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Abstract— Classification is used in a wide range of applications to determine the class of a new element; for example, it can be 
used to determine whether an object is a pedestrian based on images captured by the safety sensors of a vehicle. Classifiers 
are commonly implemented using electronic components and thus, they are subject to errors in memories and combinational 
logic. In some cases, classifiers are used in safety critical applications and thus, they must operate reliably. Therefore, there is a 
need to protect classifiers against errors. The k Nearest Neighbors (kNNs) classifier is a simple, yet powerful algorithm that is 
widely used; its protection against errors in the neighbor computations has been recently studied. This paper considers the 
protection of kNNs classifiers against errors in the memory that stores the dataset used to select the neighbors. Initially, the 
effects of errors in the most common memory configurations (unprotected, Parity-Check protected and Single Error Correction-
Double Error Detection (SEC-DED) protected) are assessed. The results show that surprisingly, for most datasets, it is better to 
leave the memory unprotected than to use error detection codes to discard the element affected by an error in terms of 
tolerance. This observation is then leveraged to develop Less-is-Better Protection (LBP), a technique that does not require any 
additional parity bits and achieves better error tolerance than Parity-Check for single bit errors (reducing the classification errors 
by 59% for the Iris dataset) and SEC-DED codes for double bit errors (reducing the classification errors by 42% for the Iris 
dataset).   

Index Terms— Classification, memories, error tolerance, k nearest neighbors, error control codes 
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1 INTRODUCTION
ACHINE learning (ML) allows computers to extract 
patterns from empirical data and learn from these 

patterns to perform classification on new data.  Learning 
is accomplished using labelled data, such that the input 
for each element in the training set consists of the features 
used for classification and the class of the element. This is 
known as supervised learning; in unsupervised learning, 
the data is unlabeled and the algorithm has to extract the 
patterns from raw data [1].  

Supervised classification is used in a wide range of ap-
plications, such as autonomous driving, recommender 
systems, and medical diagnosis [2]-[4]. The classifiers are 
typically implemented using electronic systems. The la-
belled data or trained model is stored in memory and the 
procedure of applying the model is performed by an 
arithmetic unit or run in a processor. However, these 
components are prone to suffer from errors/faults due to 
for example, radiation-induced soft errors in memories 
and arithmetic errors in processor or computational units 
[5], [6]. This can cause data corruption and thus, it may 
affect the classification result. Therefore, protection of 
classifiers against errors should be considered to support 
reliable operation, especially when applying the classifi-
ers in safety or critical applications, such as disease diag-
nosis, cyber security, land mines detection and finance 

[7]-[9]. 
One of the simplest, yet powerful classification algo-

rithms is k Nearest Neighbors (kNNs) that has been wide-
ly studied in the past decades [10]-[14]. It is also called 
instance-based or lazy learning, because only majority 
voting is performed among the classes of several instanc-
es (i.e. the kNNs selected in the training set) to predict the 
output class of a new element. kNNs can either be utilized 
alone to perform a classification task, or with an im-
proved design, or combined with other classification 
algorithms [8], [9]. Errors in the memory that stores the 
elements of the training set, or in the arithmetic units that 
compute the distance from the new element (being classi-
fied) to each stored element to select the nearest neigh-
bors, may have an impact on the kNNs set and thus modi-
fy the classification result. Therefore, when kNNs is used 
in safety or critical applications, the results must be relia-
ble in the presence of errors, otherwise they may cause 
potential life and property losses. 

The implementation of a classifier mainly includes two 
parts: i) the arithmetic circuits that perform the calcula-
tion and ii) the memory that stores the dataset or model 
information, and thus, error tolerance must be considered 
for both. A common solution to provide error tolerance in 
arithmetic circuits relies on either spatial, or temporal 
redundancy. Spatial redundancy is implemented by repli-
cating the entire circuit or module multiple times; then 
data in the copies are used as inputs to a comparison or 
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majority voting unit to detect or correct errors. For exam-
ple, Double Modular Redundancy (DMR, i.e., replicating 
the circuit twice) can detect any error in a single module 
by comparing the two duplicated inputs, while Triple 
Modular Redundancy (TMR, i.e., replicating the circuit 
three times) can guarantee a correct output under single 
module errors by taking a majority voting among the 
triplicated data [15]. The hardware utilization and power 
consumption introduced by spatial redundancy depend 
on the size of the circuit and for large circuits, the over-
heads are not acceptable for some applications (e.g., bat-
tery powered systems). Reduced Precision Redundancy 
(RPR) has been proposed to reduce the overhead by in-
troducing several copies with reduced precision. Howev-
er, an inexact output is obtained for some cases, making 
RPR only applicable to those systems that tolerate a lim-
ited range of deviation from the correct result [16], [17]. 
Instead of performing an operation in several replicated 
circuits at the same time, temporal redundancy is imple-
mented by performing the operation several times using 
the same circuit. For example, in kNNs protected by a 
temporal redundancy technique, distances are computed 
twice and results are compared to detect errors. Once an 
error is detected, computation is performed for a third 
time to obtain the correct data by computing a majority 
voting among the three results. However, this still incurs 
in significant overhead in terms of power consumption 
and execution time. Recently, an algorithm-based error 
tolerance (ABET) technique has been proposed to protect 
kNNs with a binary classification against arithmetic errors 
by exploiting the intrinsic redundancy of the kNNs algo-
rithm [18]. By refining and extending the property of 
kNNs that a single error cannot change the classification 
result when the neighbors have a voting margin, the ap-
proach is able to avoid re-computation in many cases, 
reducing more than 60% of the overhead compared to a 
traditional temporal redundancy. This approach is then 
extended to voting classifiers, such as kNNs and Random 
Forests with multiple classes [19]. The ABET technique 
has also been investigated to protect other classifiers 
(such as the Support Vector Machine (SVM)) against 
computational errors at a lower overhead [20].  

In terms of protecting memories against errors, spatial 
redundancy can be attractive for protecting only some 
critical words, but not for the entire memory because in 
this case, the overhead is extremely large due to the repli-
cated memories. An alternative option is to use Error 
Control Codes (ECCs, also referred to as Error Correction 
Codes) [21], [22]. By adding several memory cells in each 
word to store parity bits, as well as an encoder and de-
coder to the entire memory, one or more-bit errors can be 
detected or corrected. Generally, the error detection 
and/or correction capability is related to the number of 
parity bits and the complexity of the encoder/decoder; 
the first feature determines the memory overhead, while 
the second feature affects the execution time (when im-
plemented in software) and circuit complexity. Therefore, 
a small size memory storing only the ML model infor-
mation (e.g., the support vectors in an SVM, or the 
weights of the neurons in a Neural Network) can be suffi-

ciently protected by powerful ECCs, however the large 
size of a memory storing the entire dataset required by 
kNNs is not viable, because the ECC redundancy further 
increases the additional storage requirements. This moti-
vates this paper to investigate an error-tolerant technique 
to protect the kNNs' memory at a lower overhead, so that 
independently whether the kNNs is used alone, or com-
bined with other algorithms in safety/critical applications, 
all classifiers can be efficiently protected.  

The most commonly used and simplest ECCs for 
memories are Parity-Check (that uses a single parity bit to 
detect single errors), and Single Error Correction-Double 
Error Detection (SEC-DED) codes that are able to correct 
single bit errors and detect double bit errors [21]. When 
using Parity-Check protected (SEC-DED protected) mem-
ories for kNNs classifiers, single bit errors (double bit 
errors) that are the most common error pattern, can only 
be detected, but not corrected. In this case, discarding the 
element affected by the error from the training set seems 
to be beneficial, because the erroneous element will not be 
used for classification. In this paper, the effectiveness of 
Parity-Check and SEC-DED based protection schemes is 
evaluated and a more efficient technique referred to as 
Less-is-Better Protection (LBP) is proposed. The signifi-
cant contributions of this paper are as follows: 

� The evaluation results show that surprisingly, for
most datasets, the traditional ECC solution is
counterproductive in terms of reducing classifica-
tion errors, i.e., it is better to leave the memory
unprotected than to use Parity-Check; for SEC-
DED, it is better not to discard the element if a
double error is detected.

� The above observation is leveraged to develop the
so-called LBP technique, which does not require
additional parity bits and achieves better error tol-
erance than a Parity-check (SEC-DED) for single
bit errors (double bit errors).

� The proposed LBP also reduces the memory need-
ed compared to the unprotected kNNs, as well as
the impact of errors on the classification results for
datasets with a small number of features.

The remaining part of this paper is organized as fol-
lows. Section 2 covers the background material on the 
kNNs algorithm and the impact of errors in its implemen-
tation; the most common error tolerance memory config-
urations (i.e., employing Parity-Check and SEC-DED 
codes) are also discussed. In Section 3, the effects of 
memory errors in the unprotected, Parity-Check protected, 
and SEC-DED protected kNNs are evaluated, and several 
observations on such results are discussed; they are then 
leveraged to propose the Less-is-Better Protection scheme 
in Section 4. Section 5 evaluates the error protection capa-
bilities of the proposed LBP as well as the memory over-
head. Finally, Section 6 concludes the paper. 

2 PRELIMINARIES 
This section first provides a brief review of kNNs classifi-
ers as well as their implementation. Then, the impact of 
memory errors that affect the stored features or the labels 



of the kNNs training set on the classification results, is 
analyzed; traditional protection schemes for different 
error scenarios are also discussed.  

2.1 k Nearest Neighbors Classifiers 
As introduced previously, k Nearest Neighbors (kNNs) is 
one of the simplest, yet powerful classification algorithms. 
For classification of a new element, the distance from the 
element being classified to other training elements is 
computed by using different methods [10], [23]. One 
common solution is to compute the Euclidean distance 
based on all features of the elements (the values of the 
features are normalized to keep the same weight), hence 
the set of kNNs can be selected. As introduced previously, 
majority voting is executed among the classes of kNNs to 
determine the classification result. During the voting 
process, a special case occurs when there are equal votes 
for multiple classes, leading to a tie. When there are only 
two classes, a tie can be broken by selecting an odd value 
for k, such that the number of elements with each class 
can be simply compared with the threshold (i.e., 

ceil((k+1)/2)) to find the majority. Figure 1 a) illustrates an 
example of the kNNs algorithm with two classes, the grey 
element is the one being classified and its predicted class 
is B, because k=5 and there are two elements with Class A 
(yellow elements) and three with Class B (blue elements) 
in the 5NNs set. 

a)  b) 

Figure 1 Illustration of the kNNs algorithm with two classes (in a)) 
and three classes (in b)). The yellow, blue and green elements are 
stored with their class. The grey element is the one being classified. 
As k = 5, initially the five elements closest to it are identified (shown 
by the solid circle). Then a vote is taken among them to determine 
the class of the grey element. 

When there are multiple classes (i.e., more than two), 
voting is more complicated. Once the kNNs are selected, 
the number of elements in each class is compared. If there 
is only one majority class, then it is used as the final clas-
sification result; if there are two or more classes voted by 
the same number of neighbors (i.e., there is a tie), tie-
breaking methods must be utilized to determine the clas-
sification result. A possible solution is to select the class of 
the nearest neighbor that belongs to the majority, as illus-
trated in the example shown in Figure 1 b). In Figure 1 b), 
the elements have three classes; Classes B and C have the 
same largest number (i.e., two) of neighbors in the kNNs 
set (i.e., a tie occurs).  Therefore, in this case the predicted 
class for the grey element is C, because the nearest majori-
ty neighbor belongs to Class C. 

The main components of a kNNs implementation in-
clude the labelled elements that are commonly stored in a 
memory, as well as the computation of distances and 
comparisons to find the nearest neighbors (commonly 
executed in a processor). Since memories are prone to 
suffer from a number of errors/faults (such as radiation 
induced soft errors) and computational units in a proces-
sor suffer from arithmetic errors (both causing data cor-
ruption), the classification result can be affected when 
leaving the memory and processor unprotected. For ex-
ample, if an arithmetic error occurs during the distance 
computation process, a reduction in the distance from an 
element that should not belong to the kNNs set to the new 
element being classified, may result in the kth NN being 
replaced if its distance to the new element is larger than 
the incorrect distance. In this case, the classification result 
may be changed if the element that is moved by the error 
has a different class from the kth NN. To deal with errors 
affecting the computation of distances in kNNs, efficient 
algorithm-based error tolerance techniques have been 
recently proposed [18], [19]. As for memory errors affect-
ing the value of stored features or labels of kNNs ele-
ments, the impact on classification results and the most 
common solutions used in different error scenarios will be 
discussed in the next subsection. 

2.2 Memory Errors and Protection 
The features (normalized) and label of each element in the 
kNNs training set are commonly stored in a memory; a 
simple organization is illustrated in Figure 2, in which the 
value of each feature or label is stored in a single word. 
For classification of a new element, the information stored 
in the memory is read and used to select the kNNs set.  

Memories are prone to suffer from different types of 
errors or faults; they can modify the contents of a memory 
word, causing data corruption. For example, radiation 
induced soft errors are one of the reliability challenges in 
memories and can corrupt a stored bit from a logic "1" to 
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Class B
Class C k=5
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Figure 2 An unprotected memory storing kNNs elements. 
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"0" (or vice versa). These errors can affect multiple cells, 
but the most common error patterns are the single bit 
error (SE) and the double adjacent bit error (DAE) [24], 
while double random bit errors (DREs) can also happen 
due to error accumulation. In a memory that stores fea-
tures and labels of the kNNs elements, errors that occur 
on a feature word (label word), can affect the set of near-
est neighbors (the class of a neighbor), possibly modify-
ing the classification result. Therefore, even though the 
errors are rare (e.g., a radiation-induced error may take 
105 days to occur in a 64K memory [25], and the rate may 
increase proportionally for a large memory), they cannot 
be ignored, especially in safety or critical applications in 
which reliable operation is required. 

Error correction codes (ECCs) are widely used to pro-
tect memories against errors. By introducing some re-
dundant cells in each memory word for storing the parity 
bits (computed during the encoding process of the ECCs), 
errors can be detected or corrected during the decoding 
process. The most commonly used solution to detect SEs 
is a single bit Parity-Check; to correct SEs and detect 
DAEs and DREs, Single Error Correction-Double Error 
Detection (SEC-DED) codes are utilized. 

Parity-Check: A single parity bit that covers all data
bits, can efficiently detect SEs on any bit (including the 
parity bit itself). There are two types of Parity-Check: 
even Parity-Check and odd Parity-Check. When using an 
even Parity-Check, in the encoding process (which is 
performed prior to the write operation), for each word, a 
xor operation is computed on all data bits first to obtain 
the parity bit; then it is stored with the data bits in the 
word. In the decoding process (which is performed after 
the read operation), a syndrome is calculated by perform-
ing a xor operation on all stored data bits and the parity 
bit, then it is used for error detection. For an odd Parity-
Check, the implementation is similar; only an extra not 
operation is implemented following the xor gate in both 
the encoder and decoder. Therefore, in this paper, we 
consider utilizing the even Parity-Check.  

A syndrome with a value of zero indicates that the 
word is error-free, while a syndrome with a value of one 
indicates that there is an error. A single bit Parity-Check 
can only detect SEs, because a DAE or DRE will lead to a 
syndrome with a value of zero, which is the same as that 
in the error-free case. For kNNs protected by a single bit 
Parity-Check, if an SE occurs on the feature word or label 
word of an element, it can be detected and the corrupted 
element will be discarded due to the impossibility to re-
construct the correct value, so it is not used as a candidate 
for nearest neighbor. 

SEC-DED codes: Single Error Correction-Double Error
Detection codes ensure that codewords have a minimum 
distance of four, so that single bit errors can be corrected, 
and double bit errors detected. SEC-DED codes need r 
parity bits to protect up to 2r-1-r data bits [21]. For example, 
six parity bits are needed (i.e., r=6) to perform SEC-DED 
on a 16-bit data. 

In the encoding process of SEC-DED codes, the data 
bits are multiplied by the Generating Matrix G (associat-
ed to the codes) to obtain the r parity bits, which are then 

stored with the data bits in each word. Figure 3 illustrates 
an example of protecting a memory that uses 16 bits to 
store features and labels of kNNs elements with six SEC-
DED parity bits per word. 

In the decoding process, an r-bit syndrome is comput-
ed by multiplying the codeword (which includes all data 
and parity bits) with the Parity Check Matrix H (also 
associated to the code and commonly constructed by 
ensuring that the columns have an odd weight [21]). If the 
syndrome bits are all zeros, the codeword is error-free; 
when decoding is completed, the data bits are simply 
provided as output. If the syndrome bits have an odd 
number of ones, a single bit error is detected; the error 
pattern can be determined by comparing the syndrome 
with each column of the matrix H. In this case, a xor oper-
ation is performed on the codeword with the error pattern 
to obtain the corrected data. If the syndrome bits have an 
even number of ones, a double bit error is detected. In this 
case, the data bits will be output immediately, but an 
error detection flag is activated to indicate that the output 
is incorrect. Therefore, when using SEC-DED codes to 
protect kNNs, an element with an error detection flag will 
be discarded and not used as a candidate for nearest 
neighbor, because a double error has been detected, but 
not corrected. 

3 EVALUATION OF MEMORY ERRORS IN KNNS
The impact of errors in the memory that stores the ele-
ments, on the classification result depends on the type of 
error and the memory configuration. To cover the most 
relevant scenarios, three memory configurations are as-
sessed: unprotected, Parity-Check protected and SEC-
DED protected. As discussed in the previous section, 
these configurations correspond to the most frequently 
used memory configurations. As for errors, single bit 
errors (SEs), double adjacent bit errors (DAEs) and double 
random bit errors (DREs) are considered. Matlab is uti-

Figure 3 A memory storing kNNs elements protected by a (22,16) 
SEC-DED code. 
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lized as simulation tool in this section. 

3.1 Datasets 
To assess the impact of memory errors on kNNs classifica-
tion, ten widely used datasets from a public repository [26] 
are selected; they are described in Table 1. These datasets 
cover a wide range of applications, number of elements, 
and have different numbers of features and classes. In all 
cases, a simple and often used criterion is used to evalu-
ate the classification performance, i.e., 70% of the dataset 
elements have been used for training, while the remain-
ing 30% of the data is left for testing (note that a different 
split ratio may result in a slight different classification 
accuracy but it has no impact on the trend of the results 
evaluated for the work of this paper). The 70% training 
set is split into 10 blocks of equal size to run the well-
known 10-fold cross-validation methodology [32] for the 
selection of the algorithm’s hyperparameters, i.e., the 
optimal number of neighbors k. The top accuracy corre-
sponding to the optimal k for each dataset is then ob-
tained and also given in Table 1. The datasets are stored in 

a memory using 16 bits for each feature (the most signifi-
cant bit is for the sign) and the label. The protection (Pari-
ty-Check or SEC-DED) is implemented per feature or 
label.  

3.2 Error Injection 
The impact of errors on the classification result is evaluat-
ed by using Matlab as per the following process. First an 
element is randomly selected with a uniform distribution 
and then an error (SE, DAE or DRE) is randomly injected 
on the stored features or label of this element (by upset-
ting the stored value of the selected bit/bits from “1” to 
“0” or vice versa). Once the error has been inserted, classi-
fication is performed for all elements in the testing set and 
the differences in the results versus the error-free classifi-
cation are logged. Finally, the error is removed, and the 
procedure starts again. Since it has been found that the 
results for 10,000 trials were consistent with those with 
100,000 trials, the process has been repeated by injecting 
10,000 times for each of the three memory configurations 
(i.e., unprotected, Parity-Check protected and SEC-DED 

TABLE 1 
Description of the Different Datasets 

Dataset Application # Elements # Features # Classes 
Using kNNs 

Optimal k Top accuracy 
Pima Indians diabetes Medicine 768 8 2 19 76.52% 

Sonar [27] Physics 208 60 2 3 85.48% 
Banknote authentication Business 1372 4 2 7 100.00% 
Phishing websites [28] Computer 2456 30 2 5 92.81% 

Iris Botany 150 4 3 5 93.95% 
Forest type mapping [29] Ecology 325 27 4 9 80.59% 

Mice protein expression [30] Biology 1080 80 8 3 98.78% 
CNAE-9 Finance 1080 856 9 7 83.70% 

Cervical cancer [31] Medicine 858 36 2 5 92.25% 
Nursery Sociology 12960 8 5 17 96.19% 

TABLE 2 
Percentage of Single Bit Errors (SEs) that Modify the Classification Result in the Unprotected kNNs 

Error 
position 

Pima 
Indian 

diabetes 
Sonar 

Banknote 
auth-

entication 
Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-

9 
Cervical 
cancer Nursery 

Feature 

15 0.065% 0.078% 0 0.008% 0.110% 0.130% 0.009% 0 0 0.002% 
14 0.110% 0.082% 0 0.007% 0.090% 0.280% 0.009% 0.100% 0.005% 0.003% 
13 0.097% 0.081% 0 0.007% 0.040% 0.280% 0.006% 0.080% 0.005% 0.003% 
12 0.097% 0.081% 0 0.007% 0.040% 0.280% 0.006% 0.080% 0.005% 0.003% 
11 0.096% 0.070% 0 0.007% 0.040% 0.240% 0.003% 0.070% 0.005% 0.003% 
10 0.091% 0.065% 0 0.005% 0.040% 0.120% 0.003% 0.070% 0.004% 0.003% 
9 0.078% 0.065% 0 0.005% 0.020% 0.120% 0.003% 0.070% 0.004% 0.002% 
8 0.069% 0.065% 0 0.005% 0.020% 0.120% 0.003% 0.070% 0.002% 0.002% 
7 0.065% 0.061% 0 0.005% 0.020% 0.090% 0.003% 0.068% 0.002% 0.001% 
6 0.016% 0.048% 0 0 0.020% 0.050% 0.003% 0.056% 0.001% 0.001% 
5 0 0.004% 0 0 0.020% 0.031% 0 0.052% 0 0.001% 
4 0 0.004% 0 0 0 0 0 0.040% 0 0 
3 0 0 0 0 0 0 0 0.024% 0 0 
2 0 0 0 0 0 0 0 0.020% 0 0 
1 0 0 0 0 0 0 0 0.015% 0 0 
0 0 0 0 0 0 0 0 0.012% 0 0 

Ave. 0.049% 0.044% 0 0.004% 0.029% 0.109% 0.003% 0.052% 0.002% 0.002% 
Label 0.225% 0.283% 0 0.015% 0.180% 0.193% 0.004% 0.060% 0.020% 0.003% 



protected); the average results are presented next. 

3.3 Single Bit Errors 
The results for single bit errors in the unprotected 
memory configuration are presented in Table 2 for the 
values of feature and label words. In Table 2, errors in the 

label word have a significant impact, typically larger than 
the impact of an error on a feature. The impact of errors 
on each bit of a feature is also evaluated; for each dataset, 
the results are normalized by the largest value to clearly 
show the impact of each feature bit. This is shown in Fig-
ure 4; the most significant bits (MSBs, bit 15 is the MSB) 
tend to have a larger impact than the least significant bits 
(LSBs). Therefore, the label and MSBs of the features seem 
to be the most critical parts.  

Consider the protected memory configurations; obvi-
ously, for SEC-DED protection, single errors are corrected 
and have no effect on the classification outcome. For Pari-
ty-Check protection, the error is detected, and the element 
is not used as a candidate for nearest neighbor. This pre-
vents the error from causing an element to be one of the 
kNNs; however, the element in error is no longer used, 
which may also reduce the classification accuracy. The 
results for all three memory configurations are summa-
rized in Table 3 (where U stands for the unprotected 
scheme, P stands for the Parity-Check protection scheme). 
As per Table 3, for all datasets considered, the unprotect-
ed configuration has a percentage of errors that modify 
the classification results lower than the Parity-Check pro-
tected memory. Therefore, surprisingly leaving the 
memory unprotected is better than using Parity-Check 
protection in terms of error tolerance.  

3.4 Double Bit Errors 
For the case of double errors, two patterns are considered: 
adjacent bit error and random bit errors. Double adjacent 

TABLE 4 
Percentage of Double Adjacent Bit Errors (DAEs) that Modify the Classification Result in the Unprotected kNNs 

Error 
position 

Pima 
Indian 

diabetes 
Sonar 

Banknote 
auth-

entication 
Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-

9 
Cervical 
cancer Nursery 

Feature 

15&14 0.089% 0.130% 0 0.009% 0.110% 0.220% 0.009% 0.080% 0.001% 0.003% 
14&13 0.110% 0.160% 0 0.009% 0.096% 0.250% 0.009% 0.096% 0.005% 0.003% 
13&12 0.099% 0.140% 0 0.009% 0.071% 0.230% 0.007% 0.096% 0.005% 0.003% 
12&11 0.099% 0.140% 0 0.009% 0.067% 0.220% 0.007% 0.096% 0.005% 0.003% 
11&10 0.099% 0.120% 0 0.009% 0.067% 0.220% 0.006% 0.091% 0.005% 0.003% 
10&9 0.098% 0.120% 0 0.009% 0.067% 0.220% 0.006% 0.076% 0.005% 0.003% 
9&8 0.098% 0.100% 0 0.009% 0.064% 0.210% 0.004% 0.076% 0.004% 0.003% 
8&7 0.082% 0.100% 0 0.008% 0.064% 0.210% 0.004% 0.076% 0.003% 0.003% 
7&6 0.077% 0.083% 0 0.005% 0.058% 0.110% 0.003% 0.071% 0.003% 0.003% 
6&5 0.027% 0.019% 0 0.001% 0.056% 0.029% 0 0.050% 0.001% 0.001% 
5&4 0.011% 0.013% 0 0.001% 0.049% 0.014% 0 0.042% 0 0.001% 
4&3 0.007% 0.011% 0 0.001% 0.016% 0.003% 0 0.038% 0 0 
3&2 0 0.006% 0 0.001% 0.016% 0 0 0.033% 0 0 
2&1 0 0.003% 0 0.001% 0 0 0 0.032% 0 0 
1&0 0 0 0 0 0 0 0 0.030% 0 0 
Ave. 0.060% 0.076% 0 0.006% 0.053% 0.129% 0.004% 0.066% 0.002% 0.002% 

Label 0.225% 0.283% 0 0.015% 0.187% 0.228% 0.006% 0.072% 0.020% 0.003% 

Figure 4 Normalized percentage of SEs that Modify the Classifica-
tion Result in the Unprotected kNNs. 

TABLE 3 
Percentage of Single Bit Errors (SEs) that Modify the Classification Result in Different Schemes 

Scheme 
Pima 

Indian 
diabetes 

Sonar 
Banknote 

auth-
entication 

Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-9 Cervical 

cancer Nursery 

U 0.069% 0.048% 0 0.004% 0.059% 0.112% 0.003% 0.052% 0.002% 0.002% 
P 0.097% 0.116% 0 0.011% 0.070% 0.223% 0.006% 0.075% 0.004% 0.003% 

SEC-DED 0 0 0 0 0 0 0 0 0 0 



bit errors (DAEs) can be caused by radiation induced 
Multiple Cell Upsets (MCUs) that affect nearby cells, 
while double random bit errors (DREs) can be due to 
error accumulation. The results for DAEs in an unprotect-
ed memory configuration are shown in Table 4 and the 
normalized results for each feature bits are plotted in 
Figure 5; again, errors on the MSBs of the features and on 
the label of each element are the ones that have a larger 
impact on the classification result. Compared with SEs, 
the impact tends to be slightly larger.  

The results for the three memory configurations when 
they suffer DAEs are presented in Table 5. In this case the 
unprotected and Parity-Check protected memories have 

almost the same results. This occurs because a parity bit 
cannot detect double errors and thus, the elements are 
used for the classification even if they have an error. The 
only difference is that for a Parity-Check protected 
memory, the DAE can also affect the parity bit. Instead, 
the SEC-DED protection can only detect the DAE and 
remove the element from consideration as one of the 
kNNs. As per Table 5, SEC-DED protection is worse than 
no protection for DAEs in all datasets evaluated. There-
fore, again less protection is better.   

The results for double random bits errors (DREs) in an 
unprotected memory are presented in Table 6; again, er-
rors on the labels have the largest impact. Finally, the 
impact on the classification results for DREs is summa-
rized in Table 7. In all datasets, no protection is better 
than using SEC-DED; moreover, it is better to use SEC 
protection than SEC-DED protection because DED in-
creases the percentage of errors that modify the classifica-
tion result. This is interesting because SEC codes require 
one parity bit less than SEC-DED codes [21].   

As for the experiments considered in subsections 3.3 
and 3.4, the results show that under single bit errors, the 
unprotected memory configuration is better than using 
Parity-Check protection for all datasets considered; under 
double bit errors, the use of erroneous elements is in most 
cases better than just discarding them. These results are of 
a significant practical interest for designers; they are ex-
plained by using several observations and exploited to 
propose an efficient protection technique in the next sec-
tion.   

4 LESS-IS-BETTER PROTECTION (LBP)
From the previous section, the utilization of ECCs to pro-
tect the memory of kNNs classifiers can be counterpro-
ductive; this is based on the following observations. 

Observation 1: Errors on the MSBs of a feature tend to

Figure 5 Normalized percentage of DAEs that Modify the Classifica-
tion Result in the Unprotected kNNs. 

TABLE 5 
Percentage of Double Adjacent Bit Errors (DAEs) that Modify the Classification Result in Different Schemes 

Scheme 
Pima 

Indian 
diabetes 

Sonar 
Banknote 

auth-
entication 

Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-9 Cervical 

cancer Nursery 

U 0.078% 0.079% 0 0.006% 0.080% 0.133% 0.004% 0.066% 0.002% 0.002% 
P 0.080% 0.080% 0 0.006% 0.084% 0.132% 0.004% 0.070% 0.002% 0.002% 

SEC-DED 0.125% 0.150% 0 0.014% 0.091% 0.289% 0.008% 0.098% 0.006% 0.004% 

TABLE 6 
Percentage of Double Random Bit Errors (DREs) that Modify the Classification Result in the Unprotected kNNs 

Error 
position 

Pima 
Indian 

diabetes 
Sonar 

Banknote 
auth-

entication 
Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-9 Cervical 

cancer  Nursery 

Feature 0.073% 0.077% 0 0.007% 0.062% 0.130% 0.003% 0.056% 0.003% 0.002% 
Label 0.225% 0.283% 0 0.015% 0.187% 0.230% 0.003% 0.067% 0.020% 0.003% 

TABLE 7 
Percentage of Double Random Bit Errors (DREs) that Modify the Classification Result in Different Schemes 

Scheme 
Pima 

Indian 
diabetes 

Sonar 
Banknote 

auth-
entication 

Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-9 Cervical 

cancer Nursery 

U 0.090% 0.080% 0 0.007% 0.087% 0.134% 0.003% 0.056% 0.003% 0.002% 
P 0.092% 0.082% 0 0.009% 0.084% 0.139% 0.003% 0.060% 0.003% 0.002% 

SEC-DED 0.125% 0.150% 0 0.014% 0.091% 0.289% 0.008% 0.098% 0.006% 0.004% 



move an element and then changing the kNNs set, but 
errors on the LSBs do not.  

Observation 2: Errors on the label modify the class of
an element and tend to have a larger impact on the classi-
fication result than errors in a feature, because changing 
the class can be considered as moving the element. This is 
also the case under ECCs protection. 

Observation 3: For ECCs protection, when an element
is discarded due to error detection, the impact on the 
classification result is the same as moving an element, so 
it is usually larger than for errors on a feature, because 
errors on LSBs have an extremely small probability (in 
few cases a zero probability) to move an element (as per 
Observation 1).  

Observation 4: The number of feature words is always
greater than the label words; so, in the unprotected im-
plementation, the errors on features account for a larger 
proportion.  

Observation 5: For ECCs protection, memory size is
larger due to the additional cells that store the parity bits, 
so the probability of suffering from errors is increased 
because errors can occur also on the parity bits. 

Let PU be the probability of an incorrect classification 
result caused by a single bit error that affects an element 
stored in an unprotected memory; this is given by: 

𝑃! =
"
"#$

∙ 𝑝" +
$

"#$
∙ 𝑝$ (1) 

where f (c) is the number of feature (label) words for each 
element, and f is always much larger than c (i.e., the first 
term of Eq. (1) accounts for a significant proportion). pf (pc) 
is the probability of an incorrect classification result 
caused by an error on the feature (label) of the affected 
element in the unprotected configuration and pc > pf (as 
Observation 2).  

The probability of an incorrect classification result 
caused by an error that affects the same element but 
stored in the ECCs protected memory PECCs is given by 

𝑃%&&' = 𝑝( (2) 

where pd is the probability of an incorrect classification 
result caused by discarding an element in the ECCs pro-
tected configuration; as per Observation 3, pd > pf.  

Therefore, the impact of an error affecting the same el-
ement in the unprotected and ECCs protected configura-
tions on the classification result can be compared by com-
bining Eqs. (1) and (2) as following.  

𝑅𝑎𝑡𝑖𝑜 = )!
$*+"∙)"##

=
$
$%&∙-$#

&
$%&∙-&

$*+"∙-'
(3) 

where coef is the increase of error occurrence probability 
introduced by the extra memory cells for parity bits; it is 
equal to the ratio between the ECCs protected memory 
size and the unprotected memory size, so coef > 1.  

Therefore, as pd > pf , coef > 1 and the second term in the 
numerator is small (f >> c), the value of Eq. (3) will In 
most cases be smaller than 1. This means that the impact 
of an error in the unprotected memory is rather small. 
Therefore, as per Observations 1 to 5 and the above dis-
cussion, ECCs protections that detect and discard errone-

ous elements, tend to be worse than no protection. How-
ever, Observation 2 suggests that the protection of the 
labels may reduce the impact of errors. By combining 
both these observations, a new scheme referred to as the 
Less-is-Better Protection (LBP) scheme, is proposed. This 
scheme protects the labels without adding any parity bit 
and leaves the features unprotected. 

An interesting property of kNNs classifiers is that the 
elements in the training set can be stored in any order. 
This is like Content Addressable Memories (CAMs) in 
which the order of the elements stored can be exploited so 
that the addresses correspond to the parity bits [33]. 
However, for the memory used to store the kNNs ele-
ments, this only helps the protection of one feature or the 
label, because they are stored in different words. 

An alternative option is to exploit the order to place el-
ements that belong to the same class consecutively as 
illustrated in Figure 6. There is no need to store the labels 
on the elements; for a classifier with nc classes, only nc-1 
pointers are required to mark the ranges that correspond 
to the different classes (Figure 6). Then, as elements are 
read to compute the distances, the pointers can be used to 
determine the class they belong to. Therefore, there can-
not be errors on the labels, because they are not stored in 
memory. Errors can only affect the pointers, but since the 
number of pointers is small, they can be simply triplicat-
ed (i.e. employing TMR) to ensure a correct result. Com-
bined with Observation 2 discussed previously, the im-
pact of errors on the classification results can be reduced, 
unless the number of features is extremely large (as per 
Observation 4). 

Figure 6 A memory storing kNNs elements protected by the pro-
posed LBP scheme. 
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In the proposed Less-is-Better scheme, "Less" refers to 
two aspects. 

• ECCs protection to detect and discard erroneous
elements on kNNs memory is counterproductive
in terms of reducing classification errors, so no
protection is better.

• A memory with no stored label is better, because it
is the part that has a larger impact on the classifi-
cation results.

Therefore, compared to ECCs protected or unprotected 
implementation, the LBP scheme reduces the cost to 
achieve a better protection, so counterintuitive; thus, it is 
denoted as Less-is-Better. Additionally, LBP can be used 
in systems in which the underlying memory is unprotect-
ed, because no additional parity bits are needed. There-
fore, LBP is an attractive option to protect the memory of 
kNNs classifiers. 

5 EVALUATION 
The proposed LBP scheme has been evaluated and com-
pared to both Parity-Check protection and SEC-DED 
protection; all schemes have been assessed in terms of 
error protection as well as the memory required for im-
plementation. The results are summarized in the next 
subsections. In all cases, the same datasets of Section 3 are 
used for the evaluation. 

5.1 Error Protection 
To assess the impact of errors on LBP-protected kNNs 

classifiers, errors have been injected in features and labels 
following the same procedure used in Section 3. The re-
sults are summarized in Table 8 that also provides for 
comparison purposes the values for the other techniques 
(including the unprotected, Parity-Check protected and 
SEC-DED protected kNNs classifiers). This table shows 
the percentage of errors that modify the classification 
result and in parenthesis, the value relative to the unpro-
tected implementation (considered as the baseline 1x). For 
example, a value of (1.406x) means that the corresponding 
technique has a percentage of errors that modify the clas-
sification result that is 1.406x times of an unprotected 
implementation. Therefore, values lower than 1x mean 
that the technique can reduce the impact of errors, while 
values larger than 1x mean that the technique is worse 
than an unprotected implementation. 

As per Table 8, LBP achieves better protection than Par-
ity-Check for SEs. LBP is also able to reduce the impact of 
errors compared to an unprotected implementation for 
some datasets with a small number of features. For exam-
ple, for the Iris dataset, the percentage of errors that mod-
ify the classification result, is reduced to 0.492x (i.e., re-
ducing 59% the error rate compared to Parity-Check pro-
tection with 1.186x). This occurs because the LBP scheme 
protects against errors in the labels, which typically have 
the largest impact on the classification results (as per 
Observation 2 in Section 4). The impact is reduced signifi-
cantly for the Iris dataset because it has a small number of 
features (i.e., four as per Table 1), then errors on labels 

TABLE 8 
 Percentage of Different Type of Errors that Modify the Classification Result in the Unprotected kNNs and Different Protection Schemes 

(Relative Results of Protection Schemes to the Unprotected kNNs are Also Given in the Parenthesis) 

Scheme 
Pima 

Indian 
diabetes 

Sonar 
Banknote 

auth-
entication 

Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-9 Cervical 

cancer Nursery 

SEs 

U 
0.069% 0.048% 0 0.004% 0.059% 0.112% 0.003% 0.052% 0.002% 0.002% 

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x)

P 
0.097% 0.116% 0 0.011% 0.070% 0.223% 0.006% 0.075% 0.004% 0.003% 
(1.406x) (2.417x) (1x) (2.750x) (1.186x) (1.991x) (2x) (1.442x) (2x) (1.5x)

SEC-
DED 

0 0 0 0 0 0 0 0 0 0 
(0x) (0x) (0x) (0x) (0x) (0x) (0x) (0x) (0x) (0x) 

LBP 
0.049% 0.044% 0 0.004% 0.029% 0.109% 0.003% 0.052% 0.002% 0.002% 
(0.710x) (0.917x) (1x) (1x) (0.492x) (0.973x) (1x) (1x) (1x) (1x)

DAEs 

U 
0.078% 0.079% 0 0.006% 0.080% 0.133% 0.004% 0.066% 0.002% 0.002% 

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x)

P 
0.080% 0.080% 0 0.006% 0.084% 0.132% 0.004% 0.070% 0.002% 0.002% 
(1.026x) (1.013x) (1x) (1x) (1.050x) (0.993x) (1x) (1.061x) (1x) (1x) 

SEC-
DED 

0.125% 0.150% 0 0.014% 0.091% 0.289% 0.008% 0.098% 0.006% 0.004% 
(1.603x) (1.899x) (1x) (2.333x) (1.138x) (2.173x) (2x) (1.485x) (3x) (2x) 

LBP 
0.060% 0.076% 0 0.006% 0.053% 0.129% 0.004% 0.066% 0.002% 0.002% 
(0.769x) (1x) (1x) (1x) (0.663x) (0.970x) (1x) (1x) (1x) (1x)

DREs 

U 
0.090% 0.080% 0 0.007% 0.087% 0.134% 0.003% 0.056% 0.003% 0.002% 

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) 

P 
0.092% 0.082% 0 0.009% 0.084% 0.139% 0.003% 0.060% 0.003% 0.002% 
(1.022x) (1.025x) (1x) (1.286x) (0.966x) (1.037x) (1x) (1.071x) (1x) (1x) 

SEC-
DED 

0.125% 0.150% 0 0.014% 0.091% 0.289% 0.008% 0.098% 0.006% 0.004% 
(1.389x) (1.875x) (1x) (2x) (1.046x) (2.157x) (2.667x) (1.750x) (3x) (2x) 

LBP 
0.073% 0.077% 0 0.007% 0.062% 0.130% 0.003% 0.056% 0.003% 0.002% 
(0.811x) (0.963x) (1x) (1x) (0.713x) (0.970x) (1x) (1x) (1x) (1x)



also account for an important part (as per Observation 4 
in Section 4). For DAEs and DREs, LBP provides better 
protection than Parity-Check and SEC-DED and reduces 
the percentage of errors that modify the classification 
results for some datasets in the unprotected case. Again, 
the Iris dataset is the one for which LBP has the largest 
benefit with a classification error rate of 0.663x and 0.713x 
of an unprotected implementation for DAEs and DREs 
respectively (i.e., reducing 39% for DAEs and 26% for 
DREs compared to Parity-Check protection, and 42% and 
32% for SEC-DED protection). 

These results show that LBP can improve protection 
against SEs compared to Parity-Check protected and un-
protected kNNs classifiers, and it is also better than SEC-
DED for DAEs and DREs. 

5.2 Memory Overhead 
In most cases, the encoder and decoder circuits of Parity-
Check and SEC-DED based protection schemes are small 
compared to the additional memory, i.e. the hardware 
overhead is mostly due to the additional memory. Let the 
training set of a dataset used to select the kNNs have E 
elements and nc classes; each element has f features, and 
the memory consists of w-bit words. In this subsection, 
the memory overhead in terms of total number of 
memory cells required for each protection scheme is eval-
uated and compared. 

Consider an unprotected kNNs; as per the memory or-
ganization shown in Figure 2, the total number of 
memory cells is given by: 

𝑁! = 𝐸 ∙ (𝑓 + 𝑐) ∙ 𝑤 (4) 

where c is the number of words that store the label of each 
element (c=1 for the datasets considered in this paper, 
because there are at most 11 classes).  

When using a Parity-Check to protect the kNNs 
memory against single errors, an additional data bit is 
required in each word to store the parity bit. Therefore, 
the total number of memory cells needed for the Parity-
Check protected kNNs is given by: 

𝑁) = 𝐸 ∙ (𝑓 + 𝑐) ∙ (𝑤 + 1) (5) 

When SEC-DED codes are used to protect the kNNs 
memory against double errors, r parity bits (as discussed 
in Section 2.2) are needed to be stored with the data bits 
in each memory word. Therefore, in this case, the re-

quired number of memory cells is given by: 

𝑁.%&/0%0 = 𝐸 ∙ (𝑓 + 𝑐) ∙ (𝑤 + 𝑟) (6) 

In the proposed LBP scheme, labels of the elements do 
not need to be stored in the memory; nc-1 class pointers 
that mark each range of classes are required instead. 
Moreover, to provide error tolerance for the pointers, 
TMR can be implemented to deal with any error in one 
pointer; hence 3(nc-1) words are needed for the entire 
memory in the LBP scheme. Therefore, the total number 
of memory cells is given by:  

𝑁12) = 𝐸 ∙ 𝑓 ∙ 𝑤 + 3(𝑛$ − 1) ∙ 𝑤 (7) 

Since the number of elements is significantly larger 
than the number of their classes (i.e., E>>nc), the first term 
of Eq. (7) is dominant. Therefore, compared to the Parity-
Check and SEC-DED based protection schemes, the pro-
posed LBP scheme incurs in a lower memory overhead; 
this is also the case when compared to the unprotected 
kNNs.  

For all datasets considered in this paper, the number of 
memory cells needed in the different schemes are shown 
and compared in Table 9 (for w=16 as example, and thus 
r=6). The proposed LBP can reduce up to 20% the 
memory overhead of an unprotected kNNs, 25% of the 
Parity-Check protected kNNs, and 42% of the SEC-DED 
protected kNNs.  

5.3 Comparison to Selective ECCs Protection 
Since discarding the incorrect element tends to have a 
larger impact on the classification result than leaving it in 
the dataset due to LSBs of features having a negligible 
effect as discussed previously, it is interesting to also 
evaluate the error tolerance capability of selective ECCs 
solutions that only cover several MSBs.  

Table 10 presents the percentage of errors that modify 
the classification results by using ECCs against errors 
(Parity-Check against SEs and SEC-DED codes against 
DAEs and DREs) in different solutions: ECCs that protect 
features only covering the 4MSBs, 8MSBs and 12MSBs of 
each word. Results in Table 10 show that the percentage 
of SEs and DAEs that modify the classification results 
increases with more MSBs covered by ECCs, because the 
impact is low on LSBs as discussed previously. The situa-
tion for DREs is more complex. There are three cases un-
der DREs, including: i) both the double errors occur on 

TABLE 9 
Memory Required for an Unprotected kNNs and Different Protection Schemes  

(Relative Results of Protection Schemes to the Unprotected kNNs are Also Given in Parenthesis) 

Scheme 
Pima 

Indian 
diabetes 

Sonar 
Banknote 

auth-
entication 

Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-9 Cervical 

cancer Nursery 

U 
110592 203008 109760 1218176 12000 145600 1399680 14808960 507936 1866240 

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x)

P 
117504 215696 116620 1294312 12750 154700 1487160 15734520 539682 1982880 
(1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x)

SEC-DED 
152064 279136 150920 1674992 16500 200200 1924560 20362320 698412 2566080 
(1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x)

LBP 
98352 199728 87856 1178928 9696 140544 1382736 14792064 494256 1659072 

(0.889x) (0.984x) (0.800x) (0.968x) (0.808x) (0.965x) (0.988x) (0.999x) (0.973x) (0.889x)

 



the protected MSBs, so the incorrect element is discarded, 
causing a large impact on the classification results; ii) one 
error affects one protected MSBs (which will be corrected 
by using the SEC-DED codes) and the other affects one 
unprotected LSB, causing a small impact on the results; iii) 
both bit errors occur on the unprotected LSBs, causing 
also a small impact. Therefore, the selective protection 
with 12 MSBs covered tends to have a large impact due to 
the dominance of case i). For the solution with 8MSBs (in 
which all of the three cases occur with an equal probabil-
ity) and with 4MSBs covered (in which case iii) is domi-
nant but some unprotected upper LSBs still have a large 
impact), the results depend on different datasets thus the 
trend is not clear. However, as shown in Table 10, the 
proposed LBP scheme still provides a higher error toler-
ance capability. Additionally, since no parity bits are in-
troduced and label words are saved in the LBP scheme, it 
also achieves lower memory overhead. 

6 CONCLUSION 
Machine learning (ML) has been widely used to perform 
classification tasks. The components of a ML implementa-
tion are prone to suffer from errors that may change the 
classification results. Therefore, efficient error-tolerant 
techniques must be employed, especially when the classi-
fiers are used in safety or critical applications, otherwise 
errors may potentially cause life/property loss. In this 
paper, the impacts of errors on the memory of kNNs clas-
sifiers have been considered. Initially, errors have been 
injected to evaluate their effects on the classification re-
sults when using an unprotected, a Parity-Check protect-
ed and an SEC-DED protected memory that stores kNNs 
elements. The results have shown that for single bit errors, 
it is better to leave the memory unprotected than to use 
Parity-Check protection and discard the erroneous ele-
ment. The same occurs for double adjacent and double 
random bit errors in SEC-DED protection; it is better not 

to use double error detection and discard erroneous ele-
ments. This is an interesting result, because the provision 
of protection to detect errors is counterproductive. There-
fore, Less-is-Better Protection (LBP) has been proposed 
based on observations obtained from such evaluation. 
LBP leaves the memory unprotected except for the label 
that is stored implicitly by storing elements of the same 
class consecutively and using pointers to identify the 
classes.   

The proposed LBP scheme has been evaluated and 
compared to both Parity-Check protection and SEC-DED 
protection. The results have shown that LBP outperforms 
Parity-Check protection (SEC-DED protection) in terms of 
protection against single bit errors (double bit errors) 
using no parity bit (e.g., reducing 59% of single bit errors 
that modify the classification results for the Iris dataset, 
while saving 24% of the memory compared to Parity-
Check protection, and 42% of the impact of double bit 
errors while 41% of the memory compared to SEC-DED 
protection). This is also applicable to a comparison with 
an unprotected implementation because no labels are 
stored.  

Overall, LBP achieves better protection than traditional 
techniques, while reducing the memory overhead. It also 
reduces some memory requirements compared to the 
unprotected scheme. Moreover, LBP does not need any 
change to the underlying memory and thus, it can be 
used in systems that use unprotected memories. These 
advantages make the LBP a very efficient scheme to pro-
tect the memory of kNNs and make kNNs more attractive, 
because it reduces the original memory requirements. 
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TABLE 10 
Percentage of Different Type of Errors that Modify the Classification Result in the Selective ECCs Protection Scheme 

Schemes* 
Pima 

Indian 
diabetes 

Sonar 
Banknote 

auth-
entication 

Phishing 
websites Iris 

Forest 
type 

mapping 

Mice 
protein 

expression 
CANE-

9 
Cervical 
cancer Nursery 

SEs 

P_4MSBs 0.055% 0.054% 0 0.005% 0.037% 0.109% 0.003% 0.054% 0.002% 0.002% 
P_8MSBs 0.058% 0.066% 0 0.006% 0.045% 0.126% 0.003% 0.055% 0.002% 0.002% 

P_12MSBs 0.075% 0.087% 0 0.008% 0.056% 0.169% 0.005% 0.061% 0.003% 0.002% 
U 0.069% 0.048% 0 0.004% 0.059% 0.112% 0.003% 0.052% 0.002% 0.002% 

LBP 0.049% 0.044% 0 0.004% 0.029% 0.109% 0.003% 0.052% 0.002% 0.002% 

DAEs 

SD_4MSBs 0.073% 0.080% 0 0.007% 0.062% 0.150% 0.004% 0.067% 0.003% 0.002% 
SD_8MSBs 0.080% 0.090% 0 0.008% 0.067% 0.169% 0.005% 0.072% 0.004% 0.003% 

SD_12MSBs 0.103% 0.121% 0 0.011% 0.077% 0.233% 0.006% 0.085% 0.005% 0.003% 
U 0.078% 0.079% 0 0.006% 0.080% 0.133% 0.004% 0.066% 0.002% 0.002% 

LBP 0.060% 0.076% 0 0.006% 0.053% 0.129% 0.004% 0.066% 0.002% 0.002% 

DREs 

SD_4MSBs 0.092% 0.083% 0 0.007% 0.071% 0.157% 0.004% 0.072% 0.004% 0.002% 
SD_8MSBs 0.083% 0.084% 0 0.007% 0.067% 0.157% 0.004% 0.071% 0.004% 0.002% 

SD_12MSBs 0.092% 0.116% 0 0.011% 0.085% 0.222% 0.006% 0.083% 0.005% 0.003% 
U 0.090% 0.080% 0 0.007% 0.087% 0.134% 0.003% 0.056% 0.003% 0.002% 

LBP 0.073% 0.077% 0 0.007% 0.062% 0.130% 0.003% 0.056% 0.003% 0.002% 
* P_4MSBs (SD_4MSBs), P_8MSBs (SD_8MSBs) and P_12MSBs (SD_12MSBs) refer to the selective Parity-Check (SEC-DED codes) protection
by covering 4MSBs, 8MSBs and 12MSBs, respectively.
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