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Abstract 

Device-to-device (D2D) communication technique is used to establish direct links among mobile 

devices (MDs) to reduce communication delay and increase network capacity over the underlying 

wireless networks. Existing D2D schemes for task offloading focus on system throughput, energy 

consumption, and delay  without considering data security. This paper proposes a Security and 

Energy-aware Collaborative Task Offloading for D2D communication  (Sec2D). Specifically, we first 

build a novel security model, in terms of the number of CPU cores, CPU frequency, and data size, for 

measuring the security workload on heterogeneous MDs. Then, we formulate the collaborative task 

offloading problem that minimizes the time-average delay and energy consumption of MDs while 

ensuring data security. In order to meet this goal, the Lyapunov optimization framework is applied to 

implement online decision-making. Two solutions, greedy approach and optimal approach, with 

different t ime complexit ies, are p roposed to deal with the generated mixed-integer linear p rogramming 

(MILP) problem. The theoretical proofs demonstrate that Sec2D follows a [𝑂(1/𝑉), 𝑂(𝑉)] 

energy-delay tradeoff. Simulation results show that Sec2D can guarantee both data security and system 

stability in the collaborative D2D communication environment.  
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1. Introduction  

Mobile applicat ions (e.g., interactive online gaming, virtual reality (VR), augmented reality (AR), and 

high-definit ion movies, etc.) have gained extensive popularity attributed to cellular technologies and 

mobile services. Moreover, up-to-date mobile devices (MDs) like Apple XS, Samsung S9, and Nokia 

X7 are equipped with powerful CPU chips. Thus, the current MDs have the potential to process 

computation-intensive applications [1], [2], [3], [4]. However, only running mobile applications at a 

single MD is still constrained due to limited computational resources and battery capacity, resulting in 

longer delay and more energy consumption [5], [6].  

One solution to reduce energy consumption and decrease latency is offloading tasks to the evolved 

NodeB (eNB) of mobile edge computing [7], [8], [9], [10]. Nevertheless, Cisco recently reports that 

approximately 11.6 billion MDs will be anticipated by 2020 [11]. In order to meet the vast and 

ever-increasing service and resource demand, additional eNB infrastructures are required, leading to 

more deployment and maintenance costs.  

The other promising solution is device-to-device (D2D) communication, which  can establish 

direct links among physically proximate MDs without the interaction of eNB [12], [13]. It has been 

viewed as a very useful technology in the mobile network due to the facts that 1) a large number of 

MDs residing in cellular network environment will stress the availability of network resource, and thus, 

D2D communication can effectively alleviate the network congestion and the edge node’s workload; 2) 



D2D communication can make fu ll use of the spectrum resource and improve the spectral efficiency; 3) 

collaborative task offloading in D2D paradigm can be implemented by computational resource sharing 

among MDs to achieve lower delay and less energy consumption [1], [4], [14].  

Apart from energy consumption and latency, security is another top-priorit ized concern in D2D 

communicat ion [15], [16], [17]. D2D communication is built upon hybrid arch itecture with a variety of 

network nodes. So, it faces various malicious threats and attacks, which are also faced by the cellular 

network. For instance, the report by 3GPP Security Workgroup (SA3) ind icates that the D2D 

environment suffers from six categories of security threats [18]. Thus, efficient security solutions, such 

as confidentiality and integrity services, are needed to guarantee data exchange security among MDs. 

However, adding any service to mobile applications will inevitably incur ext ra time, leading to longer 

service time as well as more energy consumption. In general, how to balance delay, energy, and 

security imposes a key challenge in D2D communication.  

This paper investigates a Security and Energy-aware Collaborative Task Offloading for D2D 

communication (Sec2D). The major contributions are summarized as follows:  

 We establish a novel security model based on the number of CPU cores and CPU frequency, and 

data size, which is utilized to measure the execution time of d ifferent security services on 

heterogeneous MDs. According to the security model, the security workload sharping is also 

devised to calculate the security workload for different security service levels.  

 We design a collaborative task offloading architecture with two workload queues, including a 

front-end queue and a back-end queue. The former is applied to queue the arrived tasks and 

offload tasks; the latter is used for receiving the offloaded tasks and processing tasks. Moreover, 

before routing tasks from one MD to another, the corresponding security services should be 

adopted up to the security demand.  

 We formulate the co llaborative task offloading problem to minimize the average delay and energy 

consumption with the demand for security services. In  order to address this problem, the 

Lyapunov optimization framework is applied to implement online decisions making. Additionally, 

a low-complexity greedy approach and a b ranch and cut (BAC) based optimal approach is 

developed to tackle generated mixed-integer linear programming (MILP) problem.  

 We give the result of theoretical proof that the Sec2D algorithm meets a [𝑂(1/𝑉), 𝑂(𝑉)] 

energy-delay tradeoff. Simulation results on algorithm comparison, the impact of system 

parameters, and the impact of security parameters show that Sec2D indeed can guarantee data 

security and keep the system stability in collaborative D2D communication scenario.  

The rest of this paper is organized as follows: Section 2 summarizes the related work about task 

offloading and security scheduling. Section 3 builds our novel security model on different MD 

parameters. Section 4 presents the system model and formulates our problem. Section 5 introduces the 

algorithm design of Sec2D and gives the performance analysis. Section 6 first gives the experimental 

setting and then elaborates the simulation results. Finally, Section 7 concludes this paper and plans for 

future work.  

 

2. Related work 

Existing MDs are equipped with h igh-performance multi-core CPUs, which have the potential to 

implement the collaborative task offloading. For example, Pu et al. [1] propose a mobile task 

offloading framework, D2D fogging, to  minimize the energy consumption of the entire system by 

incorporating the incentive mechanism. Hong et al. [2] introduce a task outsourcing and scheduling 



method to allow the cooperative processing of MDs' computation-intensive tasks in a D2D network. 

Based on the Lyapunov approach, Feng et al. [14] suggest a computation offloading and resource 

sharing strategy to optimize the average cost of MDs while meet ing the constraint of resource budget in 

the D2D-enabled scenario. Liu et al. [4] propose an edge resource pooling (ERP) framework to pool 

and share the computational resource for D2D task offloading. By using the adaptive genetic algorithm, 

Huynh et al. [10] p resent an energy consumption optimization (ECO) algorithm for D2D multimedia 

communicat ions. Lai et al. [19] propose a resource sharing and power control approach, called  DRAPC,  

for a pure D2D communication scenario. DRAPC is to allow MDs to process tasks for other MDs, 

which is implemented based on the graph-coloring solution to improve throughput, fairness, and 

resource utilizat ion. Fan et  al. [20] develop a task offloading approach in a D2D-assisted fog 

computing environment, where the tasks can be processed by other MDs or offloaded to fog nodes. In 

order to maximize the total profit, the problems of the offloading scheme, resource allocation, and MD 

selection are formulated and solved by game theory. Saleem et al. [21] propose a joint resource and 

task offloading scheme, called JPORA, for minimizing the task execution delay according to mult iple 

condition constraints, where the spectrum sharing is applied to explo it the computation resources of 

other MDs. Li et al. [22] utilize the reinforcement learn ing technique to offload tasks in D2D-MEC 

(mobile edge computing) environment where the objective is to min imize the long-term cost. However, 

the above offloading schemes focus on energy consumption, delay, and cost, neglecting the data 

security problem in the D2D environment.  

Security is another critical concern when t ransmitting private data in  the wireless environment. In 

[23], [24], [25], [26], a series of key management approaches are applied to ensure secure connections 

among MDs and eNBs. The key management, carried out by public key infrastructure, utilizes a shared 

key or public key  to verify the identities of nodes (eNB and MDs). For instance, Shen et al. [24] 

investigate a key agreement protocol to establish a secure, shared, low cost and secret overhead key 

without requiring any prior knowledge. Hsu and Lee [25] propose two authentication-based key 

exchange protocols for network-covered and network-absent D2D communication cases. The group 

anonymity with authentication is applied for the fo rmer the k-anonymity secret handshake scheme is 

used for the latter case. Zhang et al. [26] present a data sharing protocol to guarantee data security. 

Specifically, a joint of dig ital signature and authentication service is used to ensure the entity 

authentication, data authority, and data integrity. However, lacking essential key infrastructure, it is 

impracticab le to use these key management mechanis ms for guaranteeing data security in pure D2D 

communicat ion. Further, due to the mobility and discrepancy of MDs, the scheme of the pre-allocating 

secret key in MD is also infeasible when implementing frequent resource sharing and task offlo ading 

[18].  

Without any key infrastructure, the security services  can be employed to form a complete security 

protection mechanism, which has been extensively applied in the cluster [27], grid computing [28], 

cloud computing [29], [30], [31], real-time embedded system [32] and mobile edge computing [33]. 

For example, Xie and Qin [27] devise a security-aware scheduling approach for real-time applicat ion 

processing in the cluster. Song et al. [28] p ropose three risk-resilient job scheduling mechanisms to 

offer security guaranteeing in the grid. Li et al. [30] develop a security scheduling method for scientific 

workflow execution in the cloud. By task replication mechanism, Chen et al. [31] suggest a workflow 

task scheduling framework for protecting the security of output data in clouds. Elgendy et al. [6] 

propose a resource allocation algorithm for computation offloading in the MEC environment, where a 

security technique is applied to protect sensitive data. Further, the authors [34] put forward an  efficient 



and secure task offloading scheme for a mult i-user MEC environment. The image and video 

compression techniques are utilized to  reduce time and energy consumption. Then, to guarantee data 

security, the AES cryptographic algorithm is used to avoid cyberattacks. However, the above two 

security offloading schemes just consider one cryptographic algorithm to cope with the cyber-attacks. 

So, they cannot be applied in  the scenarios of mult iple  kinds of attacks and mult iple security service  

requirements. Huang et al. [33] introduce a security-aware task offloading for service workflows to 

optimize the MD's energy consumption, where multip le security services are considered for various 

malicious attacks. However, this security model is derived from the perspective of physical servers, 

which can no longer be applied in a D2D communication environment because the CPU arch itectures 

of the physical server and MD are different. Besides the above symmetric cryptographic algorithms, 

many asymmetric cryptographic approaches also have been developed. For example, Mansour et al. 

[35] design a Chinese Remainder Theorem (CRT) based RSA encryption technique, which overcomes 

key exchange and management problems. Further, a lightweight asymmetric cryptographic mechanis m, 

called AMOUN, is proposed for multi-party communication [36]. Ametepe et al. [37] devise a hybrid 

cryptosystem by combining asymmetric and symmetric cryptographic algorithms to secure the data 

transmission in the wireless network environment. However, the above works focus on designing a 

cryptographic algorithm, which is  orthogonal to our security services.  

In a word, the above security mechanisms cannot be immediately generalized to D2D 

communicat ion because of two reasons: 1) The existing security model is only based on the 

computational performance of the physical server, which cannot be directly availab le to MDs; 2) There 

exists a large number o f heterogeneous MDs in D2D environment, and these MDs have a different 

number of CPU cores and processing capacities. Thus, the security model should be applied for MDs of 

any type to calculate the security time and workload.  

 

3. Security Modeling 

Previous works like [27], [29], [32] have built and used the security models to protect the security of 

data. However, these security models are established on the basis of the architecture of the processor or 

server, and only the time overhead of d ifferent data sizes is considered. Thus, the existing security 

model cannot be directly applied in D2D communication due to the following reasons: 1) the CPU 

architecture of the server is significantly different from that of MD, and hence even under the same 

condition (i.e ., same CPU frequency and data size), it will cause completely d ifferent time overhead; 2)  

the up-to-date MDs have powerful multi-core CPU and the dynamic voltage and frequency scaling 

(DVFS) function to adjust working frequency [38]. Thus, security time should also be measured under 

various CPU cores and frequencies.  

We utilize confidentiality and integrity services to build our security model. Seven symmetric 

cryptographic algorithms (such as ARC4, RC5, Blowfish, AES, IDEA, DES, RC2 [27], [30], [33]) and 

three asymmetric cryptographic algorithms (i.e., RSA, ECC (Elliptic curve cryptography), and DH 

(Diffie-Hellman) [36], [35], [37]) are used to fulfill the confidentiality service. Similarly, six hash 

functions, i.e., MD4, MD5, Tiger, SHA1, RIPEMD, SHA256, are provided to realize the integrity 

service [27], [39]. In order to measure the time overhead, all the security services are implemented by 

Java. Moreover, we use Huawei Honor8 as the mobile device to build the security model, which is 

equipped with 4GB  GPU memory and 8  CPU cores ( 4  low-performance cores and 4 

high-performance cores). In detail, the working frequencies of Huawei Honor8 on the low-performance 

core are 𝐹𝐿 = {0.8, 1.2, 1.5, 1.8} GHz, and the working frequencies on the high-performance core are 



𝐹𝐻 = 𝐹𝐿 + {2.0, 2.3} GHz.  

In a word, security modeling in the context of D2D communicat ion remains an open issue. Next, 

we first construct three security time models on the number of CPU cores  𝑁, CPU frequency 𝐹 , and 

data size 𝐷 , respectively. Then, the security level model is built fo r quantifying the protection capacity 

of each security service. Finally, we convert security time to security workload for our co llaborative 

task offloading.  

 

3.1 Time overhead model 

We investigate the time impact of security service on different CPU frequencies 𝐹 ∈ 𝐹𝐻 =

{0.8, 1.2, 1.5, 1.8, 2.0, 2.3} GHz, where we fix the number of CPU cores at 𝑁 = 1 (h igh-performance 

core) and the size of data at 𝐷 = 1 MB. Fig. 1 shows that the execution time of all the security 

services decreases with the CPU frequency. The time overhead is inversely proportional to the value of 

CPU frequency, i.e., doubled CPU frequency makes half of the security time.  

We also examine the impact of execution time with the different number of CPU cores, where  

𝐹 = 1.8 GHz and 𝐷 = 1 MB. For processing data with multip le CPU cores, we first divide the data 

into equally  sized  data blocks, and the number o f b locks is equal to  that of CPU cores. For example, if 

we use the CPU with 2 cores to encrypt the 1 MB data, the data is first divided into two equal parts, 

i.e., each data block is 0.5 MB. Thus, multi-core CPUs can be completely explo ited. The experimental 

results are shown in Fig. 2. We can  see that the time overhead decreases with the increase of the 

number of CPU cores in all the cases. Furthermore, the service time is inversely proportional to the 

number of CPU cores, and if the number of CPU cores is doubled, the time is halved, which is similar 

to the behavior of Fig. 1.  

Fig. 3 shows the results of time overhead on different data sizes, i.e ., vary ing 𝐷  from 0.1 to 

1 MB with the increment of 0.1 MB, where we keep the other parameters fixed, 𝐹 = 1.8 GHz  and 

𝑁 = 1. It can be observed that the time overheads of all security services grow linearly with 𝐷 . That 

means the service time is in direct proportion to the size of data, i.e., the time required is double when 

the size of data is double.  

 

 

 

 

(a) Time overhead for confidentiality service     (b) Time overhead for integrity service  

Fig. 1 The impact of 𝐹 on time overhead. 

 



 

(a) Time overhead for confidentiality service     (b) Time overhead for integrity service  

Fig. 2 The impact of the 𝑁 on time overhead.  

 

 

(a) Time overhead for confidentiality service     (b) Time overhead for integrity service 

Fig. 3 The impact of 𝐷 on time overhead.  

 

3.2 Security level model 

Like [27], [33], we allocate the security levels for all the cryptographic algorithms and hash functions 

to represent the capacity of data protection, shown in Table 1 and Table 2, respectively. Note that the 

time overheads are collected under 𝐹 = 1.8 GHz , 𝑁 = 1, and 𝐷 = 1 MB. For simplicity, we denote 

𝑐𝑑 and 𝑖𝑔  as the confidentiality and integrity services, respectively.  

We say that the security level is in accordance with its service time, which means the algorithm or 

function with a longer execution time has a higher security level. For instance, for cryptographic 

algorithms, we give the highest level of 1.00 to the RC2 algorithm (see Table 1). We then define the 

other algorithms’ security levels by 

𝑠𝑙𝑐𝑑(𝑘) = 𝑇𝑐𝑑
𝑠𝑐(𝑘)/2.27,                             (1) 

where 𝑇𝑐𝑑
𝑠𝑐(𝑘) is the security time of 𝑘-th confidentiality service.  

Using the same method, regarding hash functions, the slowest but strongest, SHA256, is assigned 

the highest security level 1.00. Thus, the security levels of the rest functions are represented by  

𝑠𝑙𝑖𝑔(𝑘) = 𝑇𝑖𝑔
𝑠𝑐(𝑘)/1.64,                             (2) 

where 𝑇𝑖𝑔
𝑠𝑐(𝑘) is the security time of 𝑘-th integrity service. All the security levels of hash functions 

can be seen in Table 2.  

 

Table 1. Cryptographic algorithms for confidentiality service. 

𝑘 Cryptographic algorithms 𝑇𝑐𝑑
𝑠𝑐(𝑘) (s) 𝑠𝑙𝑐𝑑(𝑘) 

1 ARC4 0.83 0.19 

2 RC5 0.99 0.23 

3 Blowfish 1.15 0.27 



4 AES 1.27 0.30 

5 IDEA 1.52 0.35 

6 DES 1.62 0.38 

7 DH 1.93 0.45 

8 RC2 2.27 0.53 

9 ECC 2.64 0.61 

10 RSA 4.31 1.00 

 

Table 2. Hash functions for integrity service. 

𝑘 Hash Functions 𝑇𝑖𝑔
𝑠𝑐(𝑘) (s) 𝑠𝑙𝑖𝑔(𝑘) 

1 MD4 0.48 0.29 

2 MD5 0.59 0.36 

3 Tiger 0.73 0.45 

4 SHA1 0.82 0.50 

5 RIPEMD 1.29 0.79 

6 SHA256 1.64 1.00 

 

3.3 Security workload shaping 

As discussed above, the security time is highly correlated with CPU frequency 𝐹 , the number of CPU 

cores 𝑁 and data size  𝐷 . Similar to [40], [41], we make an  assumption that 𝐹  is equal to the 

processing capacity 𝐶 . Then, for the security level 𝑠𝑙𝑣(𝑘), 𝑣 ∈ {𝑐𝑑, 𝑖𝑔}, if a task with data size  𝐷  to 

be protected, the security time on the single-core CPU with processing capacity 𝐶  is represented by 

𝑇𝑣
𝑠𝑐(𝑘). In this case, the security workload, in the form ‘security time × processing capacity’, can be 

obtained by 

𝑊𝑣
𝑠𝑐 (𝑘) = 𝐷 ∙ 𝑇𝑣

𝑠𝑐(𝑘)𝐶, 𝑣 ∈ {𝑐𝑑, 𝑖𝑔},                        (3) 

which also indicates that the security workload is highly correlated with the data size 𝐷 . For example, 

if 𝐷 = 0.1 MB, 𝐹 = 𝐶 = 1.8 GHz and 𝑁 = 1, then 𝑇𝑐𝑑
𝑠𝑐(𝑘) = 2.27s and 𝑠𝑙𝑐𝑑(𝑘) = 1.0. Thus, the 

security workload is 𝑊𝑐𝑑
𝑠𝑐 (𝑘) = 0.1 × 2.27 × 1.8 GHz ∙ s = 0.41 GHz ∙ s . Thus, the total security 

workload of a task can be expressed as 

𝑊𝑠𝑐 = ∑ 𝑊𝑣
𝑠𝑐 (𝑘)

𝑣∈{𝑐𝑑,𝑖𝑔} .                               (4) 

However, in D2D communication, it is impossible for all the MDs to have the same computational 

performance (i.e ., the number of CPU cores and working frequency). In such a heterogeneous 

environment, each MD will perform different security times. According to the security workload 

computed above, for an MD with processing capacity 𝐶 , the security time on this MD is computed by 

𝑇𝑠𝑐 = 𝑊𝑠𝑐/𝐶.                                   (5) 

Based on the Eqs. (3)-(5), we can derive the security time on any MDs under any data size 𝐷  and 

processing capacity 𝐶 .  

 

4. System Model and Problem Formulation 

Fig. 4 shows the D2D communication scenario and collaborative task offloading architecture. The left  

part depicts the wireless network scenario with cellular MDs, eNB, D2D groups, and malicious 

attackers. The MD can communicate with eNB by cellular network and with other MDs by D2D 

communicat ion. This paper main ly concentrates on the D2D groups, consisting of a set of D2 D devices. 

In D2D communicat ion, the signal strength varies over time due to MDs’ mobility. Let 𝑅𝑖𝑗 (𝜏) denote 



the data transmission rate (i.e., signal strength) from MD𝑖 to MD𝑗 in t ime slot 𝜏, where 𝜏 is the 

system time. Let 𝑆𝑁𝑅𝑖𝑗 (𝜏) = 𝑃𝑖
𝑡𝑥𝐺𝑖𝑗 (𝜏)/σ𝑛

2  denote the signal-to-noise ratio (SNR), where 𝑃𝑖
𝑡𝑥  

represents the transmission power, σ𝑛
2  is the Gaussian white noise power, and 𝐺𝑖𝑗 (𝜏) = 𝛾[𝑑𝑖𝑗

(𝜏) ]−𝜃 

denotes the channel gain o f this D2D link, where 𝛾 and 𝜃 are the path-loss constant and exponent, 

respectively, and 𝑑𝑖𝑗(𝜏) is the path distance. Then, 𝑅𝑖𝑗 (𝜏) can be calculated by [1], [3]  

𝑅𝑖𝑗 (𝜏) = 𝐵𝑖log2[1 + 𝑆𝑁𝑅𝑖𝑗
(𝜏) ],                          (6) 

where 𝐵𝑖 is the bandwidth of MD𝑖.  

The right part of Fig. 4 elaborates on the collaborative task offloading arch itecture, where the D2D 

group has 𝑛  MDs. Let  MD = {MD1 , … , MD𝑖 , … , MD𝑛} denote the MD set and 𝒩 = {1,2, … , 𝑛} 

denote the index set of MDs. It is worth pointing that each MD𝑖 contains a front-end queue 𝑄𝑖
𝐹(𝜏) 

and a back-end queue 𝑄𝑖
𝐵(𝜏) [42], respectively. The former is applied to receive and offload tasks, and 

the latter is utilized  to accommodate and process tasks. At each time slot 𝜏, every MD makes decisions 

on computing resource usage, task offloading, and workload processing. Below, we introduce three 

models and formulate our optimization problem.  

 

(a) The D2D communication scenario.         (b) The collaborative task offloading architecture. 

Fig. 4. The D2D communication scenario and collaborative task offloading architecture.  

 

4.1 Workload queueing model 

At time slot 𝜏 , the number of tasks arriv ing at 𝑄𝑖
𝐹(𝜏)  is represented by 𝑎𝑖

(𝜏) . Let 𝑨(𝝉) =

(𝑎1
(𝜏), … , 𝑎𝑖

(𝜏), … , 𝑎𝑛
(𝜏)) denote the task arrival vector, and 𝑎𝑖

(𝜏) ∈ 𝒜 = {0,1, … ,𝐴𝑚𝑎𝑥 }. Suppose 

the task arrival process {𝑎𝑖
(𝜏)} is independent and identically distributed (i.i.d.) with 𝔼{𝑨(𝜏)} = 𝝀 =

(𝜆1,… , 𝜆 𝑖 ,… ,𝜆𝑛). We make an assumption that each task has a constant data size  𝐷  and execution 

workload 𝑊𝑒𝑥 . This assumption is usually justified in practice , as we can split a task into many 

equally sized small tasks. Let 𝑢𝑖𝑗(𝜏) denote the number of tasks routed from MD𝑖 to MD𝑗 . In 

addition, 𝑢𝑖𝑗(𝜏) must be taken from the feasib le set, i.e., 𝑢𝑖𝑗(𝜏) ∈ 𝑈  and 𝑢𝑖𝑗(𝜏) ≤ 𝑈𝑚𝑎𝑥 , ∀𝑖, 𝑗 ∈ 𝒩. 

Let 𝑩(𝜏) = (𝑏1
(𝜏), … ,𝑏𝑖

(𝜏) , … , 𝑏𝑛
(𝜏)) denote the workload processed by each MD in time slot 𝜏, 

and 𝑏𝑖
(𝜏) ∈ ℬ = [0, 𝐵𝑚𝑎𝑥]. Then, the evolution equations of two MD’s queues are expressed as 

𝑄𝑖
𝐹(𝜏 + 1) = max{𝑄𝑖

𝐹(𝜏) − ∑ 𝑢𝑖𝑗 (𝜏)𝑗∈𝒩 𝑊𝑒𝑥 , 0} + 𝑎𝑖
(𝜏)𝑊𝑒𝑥 ,                  (7) 

𝑄𝑖
𝐵(𝜏 + 1) = max{𝑄𝑖

𝐵(𝜏) − 𝑏𝑖
(𝜏), 0} + ∑ 𝑢𝑗𝑖(𝜏)𝑗∈𝒩 𝑊𝑒𝑥 + ∑ 𝑢𝑗𝑖(𝜏)𝑗∈𝒩 𝑊𝑖𝑗

𝑠𝑐 .           (8) 

where Eqs. (7) and (8) are the two  workload queues of front-queue and backend-queue, respectively. 

Note that 𝑢𝑖𝑗
(𝜏)𝑊𝑒𝑥  and 𝑎𝑖

(𝜏)𝑊𝑒𝑥  are the execution workloads, and 𝑢𝑖𝑗
(𝜏)𝑊𝑖𝑗

𝑠𝑐  is the security 

workload. In addition, 𝑢𝑖𝑗
(𝜏)  and 𝑎𝑖

(𝜏) are two integers because they represent the number of tasks. 

In contrast, due to the workload can be processed continuously, 𝑏𝑖
(𝜏) is a continuous variable. Let  

𝑊𝑖𝑖
𝑠𝑐 = 0, ∀𝑖 ∈ 𝒩 , which means if a task offloaded to itself, security service is  not required.  

The task offloading process with security services is shown in  Fig. 5. Before t ransmitt ing the task 



from the front-end queue of MD𝑖 to the back-end queue of MD𝑗, an encryption algorithm (E) and a 

hash function (H) are successively executed on the data of this task. After receiv ing this task by MD𝑗, it 

will be first put into the back-end queue and served by the first-come-first-serve (FCFS) rule. When 

this task begins to be processed, it will first be hashed again to verify its integrity (denoted as H as well)  

and then decrypted (denoted as DE). After that, MD𝑗 starts to process this task. So, MD𝑗 needs to 

process the security workload and execution workload for an offloaded task. The above analysis 

explains why Eq. (8) needs the additional security workload in the back-end queue.  

 

 

Fig. 5. The task offloading process with security services. 

 

4.2 Security risk model 

We quantitatively measure the task’s risk p robability on different security levels based on the 

introduced security model. The risk probability follows a Poisson distribution , as its coefficient can be 

considered as the number of network attacks. Thus, the risk probability  with 𝑣-th security service 

follows the exponential distribution [28], [29], [30], which is given by 

𝑃𝑟(𝑠𝑙𝑣) = {
0,                                             𝑖𝑓 𝑠𝑙𝑣 ≥ 𝑠𝑑𝑣

1 − exp(−𝜂𝑣
(𝑠𝑑𝑣 − 𝑠𝑙𝑣)) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

             (9) 

where 𝑠𝑑𝑣  represents security demand. The total risk probability of a task is represented by 

considering all the security services , and hence we have 

𝑃𝑟 = 1 − ∏ (1 − 𝑃𝑟(𝑠𝑙𝑣))𝑣∈{𝑐𝑑,𝑖𝑔} .                        (10) 

From Eq. (9) we find that a task is expected to be secure when satisfying the security assurance 

condition 𝑠𝑙𝑣 ≥ 𝑠𝑑𝑣. Besides, the security demand 𝑠𝑑𝑣 is correlated with the risk coefficient 𝜂𝑣. For 

example, if 𝜂𝑣 = 0, that means the MD does not experience any malicious attack. Thus, we do not 

need to deploy any security service to protect the data, and the corresponding security demand 𝑠𝑑𝑣 is 

0. If 𝜂𝑣 becomes larger, the higher 𝑠𝑑𝑣 is required to guarantee data security. So, we devise the 

following formula to describe the relationship between 𝜂𝑣 and 𝑠𝑑𝑣.  

𝑠𝑑𝑣 = Γ(𝜂𝑣
) = 1 − exp(−𝛽𝜂𝑣

),                          (11) 

where 𝛽 is an experience value. To guarantee the security, the security demand of sending data from 

MD𝑖 to MD𝑗 must satisfy the following equation.  

𝑠𝑑𝑣
𝑖 = max{𝑠𝑑𝑣

𝑖 , 𝑠𝑑𝑣
𝑗}.                          (12) 

Eq. (12) can be exp lained as follows: in D2D communication, each MD will face various network 

attacks. Consequently, the security demand should be the maximum one between two MDs. Thus, the 

security level should be just larger or equal to 𝑠𝑑𝑣
𝑖 , i.e.,  

𝑠𝑙𝑣
𝑖 = arg min (𝑠𝑙𝑣(𝑘) − 𝑠𝑑𝑣

𝑖 ) , 𝑠𝑙𝑣(𝑘) − 𝑠𝑑𝑣
𝑖 ≥ 0.                (13) 

Then, the risk probability 𝑃𝑟(𝑠𝑙𝑣
𝑖 ) = 0, 𝑣 ∈ {𝑐𝑑, 𝑖𝑔}, indicating data trans mission will not experience 

any security risk.  

 

4.3 Energy consumption model 



Typically, a MD𝑖 is equipped with 𝑁𝑖 heterogeneous CPU cores. Suppose 𝑁𝑖,𝐿  and 𝑁𝑖,𝐻  are the 

number of low-performance and high-performance cores, respectively, and 𝑁𝑖,𝐿 + 𝑁𝑖,𝐻 = 𝑁𝑖 . The 

computing power of this MD𝑖 can be expressed as [7], [9] 

𝑃𝑖
𝑐𝑥 (𝜏) = 𝛼𝑖 ,𝐿

∑ 𝐹𝑖 ,𝑙
3 (𝜏)

𝑁𝑖,𝐿

𝑙=1
+ 𝛼𝑖 ,𝐻

∑ 𝐹𝑖 ,ℎ
3𝑁𝑖,𝐻

ℎ=1
(𝜏) ,                  (14) 

where 𝛼𝑖 ,𝐿 and 𝛼𝑖 ,𝐻 are two constants related to the chip arch itecture. The state-of-the-art MD adopts 

an advanced DVFS technique, allowing automatic CPU frequency regulating. In pract ice, the level of 

CPU frequency is bounded by a minimum value and a maximum value, i.e., 𝐹𝑖 ,𝑙
(𝜏) ∈ 𝐹𝑖 ,𝐿 =

[𝐹𝑖 ,𝐿
𝑚𝑖𝑛 , 𝐹𝑖 ,𝐿

𝑚𝑎𝑥 ] and 𝐹𝑖 ,ℎ
(𝜏) ∈ 𝐹𝑖 ,𝐻 = [𝐹𝑖 ,𝐻

𝑚𝑖𝑛 , 𝐹𝑖 ,𝐻
𝑚𝑎𝑥 ]. However, in [42], a conclusion has been justified 

that homogeneous CPU cores should have the same operating frequency to reach the optimal power 

consumption. So, Eq. (14) can be rewritten as 

𝑃𝑖
𝑐𝑥 (𝜏) = 𝛼𝑖 ,𝐿𝑁𝑖,𝐿𝐹𝑖 ,𝑙

3 (𝜏) + 𝛼𝑖,𝐻𝑁𝑖,𝐻𝐹𝑖 ,ℎ
3 (𝜏).                      (15) 

The computational performance is also controlled by the CPU frequency. Besides, we have the relat ion 

between computation capacity and CPU frequency, i.e., 𝐶 = 𝐹 , and then we have 

𝐶𝑖
(𝜏) = 𝑁𝑖,𝐿𝐹𝑖 ,𝑙

(𝜏) + 𝑁𝑖,𝐻𝐹𝑖 ,ℎ
(𝜏).                          (16) 

According to the queueing model in Section 3.2, in time slot 𝜏, ∑ 𝑢𝑖𝑗 (𝜏)𝑗∈𝒩  tasks will be 

offloaded from MD𝑖 to MD𝑗. Before t ransmitt ing these tasks, security services should be performed. 

Then, the security time is computed by, 

𝑇𝑖
𝑠𝑐(𝜏) = [∑ 𝑢𝑖𝑗

(𝜏)𝑗∈𝒩 𝑊𝑖𝑗
𝑠𝑐 ]/𝐶𝑖

(𝜏),                         (17) 

Note that the security workload is symmetric, i.e., 𝑊𝑖𝑗
𝑠𝑐 = 𝑊𝑗𝑖

𝑠𝑐 . After implementing the security 

services, ∑ 𝑢𝑖𝑗(𝜏)𝑗∈𝒩  tasks will be transmitted with absolute security, and the transmission time is 

expressed as 

𝑇𝑖
𝑡𝑥(𝜏) = ∑ 𝑢𝑖𝑗

(𝜏)𝐷/𝑅𝑖𝑗 (𝜏)𝑗∈𝒩 .                          (18) 

where 𝐷  is the data size of task 𝑡𝑖. As the data do not need to be transmitted to the MD itself, we 

assume that 𝑅𝑖𝑖
(𝜏) = ∞, ∀𝑖 ∈ 𝒩. So, the energy consumption of data transmission is obtained by 

𝐸𝑖
𝑡𝑥 (𝜏) = 𝑃𝑖

𝑡𝑥𝑇𝑖
𝑡𝑥(𝜏).                             (19) 

    In addition, MD𝑖 needs to process the amount of 𝑏𝑖(𝜏) workload from the back-end queue. The 

corresponding execution time is calculated by 

𝑇𝑖
𝑒𝑥(𝜏) = 𝑏𝑖(𝜏)/𝐶𝑖

(𝜏).                            (20) 

Then, the CPU energy consumption, formed “power × time”, can be derived by, 

𝐸𝑖
𝑐𝑥(𝜏) = 𝑃𝑖

𝑐𝑥(𝜏)[𝑇𝑖
𝑠𝑐(𝜏) + 𝑇𝑖

𝑒𝑥(𝜏)].                      (21) 

Finally, the total energy consumption of MD𝑖, in time slot 𝜏, is the sum of CPU and data 

transmission energy consumption, which is expressed as  

𝐸𝑖
(𝜏) = 𝐸𝑖

𝑐𝑥(𝜏) + 𝐸𝑖
𝑡𝑥(𝜏).                          (22) 

Moreover, receiving data also causes energy consumption, but the power of receiv ing data is much less 

than that of data transmission and CPU working. So, we neglect it in this energy consumption model.  

 

4.4 Problem formulation 

This paper interests in min imizing the long-term energy consumption for the D2D group under the data 

security constraint, which is represented by 

𝛦̅ = lim
𝑡→∞

sup  
1

𝑡
∑ 𝔼[𝐸(𝜏) ]𝑡−1

𝜏=0 ,                          (23) 

where 𝐸(𝜏) = ∑ 𝐸𝑖
(𝜏)𝑖∈𝒩 . Furthermore, all the MDs’ task queues must be stable in the average time 

sense, i.e., keeping the stability of the D2D system, which is expressed by  



𝑄̅ = lim
𝑡→∞

sup 
1

𝑡
∑ ∑ 𝔼[𝑄𝑖

𝐹(𝜏) + 𝑄𝑖
𝐵(𝜏)]𝑛

𝑖=1
𝑡−1
𝜏=0 .                (24) 

By Little’s law [43], the average delay is in direct proportion to 𝑄̅. Therefore, we treat 𝑄̅ as the 

average delay in this work. Thus, our optimization problem P is given as follows:  

P: min 𝛦̅,                                           (25a) 

s.t. 𝑄̅ < ∞,                                       (25b) 

𝑇𝑖
𝑠𝑐(𝜏) + 𝑇𝑖

𝑒𝑥(𝜏) ≤ 𝑇𝑠𝑙𝑜𝑡 , 𝑖 ∈ 𝒩,                   (25c) 

𝑇𝑖
𝑠𝑐(𝜏) + 𝑇𝑖

𝑡𝑥(𝜏) ≤ 𝑇𝑠𝑙𝑜𝑡 , 𝑖 ∈ 𝒩,                    (25d) 

∑ 𝑢𝑖𝑗(𝜏)𝑗∈𝒩 𝑊𝑒𝑥 ≤ 𝑄𝑖
𝐹(𝜏), 𝑖 ∈ 𝒩                   (25e) 

𝑏𝑖
(𝜏) ≤ 𝑄𝑖

𝐵(𝜏), 𝑖 ∈ 𝒩                              (25f) 

𝐹𝑖 ,𝑙
(𝜏) ∈ 𝐹𝑖 ,𝐿 , 𝐹𝑖 ,ℎ

(𝜏) ∈ 𝐹𝑖 ,𝐻 , 𝑖 ∈ 𝒩,                  (25g) 

𝑢𝑖𝑗
(𝜏) ∈ 𝕫,𝑏𝑖

(𝜏) ∈ ℝ,∀𝑖, 𝑗 ∈ 𝒩.                    (25h) 

where 𝑇𝑠𝑙𝑜𝑡  the duration of each time slot. 

Directly  solving P requires a set of a prio ri informat ion, such as 𝑅𝑖𝑗(𝜏) and 𝑎𝑖 (𝜏); however, 

which cannot be obtained in advance. In the next section, we apply the Lyapunov optimizat ion 

framework, which can make online decisions only according to current state information, to address 

our proposed problem.  

 

5. Algorithm design and performance analysis  

This section mainly focuses on algorithm design and performance analysis. The Sec2D algorithm is 

proposed to solve the problem P by invoking the Lyapunov optimization framework [44], [45]. More 

specifically, we first highlight the entire Sec2D algorithm framework. Then, two approaches, a 

low-complexity greedy approach and an optimal approach are introduced for solving the MILP 

problem deduced from the Lyapunov optimization technique. Finally, we characterize the performance 

of Sec2D. 

 

5.1 Algorithm design 

The Lyapunov function 𝐿(𝜏), representing a scalar metric of queue backlog, is defined as 

𝐿(𝜏) =
1

2
∑ {[𝑄𝑖

𝐹(𝜏)]2 + [𝑄𝑖
𝐵(𝜏)]2}𝑖∈𝒩 ,                       (26) 

where 𝐿(𝜏) evolves over the time slot 𝜏. By Eq. (26), we define the Lyapunov drift  ∆(𝜏) as below:  

∆(𝜏) = 𝔼{𝐿(𝜏 + 1) − 𝐿(𝜏)|𝑸(𝜏)},                        (27) 

where 𝑸(𝜏) = (𝑄𝑖
𝐹(𝜏), 𝑄𝑖

𝐵(𝜏), 𝑖 = 𝒩) is the vector denoting all the workload queues at time slot 𝜏. 

Then, the drift-plus-penalty of the Lyapunov framework is expressed as ∆(𝜏) + 𝑉𝔼{𝐸(𝜏)|𝑸(𝜏)}, 

where 𝑉 is the control parameter which indicates how much the system emphasizes the energy 

consumption. The exp lanation of the drift -plus-penalty term is made as follows: we want to keep the 

system stable by pushing ∆(𝜏) toward  a lower value; we also want to make 𝔼{𝐸(𝜏)|𝑸(𝜏)} smaller to 

incur less energy consumption. So, the purpose is to min imize ∆(𝜏) + 𝑉𝔼{𝐸(𝜏)|𝑸(𝜏)}, and the 

corresponding upper bound is given in the following lemma. 

 

Lemma 1. For any possible actions under queue stability condition that can be implemented at  t ime 

slot 𝜏, we have 

∆(𝜏) + 𝑉𝔼{𝐸(𝜏) |𝑸(𝜏)} ≤ Ω + 𝑉𝔼{𝐸(𝜏)|𝑸(𝜏)}  

+𝔼{∑ [𝑄𝑖
𝐹(𝜏)(𝑎𝑖

(𝜏)𝑊𝑒𝑥 − ∑ 𝑢𝑖𝑗
(𝜏)𝑗∈𝒩 𝑊𝑒𝑥 )]|𝑖∈𝒩 𝑸(𝜏)}  



+𝔼{∑ 𝑄𝑗
𝐵(𝜏)[∑ 𝑢𝑖𝑗

(𝜏)𝑖∈𝒩 (𝑊𝑒𝑥 + 𝑊𝑖𝑗
𝑠𝑐) − 𝑏𝑗

(𝜏)]𝑗∈𝒩 |𝑸(𝜏)},           (28) 

where Ω = 𝑛{[𝑛𝑈𝑚𝑎𝑥𝑊𝑠𝑐 ]2 + [𝐴𝑚𝑎𝑥𝑊𝑠𝑐 ]2 + 𝑛2𝑈𝑚𝑎𝑥
2 [𝑊𝑠𝑐 + 𝑊𝑚𝑎𝑥

𝑠𝑐 ]2 + 𝐵𝑚𝑎𝑥
2 }/2.  

Proof. See Appendix A. 

 

The main purpose of the Lyapunov technique is to minimize ∆(𝜏) + 𝑉𝔼(𝐸(𝜏)|𝑸(𝜏)) at each time 

slot 𝜏. By doing so, the queue length can be kept at a low level. Meanwhile, the energy consumption of 

all MDs can be min imized. Rather than directly min imize the drift -p lus-penalty term, the Lyapunov 

framework seeks to min imize the bound given in the right-hand-side of Eq. (28). Thus, as stated above, 

instead of solving P directly, we only need to address its modified version P1.  

P1: min 𝑉𝐸(𝜏) + ∑ 𝑄𝑖
𝐹(𝜏)[𝑎𝑖

(𝜏)𝑊𝑒𝑥 − ∑ 𝑢𝑖𝑗
(𝜏)𝑗∈𝒩 𝑊𝑒𝑥 ]𝑖∈𝒩  

+ ∑ 𝑄𝑗
𝐵(𝜏)[∑ 𝑢𝑖𝑗

(𝜏)𝑖∈𝒩 (𝑊𝑒𝑥 + W𝑖𝑗
𝑠𝑐) − 𝑏𝑗

(𝜏) ]𝑗∈𝒩 ,                  (29a) 

s.t. (25c-25h).                                                    (29b) 

P1 is the optimal objective for all the MDs in the D2D group. The following Lemma 2 makes the 

conclusion that P1 can be realized by the distributed decision making at each MD𝑖. 

 

Lemma 2. By  the framework of opportunistically min imizing a conditional expectation, P1  can be 

equivalently reformulated as ,  

P2: min ∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗(𝜏)𝑗∈𝒩 + 𝜑𝑖
(𝜏)𝑏𝑖

(𝜏),                       (30a) 

s.t. (25c)-(25h),                                     (30b) 

where  

𝜌𝑖𝑗
(𝜏) = 𝑄𝑗

𝐵(𝜏)[𝑊𝑒𝑥 + 𝑊𝑖𝑗
𝑠𝑐 ] − 𝑄𝑖

𝐹(𝜏)𝑊𝑒𝑥  

+𝑉[𝑃𝑖
𝑐𝑥(𝜏)𝑊𝑖𝑗

𝑠𝑐/𝐶𝑖(𝜏) + 𝑃𝑖
𝑡𝑥𝐷/𝑅𝑖𝑗 (𝜏)],                     

and 

𝜑𝑖
(𝜏) = 𝑉𝑃𝑖

𝑐𝑥(𝜏)/𝐶𝑖(𝜏) − 𝑄𝑖
𝐵(𝜏).                               

Proof. See Appendix B. 

 

We find that there exist four variables in Eq. (30a), such as 𝑢𝑖𝑗(𝜏), 𝑏𝑖
(𝜏), 𝐹𝑖 ,𝑙(𝜏), and 𝐹𝑖 ,ℎ(𝜏). 

For each MD𝑖, the numbers of 𝐹𝑖 ,𝑙(𝜏) and 𝐹𝑖 ,ℎ(𝜏) are fin ite and is a small integer. To obtain the 

minimum value, we first fix 𝐹𝑖 ,𝑙(𝜏) and 𝐹𝑖 ,ℎ(𝜏), and use 𝑔(𝐹𝑖 ,𝑙 (𝜏), 𝐹𝑖 ,ℎ(𝜏)) = ∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗(𝜏)𝑗∈𝒩 +

𝜑𝑖
(𝜏)𝑏𝑖

(𝜏) to represent the objective function under these CPU frequencies. Note that for the given 

𝐹𝑖 ,𝑙(𝜏)  and 𝐹𝑖 ,ℎ(𝜏), the 𝐶𝑖(𝜏) and 𝑃𝑖
𝑐𝑥(𝜏)  can be determined. Thus, 𝜌𝑖𝑗 (𝜏) and 𝜑𝑖

(𝜏)  are two 

constants in this case. After traversing all the combinations of 𝐹𝑖 ,𝑙(𝜏) and 𝐹𝑖 ,ℎ(𝜏), we can choose the 

minimal 𝑔∗ (𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) as the optimal value. The framework of the Sec2D algorithm is shown in 

Algorithm 1. It is worth  pointing out that 𝑢𝑖𝑗(𝜏) is the integer variable and 𝑏𝑖
(𝜏) is the continuous 

variable, minimizing 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) is a mixed-integer linear programming (MILP) problem.  

 

Algorithm 1. The Sec2D framework. 

1: At the beginning of each time slot 𝜏, each MD𝑖 first observes the queue backlog 𝑄𝑖
𝐹(𝜏), 

𝑄𝑖
𝐵(𝜏), and task arrival 𝑎𝑖

(𝜏) , broadcasts its back-end queue information to other MDs, and then 

makes the online decision as follows: 

2: for (𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) ∈ 𝐹𝑖 ,𝐿 × 𝐹𝑖 ,𝐻 do 

3:    Calculate 𝜌𝑖𝑗
(𝜏) and 𝜑𝑖

(𝜏)  

4:    Minimize 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) 

5: Update 𝑄𝑖
𝐹(𝜏 + 1) and 𝑄𝑖

𝐵(𝜏 + 1) according to Eqs. (7) and (8) 



 

 

5.2 WO-based greedy approach 

MILP p lays an important role in  many real-world  problems, including resource sharing [46], service 

optimization [47], and so on. In this section, we present a greedy approach with low time complexity  

for MILP problem. To minimize Eq. (30a) in problem P2, we first discuss four cases as follows:  

 Case 1: 𝜌𝑖𝑗
(𝜏) ≥ 0, ∀𝑗 ∈ 𝒩, and 𝜑𝑖

(𝜏) > 0. In this case, 𝑢𝑖𝑗
(𝜏) = 0 and 𝑏𝑖

(𝜏) = 0 will obtain  

the minimum value 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) = 0.  

 Case 2: 𝜌𝑖𝑗
(𝜏) ≥ 0, ∀𝑗 ∈ 𝒩, and 𝜑𝑖

(𝜏) ≤ 0. We set 𝑢𝑖𝑗
(𝜏) = 0, and the problem is to min imize 

𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) = 𝜑𝑖
(𝜏)𝑏𝑖

(𝜏)with the optimal solution 𝑏𝑖
(𝜏) = min {𝐶𝑖

(𝜏)𝑇𝑠𝑙𝑜𝑡 , 𝑄𝑖
𝐵(𝜏)}. It is 

noted that, when 𝜑𝑖
(𝜏) = 0, for the sake of using already allocated computing resources, we 

process workload as much as possible. This will not affect the value of the objective function but 

decrease the length of the back-end queue.  

 Case 3: 𝜌𝑖𝑗
(𝜏) < 0, ∃𝑗 ∈ 𝒩, and 𝜑𝑖

(𝜏) ≥ 0. We set 𝑏𝑖
(𝜏) = 0, and our problem is to min imize 

𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) = ∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗(𝜏)𝑗∈𝒩 .  

 Case 4: 𝜌𝑖𝑗
(𝜏) < 0, ∃𝑗 ∈ 𝒩, and 𝜑𝑖

(𝜏) < 0. In this case, the objective function is the original 

one 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) = ∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗 (𝜏)𝑗∈𝒩 + 𝜑𝑖
(𝜏)𝑏𝑖

(𝜏).  

    The above analysis process is shown in Algorithm 2, and we g ive the summary as follows: 1) 

when 𝑄𝑖
𝐹(𝜏) is too long, or 𝑄𝑗

𝐵(𝜏) is short (leading to 𝜌𝑖𝑗
(𝜏) < 0), MD𝑖 will migrate more tasks to 

𝑄𝑗
𝐵(𝜏) to maintain  the system stability; 2) when 𝑄𝑗

𝐵(𝜏) is congested, or the computing resource is 

sufficiently enough (leading to 𝜑𝑖
(𝜏) < 0), MD𝑖 will process more tasks as much as possible to 

maintain the stability of D2D system.  

 

Algorithm 2. WO-based Greedy Approach. 

1: for 𝑗 in 𝒩 do 

2:    Calculate 𝜌𝑖𝑗
(𝜏)   

3: Calculate 𝜑𝑖
(𝜏) 

4: Case 1: 

5:    𝑢𝑖𝑗
(𝜏) ← 0 

6:    𝑏𝑖
(𝜏) ← 0 

7: Case 2: 

8:    𝑢𝑖𝑗
(𝜏) ← 0 

 9:     𝑏𝑖
(𝜏) ← min {𝐶𝑖

(𝜏)𝑇𝑠𝑙𝑜𝑡 , 𝑄𝑖
𝐵(𝜏)} 

10: Case 3: 

11:    Minimize ∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗 (𝜏)𝑗∈𝒩  

12: Case 4: 

13:    Minimize ∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗(𝜏)𝑗∈𝒩 + 𝜑𝑖
(𝜏)𝑏𝑖

(𝜏) 

 

 

Moreover, to solve the objective function in Cases 3 and 4, we develop a weight ordering (WO) 

based greedy method, which has low t ime complexity. Taking Case 4, 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) =

∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗(𝜏)𝑗∈𝒩 + 𝜑𝑖
(𝜏)𝑏𝑖

(𝜏), as an example, let 𝒩𝑖
(𝜏)  denote the set of MDs whose 𝜌𝑖𝑗

(𝜏) <

0, ∀𝑗 ∈ 𝒩 , and 𝑚 = |𝒩𝑖
(𝜏)| ≤ 𝑛. Let 𝑤𝑗(𝜏) be the weight of parameters 𝜌𝑖𝑗

(𝜏) and 𝜑𝑖
(𝜏) , which is 

defined as 



𝑤𝑗 (𝜏) = {
𝜌𝑖𝑗 (𝜏)

𝐶𝑖(𝜏)

𝑊𝑖𝑗
𝑠𝑐

𝑅𝑖𝑗(𝜏)

𝐷
, ∀𝑗 ∈ 𝒩𝑖 (𝜏)

𝜑𝑖
(𝜏)𝐶𝑖

(𝜏),              𝑗 = 𝑚 + 1,
                      (31) 

where the fo rmer and latter of the right-hand-side of Eq. (31) are defined for 𝑢𝑖𝑗(𝜏) and 𝑏𝑖
(𝜏), 

respectively. For the former case, 𝐶𝑖
(𝜏)/𝑊𝑖𝑗

𝑠𝑐  and 𝑅𝑖𝑗
(𝜏)/𝐷 can be seen as the ratio of occupied time  

when offloading one task from MD𝑖 to MD𝑗. When 𝜌𝑖𝑗
(𝜏) < 0, we hope that offloading the same 

number of tasks, i.e., 𝑢𝑖𝑗(𝜏), will take up less time. Thus, MD𝑖 can route more tasks to other MDs at a 

one-time slot, resulting in lower 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)). So, the lower 𝑤𝑗(𝜏), the smaller 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)). 

The same explanation can be applied to the latter case.  

The pseudo-code of the WO mechanism is outlined in Algorithm 3. Let 𝑇𝑟𝑒1 and 𝑇𝑟𝑒2 denote the 

remain ing time for constraints Eqs. (25c) and (25d ), and let  𝑄𝑟𝑒
𝐹  denote the remain ing workload fo r 

the front-end queue. We first compute all the weights and put them into the set 𝑆. Then, all the weights 

in set 𝑆 are sorted in increasing order based on their value. Next, we take the first item from 𝑆, which  

has the lowest value and get the weight index. If index 𝑗 ∈ 𝒩𝑖
(𝜏) , we need to allocate the number of 

tasks for 𝑢𝑖𝑗
(𝜏) . Due to the constraints 𝑇𝑟𝑒1 , 𝑇𝑟𝑒2 and 𝑄𝑟𝑒

𝐹 , we get 𝑢𝑖𝑗
(𝜏) =

min {⌊
𝑇𝑟𝑒1𝐶𝑖

(𝜏)

𝑊𝑖𝑗
𝑠𝑐 ⌋ , ⌊

𝑇𝑟𝑒2𝐶𝑖(𝜏)𝑅𝑖𝑗(𝜏)

𝑊𝑖𝑗
𝑠𝑐𝑅𝑖𝑗(𝜏)+𝐶𝑖(𝜏)𝐷

⌋ , 𝑄𝑟𝑒
𝐹 /𝑊𝑒𝑥 }. If index 𝑗 = 𝑚 + 1 , the workload 𝑏𝑖(𝜏)  should be 

determined, i.e., 𝑏𝑖
(𝜏) = min {𝑇𝑟𝑒1𝐶𝑖

(𝜏), 𝑄𝑖
𝐵(𝜏)} based on the time constraint and back-end queue. 

Also, 𝑇𝑟𝑒1 , 𝑇𝑟𝑒2 , 𝑄𝑟𝑒
𝐹  and 𝑆  are needed to be updated. For Case 3, computing 𝑤𝑚 +1(𝜏)  and  

allocating 𝑏𝑖(𝜏) are not required, and hence the corresponding parts can be removed from Algorithm 

3.  

By incorporating the WO mechanis m into Algorithm 2, our proposed greedy approach can be 

implemented. Unlike the optimal solution approach, the worst time complexity  of this greedy approach 

is 𝑂(𝑛log𝑛), resulting from sorting the weights in set 𝑆. So, the worst time complexity of the Sec2D  

algorithm is 𝑂(𝑁𝐿𝑁𝐻𝑛log𝑛), where 𝑁𝐿𝑁𝐻 is the maximum number of groups (𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) for  

all MDs.  

 

Algorithm 3. WO Mechanism (for Case 4). 

1: 𝑆 ← ∅, 𝑇𝑟𝑒1, 𝑇𝑟𝑒2 ← 𝑇𝑠𝑙𝑜𝑡 , 𝑄𝑟𝑒
𝐹 ← 𝑄𝑖

𝐹(𝜏) 

2: for 𝑗 in 𝒩𝑖
(𝜏)  do 

3:    𝑤𝑗(𝜏) ← 𝜌𝑖𝑗 (𝜏)
𝐶𝑖(𝜏)

𝑊𝑖𝑗
𝑠𝑐

𝑅𝑖𝑗(𝜏)

𝐷
  

4:    𝑆 ← 𝑆 + {𝑤𝑗(𝜏)} 

5: 𝑤𝑚+1(𝜏) ← 𝜑𝑖
(𝜏)𝐶𝑖

(𝜏)  

6: 𝑆 ← 𝑆 + {𝑤𝑚+1(𝜏)} 

7: Sort weights in set 𝑆 in the increasing order 

8: while 𝑆 ≠ ∅, 𝑇𝑟𝑒1 > 0 and 𝑇𝑟𝑒2 > 0 do 

9:    Get the index 𝑗 of the first weight in 𝑆 

10:    if 𝑗 ∈ 𝒩𝑖
(𝜏)  then 

11:       𝑢𝑖𝑗(𝜏) ← min {⌊
𝑇𝑟𝑒1𝐶𝑖(𝜏)

𝑊𝑖𝑗
𝑠𝑐 ⌋ , ⌊

𝑇𝑟𝑒2𝐶𝑖(𝜏)𝑅𝑖𝑗(𝜏)

𝑊𝑖𝑗
𝑠𝑐𝑅𝑖𝑗(𝜏)+𝐶𝑖(𝜏)𝐷

⌋ , 𝑄𝑟𝑒
𝐹 /𝑊} 

12:       𝑇𝑟𝑒1 ← 𝑇𝑟𝑒1 − 𝑢𝑖𝑗
(𝜏)𝑊𝑖𝑗

𝑠𝑐 /𝐶𝑖(𝜏) 

13:       𝑇𝑟𝑒2 ← 𝑇𝑟𝑒2 − 𝑢𝑖𝑗
(𝜏)𝑊𝑖𝑗

𝑠𝑐 /𝐶𝑖(𝜏) − 𝑢𝑖𝑗
(𝜏)𝐷/𝑅𝑖𝑗

(𝜏)  

14:       𝑄𝑟𝑒
𝐹 ← 𝑄𝑟𝑒

𝐹 − 𝑢𝑖𝑗(𝜏)𝑊
𝑒𝑥  



15:    else if 𝑗 = 𝑚 + 1 then 

16:       𝑏𝑖
(𝜏) ← min {𝑇𝑟𝑒1𝐶𝑖

(𝜏), 𝑄𝑖
𝐵(𝜏)} 

17:       𝑇𝑟𝑒1 ← 𝑇𝑟𝑒1 − 𝑏𝑖
(𝜏)/𝐶𝑖(𝜏) 

18:    𝑆 ← 𝑆 − {𝑤𝑗(𝜏)}  

 

5.3 BAC-based optimal approach 

Let 𝑐 = [𝜌𝑖1
(𝜏) , … , 𝜌𝑖𝑚 (𝜏), 𝜑𝑖

(𝜏) ]Τ represent the coefficient vector and 𝑥 =

[𝑢𝑖1
(𝜏), … , 𝑢𝑖𝑚(𝜏), 𝑏𝑖

(𝜏)]Τ  be the variable vector. Note that only the variables with 𝜌𝑖𝑗 (𝜏) < 0 are 

considered that can reduce the dimensions of our problem. Also, if 𝜑𝑖
(𝜏) ≥ 0, 𝜑𝑖

(𝜏)  and 𝑏𝑖
(𝜏) are 

removed from 𝑐  and 𝑥 . Then, 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) = 𝑐Τ𝑥 . Similarly, let 𝜋 =

[𝑇𝑠𝑙𝑜𝑡 , 𝑇𝑠𝑙𝑜𝑡 , 𝑄𝑖
𝐹(𝜏), 𝑄𝑖

𝐵(𝜏)], and  

Π =

[
 
 
 
 
 
 

𝑊𝑖1
𝑠𝑐

𝐶𝑖
(𝜏)

𝑊𝑖1
𝑠𝑐

𝐶𝑖
(𝜏)

+
𝐷

𝑅𝑖1 (𝜏)

⋯         
𝑊𝑖𝑚

𝑠𝑐

𝐶𝑖
(𝜏)

  
1

𝐶𝑖(𝜏)

⋯
𝑊𝑖𝑚

𝑠𝑐

𝐶𝑖
(𝜏)

+
𝐷

𝑅𝑖𝑚(𝜏)
0

𝑊𝑒𝑥

0
⋯       𝑊𝑒𝑥                     0
⋯        0                    1]

 
 
 
 
 
 

 

We can rewrite our problem P2 into the general MILP problem, namely  

min 𝑔(𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) = 𝑐Τ𝑥,                           (32a) 

s.t. Π𝑥 ≤ 𝜋,                                        (32b) 

𝑥 ∈ 𝕫𝑚 × ℝ.                                     (32c) 

Ideally, MILP can be optimally solved by exhaustive search methods, e.g., branch and bound [48], [49] 

and cutting plane [50], [51]. Nevertheless, it is difficu lt to apply to our problem. This is because 

solving this MILP for MD𝑖 results in unacceptable running time. Th is motivates us to devise a more 

efficient solution.  

The merits and demerits of cutting plane and branch and bound are as follows: cutting plane is fast 

but unreliable; while b ranch and bound is reliable but slow. Recently, the branch and cut (BAC) 

algorithm combines the advantages from these two methods and improves the defects, i.e.; we can  

solve the MILP problems by taking some cutting planes into the branch and bound process [52], [53]. It  

has proven to be a very successful approach to solving a wide variety of real-world problems.  

The BAC-based optimal approach is outlined in Algorithm 4 [54]. It main ly has seven steps. In the 

Initialization step, upper bound 𝑧̅ and lower bound 𝑧 are initialized. Part icularly, 𝑧̅ and 𝑥∗ are set 

by our greedy approach, which is very useful for the Pruning step, as the solution of our greedy 

algorithm maybe not optimal but feasible. Let Φ denote the set of non-integer variables in the branch 

and cut tree, and Φ = {P0 }, where P0  is the original MILP problem P2. The Termination step is used 

to determine if the optimal solution is found. Unlike other MILP problems, our problem must have an 

optimal solution. In the Node selection step, generally, there are two search strategies, best first and 

depth-first, for selecting the next node (subproblem) to be processed. To minimize overall solution time,  

we apply the best first approach to choose the node with the best bound (lowest upper bound), which  

can min imize the size of the search tree. The Relaxation step is the most important factor for proving a 

solution is optimal and is applied in all the MILP/ILP problems and methods. Its implementation 

neglects the integer constraints on the decision variables 𝑥  and solves the relaxed  linear programming 

(LP) problem (i.e., 𝑥 ∈ ℝ𝑛). We assume that the LP solver is availab le, called LP𝑆𝑂𝐿𝑉 . In particu lar, we 

consider this solver that is able to find the unique minimal optimal solution 𝑧 and 𝑥𝐿𝑃. Let 𝛫 =

⋂ 𝐾𝑖
𝑚
𝑖=1  be the constraint set with each 𝐾𝑖, defined by Π𝑖𝑥 ≤ 𝜋𝑖. Further reducing the number of 



nodes to explore with improved relaxat ion bounds, the Cutting plane step is utilized to generate valid  

inequalities to the LP relaxation, where  ℎ𝑀𝐼𝐺  represents the mixed-integer Gomory (MIG) cuts [51].  

The Pruning step is to leverage the convexity of LP relaxat ions to prune the enumeration tree that 

eliminates a problem from further consideration. Let conv(Λ) denote the polyhedral convex hull. If 

𝑥𝐿𝑃 ∈ conv(Λ), then 𝑥𝐿𝑃 is the optimal solution. Finally, if our relaxed solution is not integer feasible, 

we must decide how to part ition the search space into smaller subproblems. The strategy for doing this 

is called a Branching. Branching wisely is very important, and its most common approach is changing 

variable bounds. For instance, if 𝑥 𝑖 is not integer feasible, we create two problems with additional 

constraints, i.e., 𝑥 𝑖 ≤ ⌊𝑥 𝑖
⌋ on one branch and 𝑥 𝑖 ≥ ⌈𝑥𝑖

⌉ on another branch. Then, we add these two 

subproblems to the set Φ.  

 

Algorithm 4. BAC-based Optimal Approach 

1: Initialization 

𝑧̅, 𝑥∗ ← Call WO-based greedy approach //Upper bound  

𝑧 ← −∞  //Lower bound 

Φ ← {P0 } //Problem set 

2: Termination 

  if Φ = ∅ then, the current 𝑥∗ is the optimal solution,  

i.e., 𝑧∗ ← 𝑧̅, and STOP 

  if 𝑧 = 𝑧 = 𝑧 then, set 𝑧∗ ← 𝑧, and STOP 

3: Node selection 

  Compute the best bound by the best first approach 

Select and delete a problem P𝑖  in Φ 

4: Relaxation 

𝑧, 𝑥𝐿𝑃 ← LP𝑆𝑂𝐿𝑉  (𝐾) //Solve the LP relaxation of P𝑖  

5: Cutting plane 

  ℎ𝑀𝐼𝐺 ← 𝑀𝐼𝐺(𝑥𝐿𝑃) // Gomory cutting plane 

  𝐾 ← 𝐾 ∩ ℎ𝑀𝐼𝐺 , and go to Relaxation 

6: Pruning 

  if z ≥ 𝑧 then, go to Termination 

  if z < 𝑧 and 𝑥𝐿𝑃 ∈ conv(Λ) then  

Set 𝑧 ← 𝑧 

Remove possibly dominated problem from Φ 

Go to Termination 

7: Branching 

P𝑖1 ← 𝐾 ∩ {𝑥 𝑖 ≤ ⌊𝑥 𝑖
⌋}, and P𝑖2 ← 𝐾 ∩ {𝑥 𝑖 ≥ ⌈𝑥𝑖

⌉}  

Φ ← Φ ∪ {P𝑖1 , P𝑖2 }, and go to Termination 

 

5.4 Performance analysis  

Lyapunov optimizat ion method can derive a performance bound on energy-delay tradeoff. To prove this 

theory, we first introduce an existing lemma, Lyapunov stability [44], that if there exists a positive 

constant 𝜖 > 0, such that for all time slots 𝜏, we have 

∆(𝜏) ≤ Ω − 𝜖 ∑ 𝔼[𝑄𝑖
𝐹(𝜏) + 𝑄𝑖

𝐵(𝜏)]𝑖∈𝒩 .                        (33) 

Moreover, the following Lemma 3 makes the objective function close to the optimal solution.  



 

Lemma 3: For any 𝛿 > 0, there exists a stationary and randomized  policy  that chooses 𝑢𝑖𝑗(𝜏), 𝑏𝑖
(𝜏), 

𝐹𝑖 ,𝑙(𝜏) and 𝐹𝑖 ,ℎ(𝜏) each time slot 𝜏, and achieves the following results:  

𝔼{𝐸(𝜏)} ≤ 𝐸∗ + 𝛿 ,                                (34a) 

𝜆 𝑖 ≤ 𝔼{∑ 𝑢𝑖𝑗(𝜏)𝑗∈𝒩 } + 𝛿, ∀𝑖 ∈ 𝒩,                         (34b) 

𝔼{∑ 𝑢𝑗𝑖
(𝜏)𝑗∈𝒩 [𝑊𝑒𝑥 + 𝑊𝑖𝑗

𝑠𝑐 ]} ≤ 𝔼{𝑏𝑖
(𝜏) } + 𝛿, ∀𝑖 ∈ 𝒩.                 (34c) 

Proof. The proof process can be found from the Theorem 4.5 of [45].  

 

Based on Eq. (33) and Lemma 3, we can prove the performance bounds and energy-delay tradeoff 

of our proposed Sec2D algorithm. 

 

Theorem 1. Suppose that 𝜖 > 0 and the data request arrival rate 𝝀 is strictly within the network 

capacity region 𝚲. For any control parameter 𝑉 > 0, under the Sec2D algorithm, we have 

𝛦̅ = lim
𝑡→∞

sup  
1

𝑡
∑ 𝔼𝑡−1

𝜏=0
[𝐸(𝜏)] ≤ 𝐸∗ + Ω/𝑉,                 (35) 

𝑄̅ = lim
𝑡→∞

sup 
1

𝑡
∑ ∑ 𝔼[𝑄𝑖

𝐹(𝜏) + 𝑄𝑖
𝐵(𝜏)]𝑛

𝑖=1
𝑡−1
𝜏=0 ≤ (Ω + 𝑉𝐸∗)/𝜖.      (36) 

Proof. See Appendix C. 

 

Theorem 1 shows the result of the energy-delay tradeoff [𝑂(1/𝑉),𝑂(𝑉)]. For example, as 𝑉 

becomes larger for any V>0, the average energy consumption decreases and approaches the optimal 

value 𝐸∗, whereas the average queue length increases linearly with V. On the other hand, when 𝑉 

becomes smaller, the average queue length is close to its lower bound Ω/𝜖, while the average energy 

consumption increases with the increment of Ω/𝑉.  

 

6. Simulation Experiments  

This section first introduces the experimental parameters, performance metrics , and comparison 

algorithms. Then, three groups of simulation results and corresponding analysis are given. Finally, we 

summarize the experimental results.  

 

6.1 Experiment setup  

Suppose 𝑛 MDs in D2D communication, and the distance between two MDs is a random number with 

maximum value 𝑑𝑚𝑎𝑥 = 200 m. Besides, each MD’s bandwidth 𝐵 = 10 MHz, noise power 𝜎2 =

−174 dbm/Hz, path-loss constant 𝛾 = 0.01, and path-loss exponent 𝜃 = 4 [3], [7]. Also, suppose 

each MD has the same trans mit  power 𝑃𝑖
𝑡𝑥 = 100  mW [55]. We consider the maximum working 

frequency of each CPU core of an MD is 2.0 GHz, and its computational power is 900 mW . 

According to 𝑃𝑐𝑥 = 𝛼𝐹3 , 𝛼 is computed as 900/23 = 112.5 mW/(GHz)3  [1], [8].  We use the 

above parameter setting for all the MDs. The other parameters of heterogeneous MDs are given in 

Table 4. Moreover, we can adjust the CPU frequency level in the range [0.3,1] with the increment of 

0.1 for low and high-performance cores by the DVFS technique.  

The task arrival rate of each MD follows the Poisson distribution with mean  𝜆 𝑖 ∈ [1,10], and the 

size of arrived data is 10 KB  with workload 𝑊 = 1 GHz ∙ s. For the security service, we assume that 

𝛽 = 0.5 and 𝜂𝑣 ∈ [0,5], ∀𝑠 ∈ {𝑐𝑑, 𝑖𝑔}. In addition, we set 𝑇𝑠𝑙𝑜𝑡 = 1 and the number of time slots  

𝑁𝑠𝑙𝑜𝑡 = 10000, which is long enough for obtaining stable results .  



The performance metrics evaluated in our experiments are as follows:  

 Average energy consumption (AEC) and average queue length (AQL): These two metrics are 

computed by Eqs. (23) and (24), respectively.  

 Average running time (ART): It is the average execution time of an algorithm on each time slot, 

reflecting the time complexity, which is calculated by ∑ ∑ [𝑇𝑖
𝑟𝑢𝑛(𝜏)/(𝑁𝑖,𝐿+𝑁𝑖,𝐻)𝑖∈𝒩

𝑁𝑠𝑙𝑜𝑡
𝜏=1 ]/

(𝑛𝑁𝑠𝑙𝑜𝑡 ) . 𝑇𝑖
𝑟𝑢𝑛(𝜏)/(𝑁𝑖,𝐿+𝑁𝑖,𝐻)  is the running time for MD𝑖  at time slot 𝜏 , where the 

denominator 𝑁𝑖,𝐿+𝑁𝑖,𝐻  ind icates that the multip le CPU cores are used to search the optimal 

solution from (𝐹𝑖 ,𝑙(𝜏), 𝐹𝑖 ,ℎ(𝜏)) groups simultaneously.  

 Average risk probability (ARP): The average risk probability is  calculated by 

∑ ∑ ∑ 𝑢𝑖𝑗(𝜏)𝑗 ∈𝒩𝑖∈𝒩
𝑁𝑠𝑙𝑜𝑡
𝜏=1 𝑃𝑟 (𝑖, 𝑗)/ ∑ ∑ 𝑢𝑖𝑗(𝜏)𝑗∈𝒩𝑖∈𝒩 , where 𝑖 ≠ 𝑗 and 𝑃𝑟 (𝑖, 𝑗)  is the total risk 

probability of transmitting data from MD𝑖 to MD𝑗.  

Also, we conduct the following comparison algorithms to compare the performance with our 

Sec2D algorithm.  

 No security service: This method does not adopt any security service when offloading tasks, i.e., 

exposing the data to malicious attacks, leading to high risk probability.  

 Local computation: All the tasks arrived at 𝑄𝑖
𝐹 are routed to 𝑄𝑖

𝐵, i.e ., 𝑢𝑖𝑖(𝜏) = 𝑎𝑖 (𝜏), and 𝑢𝑖𝑗 =

0 for 𝑖 ≠ 𝑗. So, this case will not exist any cooperation for task processing among MDs.  

 

Table 4: The parameters of heterogeneous MDs. 

 MD (CPU chip) 𝑁𝐿  𝑁𝐻 𝐹𝐿
𝑚𝑎𝑥  (GHz) 𝐹𝐻

𝑚𝑎𝑥  (GHz) 

1 iPhone 7 (A10) 2 2 1.05 2.34 

2 iPhone X (A11) 4 2 1.6 2.38 

3 iPhone XS (A12) 4 2 1.6 2.5 

4 Samsung S8 (Exynos 8895) 4 4 1.7 2.5 

5 Samsung S9 (Exynos 9810) 4 4 1.7 2.9 

6 Samsung S10 (Exynos 9820) 4 2+2 1.9 2.3+2.7 

7 Nokia X7 (Snapdragon 710) 6 2 1.7 2.2 

8 Huawei Honor8 (Kirin 950) 4 4 1.8 2.3 

9 Huawei p20 (Kirin 970) 4 4 1.8 2.4 

10 Huawei Mate20 (Kirin 980) 4 4 1.8 2.6 

 

6.2 Algorithms comparison 

We first evaluate the performance of our proposed algorithms. Let Sec2D-BB, Sec2D-BAC and 

Sec2D-Greedy represent the problem P2 solved by branch and bound, branch and cut, and greedy 

approaches, respectively. Note that we apply the Cplex 12.0.0 for Sec2D-BB and Sec2D-BAC. Fig. 6 

shows the performance comparison on the convergences of AEC and AQL, and the ART on different 𝑛. 

It is observed from Figs. 6(a) and 6(b ) that for Sec2D-BAC and Sec2D-Greedy, the AEC and AQL 

increase at the beginning and stabilize with in approximately  500-t ime slots, where we keep  𝑛 = 10. 

Besides, we can see that the AEC and AQL of Sec2D-BAC are all less than that of Sec2D-Greedy, as 

Sec2D-Greedy is not the optimal solution approach. Fig. 6(c) shows the ARTs of all comparison 

algorithms. Sec2D-Greedy has the least ART. Sec2D-BAC has less ART than Sec2D-BB. This is 

because Sec2D-BAC has fewer variables than Sec2D-BB, the upper bound initialized  by 

Sec2D-Greedy, and the cutting plane is integrated into the branch and bound framework, resulting in  

speeding up the optimal solution searching. 



 

 

 (a) Convergence of energy consumption (b) Convergence of queue length       (c) ART 

Fig. 6. Comparison results among Sec2D-BB, Sec2D-BAC and Sec2D-Greedy. 

 

Fig. 7 gives the comparison results among Sec2D-BAC, No security service, and Local 

computation under different 𝑛. From Figs. 7(a) and 7(b), we can see that with the increase of 𝑛, the 

AECs and AQLs of all algorithms increase. This is because the AEC and AQL are the time average of 

the sum of all MDs' energy consumption and queue length on each time slot, respectively. So, the more 

MDs in the D2D group, the larger AEC and the longer AQL. Further, No security service performs best 

on AEC and AQL under all the size of MDs, as it does not have any energy consumption resulting from 

security service, and also it  has no security workload in the back-end queue. However, lacking security 

protection, the data transmission in collaborative task offloading will experience high risk, shown in 

Fig. 7(d ).  Additionally, Sec2D-BAC has almost the same AEC as Local computation, but extremely  

less AQL. For example, when 𝑛 = 10, the AQL of Sec2D-BAC is less than 200, while the AQL of 

Local computation is about 6500 . The corresponding convergence behavior of AQL under 𝑛 = 10 is 

given in Fig. 7(c). We find that the queues of Sec2D-BAC and No security service are quickly stable. In 

contrast, the AQL of Local computation always increases with the number of t ime slots, indicating that 

Local computation cannot maintain system stability. The reason is that if an MD with low computation 

capacity but has a high task arrival rate without collaborative task offloading, it  is not capable of 

processing all the workload even under the maximum 𝐹𝑖 ,𝐿
𝑚𝑎𝑥  and 𝐹𝑖 ,𝐻

𝑚𝑎𝑥 . In this case, the AQL will 

become longer as the time slot evolving. Hence, under Local computation, a huge amount of workload 

is congested, and hence many tasks cannot be processed, resulting in less energy consumption. 

 

 

(a) AEC                         (b) AQL 



 

               (c) Convergence of queue length              (d) ARP 

Fig. 7. Comparison results among Sec2D-BAC, No security service, and Local computation under different 𝑛. 

 

6.3 The impact of system parameters 

Fig. 8 exp lores the energy-delay tradeoff of Sec2D-BAC under d ifferent 𝑉, where 𝑛 = 10, 𝛽 = 0.5, 

and 𝜂𝑣 = 0.5. From Fig. 8(a), we can see that as 𝑉 goes from 0.1 to 1000, the AEC of Sec2D-BAC 

decreases, but the AQL increases. According to drift-plus-penalty, the small 𝑉 means the system 

emphasizes queue backlog, resulting in low AQL but high AEC. On the contrary, when 𝑉 is very large, 

this indicates the system focuses on energy consumption instead of queue delay. As a result, 

Sec2D-BAC gains high AQL but low AEC. This phenomenon is consistent with our theoretical analysis 

(see Theorem 1). Also, we plot the convergence behaviors of AEC and AQL under three situations 

(𝑉 = 1, 50, 100) in  Figs. 8(b) and 8(c). We observe that all the AECs and AQLs can be stable in all 

cases, and different 𝑉 will incur d ifferent AECs and AQLs. Th is suggests that the control parameter 𝑉 

indeed implements the energy-delay tradeoff. Thus, a proper 𝑉 can be chosen in a practical scenario to 

satisfy self-defined requirements on energy consumption and delay. 

 

 

(a) Energy-delay tradeoff  (b) Convergence of energy consumption  (c) Convergence of queue length 

Fig. 8. Impact of different 𝑉. 

 

 

 (a) AEC and AQL      (b) Convergence of energy consumption   (c) Convergence of queue length  

Fig. 9. Impact of different 𝐷. 

 



To investigate the impact of 𝐷 , we conduct the experiments on Sec2D-BAC and Local 

computation with 𝐷  varying from 10 to 600 KB. The related results are plotted in Fig. 9, where 

𝑛 = 10, 𝑎𝑖 = 10，𝛽 = 0.5, 𝜂𝑣 = 0.5 and 𝑉 = 1. We make the fo llowing observations from Fig. 9(a). 

For Local computation, the curves of AEC and AQL are flat, indicating it is independent of 𝐷 . This is 

because the data size only impacts direct ly on security service and data transmission, i.e ., the larger 𝐷 , 

the larger 𝑇𝑖
𝑠𝑐(𝜏) and 𝑇𝑖

𝑡𝑥(𝜏) (see Eqs. (17) and (18)). So, for Sec2D-BAC, with the increase of 𝐷 , 

its AEC and AQL increase. Moreover, the AEC of Sec2D-BAC grows rapidly  with 𝐷 , and then the 

curve becomes nearly flat when 𝐷 = 300 KB. In contrast, the AQL of Sec2D-BAC increases slowly  

and then goes up fast when 𝐷 = 300  KB. The main reason behind this phenomenon is that, when 

𝐷 = 300 KB, the queue of Sec2D-BAC is unstable. This can be explained that: 1) the larger 𝐷  will 

produce less offloading tasks due to wireless bandwidth limitation; 2) the larger 𝐷  results in more 

security workload, making the back-end queue longer. The corresponding convergences of AEC and 

AQL on 𝐷 = 200, 250, 300  KB are shown in Figs. 9(b) and 9(c). From Fig. 9(b), it seems that the 

traces of AEC in all cases are stable, even when 𝐷 = 300  KB. Th is is because, when 𝐷 = 300 KB, 

the energy consumption of the whole system almost reaches the maximum value. Part icularly, from Fig.  

9(c), the AQLs of 𝐷 = 200 KB and 250KB are stable, but the AQL of 𝐷 = 300 KB appears to grow 

linearly with time slots. This indicates that the Sec2D-BAC cannot keep the queue stable when 𝐷 =

300 KB. Recall that from Fig. 9(a), when 𝐷 = 500 KB, the AQL of Sec2D-BAC is even longer than 

that of Local computation. In a word, the above results in Fig. 9 suggest that the data size has  a great 

impact on Sec2D-BAC. 

 

6.4 The impact of security parameters  

To reveal the performance impact of 𝛽, we compare the various results of Sec2D-BAC and No 

security service by varying 𝛽 from 0.1 to 2.0. Fig. 10 gives the corresponding results, where we fix 

𝑛 = 10, 𝑎𝑖 = 10, 𝑉 = 1, and 𝜂𝑣 = 0.5. Fig. 10(a) shows the relationship among 𝛽, 𝜂𝑣 and 𝑠𝑑𝑣. 

For a specified 𝜂𝑣, a larger 𝛽 leads to a larger 𝑠𝑑𝑣. So, MD should apply a higher level of security  

service to protect data security, resulting in more security workload. Besides, the more security 

workload, the more energy consumption, and a longer queue length. Therefore, the AEC and AQL of 

Sec2D-BAC increase with 𝛽, which are shown in Figs. 10(b) and 10(c), respectively. Also, we notice 

that when 𝛽 = 0.1 and 0.5, Sec2D-BAC has the same AEC and  AQL. The rationale is that, when 𝛽 

is a s mall value, the lowest security level will meet the security demand for the above two  cases. 

Lacking security protection, the AEC and AQL of No security service are independent of 𝛽. However, 

we can  see from Fig. 10(d) that the larger 𝛽 incurs, the h igher the security risk. We know that data 

security is very critical. As a consequence, our proposed Sec2D-BAC can  ensure data security under 

various 𝛽 by costing more energy and tolerating longer delays.  

 

 



(a) Relation among 𝛽, 𝑠𝑑𝑣 and 𝜂𝑣             (b) AEC 

 

                         (c) AQL                        (d) ARP 

Fig. 10. Impact of different 𝛽. 

 

Fig. 11 shows the results of the impact of 𝜂𝑣(𝑣 ∈ {𝑐𝑑 , 𝑖𝑔}) varying from 0 to 3 with the 

increment of 0.3, where 𝑛 = 10, 𝑎𝑖 = 10, 𝑉 = 1, and 𝛽 = 0.5. From Figs. 11(a) and 11(b), we find 

that AEC and AQL of Sec2D-BAC increase with 𝜂𝑣, because the larger 𝜂𝑣 will incur h igher 𝑠𝑑𝑣 and 

more security workload. In particu lar, when 𝜂𝑣 = 0, it means that there is no security risk in D2D 

communicat ion. In this case, Sec2D-BAC and No security service have the same AEC and AQL. In  

addition, sometimes, for example, when 𝜂𝑣 = 0.3 and 0.6, Sec2D-BAC has the same AEC and AQL. 

This is primarily due to the reason that the security demands under different 𝜂𝑣 can be satisfied by the 

same security level, resulting in no variation on AEC and AQL. In similar, due to the lack of security 

services, the AEC and AQL of No security service are independent of 𝜂𝑣, and the corresponding curves 

are flat. According to Eq. (9), the larger 𝜂𝑣 will generate higher ARP. The related result is plotted in 

Fig. 11(c). When 𝜂𝑣 = 3, the system will experience almost 100% risk. Thus, we need to deploy 

security services to guarantee data security.  

 

 

(a) AEC                   (b) AQL                    (c) ARP 

Fig. 11. Impact of different 𝜂𝑣 .  

 

6.5 Results summary 

Sec2D-BAC outperforms Sec2D-BB on running time and performs better than Sec2D-Greedy on AEC 

and AQL but with more running time. Although No security service has less AEC and AQL than 

Sec2D-BAC, it will experience high ARP. For some MDs with low computing capacity but high task 

arrival rate, Local computation cannot maintain the queue stability. Our proposed Sec2D-BAC can  

stabilize the workload queue and ensure the data security by the collaborative task offloading 

mechanis m, even varying various parameters, i.e., 𝑛, 𝑉, 𝛽 and 𝜂𝑣. Nevertheless, when the data size 

of a task is too large, Sec2D-BAC will consume more energy to implement security service, even 

making the queue unstable. Overall, Sec2D-BAC can achieve security and collaborative task offloading 



when 𝐷  is not very large, under the existing parameters set. The rationale is  that data security is 

achieved at the expense of other performance. 

 

7. Conclusions and future work 

This paper investigates the security and energy-aware collaborative task offloading in D2D 

communicat ion. We first build a novel security model for mobile devices by considering the number of 

CPU cores, CPU frequency, and data size. Thus, this security model can be used in the heterogeneous 

D2D scenario. Then, we formulate the collaborative task offloading problem where the objective is  to 

optimize the time-average delay and energy consumption of MDs with the security guarantees. 

Moreover, the Lyapunov optimizat ion framework is applied  to implement online decisions making, and 

a low-complexity WO-based greedy approach and a BAC-based optimal approach are proposed to 

solve the generated MILP problem. Theoretical proof shows that the Sec2D algorithm meets  a 

[𝑂(1/𝑉), 𝑂(𝑉)]  energy-delay tradeoff. Moreover, the simulation results validate the theoretical 

analysis and indicate that Sec2D can stabilize the system, as validated by our experiments. In a word, 

our proposed algorithm can ensure data security and keep the system stable for collaborative D2D 

communication.  

    For our future work, we will apply security services for task offloading in the mobile edge 

computing environment, where the edge servers and MDs should build their own security models. 

Another direction is to use the model-free method, deep reinforcement learn ing, to implement the 

computation or task offloading for D2D communication, which can meet  different performance 

requirements compared to the Lyapunov technique.  
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Appendix A. Proof of Lemma 1 

According to Eq. (26), we have 

𝐿(𝜏 + 1) − 𝐿(𝜏) =
1

2
∑ {[𝑄𝑖

𝐹(𝜏 + 1)]2 − [𝑄𝑖
𝐹(𝜏)]2}𝑖∈𝒩                    

+
1

2
∑ {[𝑄𝑗

𝐵(𝜏 + 1)]2 − [𝑄𝑗
𝐵(𝜏)]2}𝑗∈𝒩               (37) 

Taking [𝑄𝑖
𝐹(𝜏 + 1)]2 − [𝑄𝑖

𝐹(𝜏)]2 as an example,  

[𝑄𝑖
𝐹(𝜏 + 1)]2 − [𝑄𝑖

𝐹(𝜏)]2 ≤ [∑ 𝑢𝑖𝑗
(𝜏)𝑗∈𝒩 𝑊𝑒𝑥 ]

2
                            

+[𝑎𝑖
(𝜏)𝑊𝑒𝑥 ]2 + 2𝑄𝑖

𝐹(𝜏)[𝑎𝑖
(𝜏)𝑊𝑒𝑥 − ∑ 𝑢𝑖𝑗(𝜏)𝑗∈𝒩 𝑊𝑒𝑥 ]                (38) 

which can be derived in terms of the fact that for any 𝑄 ≥ 0, 𝑎 ≥ 0 and 𝑏 ≥ 0, we have: 

(max[𝑄 − 𝑏, 0] + 𝑎)2 ≤ 𝑄2 + 𝑎2 + 𝑏2 + 2𝑄(𝑎 − 𝑏)  

Repeating above steps for the back-end queue, we get 

[𝑄𝑗
𝐵(𝜏 + 1)]2 − [𝑄𝑗

𝐵(𝜏)]2 ≤ [∑ 𝑢𝑖𝑗
(𝜏)𝑖∈𝒩 (𝑊𝑒𝑥 + 𝑊𝑖𝑗

𝑠𝑐 )]
2
+ [𝑏𝑗

(𝜏)]
2
  

+2𝑄𝑗
𝐵(𝜏)[∑ 𝑢𝑖𝑗

(𝜏)𝑖∈𝒩 (𝑊𝑒𝑥 + 𝑊𝑖𝑗
𝑠𝑐 ) − 𝑏𝑗

(𝜏)]             (39) 



Moreover, as 𝑎𝑖
(𝜏) ≤ 𝐴𝑚𝑎𝑥 , 𝑏𝑖

(𝜏) ≤ 𝐵𝑚𝑎𝑥 and 𝑢𝑖𝑗
(𝜏) ≤ 𝑈𝑚𝑎𝑥 , we have 

[∑ 𝑢𝑖𝑗
(𝜏)𝑗∈𝒩 𝑊𝑒𝑥 ]

2
+ [𝑎𝑖

(𝜏)𝑊𝑒𝑥 ]2 + [∑ 𝑢𝑖𝑗
(𝜏)𝑖∈𝒩 (𝑊𝑒𝑥 + 𝑊𝑖𝑗

𝑠𝑐 )]
2
+ [𝑏𝑗

(𝜏)]
2
  

≤ [𝑛𝑈𝑚𝑎𝑥𝑊𝑒𝑥 ]2 + [𝐴𝑚𝑎𝑥𝑊𝑒𝑥 ]2 + [𝑛𝑈𝑚𝑎𝑥 (𝑊𝑒𝑥 + 𝑊𝑚𝑎𝑥
𝑠𝑐 )]2 + 𝐵𝑚𝑎𝑥

2               (40) 

Then,  

𝐿(𝜏 + 1) − 𝐿(𝜏) ≤ Ω + ∑ {𝑄𝑖
𝐹(𝜏)[𝑎𝑖

(𝜏)𝑊𝑒𝑥 − ∑ 𝑢𝑖𝑗
(𝜏)𝑗 ∈𝒩 𝑊𝑒𝑥 ]}𝑖∈𝒩   

+ ∑ {𝑄𝑗
𝐵(𝜏)[∑ 𝑢𝑖𝑗

(𝜏)𝑖∈𝒩 (𝑊𝑒𝑥 + 𝑊𝑖𝑗
𝑠𝑐 ) − 𝑏𝑗

(𝜏) ]}𝑗∈𝒩               (41) 

Now adding 𝑉𝔼 {𝐸(𝜏)|𝑸(𝜏) } to the both sides of Eq. (41) that proves the lemma 1.  

 

Appendix B. Proof of Lemma 2 

In terms of Eq. (22), at time slot 𝜏, the energy consumption of all the MDs can be represented by, 

𝐸(𝜏) = ∑ ∑ 𝑃𝑖
𝑐𝑥(𝜏) [𝑢𝑖𝑗

(𝜏)𝑊𝑖𝑗
𝑠𝑐 /𝐶𝑖(𝜏)]𝑗∈𝒩𝑖∈𝒩    

+ ∑ 𝑃𝑖
𝑐𝑥 (𝜏)[𝑏𝑖(𝜏)/𝐶𝑖(𝜏)]𝑖∈𝒩   

           + ∑ ∑ 𝑃𝑖
𝑡𝑥 [𝑢𝑖𝑗

(𝜏)𝐷/𝑅𝑖𝑗 (𝜏)]𝑗∈𝒩𝑖∈𝒩                              (42) 

Based on this, we extract the items related to 𝑢𝑖𝑗 (𝜏) from Eq. (29a), that is  

∑ 𝑄𝑗
𝐵(𝜏) ∑ 𝑢𝑖𝑗

(𝜏)𝑖 ∈𝒩 [𝑊𝑒𝑥 + 𝑊𝑖𝑗
𝑠𝑐 ]𝑗∈𝒩 − ∑ 𝑄𝑖

𝐹(𝜏) ∑ 𝑢𝑖𝑗
(𝜏)𝑗∈𝒩 𝑊𝑒𝑥

𝑖∈𝒩   

+ ∑ ∑ 𝑉[𝑃𝑖
𝑐𝑥(𝜏)𝑢𝑖𝑗

(𝜏)𝑊𝑖𝑗
𝑠𝑐 /𝐶𝑖(𝜏)]𝑗∈𝒩𝑖∈𝒩 + ∑ ∑ 𝑉[𝑃𝑖

𝑡𝑥𝑢𝑖𝑗
(𝜏)𝐷/𝑅𝑖𝑗 (𝜏)]𝑗∈𝒩𝑖∈𝒩         (43) 

Moreover, we have the following two equalities, 

∑ 𝑄𝑗
𝐵(𝜏) ∑ 𝑢𝑖𝑗

(𝜏)𝑖∈𝒩 [𝑊𝑒𝑥 + 𝑊𝑖𝑗
𝑠𝑐 ]𝑗∈𝒩 = ∑ ∑ 𝑢𝑖𝑗

(𝜏)𝑄𝑗
𝐵(𝜏)[𝑊𝑒𝑥 + 𝑊𝑖𝑗

𝑠𝑐 ]𝑗∈𝒩𝑖 ∈𝒩         (44) 

∑ 𝑄𝑖
𝐹(𝜏) ∑ 𝑢𝑖𝑗

(𝜏)𝑗∈𝒩 𝑊𝑒𝑥
𝑖∈𝒩 = ∑ ∑ 𝑢𝑖𝑗(𝜏)𝑄𝑖

𝐹(𝜏)𝑊𝑒𝑥
𝑗∈𝒩𝑖∈𝒩                  (45) 

Then, Eq. (43) can be rewritten by, 

∑ ∑ 𝑢𝑖𝑗 (𝜏)[𝑄𝑗
𝐵(𝜏)(𝑊𝑒𝑥 + 𝑊𝑖𝑗

𝑠𝑐 ) − 𝑄𝑖
𝐹(𝜏)𝑊𝑒𝑥 ]𝑗∈𝒩𝑖∈𝒩   

+ ∑ ∑ 𝑉[𝑃𝑖
𝑐𝑥 (𝜏)𝑢𝑖𝑗

(𝜏)𝑊𝑖𝑗
𝑠𝑐 /𝐶𝑖(𝜏)]𝑗∈𝒩𝑖∈𝒩   

+ ∑ ∑ 𝑉[𝑃𝑖
𝑡𝑥𝑢𝑖𝑗

(𝜏)𝐷/𝑅𝑖𝑗 (𝜏)]𝑗∈𝒩𝑖∈𝒩                                   (46) 

Similarly, we also extract the items related to 𝑏𝑗(𝜏) from Eq. (29a), i.e., 

∑ 𝑉[𝑃𝑖
𝑐𝑥 (𝜏)𝑖∈𝒩 𝑏𝑖(𝜏)/𝐶𝑖(𝜏)] − ∑ 𝑄𝑗

𝐵(𝜏)𝑏𝑗
(𝜏)𝑗 ∈𝒩                        (47) 

We know that ∑ 𝑄𝑗
𝐵(𝜏)𝑏𝑗

(𝜏)𝑗 ∈𝒩 = ∑ 𝑄𝑖
𝐵(𝜏)𝑏𝑖

(𝜏)𝑖∈𝒩 , and let 

𝜌𝑖𝑗
(𝜏) = 𝑄𝑗

𝐵(𝜏)[𝑊𝑒𝑥 + 𝑊𝑖𝑗
𝑠𝑐 ] − 𝑄𝑖

𝐹(𝜏)𝑊𝑒𝑥 + 𝑉[𝑃𝑖
𝑐𝑥(𝜏)𝑊𝑖𝑗

𝑠𝑐 /𝐶𝑖(𝜏) + 𝑃𝑖
𝑡𝑥𝐷/𝑅𝑖𝑗 (𝜏)] 

                     

and 

𝜑𝑖
(𝜏) = 𝑉𝑃𝑖

𝑐𝑥(𝜏)/𝐶𝑖(𝜏) − 𝑄𝑖
𝐵(𝜏)                               

Then, Eq. (29a) can be rewritten as 

min ∑ [∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗(𝜏)𝑗∈𝒩𝑖∈𝒩 + 𝜑𝑖
(𝜏)𝑏𝑖

(𝜏) ]                      (48) 

We can see from Eq. (48) that, fo r each MD𝑖, as both the objective function and constraints can be 

decomposed for individual (i.e., 𝑢𝑖𝑗(𝜏), 𝑏𝑖
(𝜏), 𝐹𝑖 ,𝑙(𝜏), and 𝐹𝑖 ,ℎ(𝜏)), the online optimal decisions can 

be done separately at each MD𝑖. Then, we reformulate Eq. (48) as follows: 

min ∑ 𝜌𝑖𝑗 (𝜏)𝑢𝑖𝑗(𝜏)𝑗 ∈𝒩 + 𝜑𝑖
(𝜏)𝑏𝑖

(𝜏)                       (49) 

This completes the proof of Lemma 2. 

 

Appendix C. Proof of Theorem 1 

For current time slot 𝜏, because of Eq. (33) and Lemma 3 hold, we can take expectations of both 

sides and use the law of iterated expectations to yield  

∆(𝜏) + 𝑉𝔼{𝐸(𝜏)} ≤ Ω + 𝑉𝐸∗ − ϵ∑ 𝔼 [𝑄𝑖
𝐹(𝜏) + 𝑄𝑖

𝐵(𝜏)]𝑖∈𝒩                 (50) 

Summing over 𝜏 ∈ {0,1, … ,𝑡 − 1} and using the law of telescoping sums yields  



𝔼{𝐿(𝑸(𝑡))} − 𝔼{𝐿(𝑸(0))} + 𝑉 ∑ 𝔼{𝐸(𝜏)}𝑡−1
𝜏=0   

≤ (Ω + 𝑉𝐸∗)𝑡 − 𝜖∑ ∑ 𝔼 [𝑄𝑖
𝐹(𝜏) + 𝑄𝑖

𝐵(𝜏)]𝑖∈𝒩
𝑡−1
𝜏=0                (5

1) 

The above equation uses the fact that ∑ ∆(𝜏)𝑡−1
𝜏=0 = 𝔼{𝐿(𝑸(𝑡))} − 𝔼{𝐿(𝑸(0)). Rearranging terms and  

neglecting non-negative terms, we can get  

1

𝑡
∑ 𝔼{𝐸(𝜏)}𝑡−1

𝜏=0 ≤ (Ω + 𝑉𝐸∗)/𝑉 + 𝔼{𝐿(𝑸(0))}/𝑉𝑡                  (52) 

and 

1

𝑡
∑ ∑ 𝔼[𝑄𝑖

𝐹(𝜏) + 𝑄𝑖
𝐵(𝜏)]𝑖∈𝒩

𝑡−1
𝜏=0 ≤ (Ω + 𝑉𝐸∗)/ϵ + 𝔼{𝐿(𝑸(0))}/𝜖𝑡            (53) 

Taking limits of the above as 𝑡 → ∞ and suppose 𝐿(𝑸(0)) = 0, that proves the Eqs. (35) and (36). 
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