RHS of a RGD (called repair-vertex ). There is an edge (straight arrow)
from the constraint-vertex of an RGD to each one of its repair-vertices to
state that if the condition in the constraint-vertex is satisfied, one of its
repair-vertices must be executed. Moreover, there is an edge (dotted arrow)
from a repair-vertex to each of the constraint-vertices that may have been
violated because of the execution of the repair.

As an example, the triggering relationship between RGDs 7 and RGDs 2
and 5 are depicted in Figure 3.

In general, there is a triggering relationship between the repair vertex R
of a RGD to the constraint vertex C of another RGD if R and C have an
event in common. Indeed, this means that the repair of the first constraint
is an update that can potentially violate the second constraint.

Some of the edges in the dependency-graph can be safely removed, as
stated in [17, 18], since they will never be triggered. For instance, the edge
between RGD 7 and RGD 2 will never be applied since if RGD 7 is fired,
then RGD 2 can never be violated. This is so because when violating the
completeness constraint by deleting an assistant professor, and repairing it
by deleting him as current, it is impossible to violate the hierarchy constraint
(which states that every associate professor is a current professor).

We say that a trigger between a repair-vertex R1 from RGD1 and a
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constraint-vertex C2 from RGD2 is lively if and only if there is an instance
of the data D that satisfies RGD1 through R1 (i.e., D |= LHS(RGD1)σ
and D |= R1σ for some σ), but violates C2 (i.e., D |= C2σ for some σ, but
D 6|= RHS(RGD2)σσ2 for any σ2). Triggers that are non lively are removed
from the dependency graph. They can be detected through syntactic criteria,
such as finding p ∧ ¬p contradictions, or realizing that some repair-vertex is
subsumed by some constraint-vertex (as in the case of the completeness vs
hierarchy constraint RGDs).

4.4. Associating activities to the dependency-graph
The dependency-graph we have obtained so far is built by taking only into

account the definition of the integrity constraints, but this graph should also
incorporate the activities in the BPMN model to be able to determine the
constraints that might be violated when the BPMN activities are executed.
This is achieved by specifying the BPM activity as an RGD, including this
RGD in the dependency-graph, and identifying the RGDs in the former graph
reachable from it.

A BPM activity can be seen as an RGD whose repair is, in fact, the exe-
cution of the update in its postcondition. For instance, consider the activity
fireAssistant, from Figure 1, stating the removal of an assistant professor.
The effect of this activity can be specified by means of the following RGD:

fireAssistant(x)→ δAssistant(x) ∧ ιFormer(x) (10)

Note that the execution of an operation can lead to several events which
can combine insertions and deletions freely, as it happens in our example.
Moreover, we handle attribute updates using the classic encoding of an up-
date as a deletion and an insertion of the same tuple with the new values
changed. This is sound since all insertions and deletions from the repairing
BPM are only applied and checked for consistency at the end of the process.

A similar way for deriving the events entailed by the execution of an
activity is already used in [11], where an automatic translation from BPM
activities specified through OCL constraints into this kind of rules is given 2.

Now the new RGDs are included in the dependency-graph as shown in
Figure 4. In our example, the new RGD δAssistant(x)∧ ιFormer(x) points

2They are not explicitly named RGDs in [11], but the way they are formalized makes
them an RGD in practice

19



δAssistant(x) ∧ 
¬Tenured(x) ∧ Current(x)

ιTenured(x)

δCurrent(x)
δCurrent(x) ∧
Supervises(x,y) 

δSupervises(x,y)

δAssistant(x) ∧ ιFormer(x) ιAssistant(x) ιSupervises(y,x)

Figure 4: Dependency graph including an RGD representing the effect of an activity

to RGD 2 since both have the δAssistant predicate in common. However, it
deoes not point to RGD 8 since they have no shared predicate.

As a result, we have that the RGDs possibly affected by the execution of
a BPM activity are those in the fragment of the dependency-graph reachable
from the RGD encoding the effect of that activity. In our example, RGD 7
and RGD 5, but not RGD 8. RGDs that are not reachable from these new
RGDs are removed since they refer to constraints that will never be violated
during the integrity maintenance process raised from the activity.

4.5. Translating the dependency-graph into a BPMN diagram
Once we know the relevant part of the dependency-graph, we translate

it into a BPMN diagram. This will allow us to pilot the process of integrity
maintenance in the same way as classical BPMN diagrams. The basic idea
of the translation is that constraint-vertices are translated to BPMN gate-
way events that allow a user to choose between the available repairs, while
a repair-vertex becomes a BPMN activity that applies the repair. Then,
these activities are followed either by an OR-gateway which points out to
the (BPMN translation of) constraint-vertices that may have been violated
because of the applied repair or by an end-event if no constraints is violated.

More precisely, the translation of a constraint-vertex depends on the num-
ber of repair-vertices it has. If there is no repair, the constraint-vertex be-
comes a BPMN error event meaning that if we reach the violation of that
constraint then there is no possible way to repair it and an error is thrown.
If there is a single repair, the constraint-vertex becomes the BPMN-activity
that applies it. If there is more than one potential repair, the constraint-
vertex is translated to an event-gateway that enables the domain expert
choosing his preferred way to repair the violation.
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The translation of a repair-vertex always produces a unique activity that
applies the changes that repair the constraint. This activity may require
domain expert input to choose the value for the existential variables since
this entails decision making at business level. For instance, in RGD 9 we
have a repair vertex which inserts a new supervisor z to an assistant x. If
the domain expert selects this repair, he will be required to explicitly choose
a specific value for z at execution time.

After applying a repair, several constraints can be violated. The OR-
gateway will take care of this situation since several paths will be activated
in this case. They will lead to the constraint-vertices that allow to perform
the repair of the newly violated constraints.

We ensure that we only repair actually violated constraints through the
guard conditions in the OR-gateway’s outgoing flows. That is, an outgoing
flow pointing to a constraint vertex c has, as guard, the logic condition en-
coded in c. Thus, the only way to execute an activity that repairs a violation
is through the guard that first checks the constraint. So, the repairs will only
be performed when the repair needs to be applied.

Note that we do not use OR-joins for synchronizing the activities ex-
ecution. Such synchronization is not necessary since each path execution
represents a different violation repair strategy for some particular values,
and the repair for such values is independent from the rest of violations and
repairs. We capture this behaviour using OR-gateways without OR-joins for
ease of readability3.

The translation from a dependency-graph to a BPMN diagram is formally
given by Algorithm 5. Its input parameters are the (relevant part of) the
dependency graph and the constraint-vertex representing the BPMN activity
that triggers the maintenance process (behaving as start activity). As output,
the algorithm provides the resulting BPMN diagram. It is easy to see that
the algorithm runs in polynomial time with regards to the input.

Figure 6 shows the result of applying Algorithm 5 to the RGDs in Figure
4. The obtained BPM shows that when executing fireAssistant it may happen
that we satisfy all the constraints, or that we need to either insert the deleted
assistant as a tenure, or to delete him as current professor. If the domain

3If the business expert prefers avoiding this kind of diagrams, since OR-gateways are
usually synchronized with OR-joins, our method can be adapted to replace OR gateways
by a combination of XORs and tasks.
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BPMN translateGraph(Dependency -graph g, ConstraintVertex startCV){
Map <ConstraintVertex , BPMN -Node > c-map = new Map();
Map <RepairVertex , BPMN -Activity > r-map = new Map();
// Creating the BPMN and adding the start/final node
BPMN bpmn = new BPMN();
BPMN -StartEvent start = new BPMN -StartEvent ();
BPMN -EndEvent end = new BPMN -EndEvent ();
// Translating Constraints
for(ConstraintVertex cv: g.getConstraintVertices ()){

Set <BPMN -Activity > repairingActivities = new Set();
for(RepairVertex rv: cv.getRepairVertices ()){

BPMN -Activity repairActivity = createRepairActivity(rv);
repairingActivities.add(repairActivity);
r-map.put(rv , repairActivity);

}
BPMN -Node cv-node;
if(repairingActivities.isEmpty ()) cv-node = new BPMN -ErrorEvent ();
else if(repairingActivities.size() == 1)

cv -node = repairingActivities.pop();
else cv-node = new BPMN -EventGateway(repairingActivities);
c-map.put(cv , cv -node);
bpmn.add(cv-node);

}
// Adding the start
start.addNext(c-map.get(startCV));
// Link repairs to Constraints
for(RepairVertex rv: g.getRepairActivities ()){

Map <Condition , BPMN -Node > bpmn -cons = new Map();
for(ConstraintVertex cv: rv.getNextConstraintVertices ()){

bpmn -cons.put(cv.getViolationCondition (), c-map.get(cv));
}
if(bpmn -cons.isEmpty ()) r-map.get(rv).addNext(end)
else {

BPMN -Node bpmn -or = new BPMN -OrGateway(bpmn -cons);
if(bpmn -cons.size() == 1) bpmn -or = c-map.get(bpmn -cons.get(1))
bpmn -or.addDefault(end);
r-map.get(rv).addNext(bpmn -or)

}}}

Figure 5: Algorithm for obtaining the BPMN diagram from the dependency-graph
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fireAssistant

Insert Tenure

Delete Current

Del_Current

Ins_Tenure

RGD 7

Del_Supervises

RGD 5

/ /

Figure 6: BPMN diagram for repairing activity fireAssistant if there is a violation

expert decides to delete him as current professor, he will also need to remove
its supervisor relationships, if any.

4.6. Merging Activities
In the BPM obtained so far, each activity represents a single event to

apply. However, BPM activities can capture in general more than one event
and achieving it will also allow reducing the size of the model. Thus, we aim
now at merging these single-event activities into more complex activities. We
first explain the intuition behind our approach through our running example,
and then, present its logic foundations.

4.6.1. Merging Activities intuition
Merging activities is devoted to reducing the size of the generated BPM.

However, we have to carefully select which activities can be merged. For
instance, two parallel activities following a gateway should not be merged
since we would lose the information provided by the gateway. Hence, in our
example, the activities ins_Tenure and del_Current should not be merged
since we would lose the semantics of the gateway stating that the domain
expert must choose between the two.

We can merge two activities when this will not alter the semantics of the
resulting BPM. That is, the repairs captured by the BPM. This situation
occurs when the execution of an activity determines necessarily the execution
of another one, with no free choice by the domain expert. In general, any
activity coming from an RGD whose RHS is composed of only one event,
and that does not contain any existential variable, can be merged with the
activities that might potentially violate it. This is because the absence of

23



Del_Current Del_Supervises
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Del_Current
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Del_Supervises
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Figure 7: Example showing the merge of two activities

another repairing event and the absence of existential variables makes the
execution of this extra event absolutely deterministic.

For instance, in Figure 7 we show an extended BPM for our running
example, showing that, after deleting any current professor, we must delete
all its supervising relationships. Note that the second activity has to be
applied in case there is a violation, and that the domain expert has no free-
choice. Thus, they both can be merged into a single one.

4.6.2. Foundations for merging activities
Two activities p and q can be merged if the RGD corresponding to activity

q has the form:

φ(x, y) ∧ p(x)→ q(x) (11)

where φ is an arbitrary conjunctions of literals.
In the current translation into BPMN, the p(x) activity leads to an OR-

gateway that checks whether RGD 11 is being violated (through a guard-
condition). If this is the case, the OR-gateway leads the process to a q(x)
activity, which in turn, can imply the violation of other RGDs. This is shown
in Figure 8 (a). Note that, whenever we execute p(x), we have to execute
q(x) if φ(x, y) is true. This is a deterministic behavior and the domain expert
cannot make any choice about it.

Instead of encoding φ(x, y) as a guard-condition that leads to q(x), merg-
ing allows to incorporate the if condition inside the activity of p(x) and apply
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[φ(x,y)]
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Figure 8: Showing the merge of two activities

P(x)

If φ(x,y) then Q(x)

…

(a)

[ψ(x,y)]
R(x) …

P(x)

if φ(x,y) then
Q(x) and
if ψ(x,y) then R(x)

…

(b)

[ψ(x,y)]
…

Figure 9: Showing the merge of two activities

q(x) at the very same time as p(x). In this way, we reduce the number of
nodes from the BPMN. This is shown in Figure 8 (b).

In case there are several activities that could violate RGD 11, q(x) should
be merged with all of them. Note that if q(x) can be merged with one activity,
it can be merged with any other one that points to it. This is because the
determining factor of merge-ability is the determinism of the RGD 11.

The process of merging can be recursively applied. Indeed, consider an
extra RGD:

ψ(x, y) ∧ q(x)→ r(x) (12)

Again, q(x) might violate RGD 12, and if this is the case, we will have
to apply r(x) for sure. Thus, we can merge r(x) activity inside the activity
where q(x) is placed, that is, p(x). This is shown in Figure 9, where (a)
represents the BPMN before merging, and (b) the result after merging.

It is worth mentioning that the process of merging we apply right now is
non-deterministic. That is, given a BPMN, several possible merges can be
applied. Nevertheless, we conjecture that, no matter the order, applying all
the merges until no other merge can be applied will always bring the same
final fixpoint BPMN. Checking this conjecture is left as further work.

4.7. Customization
The merged BPMN diagram represents all possible ways to repair the

various constraints that can eventually be violated by the activity execution.
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Figure 10: Final BPMN for the fireAssistant operation.

This is due to the fact that RGDs capture all possible ways to repair a
constraint [19], and all the RGDs are represented in the BPMN diagram.

However, it might be the case that some of the proposed repairs are not
desirable in the domain of the problem. For instance, in our running example,
a domain expert might consider that, repairing the fireAssistant operation
by means of inserting tenures is not a valid repair since it would necessarily
imply hiring new people. Then, this kind of repair should be avoided at
execution time.

To achieve this, we have to consider the RGDs which result in inserting
tenures. These RGDs are no longer appropriate and should be deleted from
the dependency graph. In terms of the BPMN diagram, this implies removing
any activities that insert tenures and all the subsequent activities.

In Figure 10 we show the final BPMN generated for repairing any violation
occurring when executing the fireAssistant operation. Note that, in this
BPMN, we have merged the activities del_Current with del_Supervises, and
the activities ins_Supervises with ins_Emp.

Intuitively, this BPMN diagram tells us that, when we fire an assistant,
we need to delete him as a current professor and, additionally, delete any
supervising association he has. When doing so, it might be the case that an-
other assistant professor ends without having a current professor supervising
him/her. In this case, we have to choose between removing this unsuper-
vised assistant, or adding a current professor to supervise him. In case we
delete the unsupervised assistant, we might need to repeat all the process
again (delete the assistants supervised by him/her, etc). In case we insert
a new supervisor for him/her, we have to check that we do not insert as a
supervisor an assistant who has been deleted (if that was the case, the repair
would entail a contradiction and an exception would be raised).

Note that our proposal relies on incorporating the BPM model obtained
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from the RGDs into the initial BPM model so that it entails in it the reactive
behaviour required to keep constraints satisfied. This is done automatically,
and requires only as input the initial BPM model; the data class diagram and
its integrity constraints defined in UML/OCL; and the OCL specification of
the activities in the BPM. In this way, the business analyst can still define and
keep the business process and the integrity constraints separately, and use
our approach to endow the repairing behavior, entailed by the constraints,
into the (relevant) activities of the BPM. Then, business analyst input is
only required in this final customization task in order to adjust the reactive
behaviour to the particular domain of the BPM. In fact, the only interaction
required from the business analyst is to remove those repairing activities that
are undesired according to this domain.

4.8. Discussion
It can be argued that our approach would be very complex in a real-life

setting, since: 1) for each activity a repair process model should be generated;
2) this repair process model should be verified and customized by the domain
expert. Moreover, the generated repair process models have to be considered
in the original process model and this may make real life process models very
large, and with many variations.

Although true, this complexity is due to the intrinsic nature of the auto-
matic repairing problem, which becomes even harder when BPM processes
are taken into account. However, the current alternative of embedding ex-
plicitly constraint handling in the operation contracts shows the drawbacks
stated in Section 2 and makes it inapplicable in many practical situations
as the ones we outlined there. Therefore, in a real life setting, some kind of
compromise should be achieved between the two alternatives.

In fact, we could for instance hide the extensions and show them only
on-demand so that the user would only be aware of the complexity of the
repairing when this was strictly necessary. We also understand that manually
revising all the generated repairing processes might be very hard in a real
scenario. However, we could apply our technique only on crucial activities
instead of all, or on-demand according to the needs of the business modeler.

Also, we could take the structural events of future activities into account,
and apply formal reasoning techniques, to suggest how to customize the cur-
rent repairing-process to ensure that a repairing activity allows the remaining
future activities in the BPM to be executed as well.

27



In summary, our approach is a way to automatically generate repairing
processes for some activity given a set of constraints in an artifact-centric
BPM setting. This is by itself an innovative and complex problem, and the
presented approach is a first step towards solving it. In any case, this current
solution is already practical for generating, at least, repairing processes for
pre-selected activities. It is left as further work to discuss which activities
should be pre-selected, e.g. due to their being critical to the process, to apply
this analysis.

5. Executing BPM extensions to repair violations

We first explain how our generated BPM extension is executed, with
special emphasis on the interpretation of OR-gateways. Then, we discuss
about the termination of this automatically generated BPM extensions. We
end the section by using an existing BPM executor to run our generated
extension to show the feasibility of our approach.

5.1. Business process extension execution semantics
Intuitively, the BPMN language is based on token semantics [26]. Each

diagram node consumes and generates tokens. Roughly, when a process
begins its execution, a token is generated by its start event for each of its
outgoing flows. Each activity is activated when a token reaches one of its
incoming flows. When finishing its execution, the activity generates a token
for each of its outgoing flows. When a token reaches an OR-gateway, all
the conditions of the gateway’s outgoing flows are analyzed. The gateway
places a token on each outgoing flow whose condition evaluates to true. If
no condition is true, then, a token is placed in the default flow. For our
purposes, this intuitive token semantics suffices, but it is worth mentioning
that they can be formalized by means of petri-nets [27].

The key idea of our approach is that, when running our BPM extension,
each token will correspond to a different constraint violation. Since there are
several constraints that can be violated simultaneously, when executing the
BPM extension, there might be several tokens alive simultaneously.

The generation of these tokens is done by the OR-gateways. An OR-
gateway generates a token for each outgoing flow satisfying the corresponding
guard-condition. Thus, since the guard-conditions evaluate to true when
there is a violation, the OR-gateway will generate, for each detected violation,
a new token in the corresponding outgoing flows. Then, each of these tokens
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will trigger the execution of the activity that repairs the violation. After
the activity’s execution, another OR-gateway checks for more violations and
generates the corresponding tokens. If no violation occurs, the OR-gateway
generates a token in its default path, which leads to the end event, since no
more repairs are needed.

For instance, when running the BPMN example of Figure 10, we start
with only one token placed in the activity fireAssistant. This activity repre-
sents the event in the original process model that can lead to the violation
of several constraints, and thus, to the execution of their repairing activities.

Once this initial activity is executed, the token reaches an OR-gateway.
This OR-gateway checks if the assistant who has been fired was also a current
professor; if this is the case, the activity del_Current+del_Supervises is ex-
ecuted. Once this is executed, another OR-gateway checks if, after removing
the supervising relationships, some assistant has ended without a supervisor.
If this is the case, the OR-gateway creates a new token for each unsuper-
vised assistant, and thus, for each one of this tokens, the user has to choose
between removing the unsupervised assistant, or adding a new supervisor to
him/her. Note that the tokens that need to be spawned by an OR-gateway
can be automatically generated by means of a query into the information
base that obtains the data that violates a particular constraint.

The execution of the process terminates when all the tokens have reached
the end events, or when one of them arrives into an error end event. In the
first case, the process terminates because it has repaired all the violations
and thus, the information base is valid again. In the second case, the process
terminates because it has found a violation that cannot be repaired4.

For our purposes, we do not commit the changes established by the ex-
ecution of those activities until all the tokens have successfully reached the
end-event. That is, all the updates are delayed to be applied in a unique
transaction at the end of the execution of the repairing-process rather than
one at a time. There are two reasons behind this: 1) to avoid informa-
tion base rollbacks in case one of the tokens reaches an error event, 2) it is
known that applying the events one at a time loses the information of the
previously-applied events, which might result in changes which contradict
past events (e.g., deleting, at the end of the process, a tuple that was in-

4Following the BPMN standard, we use the common behavior of terminating the whole
process instance when we reach an unhandled error event. Other possibilities are allowed.
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serted previously to repair some violation) [28]. In order to be able to check
the constraints through queries, these delayed changes are temporally stored
in some auxiliary tables, similarly to the views in [29].

5.2. Ensuring Execution Termination
The generated BPMN extension might have cycles. Without any doubt,

this is a source of non-termination of the processes. That is, there is the
theoretic possibility in which a user gets stuck in executing the BPMN in an
infinite loop.

This non-termination is inherent to the problem we are tackling. Indeed,
it is easy to see that undecidable problems, such as first-order satisfiability,
can be reduced to our BPMN execution. Roughly speaking, any first-order
set of constraints is (finitely) satisfiable iff there is a finite execution trace of
the BPMN they generate. Since first-order finite satisfiability is not decid-
able, knowing whether a BPMN has a finite execute trace is also undecidable,
which implies that some BPMN will have infinite execution traces.

Fortunately, the very same solutions that apply in first-order logics also
apply to our approach. In particular, there are multiple studies on finding
decidable subsets of first-order logics which can be applied to our work. In-
tuitively, if we limit the constraints to be written in some particular subsets
that guarantees decidibility, the generated BPMN will ensure the finiteness
of its traces.

From the whole set of strategies for ensuring first-order logic decidability,
we are interested on those based on showing the possibility of always build-
ing a finite database state that satisfies them. Other strategies exist, such
as those used in Description Logics, but they do not match our particular
purposes. Take, for instance, DL-Lite [30]. DL-Lite constraints’ satisfiability
is decidable, but its decidability does not come from ensuring the existence of
finite instances, but comes from first-order logic rewritability, which means
that it is possible to ensure the satisfiability of DL-Lite schemas by executing
an SQL query. In fact, DL-Lite schemas can be infinitely satisfiable without
being finitely satisfiable [31].

The strategies we are interested in are, basically, finite-model property,
and those based on the chase-algorithm termination. The subsets of first-
order logics that enjoy finite-model property (FMP) are those subsets that
ensure that, given a set of first-order constraints written in it, if these con-
straints are satisfiable, then, they are finitely satisfiable. In terms of our
approach, writing some constraints in some subset that enjoys FMP means
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that the generated BPMN has, at least, one finite executable trace (that com-
putes the finite instance that satisfies the constraints). An example of first-
order logic subset enjoying FMP, and directly characterized in UML/OCL
notation, is OCL-Lite [32].

FMP ensures that at least one finite executable trace exists, but it does
not ensure that all possible executable traces are finite. To ensure that
all possible executable traces are finite, we have to look for a more tight
condition. In particular, chase-termination.

Roughly speaking, chase is an algorithm for building an instance that
shows that a set of first-order constraints is (finitely) satisfiable. The ba-
sic idea is that, if we guarantee that the chase algorithm can build a finite
instance that satisfies the given first-order constraints, then, the generated
BPMN will also guarantee that its execution traces are also finite. The
rationale behind this behavior is that the BPMN generated is just a con-
structive algorithm for building the information base state that satisfies the
constraints, thus, imitating the chase behavior. In fact, every BPMN exe-
cution trace corresponds to a chase trace over the repair-generating depen-
dencies. Thus, ensuring that all chase traces are finite also ensures that all
BPMN traces will also be finite. A direct subset of UML/OCL that enjoys
such condition is OCLuniv [23].

5.3. Prototype tool implementation
In order to show the feasibility of our approach, we have implemented

a prototype tool by means of adapting our previous version of the OpExec
Java library [11]. OpExec is a Java library capable of parsing and exe-
cuting BPMN activities. Since OpExec is not meant to control the BPM
flow neither provide a GUI (indeed, controlling the BPM flow and bring-
ing a GUI is a different problem [33]), we have to simulate the BPM flow
of the original process programmatically. For the BPM extensions, how-
ever, we have extended OpExec to parse and execute the condition gate-
ways that check the current information base state, and lead the execution
to the corresponding next activity. This adaptation can be downloaded at
http://www.essi.upc.edu/~xoriol/opexec/.

Using this library, a BPM-user can effectively repair the violations that
take place when executing its activities, such as those discussed as examples
in our paper. In particular, the library detects the violations and automati-
cally applies, consecutively, the necessary activities to reach a new consistent
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information base state. Another example, ready to be executed, can be found
at the given web page.

The purpose of this library is only meant to show that our solution can
be implemented in practice, and let the possibility to the interested reader
to download and try a prototype implementation. In addition, due to the
difficulty of finding BPMN diagrams with first-order constraints, our tool
already provides one example to play with it. Since it is not possible to
determine the efficiency of our method by bringing one unique example, we
refer the interested reader to check the previous discussion from Section 5.2,
where we discuss the complexity and the termination of the method using
already known results from well-studied languages such as Description Logics
and OCL.

6. Related Work

Given a process model, and the definition of its tasks or activities, this
paper presents an approach to automatically generate the necessary struc-
tural events to ensure data consistency, and representing them by means of a
BPMN diagram. Due to this, it is possible to make changes to the underlying
data model, while keeping the business process model the same.

This section analyses other works in the areas of constraint repair, process
compliance (considering data) and consistency between UML diagrams.

6.1. Constraint Repair
Constraint repair is an area close to our proposal, as it deals with the

detection of constraint violations and how to repair them. The techniques
described in [34, 35, 36] are able to incrementally evaluate constraints, and
they could be apply to detect the cases in which an activity would lead to a
constraint violation. However, they cannot derive the repairs that would need
to be applied; hence, they would not work with an extended interpretation
of operation contracts.

Closer to our proposal, the approach in [37] is able to automatically create
operations to modify the instances of a schema, whereas the work of [38] can
complete the behaviour of an operation with additional updates to satisfy the
constraints. However, our approach can naturally encode structural events
applied recursively (i.e., by means of a loop in the BPMN), whereas these
approaches might hang because of infinitely unfolding the recursion into a
single method.
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6.2. Compliance in business process models
There are many approaches that deal with the correctness or compliance

of artifact-centric business process models [39, 7, 40, 41, 2, 42]. All these
approaches analyse the semantic correctness of the model, considering all
its dimensions; however, they work with a strict interpretation of the ac-
tivities, as they cannot generate the required updates to fulfill the integrity
constraints of the data model.

The work of [29] proposes DB-nets as an intermediate layer between a
data model and a process model. The goal of the DB-net is to ensure that
updates to the database take place at a point in time where no constraints
are violated. This approach is different to our work, since we automatically
generate the required structural events to fulfill the constraints. Similarly,
[43] connects a BPMN process with a data model with the goal of detecting
potential data design flaws. Again, the focus is not on correcting data issues,
but on detecting them.

Following a completely different approach, [44] automatically generates
a compliant artifact-centric process model given certain rules. In this case,
tasks can be executed at any time, and do not follow a particular order. It is
also worth mentioning [45]. It deals with the recovery of interweaved process
instances when there are complex relationships between them.

There are other works dealing with process compliance at design-time
[46, 47] and runtime [48], but without considering data. However, [46] focuses
on detecting violations of task order execution and, like we do in our work,
proposes repairs.

6.3. Consistency between UML diagrams
In spite of the fact that our approach uses a UML class diagram and a

BPMN diagram, the latter could be replaced by a UML activity diagram.
For this reason, it is worth mentioning some works which, although not
explicitly artifact-centric, take into consideration the consistency between
different UML models. In particular, [49] focuses on the consistency between
UML activity diagrams and class diagrams. However, it considers that the
object flow acts as a precondition and postcondition of the tasks and, unlike
our approach, does not consider the changes they make to the data.

On the other hand, [50] performs a systematic mapping review on this
topic. It lists the different consistency rules found in the analyzed works. Of
the rules dealing with the class, state machine and activity diagrams, none of
them would be applicable to our approach, either because we do not use the
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constructs (e.g. object nodes, swimlanes) or because we define the models
from an analytical point of view [51], and hence, they are not relevant (e.g.
visibility of attributes, assigning responsibility to classes).

7. Conclusions

This paper presents an approach to generate repairs for the activities
in artifact-centric business process models. Given a data model, a process
model and the specification of the activities in the process, our approach
is able to generate extensions to the activities in order to ensure that the
integrity constraints in the data model are fulfilled.

As we have shown, the main advantage of our approach is that the data
model can evolve independently from the business process model and the
specification of the activities; i.e. a change in the data model does not
necessarily imply changes in the process or its activities. Although we use
a UML class diagram, a BPMN diagram and OCL operation contracts, our
work can be used with any other model which can be translated into first-
order logic.

We extend our previous work [14], by entering into more detail of the
logics behind our approach and discussing termination when generating the
BPM extensions. We also simplify the BPM extensions by adding an activity
merging step.

As further work, we would like to analyze the usage of BPMN reasoning
tools to simplify our generated BPMN diagrams. Another area of interest is
the development of heuristics or an aid to help choose the best repair when
there are different repair options available. Last but not least, we could
apply formal reasoning techniques to check if a repairing activity leads to a
situation where the remaining activities in the BPM cannot be executed.
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