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a b s t r a c t

Graph encoding methods have been proven exceptionally useful in many classification tasks — from
molecule toxicity prediction to social network recommendations. However, most of the existing
methods are designed to work in a centralized environment that requires the whole graph to be kept
in memory. Moreover, scaling them on very large networks remains a challenge. In this work, we
propose a distributed and permutation invariant graph embedding method denoted as Distributed
Graph Statistical Distance (DGSD) that extracts graph representation on independently distributed
machines. DGSD finds nodes’ local proximity by considering only nodes’ degree, common neighbors
and direct connectivity that allows it to run in the distributed environment. On the other hand, the
linear space complexity of DGSD makes it suitable for processing large graphs. We show the scalability
of DGSD on sufficiently large random and real-world networks and evaluate its performance on various
bioinformatics and social networks with the implementation in a distributed computing environment.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Encoding the graph-structured data (also known as graph
embedding) is an important research topic where the primary
goal is to represent a graph into a fixed-length feature-vector [1].
Graph embedding methods not only facilitate machine learning
over networks but also enable us to find a similarity between
them, e.g., inexact graph matching [2]. It benefits a wide range
of applications, including molecule toxicity prediction, brain net-
works comparison, topic prediction from online social networks,
link prediction, and solving graph analytic problems. For ex-
ample, given a brain network constructed from neurons and
their physical connections, we can perform disease classifica-
tion [3]. Such problems fall under the well-established category
of graph classification where a machine learning model is trained
to differentiate between graphs among different classes [1].

In the era of big data, the graph-structured data is massive in
size and is increasing exponentially due to a rise in the number
of objects and data produced by the individual object. Current
online social networks and biological networks are the prominent
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examples where a large number of entities involve in a single
process [4]. Processing and computing representation from these
large networks on a single machine with limited memory is not
feasible and there is an increasing need for graph representa-
tion methods that can execute efficiently in parallel on different
machines [5]. One possible solution that suffices the need is
the distributed computing that can come into play to cope with
gigantic graphs. Unfortunately, most of the research in graph
representation has been focused on centralized algorithms that
require the whole network to be kept in memory such as the Graph
Kernels [6,7] and Graph Convolutional Networks (GCNs) [8–10].
In addition to the memory requirements, they also face many
challenges. For example, the kernel methods are computationally
expensive and do not provide desired results in various scenarios.
A prominent example is the well-knownWeisfeiler–Lehman (WL)
kernel method [11] that fails on regular graphs as it begins
by partitioning the vertices according to vertex valency [12].
Whereas GCNs require node attributes to learn from the network
structure and have limited scalability [13]. Other recent statistical
representation methods are either computationally demanding or
having low discrimination power especially when the structure of
the networks is significantly dense [14].

A desired property to encode large graphs is independent and
parallel execution of the embedding method on different dis-
tributed machines. However, encoding nodes’ global positions in
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the embedding space requires sufficient information of the nodes
— up to several-hop neighbors, e.g., GCNs and graph kernels. It
is accepted that the key aspect to extract graph representation is
to consider the neighborhood of the nodes [1,15]. Neighborhood
information allows us to locate nodes in the embedding space.
Naturally, a node u is closed to node v than the node w, if v has
direct connectivity with u as well as more common neighbors.
This observation motivates us to search for a distance-measure
on graphs that captures nodes’ position in the embedding space.
This search leads us to discover a simple but powerful statisti-
cal representation method; Distributed Graph Statistical Distance
(DGSD) that preserves nodes’ position in the embedding space.
The DGSD leverages nodes’ local neighborhood information us-
ing node degree, common neighbors, and direct connectivity to
capture their position in the graph. On one hand, DGSD is a
distributed graph encoding method that extracts feature-vectors
from graphs using nodes’ pair-wise distances in a distributed
fashion. This is due to the fact that only the information of com-
mon neighbors, adjacency and degree are necessary for each node
to find its position in the embedding space. On the other hand, its
linear space complexity allows the scalability on sufficiently large
graphs. Fig. 1 demonstrates the pipeline of DGSD.

The work in this study only focuses on undirected graphs
but can also be extended to directed graphs. Our comprehensive
empirical results on various datasets show that the DGSD repre-
sentations are powerful enough to provide better accuracy results
against state-of-the-art algorithms, even though DGSD uses no
graph meta information and rely only on graph structural data.
The main contributions of this study are as follows:

• We propose DGSD, a scalable and distributed graph rep-
resentation technique to encode large and arbitrary sized
graphs in a distributed environment with parallel process-
ing.
• We show scalability and expressiveness of the proposed

algorithm on the graph classification task using large scale
empirical analysis on several real-world and synthetic net-
work datasets. The results showed an improved perfor-
mance on several datasets against state-of-the-art methods.
• We implemented DGSD in multiprocessing environment in

Python and C programming languages and made both the
implementations publicly available to foster reproducibility
of the results.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of the graph representation approaches. Sec-
tion 3 introduces the DGSD’s based graph representations on both
distributed and centralized environments. Section 4 presents the
DGSD evaluation on various real-world and synthetic network
datasets and Section 5 concludes the paper.

2. Related work

Enormous applications and the empirical success of graph
embedding methods have attracted a lot of interest from the
scientific community. Due to that, a large body of work exists.
In this section, we overview state-of-the-art graph representa-
tion methods developed for the task of graph classification. In
particular, we focus on the graph kernels, statistical and spectral
representation approaches that use graph theoretical properties
for extracting graph representations.

Generally, a kernel k(π, π ′) is a measure of similarity be-
tween objects π and π ′, that satisfies two main requirements: it
must be positive semi-definite and symmetric, that is k(π, π ′) =
k(π ′, π ) [6,16–22]. The authors in [11] introduced one of the
powerful graph kernel methods known as Weisfeiler–Lehman
that works on vertex color refinement. Initially, it assigns colors

to each node based on the vertices’ degrees — vertices having
the same degrees will have the same color. And then recursively
refines vertices’ colors concerning their neighbor colors. Despite
its successful results on various benchmark datasets, this method
cannot distinguish regular graphs. Neighborhood Hash Kernel
(NHK) assumes labeled nodes and quantifies graphs by updating
their node labels and counting the number of common labels
between them. The deep graph kernel [18] compares graphs
based on the number of subgraphs or motifs and employs the
word embedding model. However, extracting subgraphs or motifs
is a computationally expensive task that makes it impractical
on significantly large networks. The shortest path kernel [16] is
another well-known graph kernel that encodes and compares
graphs based on the shortest paths between all pairs of vertices.
Similarly, the random walk kernel [21] quantifies graphs with
respect to the number of common walks among them.

Higher-order proximity is an important aspect to embed
graphs into vector spaces, as it requires both local and global-
level information of the graph. Therefore, most of the existing
works use global-level graph-theoretic measures for graph em-
bedding. FGSD [7] constructs graph representations as a his-
togram from nodes’ pair-wise distances computed from the graph
spectrum where the graph spectrum contains both local and
global level information. Similarly, NetLSD [14] considers a heat
diffusion process on a graph and constructs feature vector us-
ing Laplacian spectrum. Recently, the authors in [6] use the
Wasserstein distance between the node feature distributions to
distinguish graphs. The authors in [23] use graph simple statisti-
cal properties such as average degree, clustering coefficient and
other nodes’ centrality measures for encoding graphs. For graph
comparison, Maretic et al. recently propose using the Wasserstein
distance which uses the distribution of smooth graph signals,
and comparing them using the Wasserstein distance [24]. A
similar framework based on the optimal transport theory and
discrete graph matching in a continuous domain is proposed
in [25,26]. We can see that all of these measures use global-
level graph measures to compute graph embeddings where the
embeddings are based on nodes distances or similarities. Such
recent approaches have shown promising results on the graph
classification task; however, they require the entire graph to be
loaded in memory. To process huge graphs, recently, the authors
in [27] have proposed a streaming algorithm that approximates
feature vectors by estimating counts of sub-graph. The algorithm
does not require the whole graph to be kept in memory, but
instead processes it in batches. More recently, NetKI [28], a nearly
linear time graph descriptor has been proposed. NetKI is based
on the idea of network Kirchhoff index to extract representations
from graphs and scalable on sufficiently large graphs. Other
popular graph comparison approaches include [29–33].

Recently, the graph neural network models have also been
successfully applied on graphs [34–36]. There has been a surge in
such approaches in the last few years that work both on the node
classification [10] and graph classification task [37,38]. We refer
the reader to [1,39] for further reading on graph neural network
models.

3. Methodology

The notion of distributed computing systems is a useful and
widely adopted tool for parallel processing [40]. Generally, it
refers to a group of independent computers, each having its
own memory and operating system, that communicate with each
other over a network to solve a problem collectively. Distributed
computing has several advantages over centralized computing,
for example, enhanced reliability, resource sharing, and increased
performance. Currently, the two main bottlenecks of centralized
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Fig. 1. Architecture diagram of DGSD. (a) a set of labeled graphs is given is an input to the DGSD. In (b), batches of approximately equal size are created from each
graph and send them to the distributed computing environment where a single batch is assigned to each worker. In (c), a distributed computing environment is
shown where m workers are communicating with a server and an aggregator machine. Worker machines communicate with server to process the given batch and
once it completes the processing and constructs the feature vector R (histogram), it forwards it to the aggregator machine. The aggregator machine receives all the
desired histograms from the workers, and aggregate them to create a single feature vector (for each graph). In the end, a Random Forest classifier is applied to the
resultant feature matrix to perform the graph classification task.

computing are the space and computing power. The problem
becomes even harder when the issue of graph representations
comes into play — due to the excessive need for space and
computational resources. The existing approaches require a large
amount of time to generate representations while most of them
are even not scalable on moderate size of networks.

In this paper, we propose to use the framework of distributed
computing systems for encoding large graphs in parallel using
multiple machines with limited storage. In particular, we consider
the following realistic conditions while encoding graphs:

• Independent architecture: each worker independently pro-
cesses the input vertices and communicates only with the
central controller. No worker can access the data stored on
other machines.
• No knowledge of the input graph: the workers have no

prior information about the input graph.
• Process once: each vertex is processed only once by a single

worker.
• Deleting past information: Past vertices’ information is

deleted and cannot be accessed again.
• Limited storage: Each worker machine has a limited mem-

ory; in particular the memory is not large enough to store
the graph.

Considering the above conditions, in the following section,
we define basic notations and the problem of distributed graph
representation for the graph classification task.

3.1. Basic setup and notations

Let G = (V , E) be an undirected graph with a set of vertices
V = {1, 2, 3, . . . , n}, and a set of edges E ⊆ V ×V . The adjacency
matrix A of G is an n×n matrix where, A[i, j] = 1 if (i, j) ∈ E, and
0 otherwise. The neighborhood, N(i), of a vertex i ∈ V represents
a set of vertices that are adjacent to i, while deg(i) indicates the
size of it’s neighborhood.

A Degree Sum Matrix, D, for a given graph is n× n symmetric
matrix where each entry represents the sum of degrees of the
corresponding pair of vertices in G, i.e., :

D[i, j] =
{
deg(i)+ deg(j) if i ̸= j
0 otherwise.

(1)

Let N(i, j) denote the common neighborhood of the vertices i
and j, which is the set of vertices different from i and j, that are
adjacent to both the vertices, i.e., N(i, j) = N(i) ∩ N(j)\{i, j}. Let
Γn×n represent the common neighborhood matrix of the graph G
where each entry is defined as

Γ [i, j] =
{
|N(i, j)| if i ̸= j
0 otherwise.

(2)

Γ is a hollow matrix where all the diagonal elements are
zero. The off-diagonal elements are assumed to be integer values
ranging from 0 to n− 2.

3.2. DGSD based graph representation

In this section, we first describe and motivate DGSD graph
embedding that uses the multiset of node pair-wise statistical
distances. Then, we present two graph representation algorithms,
one for the distributed computing environment and the other for
the centralized environment. Lastly, we theoretically show the
uniqueness, time and space complexities of DGSD algorithm in
both the distributed and centralized cases.

Problem definition: In this work, we are interested in encod-
ing large graphs in a distributed environment into a Euclidean
space where the graphs cannot be processed on a single ma-
chine due to efficiency or memory limitation. For our distributed
algorithm, we will assume m independent machines (workers)
connected to a central controller machine, and an aggregator
machine. We consider a distributed computing model where
workers communicate directly to the central controller, and each
of m workers has a limited storage capacity. Given a collection of
graph-label pairs, C = {(G1, y1), (G2, y2), . . . , (Gl, yl)}, the goal is
to find a function φ : G→ Rd, that can map a given graph into a
low dimensional feature vector, hG, in a distributed environment.
Here, although we consider undirected graphs, our measure can
be easily extended to directed graphs as well. We also aim to
preserve vertices’ local and global information in the embedding
space and ensure that we always have the same representations
for isomorphic graphs.

Graph representation methods usually rely on either a ker-
nel function, node pair-wise distance or end-to-end learning [7,
16,36]. Among them, pair-wise distance measures have shown
promising results in the last few years. These are tractable mea-
sures having theoretical guarantees and produce very accurate
classification results. However, the existing methods use global
scale measures such as the graph spectrum [7,14], Kirchhoff In-
dex, Earth-mover distance, and graph compression methods [24,
41] that require the whole graph to be kept in memory, and thus
limit their ability to scale to large graphs.

Most of the real-world social networks follow the phenomenon
of six-degree-of-separation where it is possible to connect any
two pairs of vertices with a few links [42]. This is true about
other networks as well, such as molecular networks and neu-
ral networks. Because of the existence of strong ties and the
natural dense connectivity of these networks, their diameters
are usually small, i.e. ≤ 6. We note that many of the state-of-
the-art benchmark datasets for graph classification also follow
the same phenomenon. To illustrate this, we show the count
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Fig. 2. Count of shortest path pair-wise distances on six graph classification benchmark datasets having number of graphs ≥ 1000. X-axis shows the shortest-path
distances while y-axis represents the count of pairs found against each distance x.

of pair-wise shortest path distances on six well-known graph
classification benchmark datasets in Fig. 2. On the y-axis, the
count of vertex pairs corresponding to the shortest path distances
on x-axis has been shown. We empirically found 46% pairs in
bioinformatics datasets and 93% pairs in social network datasets
lie in range≤ 4. We conclude that for the most part, in real-world
graphs, topological information is concentrated among pairs of
vertices that are just a few hops away from each other. We
use this observation while designing our graph embeddings. This
increases the computational efficiency of the algorithm, enabling
it to run in a distributed environment.

Here we present DGSD, a novel distributed graph representa-
tion method that extracts expressive representation from graphs.
It encodes graphs using vertex pair-wise statistical distances.
DGSD is a graph distance measure that relies on three different
nodes’ statistics; nodes’ degrees, common neighborhood and di-
rect connectivity. The combination of these measures has been
widely adopted in many graph analytic problems such as com-
munity detection [43,44] and representation methods [45]. The
main idea behind DGSD is that the vertices that share many com-
mon neighbors, Γ (i, j), with respect to the sum of their degrees,
deg(i) + deg(j), and have direct connectivity, δ, should be closed
to each other in the embedding space. The definition of DGSD is
as follows.

DGSD definition: for i, j ∈ V , we define the distance between
i and j on G in distributed environment as follows:

S[i, j] =
|N(i)| + |N(j)|

|N(i)| + |N(j)| + |N(i, j)| + δ
(3)

Here δ is a Kronecker delta which is 1 if i and j are adjacent
otherwise 0. We can easily see that the lower bound of DGSD
distances is 2/3 if i ̸= j otherwise 1 in the upper case. The
lower value of DGSD distance indicates a smaller distance (high
robustness) between pairs of vertices, while 1 indicates the high-
est distance or dissimilarity between the pairs. To illustrate this,
consider the example in Fig. 3.

We consider the green vertex as a source and show distances
to a few other vertices. From green to dark blue vertex, there
are two common neighbors; blue and gray and has a direct link,
therefore, the distance between them is 0.7. Similarly, with the
blue vertex, there is one common neighbor and a direct link,

Fig. 3. DGSD based distances shown from green vertex to few other vertices in
the graph. The vertices share more common neighbors and direct links have the
minimum distance.

the distance is increased to 0.75. We see only a slight increase
in the distance indicating the robust connection between the
two vertices. We note the increase in the distance, 0.83 from
0.75, with the red vertex, because of the removal of the direct
link between them. The distance is increased further to 0.87,
with the yellow vertex, with the increment in the degree of the
yellow vertex. With the brown vertex, there is no direct link and
common neighbors, and thus distance is 1, which implies the
less robust or dissimilarity between the vertices. We note that
DGSD maintains vertices’ positions with respect to their local
neighborhood. If the vertices have no common neighbors and
are not adjacent, the distance is maximum. This nature of DGSD
allows us to deploy it in a distributed environment where we
only need the neighbors of the corresponding two vertices to find
the distance between them. We denote the multiset of distances
of G by S. DGSD extracts local and global structure information
from graphs. The extraction of local proximity can be seen from
considering the local neighbors’ information such as common
neighbors, nodes’ degree and direct connectivity. This allows the
method to encode the local position of the vertices. On the other
hand, for vertices that are not adjacent and have no common
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neighbors, DGSD assigns maximum distance, i.e, 1, that helps to
extract the global structure information. Motivated by the fact
that DGSD encodes nodes’ local and global structure information,
we use S for the graph classification task, where it requires to
perform comparison among graphs. Based on S , we define the
graph embedding as a histogram R of the multiset S. Thus, the
comparison of RG1 and RG2 implicitly evaluates the similarity
between G1 and G2.

We describe DGSD for the distributed environment in Algo-
rithm 1. There are three main components of the DGSD graph
representation: the central controller, workers and the aggrega-
tor. Here, we first describe the central controller which takes
the input graph from the source. In step 1, the central controller
converts vertices’ labels to integers and creates batches B of
vertices from the input graph where the size of each batch is set
to Bi = |V |/m. The number of batches is decided according to
the number of workers, m, connected with the central controller.
Next, the controller broadcasts the batches to the workers —
each batch to a single worker. The controller listens to workers
to entertain their queries. In order to reduce the inter-process
communication time, we use centralized files that keep nodes’
neighborhood information.

Each worker mi initially receives a batch B from the controller.
Since DGSD requires only local information, it implies the neces-
sity of only neighbor information of the corresponding vertices.
Thus, neighbors for each node are required to compute nodes’
pairwise distances. In step 5, the worker requests the controller
to compute the total vertex count, n, of the graph and iterates
on the received batch B in step 7. For each vertex i, the worker
reads i’s neighbors from the centralized files, iterates over all the
vertices and computes N(i, j). Step 12 uses Eq. (3) to compute
the distance between i and j. Once the distance is computed,
the worker deletes j’s neighbors and appends the distance to the
list l. At the end, the worker computes the required histogram
and sends it to the aggregator. The aggregator machine receives
histograms from all the workers and aggregates (sum) them to
compute the final representation R. One might observe that only
adjacent vertices are considered for computing distances between
vertices, which can extract only local neighborhood information.
However, we note that we consider computing the distance of
each vertex with every other vertex. So vertices in closed prox-
imity will have small distances and 1 otherwise. This ensures
preserving global information of vertices in the embedding space
in quadratic time complexity. One can also consider multiple-hop
neighbors for computing the distances, however, we can observe
that it directly increase the complexity to exponential which
makes the algorithm intractable for large-scale graphs even in a
distributed environment.

3.3. DGSD representations on centralized machine

The interesting fact about DGSD is the easy deployment for
both the centralized and distributed computing environments.
Similar to the distributed environment, DGSD representations can
be easily computed on a single machine using Eq. (3). Using
matrix notations, DGSD can also be computed using D and Γ

matrices on single machine as follows:

S[i, j] =
D[i, j]

D[i, j] + Γ [i, j] + δ
(4)

Following Eq. (4), we can compute the distance matrix S for a
graph as follows:

S =
D

D+ Γ + A+ I
(5)

Algorithm 1 Compute DGSD representation in distributed
environment
Input: G, bins

G = (V , E) is undirected, unweighted graph. bins indicate the
length of the feature vector

Output: R
R is the desired feature vector of the graph G
Central controller

1: convert nodes’ labels to integers and create m batches (B) of
approximately equal size

2: broadcast each batch Bmi to a worker mi
3: listen workers and entertain their queries

Worker (each worker mi ∈ m):
4: receive Bmi from the controller
5: n← get vertex count from the controller
6: initialize an empty list l
7: for i← 0 to |Bmi| do
8: N(i)← get i’s neighbors from the controller
9: for j← 0 to n do

10: N(j)← get j’s neighbors from the file
11: δ← 1 if j ∈ N(i) otherwise 0
12: S[i, j] ← |N(i)|+|N(j)|

|N(i)|+|N(j)|+|N(i,j)|+δ

13: l← l ∪ S[i, j]
14: delete N(j)
15: end for
16: end for
17: R← histogram(l, bins)
18: broadcast R to the aggregator

Aggregator
19: Ri ← receive feature-vector Ri from each of mi worker
20: for i← 1 to |m| do
21: R← R⊕Ri /*element-wise addition*/
22: end for
23: return R

In the denominator, the adjacency matrixA is used to consider
direct links between pairs of nodes while identity matrix I is used
to avoid zero values on the diagonal. The pseudocode of DGSD
representation is presented in algorithm 2.

Algorithm 2 DGSD representations on centralized machine

Input: Graph G = (V , E), adjacency matrix A, identity matrix I,
bins

Output: R
1: compute D and Γ matrices
2: S ← D

D+Γ+A+I
3: set hg ← {S[i, j]|∀(i, j) ∈ V }
4: compute R←histogram(hg , bins)
5: return R
Initially, we compute D and Γ matrices from G. In step 2,

we compute the distance matrix S using Eq. (5) and a multiset
hG of S in step 4. Finally, we create the feature-vector as a his-
togram R from the multiset hG. Note that R inherits all properties
of hG which is made possible by defining R as the histogram
of hG. Without loss of generality, we say that RG = RGπ or
RG = R(PAP⊺) under permutation matrix P of node labels or
permutation π of vertex labels. Further, the output embedding
is sparse which is a desirable property for the machine learning
task.

3.4. Uniqueness, time and space complexity of DGSD representations

To analyze the expressiveness and stability of DGSD, here we
show its uniqueness in terms of isomorphic graphs. Using D, Γ ,A
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Table 1
Datasets characteristics. avg. deg represents average degree while d represents diameter of the graphs.
Dataset |G| y avg.|V | avg.|E| min.|V | max.|V | avg. deg avg. d

Mutag 188 2 17.93 19.79 10 28 2.2 8.21
Proteins 1113 2 39.06 14.69 4 620 3.72 11.55
PTC 344 2 25.56 72.81 2 109 1.02 7.52
AIDS 2000 2 15.58 16.19 2 94 0.066 7.87
NCI1 4110 2 29.87 32.3 3 111 2.04 13.3
NCI109 4110 2 29.56 32.13 4 111 2.172 13.12
D & D 1178 2 284.3 715.65 30 5748 2.51 19.89

COLLAB 5000 3 74.49 2457.21 32 492 56.98 1.864
IMDB-B 1000 2 19.77 97.53 12 136 9.76 1.86
IMDB-M 1500 3 13.00 65.93 7 89 10.14 1.47
REDDIT-B 2000 2 429.61 497.75 6 3782 2.3 9.7
REDDIT-M-5K 4999 5 508.50 594.87 22 3648 2.338 11.96
REDDIT-M-12K 11929 11 391.41 456.89 2 3782 2.33 10.90
Tox21 14184 2 18.39 19.32 2 122 2.045 0.15

and I matrices, one can easily show that DGSD always produces
same representations for isomorphic graphs. Assume graphs G1
and G2 are isomorphic, then their respective D matrices are equal
up to permutation (DG1 = PDG2P

⊺), and also employ the equality
of their Γ and A matrices up to permutation. Then we can specify
SG1 in terms of SG2 as follows:

PSG1P
⊺
=

PDG2P
⊺

P(DG2 + ΓG2 + A+ I)P⊺
(6)

Since S operates on D and Γ , we have DG1 = PDG2P
⊺ and

ΓG1 = PΓG2P
⊺. This implies SG1 = PSG2P

⊺. The same procedure
holds for distributed scenario as well.

The space complexity of DGSD distributed representation on
each worker machine is the cost of storing two nodes u and v’s
neighbors and a cost c for storing the histogram R. Thus, the
total space complexity is O(deg(i) + deg(j) + c) = O(deg(i)). The
space of l is negligible by computing R automatically. The total
running time of DGSD is O(|B|n), since each worker iterates on a
batch of nodes and computes common neighbors for each node.
On a centralized machine, the running time complexity of DGSD
is O(n2).

4. Experimental setup and results

We evaluate DGSD in terms of classification accuracy on dif-
ferent benchmark datasets. We also evaluate DGSD’s scalability
on sufficiently large random and social networks with varying
numbers of machines in a distributed environment. For results
comparison, we used state-of-the-art graph encoding methods
including the recent spectral representation methods; NetLSD,
heat h(g) and wave h(w) kernels [14], FGSD [7], the statistical
method NetSIMILE [23] and the well-known graph kernels in-
cluding Shortest Path [16], Neighborhood Hash Kernel (NHK) [31],
Edge Histogram Kernel (EHK) [46], and Graphlet Sampling Kernel
(GK) [47]. In GNNs, we use the well-known Graph Isomorphism
Network (GIN) [37] and the latest GENeralized Graph Convolu-
tion (GENConv) [38] models for comparison. The latest spectral
representation methods have shown promising results on the
graph classification task with low time complexities while the
rest are well-known kernel methods. The results are compared
on well-known real-world bioinformatics, social networks bench-
mark datasets and synthetic networks. Bioinformatics datasets
include MUTAG, PTC, Proteins, NCI1, NCI109, AIDS, D&D and
Tox21 [48]. In social network datasets, six datasets are chosen:
COLLAB, IMDB-B, IMDB-M, REDDIT-B, REDDIT-5M and REDDIT-M-
12K. Necessary characteristics of these datasets are presented in
Table 1.

The datasets we have chosen for the evaluation are state-
of-the-art datasets available online on several platforms1 except

1 https://chrsmrrs.github.io/datasets/.

Tox21 dataset. Tox21 data challenge dataset [48] is a toxicity
prediction challenge dataset. The challenge was initiated to pro-
duce highly reliable measurements/datasets that can be used
worldwide for validating measures in applications to toxicity
prediction. Tox21 challenge composed of twelve sub-challenges
divided into two main panels: (1) nuclear receptor (NR) signaling
pathways and (2) stress response (SR) pathways. Seven of the
sub-challenges dealt with NR while five are related to NR path-
ways. Each challenge requires the prediction of a different type of
toxicity where each sub-task consists of active and inactive path-
ways. We have considered the balanced and combined version of
the dataset described in [49] for the evaluation.

We implemented DGSD in C programming language with MPI
(Message Passing Interface)2 and igraph.3 libraries. MPI is a well-
known library for implementing parallel and distributed pro-
gramming which ensures efficient distributed mechanisms. We
have also implemented DGSD in Python and released a Python
package. The DGSD code and package details are made publicly
available to encourage the reproducibility of the results.4

4.1. Numerical results on real-world datasets

The histograms are generated in the range [0,1] as the maxi-
mum possible value is 1 and the minimum is 0, however, range
[2/3, 1] can also be set for the histogram generation. The number
of bins is chosen from the set {20, 100, 200, 500} independently
for different datasets. For graph kernel experimentation, we use
Grakel5 library with the default parameter setting. For spectral
measures; NetLSD, FGSD, and NetSIMILE, we use the same pa-
rameter setting presented in the actual papers and use the same
code made available by the authors. For GNNs experiments, we
use Pytorch Geometric6 where the implementations of GINs and
GENConv models are available. The number of epochs was set
to 350, the learning rate to 0.01, and the number of layers was
set to 2. One Hot Degree nodes’ feature vectors were considered
throughout the experiments to provide a fair comparison against
other approaches. We use early stopping criteria with 30 number
of epochs and 80 − 20 train–test split with 64 batch size was
used. We ran all the models 5 times and reported average test
accuracy for the stability of the results. For the graph classification
task, we use a Random Forest classifier with 500 estimators
and reported the classification accuracies accordingly. The same
parameter setup is kept for all the experiments on all datasets

2 http://www.mpich.org/.
3 https://igraph.org/.
4 https://github.com/Anwar-Said/DGSD.
5 https://ysig.github.io/GraKeL/dev/.
6 https://pytorch-geometric.readthedocs.io/en/latest/.
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Table 2
Classification accuracy comparison against well-known graph kernels and recent methods. Blue results indicate highest classification accuracy while bold indicate
results within top 2% of the highest results. >D indicates computations exceed 24 hours. Note that the length of the embedding vectors (number of bins) were
chosen from the set {20, 100, 200, 500}.
Dataset SP NHK EHK GK NetSIMILE FGSD NetLSD GINs GENConv DGSD

w(g) h(g)

Mutag 86.60 85.06 85.37 77.01 83.42 88.26 82.40 83.31 88.42 84.74 87.70
PTC 59.00 60.58 57.54 57.56 55.80 60.70 57.22 53.49 62.32 60.0 61.32
Proteins 74.12 74.29 59.56 73.22 69.71 70.25 68.10 72.14 76.95 76.41 73.68
NCI1 71.65 75.52 50.04 58.12 68.87 79.75 61.94 67.25 68.30 74.60 73.48
NCI109 71.48 75.23 50.37 58.97 67.45 80.44 60.38 64.64 69.47 73.95 72.01
AIDS 99.24 99.2 99.60 98.75 97.95 98.5 93.7 99.69 99.75 99.8 99.8
D&D 77.94 75.81 58.65 > D 73.86 75.9 70.21 72.33 73.56 74.79 78.52
Tox21 73.23 73.48 68.27 72.86 72.96 72.87 72.54 72.62 63.47 63.20 73.72

Table 3
Graph classification accuracy on social network datasets. Results in bold indicate
the best reported accuracy while >M indicates memory error. Note that the
length of the embedding vectors (number of bins) were chosen from the set
{20, 100, 200, 500}.
Dataset NetSIMILE FGSD NetLSD GINs GENConv DGSD

w(g) h(g)

COLLAB 79.96 77.04 74.46 70.58 73.0 72.3 79.44
IMDB-B 74.00 73.5 71.11 71.9 79.4 75.1 75.0
IMDB-M 49.06 49.5 47.73 47.13 51.8 55.87 50.13
REDDIT-B 88.05 88.95 77.75 82.74 77.2 75.9 90.3
REDDIT-M-5K 51.83 50.2 40.34 40.44 48.72 46.83 53.33
REDDIT-M-12K 44.17 >M 27.97 29.0 >M >M 46.55

and algorithms. 10-fold cross-validation is used for evaluating the
results. Tables 2 and 3 report the experimental results on various
graph classification benchmark datasets.

We can see from the classification accuracy that DGSD pro-
duced comparative results against state-of-the-art models. On
bioinformatics datasets, DGSD outperformed on AIDS, D&D, and
Tox21 datasets, while the results on Mutag and PTC datasets are
within 2% (absolute) from the top results. Note that on AIDS
dataset, DGSD and GENConv produced the same classification
accuracy. On Mutag, PTC, and Proteins datasets, GINs outper-
formed all other methods while FGSD produced the best results
on NCI1 and NCI109 datasets. on social datasets, NetSIMILE out-
performed DGSD with a slight improvement on COLLAB dataset,
while DGSD performed best on three REDDIT datasets. GINs and
GENConv performed best on IMDB-B and IMDB-M datasets re-
spectively. Overall, the results demonstrate that DGSD has shown
encouraging results on all the benchmark datasets.

Results on Support Vector Machines (SVM) with custom
kernels: KL divergence and Wasserstein distance are well-known
methods for measuring similarity between histograms. Since
DGSD uses a histogram as a feature vector, we consider KL di-
vergence and Wasserstein distance as custom kernels to evaluate
their classification performance on the graph classification task.
We initially deployed DGSD to generate feature vectors and then
applied SVM instead of the Random Forest algorithm to perform
the classification. We use the default parameters C = 1.0 and
γ =‘scale’ for SVM and consider 10-fold cross-validation for the
evaluation. We also considered standard RBF kernel for results
comparison. The classification accuracies on the graph classifi-
cation task are reported in Table 4. We can see from the table
that the results of RBF kernel are quite closed to the state-of-the-
art results presented in Table 2 using Random Forest algorithm.
While KL and Wasserstein distance has shown lower results on
almost all the datasets. This implies that these methods are not
suitable to capture/learn complex boundaries resulting in poor
classification accuracies.

Table 4
Classification accuracy comparison on bioinformatics datasets using cus-
tom SVM kernels: KL divergence, Wasserstein distance and the standard
RBF SVM kernel.
Dataset RBF KL Wasserstein

Mutag 82.79 66.52 66.52
PTC 56.08 44.19 55.81
Proteins 59.56 41.42 59.57
NCI1 62.92 38.15 50.02
NCI109 62.08 38.45 50.37
AIDS 99.25 80.0 80.0
D&D 71.47 58.66 36.07
Tox21 64.47 49.79 41.18

4.2. Numerical results on synthetic networks

We also evaluate DGSD on computer-generated networks for
graph classification task. We form a binary classification problem
and create two classes G and G′. We use the Erdős–Rényi model to
generate graphs with different probabilities for both classes. For
each experiment, we generate two hundreds number of graphs
in each class, where each graph consists of 100 nodes. In each
iteration, we set p = 0.5− (i∗ c) for one class and 0.5+ (i∗ c) for
the other class. The value of c is set to .005 and i = 0, . . . , 10. The
difference in p for both the classes increases with the increase in
i, as it makes one class denser and the other sparser.

In the second experiments, the first class comprises of random
graphs while cliques of size k are planted in the second class
graphs G(k) apart from the random graphs. We set p = 1/2 and
k = 2t

√
n for t = 0, 0.5, . . . , 4. For each value of t , we generate

N graphs of each class with n = 100 for both. The number of
landmarks was set to 100 for both tasks.

Fig. 4 shows a comparison of DGSD against NetLSD, FGSD
and NetSIMILE in terms of graph classification accuracy. On the
x − axis of the left figures, the difference in probabilities has
been shown while the classification accuracy is shown on the
y − axis. We can see that when p′ − p = 0.0, the graphs of both
the classes are the same and thus the classification accuracies
are random; either 40 or 60% of all the methods. However, as
the difference in probabilities increases among the classes, the
classification accuracies of the algorithms also increase. We can
observe from the results that only difference of p′ − p = 0.1
in both the classes, all the methods have shown 100% accuracies
where DGSD also competes well against state-of-the-art methods.
This indicates the expressiveness of the embeddings generated by
DGSD. Similarly, in the right figure, different sizes of cliques have
been planted as shown in x−axis to differentiate between classes.
We can see that the embedding methods accurately distinguish
among the classes when t = 1.5. In all cases, we can see that
DGSD performs competitively to state-of-the-art methods.
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Fig. 4. 10-fold cross-validation accuracy (%) on (left) G(n, p) vs. G(n, p′) for varying |p− p′| and (right) G(n, p) vs. G(n, p, k) for n = 200, p = 1/2, k = 2t
√
n and

varying t .

Fig. 5. Running time on large Erdős–Rényi random graphs and real world social networks. For each graph, the DGSD’s average processing times and average
communication times are shown separately. Running times on 10 workers (10W), 20 workers (20W) and 30 workers (30W) have been shown to highlight the
importance of distributing computing on processing large graphs.

Fig. 6. Comparison of DGSD running time with state-of-the-art methods on synthetic and real-world networks. The figure on the left shows the running times
comparison on synthetic networks of different sizes generated through Erdős–Rénye model, while the right figure presents a comparison on real-world social
networks.

4.3. Large real world and random networks scalability analysis

To better highlight the scalability of DGSD on sufficiently
large networks in a distributed environment, we perform exper-
iments on large Erdős–Rényi random networks and real-world
social networks. For the experiments, we use Intel (R) Xeon (R)
4110 CPU 2.10 GHz machine with 32 processors and 512 GB of
RAM. The networks we considered for the experiments consist of
10 000, 50 000, 100 000, 500 000 and 1 million nodes generated
with probabilities 0.001, 0.0001, 0.0001, 0.00001, and 0.00001
respectively. Similarly, we consider Facebook, Github, Epinions
and Twitter social network datasets from SNAP repository [50].
The numbers of nodes in these datasets are 4039, 37 700, 75 879
and 81 306 respectively. We have shown the results in Fig. 5
which highlight the scalability of DGSD on sufficiently large net-
works up to million nodes and 5 millions edges. In the left figure,
average processing and communication time of 10, 20 and 30
workers have been shown. We define communication time as the

amount of time spent between the communication of a worker
and server. The processing time is the time spent on all other
operations on the worker machine. We can see from the results
that increasing the number of workers reduces the processing
as well as the communication time. We also show running time
comparison of DGSD with state-of-the-art methods in Fig. 6. The
running time represents the time of computing representation by
each algorithm from the given graph.

5. Conclusion and future works

The task of encoding large graphs in a restricted environment
where the available memory is limited is challenging. In this
paper, we presented a distributed graph representation method
that leverages graph statistical measures to encode graphs into
embedding space. DGSD finds nodes’ local proximity by consid-
ering simple graph statistical measures such as nodes’ degree,
common neighbors and direct connectivity. This nature of DGSD
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allows it to run on independently distributed machines where
only the first-hop neighbors are necessary to be kept in memory
for computing the distances of the corresponding nodes. Addi-
tionally, the linear time space and computational complexities of
DGSD allow it to run on huge graphs. Through extensive exper-
iments on benchmark datasets for the graph classification task,
DGSD outperforms state-of-the-art methods on several bench-
mark datasets. In particular, the proposed method was found
effective with dense social network datasets like IMDB and RED-
DIT. This demonstrates the benefits of very simple graph statis-
tical measures such as degree, direct connectivity and common
neighbors in the design of graph descriptors.

DGSD is the initial effort to tackle the problem of graph em-
beddings in parallel in a distributed environment using simple
graph statistical measures. Several aspects of DGSD can be ex-
plored in the future to infer improved embeddings. Among which,
neighbor selection strategy with a conditional approach may be
useful to improve the performance of the algorithm. On the other
hand, it can also be explored in the context of dynamic networks
for several other general-purpose data mining tasks. Since DGSD
involves extensive communication among client and server ma-
chines, it is also worth studying to explore this aspect and come
up with a solution to reduce the communication overhead.
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