
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Liu, S., Reviriego, P., Montuschi, P. & Lombardi, F.
(2021). Less-is-Better Protection (LBP) for memory
errors in kNNs classifiers. Future Generation
Computer Systems, vol. 117, pp. 401–411.

DOI: 10.1016/j.future.2020.12.015

© 2020 Elsevier B.V.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.future.2020.12.015

Less-is-Better Protection (LBP) for Memory
Errors in kNNs Classifiers

Shanshan Liu1, Member, IEEE, Pedro Reviriego2, Senior Member, IEEE, Paolo Montuschi3, Fellow,
IEEE and Fabrizio Lombardi1, Fellow, IEEE

1Northeastern University, Dept. of ECE, Boston, MA 02115, USA (email: ssliu@ece.neu.edu, lombardi@ece.neu.edu)
2Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid, Spain (email: revirieg@it.uc3m.es)

3Politecnico di Torino, Dipartimento di Automatica e Informatica, 10129 Torino, Italy (email: paolo.montuschi@polito.it)

Abstract— Classification is used in a wide range of applications to determine the class of a new element; for example, it can be
used to determine whether an object is a pedestrian based on images captured by the safety sensors of a vehicle. Classifiers
are commonly implemented using electronic components and thus, they are subject to errors in memories and combinational
logic. In some cases, classifiers are used in safety critical applications and thus, they must operate reliably. Therefore, there is a
need to protect classifiers against errors. The k Nearest Neighbors (kNNs) classifier is a simple, yet powerful algorithm that is
widely used; its protection against errors in the neighbor computations has been recently studied. This paper considers the
protection of kNNs classifiers against errors in the memory that stores the dataset used to select the neighbors. Initially, the
effects of errors in the most common memory configurations (unprotected, Parity-Check protected and Single Error Correction-
Double Error Detection (SEC-DED) protected) are assessed. The results show that surprisingly, for most datasets, it is better to
leave the memory unprotected than to use error detection codes to discard the element affected by an error in terms of
tolerance. This observation is then leveraged to develop Less-is-Better Protection (LBP), a technique that does not require any
additional parity bits and achieves better error tolerance than Parity-Check for single bit errors (reducing the classification errors
by 59% for the Iris dataset) and SEC-DED codes for double bit errors (reducing the classification errors by 42% for the Iris
dataset).

Index Terms— Classification, memories, error tolerance, k nearest neighbors, error control codes

—————————— u ——————————

1 INTRODUCTION
ACHINE learning (ML) allows computers to extract
patterns from empirical data and learn from these

patterns to perform classification on new data. Learning
is accomplished using labelled data, such that the input
for each element in the training set consists of the features
used for classification and the class of the element. This is
known as supervised learning; in unsupervised learning,
the data is unlabeled and the algorithm has to extract the
patterns from raw data [1].

Supervised classification is used in a wide range of ap-
plications, such as autonomous driving, recommender
systems, and medical diagnosis [2]-[4]. The classifiers are
typically implemented using electronic systems. The la-
belled data or trained model is stored in memory and the
procedure of applying the model is performed by an
arithmetic unit or run in a processor. However, these
components are prone to suffer from errors/faults due to
for example, radiation-induced soft errors in memories
and arithmetic errors in processor or computational units
[5], [6]. This can cause data corruption and thus, it may
affect the classification result. Therefore, protection of
classifiers against errors should be considered to support
reliable operation, especially when applying the classifi-
ers in safety or critical applications, such as disease diag-
nosis, cyber security, land mines detection and finance

[7]-[9].
One of the simplest, yet powerful classification algo-

rithms is k Nearest Neighbors (kNNs) that has been wide-
ly studied in the past decades [10]-[14]. It is also called
instance-based or lazy learning, because only majority
voting is performed among the classes of several instanc-
es (i.e. the kNNs selected in the training set) to predict the
output class of a new element. kNNs can either be utilized
alone to perform a classification task, or with an im-
proved design, or combined with other classification
algorithms [8], [9]. Errors in the memory that stores the
elements of the training set, or in the arithmetic units that
compute the distance from the new element (being classi-
fied) to each stored element to select the nearest neigh-
bors, may have an impact on the kNNs set and thus modi-
fy the classification result. Therefore, when kNNs is used
in safety or critical applications, the results must be relia-
ble in the presence of errors, otherwise they may cause
potential life and property losses.

The implementation of a classifier mainly includes two
parts: i) the arithmetic circuits that perform the calcula-
tion and ii) the memory that stores the dataset or model
information, and thus, error tolerance must be considered
for both. A common solution to provide error tolerance in
arithmetic circuits relies on either spatial, or temporal
redundancy. Spatial redundancy is implemented by repli-
cating the entire circuit or module multiple times; then
data in the copies are used as inputs to a comparison or

M

————————————————
• Manuscript received October 6, 2020, revised December 10, 2020, ac-

cepted December 13, 2020.
• Corresponding author: Shanshan Liu

majority voting unit to detect or correct errors. For exam-
ple, Double Modular Redundancy (DMR, i.e., replicating
the circuit twice) can detect any error in a single module
by comparing the two duplicated inputs, while Triple
Modular Redundancy (TMR, i.e., replicating the circuit
three times) can guarantee a correct output under single
module errors by taking a majority voting among the
triplicated data [15]. The hardware utilization and power
consumption introduced by spatial redundancy depend
on the size of the circuit and for large circuits, the over-
heads are not acceptable for some applications (e.g., bat-
tery powered systems). Reduced Precision Redundancy
(RPR) has been proposed to reduce the overhead by in-
troducing several copies with reduced precision. Howev-
er, an inexact output is obtained for some cases, making
RPR only applicable to those systems that tolerate a lim-
ited range of deviation from the correct result [16], [17].
Instead of performing an operation in several replicated
circuits at the same time, temporal redundancy is imple-
mented by performing the operation several times using
the same circuit. For example, in kNNs protected by a
temporal redundancy technique, distances are computed
twice and results are compared to detect errors. Once an
error is detected, computation is performed for a third
time to obtain the correct data by computing a majority
voting among the three results. However, this still incurs
in significant overhead in terms of power consumption
and execution time. Recently, an algorithm-based error
tolerance (ABET) technique has been proposed to protect
kNNs with a binary classification against arithmetic errors
by exploiting the intrinsic redundancy of the kNNs algo-
rithm [18]. By refining and extending the property of
kNNs that a single error cannot change the classification
result when the neighbors have a voting margin, the ap-
proach is able to avoid re-computation in many cases,
reducing more than 60% of the overhead compared to a
traditional temporal redundancy. This approach is then
extended to voting classifiers, such as kNNs and Random
Forests with multiple classes [19]. The ABET technique
has also been investigated to protect other classifiers
(such as the Support Vector Machine (SVM)) against
computational errors at a lower overhead [20].

In terms of protecting memories against errors, spatial
redundancy can be attractive for protecting only some
critical words, but not for the entire memory because in
this case, the overhead is extremely large due to the repli-
cated memories. An alternative option is to use Error
Control Codes (ECCs, also referred to as Error Correction
Codes) [21], [22]. By adding several memory cells in each
word to store parity bits, as well as an encoder and de-
coder to the entire memory, one or more-bit errors can be
detected or corrected. Generally, the error detection
and/or correction capability is related to the number of
parity bits and the complexity of the encoder/decoder;
the first feature determines the memory overhead, while
the second feature affects the execution time (when im-
plemented in software) and circuit complexity. Therefore,
a small size memory storing only the ML model infor-
mation (e.g., the support vectors in an SVM, or the
weights of the neurons in a Neural Network) can be suffi-

ciently protected by powerful ECCs, however the large
size of a memory storing the entire dataset required by
kNNs is not viable, because the ECC redundancy further
increases the additional storage requirements. This moti-
vates this paper to investigate an error-tolerant technique
to protect the kNNs' memory at a lower overhead, so that
independently whether the kNNs is used alone, or com-
bined with other algorithms in safety/critical applications,
all classifiers can be efficiently protected.

The most commonly used and simplest ECCs for
memories are Parity-Check (that uses a single parity bit to
detect single errors), and Single Error Correction-Double
Error Detection (SEC-DED) codes that are able to correct
single bit errors and detect double bit errors [21]. When
using Parity-Check protected (SEC-DED protected) mem-
ories for kNNs classifiers, single bit errors (double bit
errors) that are the most common error pattern, can only
be detected, but not corrected. In this case, discarding the
element affected by the error from the training set seems
to be beneficial, because the erroneous element will not be
used for classification. In this paper, the effectiveness of
Parity-Check and SEC-DED based protection schemes is
evaluated and a more efficient technique referred to as
Less-is-Better Protection (LBP) is proposed. The signifi-
cant contributions of this paper are as follows:

� The evaluation results show that surprisingly, for
most datasets, the traditional ECC solution is
counterproductive in terms of reducing classifica-
tion errors, i.e., it is better to leave the memory
unprotected than to use Parity-Check; for SEC-
DED, it is better not to discard the element if a
double error is detected.

� The above observation is leveraged to develop the
so-called LBP technique, which does not require
additional parity bits and achieves better error tol-
erance than a Parity-check (SEC-DED) for single
bit errors (double bit errors).

� The proposed LBP also reduces the memory need-
ed compared to the unprotected kNNs, as well as
the impact of errors on the classification results for
datasets with a small number of features.

The remaining part of this paper is organized as fol-
lows. Section 2 covers the background material on the
kNNs algorithm and the impact of errors in its implemen-
tation; the most common error tolerance memory config-
urations (i.e., employing Parity-Check and SEC-DED
codes) are also discussed. In Section 3, the effects of
memory errors in the unprotected, Parity-Check protected,
and SEC-DED protected kNNs are evaluated, and several
observations on such results are discussed; they are then
leveraged to propose the Less-is-Better Protection scheme
in Section 4. Section 5 evaluates the error protection capa-
bilities of the proposed LBP as well as the memory over-
head. Finally, Section 6 concludes the paper.

2 PRELIMINARIES
This section first provides a brief review of kNNs classifi-
ers as well as their implementation. Then, the impact of
memory errors that affect the stored features or the labels

of the kNNs training set on the classification results, is
analyzed; traditional protection schemes for different
error scenarios are also discussed.

2.1 k Nearest Neighbors Classifiers
As introduced previously, k Nearest Neighbors (kNNs) is
one of the simplest, yet powerful classification algorithms.
For classification of a new element, the distance from the
element being classified to other training elements is
computed by using different methods [10], [23]. One
common solution is to compute the Euclidean distance
based on all features of the elements (the values of the
features are normalized to keep the same weight), hence
the set of kNNs can be selected. As introduced previously,
majority voting is executed among the classes of kNNs to
determine the classification result. During the voting
process, a special case occurs when there are equal votes
for multiple classes, leading to a tie. When there are only
two classes, a tie can be broken by selecting an odd value
for k, such that the number of elements with each class
can be simply compared with the threshold (i.e.,

ceil((k+1)/2)) to find the majority. Figure 1 a) illustrates an
example of the kNNs algorithm with two classes, the grey
element is the one being classified and its predicted class
is B, because k=5 and there are two elements with Class A
(yellow elements) and three with Class B (blue elements)
in the 5NNs set.

a) b)

Figure 1 Illustration of the kNNs algorithm with two classes (in a))
and three classes (in b)). The yellow, blue and green elements are
stored with their class. The grey element is the one being classified.
As k = 5, initially the five elements closest to it are identified (shown
by the solid circle). Then a vote is taken among them to determine
the class of the grey element.

When there are multiple classes (i.e., more than two),
voting is more complicated. Once the kNNs are selected,
the number of elements in each class is compared. If there
is only one majority class, then it is used as the final clas-
sification result; if there are two or more classes voted by
the same number of neighbors (i.e., there is a tie), tie-
breaking methods must be utilized to determine the clas-
sification result. A possible solution is to select the class of
the nearest neighbor that belongs to the majority, as illus-
trated in the example shown in Figure 1 b). In Figure 1 b),
the elements have three classes; Classes B and C have the
same largest number (i.e., two) of neighbors in the kNNs
set (i.e., a tie occurs). Therefore, in this case the predicted
class for the grey element is C, because the nearest majori-
ty neighbor belongs to Class C.

The main components of a kNNs implementation in-
clude the labelled elements that are commonly stored in a
memory, as well as the computation of distances and
comparisons to find the nearest neighbors (commonly
executed in a processor). Since memories are prone to
suffer from a number of errors/faults (such as radiation
induced soft errors) and computational units in a proces-
sor suffer from arithmetic errors (both causing data cor-
ruption), the classification result can be affected when
leaving the memory and processor unprotected. For ex-
ample, if an arithmetic error occurs during the distance
computation process, a reduction in the distance from an
element that should not belong to the kNNs set to the new
element being classified, may result in the kth NN being
replaced if its distance to the new element is larger than
the incorrect distance. In this case, the classification result
may be changed if the element that is moved by the error
has a different class from the kth NN. To deal with errors
affecting the computation of distances in kNNs, efficient
algorithm-based error tolerance techniques have been
recently proposed [18], [19]. As for memory errors affect-
ing the value of stored features or labels of kNNs ele-
ments, the impact on classification results and the most
common solutions used in different error scenarios will be
discussed in the next subsection.

2.2 Memory Errors and Protection
The features (normalized) and label of each element in the
kNNs training set are commonly stored in a memory; a
simple organization is illustrated in Figure 2, in which the
value of each feature or label is stored in a single word.
For classification of a new element, the information stored
in the memory is read and used to select the kNNs set.

Memories are prone to suffer from different types of
errors or faults; they can modify the contents of a memory
word, causing data corruption. For example, radiation
induced soft errors are one of the reliability challenges in
memories and can corrupt a stored bit from a logic "1" to

Class A
Class B

k=5

Class B
Class C k=5

Class A

Figure 2 An unprotected memory storing kNNs elements.

Feature 1
Feature 2

Feature f
Element 2

Label
Feature 1
Feature 2

Feature f
Element 3

Label

Feature 1
Feature 2

Feature f
Element E

Label

Feature 1
Feature 2

Feature f

16-bit data (unprotected)

Element 1

Label

"0" (or vice versa). These errors can affect multiple cells,
but the most common error patterns are the single bit
error (SE) and the double adjacent bit error (DAE) [24],
while double random bit errors (DREs) can also happen
due to error accumulation. In a memory that stores fea-
tures and labels of the kNNs elements, errors that occur
on a feature word (label word), can affect the set of near-
est neighbors (the class of a neighbor), possibly modify-
ing the classification result. Therefore, even though the
errors are rare (e.g., a radiation-induced error may take
105 days to occur in a 64K memory [25], and the rate may
increase proportionally for a large memory), they cannot
be ignored, especially in safety or critical applications in
which reliable operation is required.

Error correction codes (ECCs) are widely used to pro-
tect memories against errors. By introducing some re-
dundant cells in each memory word for storing the parity
bits (computed during the encoding process of the ECCs),
errors can be detected or corrected during the decoding
process. The most commonly used solution to detect SEs
is a single bit Parity-Check; to correct SEs and detect
DAEs and DREs, Single Error Correction-Double Error
Detection (SEC-DED) codes are utilized.

Parity-Check: A single parity bit that covers all data
bits, can efficiently detect SEs on any bit (including the
parity bit itself). There are two types of Parity-Check:
even Parity-Check and odd Parity-Check. When using an
even Parity-Check, in the encoding process (which is
performed prior to the write operation), for each word, a
xor operation is computed on all data bits first to obtain
the parity bit; then it is stored with the data bits in the
word. In the decoding process (which is performed after
the read operation), a syndrome is calculated by perform-
ing a xor operation on all stored data bits and the parity
bit, then it is used for error detection. For an odd Parity-
Check, the implementation is similar; only an extra not
operation is implemented following the xor gate in both
the encoder and decoder. Therefore, in this paper, we
consider utilizing the even Parity-Check.

A syndrome with a value of zero indicates that the
word is error-free, while a syndrome with a value of one
indicates that there is an error. A single bit Parity-Check
can only detect SEs, because a DAE or DRE will lead to a
syndrome with a value of zero, which is the same as that
in the error-free case. For kNNs protected by a single bit
Parity-Check, if an SE occurs on the feature word or label
word of an element, it can be detected and the corrupted
element will be discarded due to the impossibility to re-
construct the correct value, so it is not used as a candidate
for nearest neighbor.

SEC-DED codes: Single Error Correction-Double Error
Detection codes ensure that codewords have a minimum
distance of four, so that single bit errors can be corrected,
and double bit errors detected. SEC-DED codes need r
parity bits to protect up to 2r-1-r data bits [21]. For example,
six parity bits are needed (i.e., r=6) to perform SEC-DED
on a 16-bit data.

In the encoding process of SEC-DED codes, the data
bits are multiplied by the Generating Matrix G (associat-
ed to the codes) to obtain the r parity bits, which are then

stored with the data bits in each word. Figure 3 illustrates
an example of protecting a memory that uses 16 bits to
store features and labels of kNNs elements with six SEC-
DED parity bits per word.

In the decoding process, an r-bit syndrome is comput-
ed by multiplying the codeword (which includes all data
and parity bits) with the Parity Check Matrix H (also
associated to the code and commonly constructed by
ensuring that the columns have an odd weight [21]). If the
syndrome bits are all zeros, the codeword is error-free;
when decoding is completed, the data bits are simply
provided as output. If the syndrome bits have an odd
number of ones, a single bit error is detected; the error
pattern can be determined by comparing the syndrome
with each column of the matrix H. In this case, a xor oper-
ation is performed on the codeword with the error pattern
to obtain the corrected data. If the syndrome bits have an
even number of ones, a double bit error is detected. In this
case, the data bits will be output immediately, but an
error detection flag is activated to indicate that the output
is incorrect. Therefore, when using SEC-DED codes to
protect kNNs, an element with an error detection flag will
be discarded and not used as a candidate for nearest
neighbor, because a double error has been detected, but
not corrected.

3 EVALUATION OF MEMORY ERRORS IN KNNS
The impact of errors in the memory that stores the ele-
ments, on the classification result depends on the type of
error and the memory configuration. To cover the most
relevant scenarios, three memory configurations are as-
sessed: unprotected, Parity-Check protected and SEC-
DED protected. As discussed in the previous section,
these configurations correspond to the most frequently
used memory configurations. As for errors, single bit
errors (SEs), double adjacent bit errors (DAEs) and double
random bit errors (DREs) are considered. Matlab is uti-

Figure 3 A memory storing kNNs elements protected by a (22,16)
SEC-DED code.

Feature 1
Feature 2

Feature f
Element 2

Label
Feature 1
Feature 2

Feature f
Element 3

Label

Feature 1
Feature 2

Feature f
Element E

Label

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

Feature 1
Feature 2

Feature f

16-bit data

Element 1

Label

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

P5 P4 P3 P2 P1 P0

6-bit SEC-DED parity

lized as simulation tool in this section.

3.1 Datasets
To assess the impact of memory errors on kNNs classifica-
tion, ten widely used datasets from a public repository [26]
are selected; they are described in Table 1. These datasets
cover a wide range of applications, number of elements,
and have different numbers of features and classes. In all
cases, a simple and often used criterion is used to evalu-
ate the classification performance, i.e., 70% of the dataset
elements have been used for training, while the remain-
ing 30% of the data is left for testing (note that a different
split ratio may result in a slight different classification
accuracy but it has no impact on the trend of the results
evaluated for the work of this paper). The 70% training
set is split into 10 blocks of equal size to run the well-
known 10-fold cross-validation methodology [32] for the
selection of the algorithm’s hyperparameters, i.e., the
optimal number of neighbors k. The top accuracy corre-
sponding to the optimal k for each dataset is then ob-
tained and also given in Table 1. The datasets are stored in

a memory using 16 bits for each feature (the most signifi-
cant bit is for the sign) and the label. The protection (Pari-
ty-Check or SEC-DED) is implemented per feature or
label.

3.2 Error Injection
The impact of errors on the classification result is evaluat-
ed by using Matlab as per the following process. First an
element is randomly selected with a uniform distribution
and then an error (SE, DAE or DRE) is randomly injected
on the stored features or label of this element (by upset-
ting the stored value of the selected bit/bits from “1” to
“0” or vice versa). Once the error has been inserted, classi-
fication is performed for all elements in the testing set and
the differences in the results versus the error-free classifi-
cation are logged. Finally, the error is removed, and the
procedure starts again. Since it has been found that the
results for 10,000 trials were consistent with those with
100,000 trials, the process has been repeated by injecting
10,000 times for each of the three memory configurations
(i.e., unprotected, Parity-Check protected and SEC-DED

TABLE 1
Description of the Different Datasets

Dataset Application # Elements # Features # Classes
Using kNNs

Optimal k Top accuracy
Pima Indians diabetes Medicine 768 8 2 19 76.52%

Sonar [27] Physics 208 60 2 3 85.48%
Banknote authentication Business 1372 4 2 7 100.00%
Phishing websites [28] Computer 2456 30 2 5 92.81%

Iris Botany 150 4 3 5 93.95%
Forest type mapping [29] Ecology 325 27 4 9 80.59%

Mice protein expression [30] Biology 1080 80 8 3 98.78%
CNAE-9 Finance 1080 856 9 7 83.70%

Cervical cancer [31] Medicine 858 36 2 5 92.25%
Nursery Sociology 12960 8 5 17 96.19%

TABLE 2
Percentage of Single Bit Errors (SEs) that Modify the Classification Result in the Unprotected kNNs

Error
position

Pima
Indian

diabetes
Sonar

Banknote
auth-

entication
Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-

9
Cervical
cancer Nursery

Feature

15 0.065% 0.078% 0 0.008% 0.110% 0.130% 0.009% 0 0 0.002%
14 0.110% 0.082% 0 0.007% 0.090% 0.280% 0.009% 0.100% 0.005% 0.003%
13 0.097% 0.081% 0 0.007% 0.040% 0.280% 0.006% 0.080% 0.005% 0.003%
12 0.097% 0.081% 0 0.007% 0.040% 0.280% 0.006% 0.080% 0.005% 0.003%
11 0.096% 0.070% 0 0.007% 0.040% 0.240% 0.003% 0.070% 0.005% 0.003%
10 0.091% 0.065% 0 0.005% 0.040% 0.120% 0.003% 0.070% 0.004% 0.003%
9 0.078% 0.065% 0 0.005% 0.020% 0.120% 0.003% 0.070% 0.004% 0.002%
8 0.069% 0.065% 0 0.005% 0.020% 0.120% 0.003% 0.070% 0.002% 0.002%
7 0.065% 0.061% 0 0.005% 0.020% 0.090% 0.003% 0.068% 0.002% 0.001%
6 0.016% 0.048% 0 0 0.020% 0.050% 0.003% 0.056% 0.001% 0.001%
5 0 0.004% 0 0 0.020% 0.031% 0 0.052% 0 0.001%
4 0 0.004% 0 0 0 0 0 0.040% 0 0
3 0 0 0 0 0 0 0 0.024% 0 0
2 0 0 0 0 0 0 0 0.020% 0 0
1 0 0 0 0 0 0 0 0.015% 0 0
0 0 0 0 0 0 0 0 0.012% 0 0

Ave. 0.049% 0.044% 0 0.004% 0.029% 0.109% 0.003% 0.052% 0.002% 0.002%
Label 0.225% 0.283% 0 0.015% 0.180% 0.193% 0.004% 0.060% 0.020% 0.003%

protected); the average results are presented next.

3.3 Single Bit Errors
The results for single bit errors in the unprotected
memory configuration are presented in Table 2 for the
values of feature and label words. In Table 2, errors in the

label word have a significant impact, typically larger than
the impact of an error on a feature. The impact of errors
on each bit of a feature is also evaluated; for each dataset,
the results are normalized by the largest value to clearly
show the impact of each feature bit. This is shown in Fig-
ure 4; the most significant bits (MSBs, bit 15 is the MSB)
tend to have a larger impact than the least significant bits
(LSBs). Therefore, the label and MSBs of the features seem
to be the most critical parts.

Consider the protected memory configurations; obvi-
ously, for SEC-DED protection, single errors are corrected
and have no effect on the classification outcome. For Pari-
ty-Check protection, the error is detected, and the element
is not used as a candidate for nearest neighbor. This pre-
vents the error from causing an element to be one of the
kNNs; however, the element in error is no longer used,
which may also reduce the classification accuracy. The
results for all three memory configurations are summa-
rized in Table 3 (where U stands for the unprotected
scheme, P stands for the Parity-Check protection scheme).
As per Table 3, for all datasets considered, the unprotect-
ed configuration has a percentage of errors that modify
the classification results lower than the Parity-Check pro-
tected memory. Therefore, surprisingly leaving the
memory unprotected is better than using Parity-Check
protection in terms of error tolerance.

3.4 Double Bit Errors
For the case of double errors, two patterns are considered:
adjacent bit error and random bit errors. Double adjacent

TABLE 4
Percentage of Double Adjacent Bit Errors (DAEs) that Modify the Classification Result in the Unprotected kNNs

Error
position

Pima
Indian

diabetes
Sonar

Banknote
auth-

entication
Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-

9
Cervical
cancer Nursery

Feature

15&14 0.089% 0.130% 0 0.009% 0.110% 0.220% 0.009% 0.080% 0.001% 0.003%
14&13 0.110% 0.160% 0 0.009% 0.096% 0.250% 0.009% 0.096% 0.005% 0.003%
13&12 0.099% 0.140% 0 0.009% 0.071% 0.230% 0.007% 0.096% 0.005% 0.003%
12&11 0.099% 0.140% 0 0.009% 0.067% 0.220% 0.007% 0.096% 0.005% 0.003%
11&10 0.099% 0.120% 0 0.009% 0.067% 0.220% 0.006% 0.091% 0.005% 0.003%
10&9 0.098% 0.120% 0 0.009% 0.067% 0.220% 0.006% 0.076% 0.005% 0.003%
9&8 0.098% 0.100% 0 0.009% 0.064% 0.210% 0.004% 0.076% 0.004% 0.003%
8&7 0.082% 0.100% 0 0.008% 0.064% 0.210% 0.004% 0.076% 0.003% 0.003%
7&6 0.077% 0.083% 0 0.005% 0.058% 0.110% 0.003% 0.071% 0.003% 0.003%
6&5 0.027% 0.019% 0 0.001% 0.056% 0.029% 0 0.050% 0.001% 0.001%
5&4 0.011% 0.013% 0 0.001% 0.049% 0.014% 0 0.042% 0 0.001%
4&3 0.007% 0.011% 0 0.001% 0.016% 0.003% 0 0.038% 0 0
3&2 0 0.006% 0 0.001% 0.016% 0 0 0.033% 0 0
2&1 0 0.003% 0 0.001% 0 0 0 0.032% 0 0
1&0 0 0 0 0 0 0 0 0.030% 0 0
Ave. 0.060% 0.076% 0 0.006% 0.053% 0.129% 0.004% 0.066% 0.002% 0.002%

Label 0.225% 0.283% 0 0.015% 0.187% 0.228% 0.006% 0.072% 0.020% 0.003%

Figure 4 Normalized percentage of SEs that Modify the Classifica-
tion Result in the Unprotected kNNs.

TABLE 3
Percentage of Single Bit Errors (SEs) that Modify the Classification Result in Different Schemes

Scheme
Pima

Indian
diabetes

Sonar
Banknote

auth-
entication

Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-9 Cervical

cancer Nursery

U 0.069% 0.048% 0 0.004% 0.059% 0.112% 0.003% 0.052% 0.002% 0.002%
P 0.097% 0.116% 0 0.011% 0.070% 0.223% 0.006% 0.075% 0.004% 0.003%

SEC-DED 0 0 0 0 0 0 0 0 0 0

bit errors (DAEs) can be caused by radiation induced
Multiple Cell Upsets (MCUs) that affect nearby cells,
while double random bit errors (DREs) can be due to
error accumulation. The results for DAEs in an unprotect-
ed memory configuration are shown in Table 4 and the
normalized results for each feature bits are plotted in
Figure 5; again, errors on the MSBs of the features and on
the label of each element are the ones that have a larger
impact on the classification result. Compared with SEs,
the impact tends to be slightly larger.

The results for the three memory configurations when
they suffer DAEs are presented in Table 5. In this case the
unprotected and Parity-Check protected memories have

almost the same results. This occurs because a parity bit
cannot detect double errors and thus, the elements are
used for the classification even if they have an error. The
only difference is that for a Parity-Check protected
memory, the DAE can also affect the parity bit. Instead,
the SEC-DED protection can only detect the DAE and
remove the element from consideration as one of the
kNNs. As per Table 5, SEC-DED protection is worse than
no protection for DAEs in all datasets evaluated. There-
fore, again less protection is better.

The results for double random bits errors (DREs) in an
unprotected memory are presented in Table 6; again, er-
rors on the labels have the largest impact. Finally, the
impact on the classification results for DREs is summa-
rized in Table 7. In all datasets, no protection is better
than using SEC-DED; moreover, it is better to use SEC
protection than SEC-DED protection because DED in-
creases the percentage of errors that modify the classifica-
tion result. This is interesting because SEC codes require
one parity bit less than SEC-DED codes [21].

As for the experiments considered in subsections 3.3
and 3.4, the results show that under single bit errors, the
unprotected memory configuration is better than using
Parity-Check protection for all datasets considered; under
double bit errors, the use of erroneous elements is in most
cases better than just discarding them. These results are of
a significant practical interest for designers; they are ex-
plained by using several observations and exploited to
propose an efficient protection technique in the next sec-
tion.

4 LESS-IS-BETTER PROTECTION (LBP)
From the previous section, the utilization of ECCs to pro-
tect the memory of kNNs classifiers can be counterpro-
ductive; this is based on the following observations.

Observation 1: Errors on the MSBs of a feature tend to

Figure 5 Normalized percentage of DAEs that Modify the Classifica-
tion Result in the Unprotected kNNs.

TABLE 5
Percentage of Double Adjacent Bit Errors (DAEs) that Modify the Classification Result in Different Schemes

Scheme
Pima

Indian
diabetes

Sonar
Banknote

auth-
entication

Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-9 Cervical

cancer Nursery

U 0.078% 0.079% 0 0.006% 0.080% 0.133% 0.004% 0.066% 0.002% 0.002%
P 0.080% 0.080% 0 0.006% 0.084% 0.132% 0.004% 0.070% 0.002% 0.002%

SEC-DED 0.125% 0.150% 0 0.014% 0.091% 0.289% 0.008% 0.098% 0.006% 0.004%

TABLE 6
Percentage of Double Random Bit Errors (DREs) that Modify the Classification Result in the Unprotected kNNs

Error
position

Pima
Indian

diabetes
Sonar

Banknote
auth-

entication
Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-9 Cervical

cancer Nursery

Feature 0.073% 0.077% 0 0.007% 0.062% 0.130% 0.003% 0.056% 0.003% 0.002%
Label 0.225% 0.283% 0 0.015% 0.187% 0.230% 0.003% 0.067% 0.020% 0.003%

TABLE 7
Percentage of Double Random Bit Errors (DREs) that Modify the Classification Result in Different Schemes

Scheme
Pima

Indian
diabetes

Sonar
Banknote

auth-
entication

Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-9 Cervical

cancer Nursery

U 0.090% 0.080% 0 0.007% 0.087% 0.134% 0.003% 0.056% 0.003% 0.002%
P 0.092% 0.082% 0 0.009% 0.084% 0.139% 0.003% 0.060% 0.003% 0.002%

SEC-DED 0.125% 0.150% 0 0.014% 0.091% 0.289% 0.008% 0.098% 0.006% 0.004%

move an element and then changing the kNNs set, but
errors on the LSBs do not.

Observation 2: Errors on the label modify the class of
an element and tend to have a larger impact on the classi-
fication result than errors in a feature, because changing
the class can be considered as moving the element. This is
also the case under ECCs protection.

Observation 3: For ECCs protection, when an element
is discarded due to error detection, the impact on the
classification result is the same as moving an element, so
it is usually larger than for errors on a feature, because
errors on LSBs have an extremely small probability (in
few cases a zero probability) to move an element (as per
Observation 1).

Observation 4: The number of feature words is always
greater than the label words; so, in the unprotected im-
plementation, the errors on features account for a larger
proportion.

Observation 5: For ECCs protection, memory size is
larger due to the additional cells that store the parity bits,
so the probability of suffering from errors is increased
because errors can occur also on the parity bits.

Let PU be the probability of an incorrect classification
result caused by a single bit error that affects an element
stored in an unprotected memory; this is given by:

𝑃! =
"
"#$

∙ 𝑝" +
$

"#$
∙ 𝑝$ (1)

where f (c) is the number of feature (label) words for each
element, and f is always much larger than c (i.e., the first
term of Eq. (1) accounts for a significant proportion). pf (pc)
is the probability of an incorrect classification result
caused by an error on the feature (label) of the affected
element in the unprotected configuration and pc > pf (as
Observation 2).

The probability of an incorrect classification result
caused by an error that affects the same element but
stored in the ECCs protected memory PECCs is given by

𝑃%&&' = 𝑝((2)

where pd is the probability of an incorrect classification
result caused by discarding an element in the ECCs pro-
tected configuration; as per Observation 3, pd > pf.

Therefore, the impact of an error affecting the same el-
ement in the unprotected and ECCs protected configura-
tions on the classification result can be compared by com-
bining Eqs. (1) and (2) as following.

𝑅𝑎𝑡𝑖𝑜 =)!
$*+"∙)"##

=
$
$%&∙-$#

&
$%&∙-&

$*+"∙-'
(3)

where coef is the increase of error occurrence probability
introduced by the extra memory cells for parity bits; it is
equal to the ratio between the ECCs protected memory
size and the unprotected memory size, so coef > 1.

Therefore, as pd > pf , coef > 1 and the second term in the
numerator is small (f >> c), the value of Eq. (3) will In
most cases be smaller than 1. This means that the impact
of an error in the unprotected memory is rather small.
Therefore, as per Observations 1 to 5 and the above dis-
cussion, ECCs protections that detect and discard errone-

ous elements, tend to be worse than no protection. How-
ever, Observation 2 suggests that the protection of the
labels may reduce the impact of errors. By combining
both these observations, a new scheme referred to as the
Less-is-Better Protection (LBP) scheme, is proposed. This
scheme protects the labels without adding any parity bit
and leaves the features unprotected.

An interesting property of kNNs classifiers is that the
elements in the training set can be stored in any order.
This is like Content Addressable Memories (CAMs) in
which the order of the elements stored can be exploited so
that the addresses correspond to the parity bits [33].
However, for the memory used to store the kNNs ele-
ments, this only helps the protection of one feature or the
label, because they are stored in different words.

An alternative option is to exploit the order to place el-
ements that belong to the same class consecutively as
illustrated in Figure 6. There is no need to store the labels
on the elements; for a classifier with nc classes, only nc-1
pointers are required to mark the ranges that correspond
to the different classes (Figure 6). Then, as elements are
read to compute the distances, the pointers can be used to
determine the class they belong to. Therefore, there can-
not be errors on the labels, because they are not stored in
memory. Errors can only affect the pointers, but since the
number of pointers is small, they can be simply triplicat-
ed (i.e. employing TMR) to ensure a correct result. Com-
bined with Observation 2 discussed previously, the im-
pact of errors on the classification results can be reduced,
unless the number of features is extremely large (as per
Observation 4).

Figure 6 A memory storing kNNs elements protected by the pro-
posed LBP scheme.

Feature 1
Feature 2

Feature f

16-bit data

Element 1

Feature 1
Feature 2

Feature f

Element i

Feature 1
Feature 2

Feature f

Element j

With 1st Class

With 2nd Class

Points to Element k

Feature 1
Feature 2

Feature f

Element k

Feature 1
Feature 2

Feature f

Element m

With nc
th Class

Points to Element i

Points to Element j

With 3rd Class

Class Pointer 1
Class Pointer 1

Class Pointer nc-1

Class Pointer 2
Class Pointer 1TMR for

Class Pointer

In the proposed Less-is-Better scheme, "Less" refers to
two aspects.

• ECCs protection to detect and discard erroneous
elements on kNNs memory is counterproductive
in terms of reducing classification errors, so no
protection is better.

• A memory with no stored label is better, because it
is the part that has a larger impact on the classifi-
cation results.

Therefore, compared to ECCs protected or unprotected
implementation, the LBP scheme reduces the cost to
achieve a better protection, so counterintuitive; thus, it is
denoted as Less-is-Better. Additionally, LBP can be used
in systems in which the underlying memory is unprotect-
ed, because no additional parity bits are needed. There-
fore, LBP is an attractive option to protect the memory of
kNNs classifiers.

5 EVALUATION
The proposed LBP scheme has been evaluated and com-
pared to both Parity-Check protection and SEC-DED
protection; all schemes have been assessed in terms of
error protection as well as the memory required for im-
plementation. The results are summarized in the next
subsections. In all cases, the same datasets of Section 3 are
used for the evaluation.

5.1 Error Protection
To assess the impact of errors on LBP-protected kNNs

classifiers, errors have been injected in features and labels
following the same procedure used in Section 3. The re-
sults are summarized in Table 8 that also provides for
comparison purposes the values for the other techniques
(including the unprotected, Parity-Check protected and
SEC-DED protected kNNs classifiers). This table shows
the percentage of errors that modify the classification
result and in parenthesis, the value relative to the unpro-
tected implementation (considered as the baseline 1x). For
example, a value of (1.406x) means that the corresponding
technique has a percentage of errors that modify the clas-
sification result that is 1.406x times of an unprotected
implementation. Therefore, values lower than 1x mean
that the technique can reduce the impact of errors, while
values larger than 1x mean that the technique is worse
than an unprotected implementation.

As per Table 8, LBP achieves better protection than Par-
ity-Check for SEs. LBP is also able to reduce the impact of
errors compared to an unprotected implementation for
some datasets with a small number of features. For exam-
ple, for the Iris dataset, the percentage of errors that mod-
ify the classification result, is reduced to 0.492x (i.e., re-
ducing 59% the error rate compared to Parity-Check pro-
tection with 1.186x). This occurs because the LBP scheme
protects against errors in the labels, which typically have
the largest impact on the classification results (as per
Observation 2 in Section 4). The impact is reduced signifi-
cantly for the Iris dataset because it has a small number of
features (i.e., four as per Table 1), then errors on labels

TABLE 8
 Percentage of Different Type of Errors that Modify the Classification Result in the Unprotected kNNs and Different Protection Schemes

(Relative Results of Protection Schemes to the Unprotected kNNs are Also Given in the Parenthesis)

Scheme
Pima

Indian
diabetes

Sonar
Banknote

auth-
entication

Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-9 Cervical

cancer Nursery

SEs

U
0.069% 0.048% 0 0.004% 0.059% 0.112% 0.003% 0.052% 0.002% 0.002%

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x)

P
0.097% 0.116% 0 0.011% 0.070% 0.223% 0.006% 0.075% 0.004% 0.003%
(1.406x) (2.417x) (1x) (2.750x) (1.186x) (1.991x) (2x) (1.442x) (2x) (1.5x)

SEC-
DED

0 0 0 0 0 0 0 0 0 0
(0x) (0x) (0x) (0x) (0x) (0x) (0x) (0x) (0x) (0x)

LBP
0.049% 0.044% 0 0.004% 0.029% 0.109% 0.003% 0.052% 0.002% 0.002%
(0.710x) (0.917x) (1x) (1x) (0.492x) (0.973x) (1x) (1x) (1x) (1x)

DAEs

U
0.078% 0.079% 0 0.006% 0.080% 0.133% 0.004% 0.066% 0.002% 0.002%

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x)

P
0.080% 0.080% 0 0.006% 0.084% 0.132% 0.004% 0.070% 0.002% 0.002%
(1.026x) (1.013x) (1x) (1x) (1.050x) (0.993x) (1x) (1.061x) (1x) (1x)

SEC-
DED

0.125% 0.150% 0 0.014% 0.091% 0.289% 0.008% 0.098% 0.006% 0.004%
(1.603x) (1.899x) (1x) (2.333x) (1.138x) (2.173x) (2x) (1.485x) (3x) (2x)

LBP
0.060% 0.076% 0 0.006% 0.053% 0.129% 0.004% 0.066% 0.002% 0.002%
(0.769x) (1x) (1x) (1x) (0.663x) (0.970x) (1x) (1x) (1x) (1x)

DREs

U
0.090% 0.080% 0 0.007% 0.087% 0.134% 0.003% 0.056% 0.003% 0.002%

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x)

P
0.092% 0.082% 0 0.009% 0.084% 0.139% 0.003% 0.060% 0.003% 0.002%
(1.022x) (1.025x) (1x) (1.286x) (0.966x) (1.037x) (1x) (1.071x) (1x) (1x)

SEC-
DED

0.125% 0.150% 0 0.014% 0.091% 0.289% 0.008% 0.098% 0.006% 0.004%
(1.389x) (1.875x) (1x) (2x) (1.046x) (2.157x) (2.667x) (1.750x) (3x) (2x)

LBP
0.073% 0.077% 0 0.007% 0.062% 0.130% 0.003% 0.056% 0.003% 0.002%
(0.811x) (0.963x) (1x) (1x) (0.713x) (0.970x) (1x) (1x) (1x) (1x)

also account for an important part (as per Observation 4
in Section 4). For DAEs and DREs, LBP provides better
protection than Parity-Check and SEC-DED and reduces
the percentage of errors that modify the classification
results for some datasets in the unprotected case. Again,
the Iris dataset is the one for which LBP has the largest
benefit with a classification error rate of 0.663x and 0.713x
of an unprotected implementation for DAEs and DREs
respectively (i.e., reducing 39% for DAEs and 26% for
DREs compared to Parity-Check protection, and 42% and
32% for SEC-DED protection).

These results show that LBP can improve protection
against SEs compared to Parity-Check protected and un-
protected kNNs classifiers, and it is also better than SEC-
DED for DAEs and DREs.

5.2 Memory Overhead
In most cases, the encoder and decoder circuits of Parity-
Check and SEC-DED based protection schemes are small
compared to the additional memory, i.e. the hardware
overhead is mostly due to the additional memory. Let the
training set of a dataset used to select the kNNs have E
elements and nc classes; each element has f features, and
the memory consists of w-bit words. In this subsection,
the memory overhead in terms of total number of
memory cells required for each protection scheme is eval-
uated and compared.

Consider an unprotected kNNs; as per the memory or-
ganization shown in Figure 2, the total number of
memory cells is given by:

𝑁! = 𝐸 ∙ (𝑓 + 𝑐) ∙ 𝑤 (4)

where c is the number of words that store the label of each
element (c=1 for the datasets considered in this paper,
because there are at most 11 classes).

When using a Parity-Check to protect the kNNs
memory against single errors, an additional data bit is
required in each word to store the parity bit. Therefore,
the total number of memory cells needed for the Parity-
Check protected kNNs is given by:

𝑁) = 𝐸 ∙ (𝑓 + 𝑐) ∙ (𝑤 + 1) (5)

When SEC-DED codes are used to protect the kNNs
memory against double errors, r parity bits (as discussed
in Section 2.2) are needed to be stored with the data bits
in each memory word. Therefore, in this case, the re-

quired number of memory cells is given by:

𝑁.%&/0%0 = 𝐸 ∙ (𝑓 + 𝑐) ∙ (𝑤 + 𝑟) (6)

In the proposed LBP scheme, labels of the elements do
not need to be stored in the memory; nc-1 class pointers
that mark each range of classes are required instead.
Moreover, to provide error tolerance for the pointers,
TMR can be implemented to deal with any error in one
pointer; hence 3(nc-1) words are needed for the entire
memory in the LBP scheme. Therefore, the total number
of memory cells is given by:

𝑁12) = 𝐸 ∙ 𝑓 ∙ 𝑤 + 3(𝑛$ − 1) ∙ 𝑤 (7)

Since the number of elements is significantly larger
than the number of their classes (i.e., E>>nc), the first term
of Eq. (7) is dominant. Therefore, compared to the Parity-
Check and SEC-DED based protection schemes, the pro-
posed LBP scheme incurs in a lower memory overhead;
this is also the case when compared to the unprotected
kNNs.

For all datasets considered in this paper, the number of
memory cells needed in the different schemes are shown
and compared in Table 9 (for w=16 as example, and thus
r=6). The proposed LBP can reduce up to 20% the
memory overhead of an unprotected kNNs, 25% of the
Parity-Check protected kNNs, and 42% of the SEC-DED
protected kNNs.

5.3 Comparison to Selective ECCs Protection
Since discarding the incorrect element tends to have a
larger impact on the classification result than leaving it in
the dataset due to LSBs of features having a negligible
effect as discussed previously, it is interesting to also
evaluate the error tolerance capability of selective ECCs
solutions that only cover several MSBs.

Table 10 presents the percentage of errors that modify
the classification results by using ECCs against errors
(Parity-Check against SEs and SEC-DED codes against
DAEs and DREs) in different solutions: ECCs that protect
features only covering the 4MSBs, 8MSBs and 12MSBs of
each word. Results in Table 10 show that the percentage
of SEs and DAEs that modify the classification results
increases with more MSBs covered by ECCs, because the
impact is low on LSBs as discussed previously. The situa-
tion for DREs is more complex. There are three cases un-
der DREs, including: i) both the double errors occur on

TABLE 9
Memory Required for an Unprotected kNNs and Different Protection Schemes

(Relative Results of Protection Schemes to the Unprotected kNNs are Also Given in Parenthesis)

Scheme
Pima

Indian
diabetes

Sonar
Banknote

auth-
entication

Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-9 Cervical

cancer Nursery

U
110592 203008 109760 1218176 12000 145600 1399680 14808960 507936 1866240

(1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x) (1x)

P
117504 215696 116620 1294312 12750 154700 1487160 15734520 539682 1982880
(1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x) (1.063x)

SEC-DED
152064 279136 150920 1674992 16500 200200 1924560 20362320 698412 2566080
(1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x) (1.375x)

LBP
98352 199728 87856 1178928 9696 140544 1382736 14792064 494256 1659072

(0.889x) (0.984x) (0.800x) (0.968x) (0.808x) (0.965x) (0.988x) (0.999x) (0.973x) (0.889x)

the protected MSBs, so the incorrect element is discarded,
causing a large impact on the classification results; ii) one
error affects one protected MSBs (which will be corrected
by using the SEC-DED codes) and the other affects one
unprotected LSB, causing a small impact on the results; iii)
both bit errors occur on the unprotected LSBs, causing
also a small impact. Therefore, the selective protection
with 12 MSBs covered tends to have a large impact due to
the dominance of case i). For the solution with 8MSBs (in
which all of the three cases occur with an equal probabil-
ity) and with 4MSBs covered (in which case iii) is domi-
nant but some unprotected upper LSBs still have a large
impact), the results depend on different datasets thus the
trend is not clear. However, as shown in Table 10, the
proposed LBP scheme still provides a higher error toler-
ance capability. Additionally, since no parity bits are in-
troduced and label words are saved in the LBP scheme, it
also achieves lower memory overhead.

6 CONCLUSION
Machine learning (ML) has been widely used to perform
classification tasks. The components of a ML implementa-
tion are prone to suffer from errors that may change the
classification results. Therefore, efficient error-tolerant
techniques must be employed, especially when the classi-
fiers are used in safety or critical applications, otherwise
errors may potentially cause life/property loss. In this
paper, the impacts of errors on the memory of kNNs clas-
sifiers have been considered. Initially, errors have been
injected to evaluate their effects on the classification re-
sults when using an unprotected, a Parity-Check protect-
ed and an SEC-DED protected memory that stores kNNs
elements. The results have shown that for single bit errors,
it is better to leave the memory unprotected than to use
Parity-Check protection and discard the erroneous ele-
ment. The same occurs for double adjacent and double
random bit errors in SEC-DED protection; it is better not

to use double error detection and discard erroneous ele-
ments. This is an interesting result, because the provision
of protection to detect errors is counterproductive. There-
fore, Less-is-Better Protection (LBP) has been proposed
based on observations obtained from such evaluation.
LBP leaves the memory unprotected except for the label
that is stored implicitly by storing elements of the same
class consecutively and using pointers to identify the
classes.

The proposed LBP scheme has been evaluated and
compared to both Parity-Check protection and SEC-DED
protection. The results have shown that LBP outperforms
Parity-Check protection (SEC-DED protection) in terms of
protection against single bit errors (double bit errors)
using no parity bit (e.g., reducing 59% of single bit errors
that modify the classification results for the Iris dataset,
while saving 24% of the memory compared to Parity-
Check protection, and 42% of the impact of double bit
errors while 41% of the memory compared to SEC-DED
protection). This is also applicable to a comparison with
an unprotected implementation because no labels are
stored.

Overall, LBP achieves better protection than traditional
techniques, while reducing the memory overhead. It also
reduces some memory requirements compared to the
unprotected scheme. Moreover, LBP does not need any
change to the underlying memory and thus, it can be
used in systems that use unprotected memories. These
advantages make the LBP a very efficient scheme to pro-
tect the memory of kNNs and make kNNs more attractive,
because it reduces the original memory requirements.

ACKNOWLEDGMENT
S. Liu and F. Lombardi would like to acknowledge the
support of NSF grants CCF-1953961 and 1812467, and P.
Reviriego would like to acknowledge the support of the
ACHILLES project PID2019-104207RB-I00 and the

TABLE 10
Percentage of Different Type of Errors that Modify the Classification Result in the Selective ECCs Protection Scheme

Schemes*
Pima

Indian
diabetes

Sonar
Banknote

auth-
entication

Phishing
websites Iris

Forest
type

mapping

Mice
protein

expression
CANE-

9
Cervical
cancer Nursery

SEs

P_4MSBs 0.055% 0.054% 0 0.005% 0.037% 0.109% 0.003% 0.054% 0.002% 0.002%
P_8MSBs 0.058% 0.066% 0 0.006% 0.045% 0.126% 0.003% 0.055% 0.002% 0.002%

P_12MSBs 0.075% 0.087% 0 0.008% 0.056% 0.169% 0.005% 0.061% 0.003% 0.002%
U 0.069% 0.048% 0 0.004% 0.059% 0.112% 0.003% 0.052% 0.002% 0.002%

LBP 0.049% 0.044% 0 0.004% 0.029% 0.109% 0.003% 0.052% 0.002% 0.002%

DAEs

SD_4MSBs 0.073% 0.080% 0 0.007% 0.062% 0.150% 0.004% 0.067% 0.003% 0.002%
SD_8MSBs 0.080% 0.090% 0 0.008% 0.067% 0.169% 0.005% 0.072% 0.004% 0.003%

SD_12MSBs 0.103% 0.121% 0 0.011% 0.077% 0.233% 0.006% 0.085% 0.005% 0.003%
U 0.078% 0.079% 0 0.006% 0.080% 0.133% 0.004% 0.066% 0.002% 0.002%

LBP 0.060% 0.076% 0 0.006% 0.053% 0.129% 0.004% 0.066% 0.002% 0.002%

DREs

SD_4MSBs 0.092% 0.083% 0 0.007% 0.071% 0.157% 0.004% 0.072% 0.004% 0.002%
SD_8MSBs 0.083% 0.084% 0 0.007% 0.067% 0.157% 0.004% 0.071% 0.004% 0.002%

SD_12MSBs 0.092% 0.116% 0 0.011% 0.085% 0.222% 0.006% 0.083% 0.005% 0.003%
U 0.090% 0.080% 0 0.007% 0.087% 0.134% 0.003% 0.056% 0.003% 0.002%

LBP 0.073% 0.077% 0 0.007% 0.062% 0.130% 0.003% 0.056% 0.003% 0.002%
* P_4MSBs (SD_4MSBs), P_8MSBs (SD_8MSBs) and P_12MSBs (SD_12MSBs) refer to the selective Parity-Check (SEC-DED codes) protection
by covering 4MSBs, 8MSBs and 12MSBs, respectively.

Go2Edge network RED2018-102585-T funded by the
Spanish Ministry of Science and Innovation and by the
Madrid Community research project TAPIR-CM
P2018/TCS-4496.

REFERENCES
[1] OECD, “Artificial Intelligence in Society”, OECD Publishing,

Paris, https://doi.org/10.1787/eedfee77-en, 2019.
[2] G. D. L. Torre, P. Rad, K. R. Choo, “Driverless Vehicle Security:

Challenges and Future Research Opportunities”, Elsevier, Future
Generation Computer Systems, vol. 108, pp. 1092-1111, 2020.

[3] D. H. Park, H. K. Kim, I. Y. Choi, et al, “A Literature Review
and Classification of Recommender Systems Research”, Elsevier,
Expert Systems with Applications, vol. 39, no.11, pp. 100059-
100072, 2012.

[4] A. Fhoneim, F. Muhammad, M. S. Hossain, “Cervical Cancer
Classification using Convolutional Neural Networks and Ex-
treme Learning Machines”, Elsevier, Future Generation Computer
Systems, vol. 102, pp. 643-649, 2020.

[5] V. Vargas, P. Ramos, V. Ray, et al, “Radiation Experiments on a
28 nm Single-Chip Many-Core Processor and SEU Error-Rate
Prediction”, IEEE Transactions on Nuclear Science, vol. 64, no. 1,
pp. 483-490, 2017.

[6] R. Baumann, ‘‘Soft Errors in Advanced Computer Systems,’’
IEEE Design and Test of Computers, vol. 22, no. 3, pp. 258–266,
2005.

[7] W. M. Shaban, A. H. Rabie, A. I. Saleh, et al, “A New COVID-19
Patients Detection Strategy (CPDS) based on hybrid feature se-
lection and enhanced KNN Classifier”, Elsevier, Knowledge-
Based Systems, vol. 205, no. 12, pp. 1-18, 2020.

[8] H. Frigui and P. Gader, “Detection and Discrimination of Land
Mines in Ground-Penetrating Radar Based on edge Histogram
Descriptors and a Possibilistic K-Nearest Neighbor Classifier”,
IEEE Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 185-199,
2009.

[9] A. Altaher, “Phishing Websites Classification using Hybrid
SVM and KNN Approach”, International Journal of Advanced
Computer Science and Applications, vol. 8, no. 6, pp. 90-95, 2017.

[10] J. G. Lopez, S. Ventura, A. Cano, “Distributed Nearest Neigh-
bor Classification for Large-Scale Multi-Label Data on Spark”,
Elsevier, Future Generation Computer Systems, vol. 87, pp. 66-82,
2018.

[11] Q. Hu, D. Yu, Z. Xie, “Neighborhood Classifiers,” in Expert
Systems with Applications, vol. 34, pp. 866-876, 2008.

[12] Z. Shao, D. Taniar, K. M. Adhinugraha, “Voronoi-based Range-
kNN Search with Map Grid in a Mobile Environment, Elsevier,
Future Generation Computer Systems, vol. 67, pp. 305-314, 2017.

[13] H. Frigui, P. Gader, “Detection and Discrimination of Land
Mines in Ground-Penetrating Radar Based on Edge Histogram
Descriptors and a Possibilistic k-Nearest Neighbor Classifier”,
IEEE Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 185-199,
2009.

[14] W. Wang, Y. Li, X. Wang, et al, “Detecting Android Malicious
Apps and Categorizing Benign Apps with Ensemble of Classifi-
ers”, Elsevier, Future Generation Computer Systems, vol. 78, pp.
987-994, 2018.

[15] D. P. Siewiorek., R. S. Swarz, “'The Theory and Practice of
Reliable System Design,” Digital Press, Bedford, 1982.

[16] K. Chen, L. Chen, P. Reviriego, et al, “Efficient Implementations
of Reduced Precision Redundancy (RPR) Multiply and Accu-

mulate (MAC)”, IEEE Transactions on Computers, vol. 68, no. 5,
pp.784-790, 2018.

[17] B. Shim, S. R. Sridhara, N. R. Shanbhag, “Reliable Low-Power
Digital Signal Processing via Reduced Precision Redundancy”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol.12, no.5, pp.497-510, 2004.

[18] S. Liu, P. Reviriego, J.A. Hernández, et al, “Voting Margin: A
Scheme for Error-Tolerant k Nearest Neighbors Classifiers”,
IEEE Transactions on Emerging Topics in Computing, 2019 (Early
Access).

[19] S. Liu, P. Reviriego, P. Montuschi, et al, “Error-Tolerant Com-
putation for Voting Classifiers with Multiple Classes”, IEEE
Transactions on Vehicular Technology, vol. 69, no. 11, pp. 13718-
13727, 2020.

[20] S. Liu, P. Reviriego, P. Montuschi, et al., “Results-Based Re-
Computation for Error-Tolerant Classifiers by a Support Vector
Machine”, IEEE Transactions on Artificial Intelligence, vol. 1,
no. 1, pp. 62-73, 2020.

[21] S. Lin, D. J. Costello, “Error Control Coding,” 2nd ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 2004.

[22] E. Fujiwara, “Code Design for Dependable Systems: Theory
and Practical Applications”, Wiley-Interscience, 2006.

[23] H. Wang, “Nearest Neighbors by Neighborhood Counting”,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 6, pp. 942-953, 2006.

[24] S. Baeg, S. Wen, R. Wong, “SRAM Interleaving Distance Selec-
tion with A Soft Error Failure Model,” IEEE Transactions on Nu-
clear Science, vol. 56, no. 4, pp. 2111–2118, 2009.

[25] J. L. Autran, D. Munteanu, P. Roche, et al, “Soft-Errors Induced
by Terrestrial Neutrons and Natural Alpha-Particle Emitters in
Advanced Memory Circuits at Ground Level”, Elsevier, Mi-
croelectronics Reliability, vol. 50, pp. 1822-1831, 2010.

[26] D. Dua, C. Graff “UCI Machine Learning Repository”, Irvine,
CA: University of California, School of Information and Computer
Science, 2019.

[27] R.P. Gorman, T.J. Sejnowski, “Analysis of Hidden Units in a
Layered Network Trained to Classify Sonar Targets. Neural
networks, vol. 1, no. 1, pp.75-89, Jan. 1988.

[28] R.M. Mohammad, F. Thabtah, L. McCluskey, “Intelligent Rule-
based Phishing Websites Classification”, IET Information Securi-
ty, vol. 8, no. 3, pp. 153-160, Mar. 2014.

[29] B. Johnson, R. Tateishi, Z. Xie, “Using Geographically-
Weighted Variables for Image Classification”, Remote Sensing
Letters, vol. 3, no. 6, pp. 491-499, 2012.

[30] C. Higuera, K.J. Gardiner, K.J. Cios, “Self-Organizing Feature
Maps Identify Proteins Critical to Learning in a Mouse Model
of Down Syndrome”, PLOS ONE, vol. 10, no. 6, 2015.

[31] K. Fernandes, J. S. Cardoso and J. Fernandes, “Transfer Learn-
ing with Partial Observability Applied to Cervical Cancer
Screening”, Iberian Conference on Pattern Recognition and Image
Analysis, Springer, Cham, 2017.

[32] M. Khun, K. Johnson, “Applied predictive modeling”, Springer
2013.

[33] P. Reviriego, S. Pontarelli, J.A. Maestro, et al, “Reducing the
Cost of Implementing Error Correction Codes in Content Ad-
dressable Memories”, IEEE Transactions on Circuits and Systems
II, vol. 60, no. 7, pp. 432-436, July 2013.

Shanshan Liu (M'19) received the M.S.
degree and Ph.D. degree in microelec-
tronics and solid-state electronics from
Harbin Institute of Technology, Harbin,
China, in 2012 and 2018, respectively.
She is currently a Post-doctoral re-
searcher with the Department of Elec-
trical and Computer Engineering,
Northeastern University, Boston, US.

Her current research interests include fault tolerant de-
sign in high performance computer systems.

Pedro Reviriego (M’04-SM'15) received
the M.Sc. and Ph.D. degrees in tele-
communications engineering from the
Technical University of Madrid, Ma-
drid, Spain, in 1994 and 1997, respec-
tively. From 1997 to 2000, he was an
Engineer with Teldat, Madrid, working
on router implementation. In 2000, he

joined Massana to work on the development of
1000BASE-T transceivers. From 2004 to 2007, he was a
Distinguished Member of Technical Staff with the LSI
Corporation, working on the development of Ethernet
transceivers. From 2007 to 2018 he was with Nebrija Uni-
versity. He is currently with Universidad Carlos III de
Madrid working on high speed packet processing and
fault tolerant electronics.

Paolo Montuschi (M’90-SM’07-F’14) is a
Full Professor in the Department of Con-
trol and Computer Engineering and a
Member of the Board of Governors at
Politecnico di Torino, Italy. His research
interests include computer arithmetic
and architectures, computer graphics,
electronic publications. He is an IEEE

Fellow, and an IEEE Computer Society (CS) Golden Core
member. He is currently serving as the 2017-20 IEEE
Computer Society Awards Chair, as a Member-at-Large of
the Publication Services and Products Board (PSPB) (2018-
20), and as the Chair of its Strategic Planning Committee
(2019-20). He is serving as the 2020-21 Chair of the IEEE
TAB/ARC (TAB/Awards and Recognitions Committee),
as a Member of the IEEE Awards Board, as a Member
(2020) of the IEEE PRAC (Periodicals Review and Adviso-
ry Committee), and as a Vice Chair of the 2020 Computer
Society Fellows Committee, Previously, he served, among
all, as the Editor-in-Chief of the IEEE Transactions on
Computers, and as the 2019 Acting (interim) Editor-in-
Chief of the IEEE Transactions on Emerging Topics in
Computing. He is a life member of the International
Academy of Sciences of Turin and of Eta Kappa Nu (the
Honor Society of IEEE). In March 2017 he co-founded the
first HKN Student Chapter in Italy and in Europe, Chap-
ter.

Fabrizio Lombardi (M'81-SM'02-F'09)
received the B.Sc. degree (Hons.) in
electronic engineering from the Univer-
sity of Essex, U.K., in 1977, the master’s
degree in microwaves and modern
optics and the Diploma degree in mi-
crowave engineering from the Micro-
wave Research Unit, University College

London, in 1978, and the Ph.D. degree from the Universi-
ty of London in 1982. He is currently the International
Test Conference (ITC) Endowed Chair Professorship with
Northeastern University, Boston, USA. His research inter-
ests are bio-inspired and nano manufacturing/computing,
VLSI design, testing, and fault/defect tolerance of digital
systems. He has extensively published in these areas and
coauthored/edited seven books. He was the Editor-In-
Chief of the IEEE TRANSACTIONS ON COMPUTERS
from 2007 to 2010 and the inaugural Editor-in-Chief of the
IEEE TRANSACTIONS ON EMERGING TOPICS IN
COMPUTING from 2013 to 2017, IEEE TRANSACTIONS
ON NANOTECHNOLOGY from 2014 to 2019. He is cur-
rently the Vice President for Publications of the IEEE
Computer Society, the 2021 President-elect of the IEEE
Nanotechnology Council and a member of the IEEE Pub-
lication Services and Products Board.

