
28 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Making data platforms smarter with MOSES / Matteo Francia, Enrico Gallinucci, Matteo Golfarelli, Anna
Giulia Leoni, Stefano Rizzi, Nicola Santolini. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-
739X. - STAMPA. - 125:(2021), pp. 299-313. [10.1016/j.future.2021.06.031]

Published Version:

Making data platforms smarter with MOSES

Published:
DOI: http://doi.org/10.1016/j.future.2021.06.031

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/827383 since: 2021-07-04

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.future.2021.06.031
https://hdl.handle.net/11585/827383

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Francia, M., Gallinucci, E., Golfarelli, M., Leoni, A. G., Rizzi, S., & Santolini, N. (2021).
Making data platforms smarter with MOSES. Future Generation Computer Systems,
125, 299-313.

The final published version is available online at:
http://dx.doi.org/10.1016/j.future.2021.06.031

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1016/j.future.2021.06.031

Making Data Platforms Smarter with MOSES

Matteo Francia, Enrico Gallinucci, Matteo Golfarelli˚, Anna Giulia Leoni, Stefano Rizzi, Nicola Santolini

DISI – University of Bologna, Via dell’Università 50, 47522 Cesena, Italy

DISI, University of Bologna, Bologna, Italy

Abstract

The rise of data platforms has enabled the collection and processing of huge volumes of data, but has opened to the risk of losing
their control. Collecting proper metadata about raw data and transformations can significantly reduce this risk. In this paper we
propose MOSES, a technology-agnostic, extensible, and customizable framework for metadata handling in big data platforms. The
framework hinges on a metadata repository that stores information about the objects in the big data platform and the processes
that transform them. MOSES provides a wide range of functionalities to different types of users of the platform. Differently from
previous high-level proposals, MOSES is fully implemented and it was not conceived for a specific technology. Besides discussing
the rationale and the features of MOSES, in this paper we describe its implementation and we test it on a real case study. The
ultimate goal is to take a significant step forward towards proving that metadata handling in big data platforms is feasible and
beneficial.

Keywords: Data lake, Metadata, Big data, Data platform

1. Introduction

The huge volume of data collected to enable advanced ana-
lytics within an enterprise or an organization is becoming more
and more heterogeneous and complex; as a consequence, tra-
ditional data warehouses can no longer be seen as the ideal
data hubs for integration and analysis [1]. With the rise of big
data architectures, data lakes (DLs) have increasingly taken the
role of such hubs. Though the term was coined 20 years ago,
a widely accepted definition is still lacking since features and
goals of DLs are continuously evolving. The initial definition
was mainly focused on ensuring storage for raw and heteroge-
neous data; however, raw data are difficult to obtain, challeng-
ing to interpret and describe, and tedious to maintain, especially
as the number of sources grows. Thus, there is a need for thor-
oughly describing and curating the data to make them consum-
able [2]. The advantage of a DL over a purpose-built data store
is that the former eliminates the up-front costs of data inges-
tion, like transformations, since data are stored in their original
format. Thus, once in the DL, data are available for analysis by
everyone in the organization.

The next step in the evolution of data hubs was the under-
standing that getting value from data is not only a matter of stor-
age, but it also requires appropriate analytical skills and tech-
niques to be applied in an integrated and multi-level fashion

˚Corresponding author
Email addresses: m.francia@unibo.it (Matteo Francia),

enrico.gallinucci@unibo.it (Enrico Gallinucci),
matteo.golfarelli@unibo.it (Matteo Golfarelli),
annagiulia.leoni2@unibo.it (Anna Giulia Leoni),
stefano.rizzi@unibo.it (Stefano Rizzi),
nicola.santolini2@unibo.it (Nicola Santolini)

[3]. An attempt to condense these features into a single defi-
nition has been done by Couto et al. [4]: “A DL is a central
repository system for storage, processing, and analysis of raw
data, in which the data is kept in its original format and is pro-
cessed to be queried only when needed. It can store a varied
amount of formats in big data ecosystems, from unstructured,
semi-structured, to structured data sources.”

Due to the progressive broadening of its definition and to
the blurring of the architectural borderlines, the term DL is of-
ten replaced by the more general term data platform [5, 6] or
even data ecosystem [7, 8]. Though these terms were previously
used with an emphasis on the enabling technology, they are now
revived to encompass systems supporting data-intensive storage
and computation, as well as analysis of data with varying struc-
ture.

Today cloud data platforms, such as Google and Amazon,
provide several tools for data ingestion, transformation, and
analysis. These tools relieve users from the technological com-
plexity of administration by providing additional services that
enable companies to focus on functional aspects. What is still
lacking is a smart support to govern the complexity of data and
their transformations. Data transformations and analyses must
be governed to avoid that the data platform turns into a data
swamp: in fact, without descriptive metadata and appropriate
mechanisms to maintain them, the analysts will soon lose con-
trol over their data, and they will have poor support in reusing
their past processing workflows (which means they will have
to start from scratch every time they need data). These prob-
lems are further amplified in the age of data science, which sees
data scientists prevail over data architects —the former needing
more assistance to avoid drowning in the lake. In the following,

Preprint submitted to Elsevier July 4, 2021

we will use the terms data lake and Big Data Platform (BDP)
as synonyms.

In this paper we propose MOSES, a technology-agnostic,
extensible, and customizable framework for metadata handling
in BDPs. The framework hinges on a metadata repository that
stores information about the objects in the BDP and the pro-
cesses that transform them. MOSES is specifically addressed
at supporting data search/profiling, provenance, evolution, and
orchestration; its main features are outlined below.

• MOSES is technology-agnostic, i.e., it does not rely on
any specific technology. Though this prevents MOSES
from taking advantage of the specific features of one
technology or the other, it makes MOSES a general-
purpose framework. Thus, although the framework has
been developed and tested on the HADOOP ecosystem,
its architecture and functionalities can be applied to any
BDP.

• The metamodel of MOSES is inherently extensible: it can
store (both structural and semantic) metadata at different
levels of detail and precision, and describe user-defined
properties depending on the type of objects treated and
the type of processes executed. Symmetrically, new
metadata extraction algorithms can be easily plugged in.
In this way, MOSES can be adapted to capture and anal-
yse metadata in different domains, and for different pur-
poses.

• MOSES is customizable since it can be configured to
monitor and collect only the metadata to support a sub-
set of functionalities; as a consequence, the computa-
tional effort needed depends on the functionalities re-
quired. This feature makes MOSES suitable both for sim-
ple BDPs running on small clusters and for very large and
complex ones.

A distinguishing feature of MOSES is that it supports both
push and pull metadata updates. We claim that, to be effec-
tive and general, metadata updates must be semi-automatic: if
a wrapper is available it can be plugged in MOSES, which will
collect metadata from data in pull mode; conversely, if no wrap-
per is available for some data type, the application processes
that handle the data can update metadata in push mode.

Although some other approaches to intelligent BDPs have
been proposed so far in the literature, most of them have at least
one of the following drawbacks: (i) they are described at a high
level of abstraction, i.e., they are more focused on discussing
challenges and desiderata rather than on proposing solutions,
or they just sketch a high-level framework; (ii) they are strictly
coupled to a single technological framework (e.g., Spark, Map
Reduce, Google); (iii) they are focused on a specific service
such as data provenance or data versioning. Without the ambi-
tion to be exhaustive in managing all types of metadata and all
their possible uses, the originality of our work lies in propos-
ing, designing, implementing, and testing on a real case study
a general-purpose framework for the collection, management,
and exploitation of data in a BDP.

The paper outline is as follows. After discussing the related
literature in Section 2, in Section 3 we give an overview of the
system and its architecture. Section 4 describes the MOSES
metamodel. Sections 5 to 8 present the main MOSES func-
tionalities; while Section 5 explains how metadata are extracted
from data, the others focus on the three main classes of func-
tionalities, namely, metadata search and profiling, data prove-
nance, and process orchestration. Section 9 focuses on the im-
plementation of MOSES we adopted for our real case study,
described in Section 10. Finally, Section 11 draws the conclu-
sions.

2. Related work

2.1. Architectures

The DL architecture describes how data are conceptually
and physically organized. A recent review of the various DL
architectures proposed in the literature can be found in [1]. The
main two variants considered are zone architectures and pond
architectures.

In zone architectures, data are assigned to a zone (also
called area) according to the degree of processing that has been
applied to them; thus, they can be available in multiple zones
at different degrees of processing at the same time. An exam-
ple of zone architecture is the one proposed in [9], which dis-
tinguishes a refined data zone (where data and structured and
integrated), a trusted data zone (where data are cleaned), and a
discovery sandbox zone (where data are stored for exploratory
analyses). In [10], a zone architecture based on a raw data
zone (unprocessed ingested data), a process zone (processed
and transformed data), an access zone (data ready to be ac-
cessed for analytics), and a govern zone (ensuring data security,
quality, life-cycle) is proposed.

In pond architectures, data are only available in one pond at
any given time; as data flow through the ponds, they are trans-
formed depending on the pond they currently belong to. An
example of pond architecture is proposed in [11] for a DL that
stores power grids data. It relies on a raw data pond (including
mostly unprocessed data), an analog data pond (where reduc-
tion techniques are applied to analog signals), an application
data pond (data here are stored in the form of a database), a
textual data pond (storing unstructured data), and an archival
data pond (data seldom used for analyses). Interestingly, in
[10] pond architectures are recognized to contradict the defini-
tion of DL because they do not ensure the availability of all the
raw data.

A further architecture reviewed in [1] is the lambda ar-
chitecture, where incoming data are copied to two different
branches, one where they are stored permanently and period-
ically processed in batches, one where they are processed in
real-time.

The metamodel of MOSES supports a zone architecture
based on a set of DL areas. Section 9.1 lists the specific zones
adopted in the implementation used for our case study.

2

2.2. Metadata
Metadata capture information on the actual data, e.g.,

schema information, semantics, and provenance. They ensure
that data can be found, trusted, and used [1].

A DL architecture specifically devised for power grid mon-
itoring and diagnosis is described in [11]. Metadata are ex-
tracted at the ingestion stage to be used for data classification,
governance, and protection. The KAYAK framework is pro-
posed in [12] to support users in creating and optimizing the
data processing pipelines in DLs. Metadata are extracted from
ingested datasets using predefined profiling tasks, then they are
collected in a catalog. Besides intra-dataset metadata, which
describe a single dataset in statistical and structural terms, also
inter-dataset metadata are stored to capture different relation-
ships among datasets and enable advanced analytics. The same
metadata classification is adopted in [10]; specifically, intra-
dataset metadata here also include lineage, quality, and security
metadata. In [13] a third class of global metadata is added to
provide a contextual layer to the data and optimize their analy-
sis.

The GEMMS system [14] automatically extracts metadata
from a wide variety of data sources. These metadata are repre-
sented using an extensible metamodel that includes both struc-
tural and semantic metadata, and can be automatically extracted
from the ingested datasets via specific extractor components.
Metanome [15] is an extensible platform for data profiling
based on the automatic discovery of complex metadata. Besides
basic statistical metadata, also more complex metadata such as
inclusion and functional dependencies are discovered. In [2],
besides schematic metadata (e.g., data format and source) and
semantic metadata (e.g., keywords and categorization), the au-
thors introduce conversational metadata (e.g., who has used the
data and where did they find real value in data) as a way to keep
track of the users’ experiences with the data.

The Goods system [16] collects metadata about each dataset
and its relationship with other datasets, to make them avail-
able to users for better organizing, monitoring, and searching
data. Besides crawling Google’s storage systems to extract ba-
sic metadata, Goods performs metadata inference —e.g., to de-
termine the schema of a non-self-describing dataset, to trace
the provenance of data through a sequence of processing ser-
vices, or to annotate data with their semantics. Ground [17]
is a data context service encompassing both applications (how
data are interpreted for use, corresponding to object types in
MOSES), behavior (how data were created and used, corre-
sponding to operations and agents in MOSES), and change (the
version history of data, corresponding to objects and their ver-
sions in MOSES). The authors give design guidelines, describe
some key services —such as ingestion, search, authentication,
and scheduling— and propose a common metamodel based on
three layers: version graphs (to represent data versions), model
graphs (to represent application metadata), and lineage graphs
(to capture usage information).

2.3. Processing
As already mentioned, it has been recognized that a DL

should also encompass a comprehensive set of services to pro-

cess data and make them usable by various analytical applica-
tions.

Metadata extraction has been widely covered in the litera-
ture, starting with the early work on schema discovery for XML
files first [18, 19, 20], and then JSON files [21, 22, 23, 24, 25].
More recently, schema discovery has been coupled with seman-
tic enrichment (e.g., in [26]). The approaches proposed are ei-
ther manual, or automated, or a mix of these two.

Data ingestion is mentioned by most papers in the field
(e.g., [27, 17, 28, 26]). In [28], a distinction is made be-
tween ingestion and data collection. Other services often con-
sidered are related to data search/querying/exploration/analysis
[27, 17, 28], quality management [27, 10], authentication/au-
thorization/security/auditing [17, 11, 10], and visualization/p-
resentation [28]. Real-time analyses and cleaning/integration
are explicitly mentioned in [28, 4] and [26, 28], respectively.
User collaboration is considered in [29]. In [17] the authors
also mention scheduling, workflow, and reproducibility as ba-
sic services.

Version management is considered as a crucial service in
several papers, e.g., [17, 26]. According to [26], versioning is a
cross-cutting concern over all stages of a DL since new datasets
and new versions of existing files enter the DL, and extractors
can evolve over time and generate new versions of raw data. In
[17], DAGs of object versions are maintained to ensure flexible
version management of code and data, general-purpose model
graphs, and lineage storage.

A lot of attention has been devoted to provenance in the
context of DLs. To track provenance in big data applications,
in [30] the authors propose a reference architecture based on
an extension of the Kepler provenance data model. The goal
is to record provenance and use it not only to reproduce work-
flows, but also to predict their performance. Another architec-
ture, which uses a central provenance collection subsystem to
track provenance, is proposed in [31]. Titian [32] is a prove-
nance framework designed for data-intensive scalable comput-
ing systems; it provides scalable fine-grained provenance cap-
turing, interactive provenance query capabilities, and an API to
seamlessly move between provenance and data records.

All the services mentioned above rely on a proper metadata
management, covering metadata discovery/extraction, annota-
tion, and querying [15, 27, 14]. The term data governance is of-
ten used to encompass several functions ranging from lineage,
security, and quality to metadata management [33]. Finally,
data wrangling has been defined as the set of processes includ-
ing creating, filling, maintaining, and governing a DL, aimed at
obtaining a curated data lake, meant as a DL whose content is
made accessible to users beyond the enterprise IT staff [2]. No-
ticeably MOSES offers services in all areas mentioned above.

2.4. Comparison with MOSES
The analysis of the literature has confirmed the relevance of

metadata modeling and the interest of the scientific community;
at the same time it has shown that most efforts were focused on
discussing the research challenges and providing high-level ar-
chitectures and metamodels, so only a small number of propos-
als apparently reached a prototypical stage. Below we discuss

3

the differences between MOSES and the proposals that explic-
itly describe an implementation:

• Constance [27]: this is a high-level proposal and few
details are given on metamodel and functionalities. No
metadata on operations are collected. The system has not
been tested on real case studies.

• GEMMS [14]: the proposal mainly focuses on metadata
extraction; no discussion is made about the functional-
ities provided for metadata exploitation. Metadata con-
cerns objects only, and no information is collected about
operations and agents.

• Goods [16]: it is described by their authors as a system
to index the DL of all Google datasets. Differently from
MOSES it uses fine-grained metadata, whose handling
requires a significant computational effort. The system
is strictly coupled with the Google platform and mainly
focuses on object description and searches. No formal
description of the metamodel is reported.

• Ground [17]: although it is described as an open-source
system able to capture the full context of data, not enough
details are given to clarify which metadata are actually
handled. The provided functionalities are described at a
high level as well. Apparently, the system has not been
tested on real case studies.

• KAYAK [12]: the proposal mainly focuses on the
pipeline optimization functionality, so only goal-related
metadata are collected.

• Titian [32]: it mainly focuses on supporting data prove-
nance in data-intensive computing systems and is strictly
coupled with Apache Spark. Titian provides fine-grained
provenance, and only the related metadata are collected.
No tests on real case studies are described.

Finally, we briefly mention the commercial (and propri-
etary) solutions that exist for metadata management in a DL.
Gartner1 indicates Informatica’s CLAIRE system as the market
leader in this sector. Although some of its functionalities over-
lap with MOSES (as it appears from the white papers published
on the website), no scientific nor technical documentation is
available to explain how it is implemented. As to Cloud service
providers, Google2 and Microsoft3 only offer a basic Data Cat-
alog service to manually associate custom key-value metadata
to DL files and tables. Conversely, Amazon offers AWS Glue4,
which also supports metadata extraction in pull mode. Lastly,
Databricks’s Delta Lake5 is tightly coupled with Apache Spark,
thus being able to automatically keep track of data evolution
and transformations that are carried out within such environ-
ment.

1https://www.gartner.com/en/documents/3993025/

magic-quadrant-for-metadata-management-solutions
2https://cloud.google.com/data-catalog
3https://azure.microsoft.com/en-us/services/data-catalog
4https://docs.aws.amazon.com/whitepapers/latest/

building-data-lakes/data-cataloging.html
5https://delta.io

3. System Overview & Architecture

MOSES is meant to support the work of three broad cate-
gories of agents:

• Data Scientists: the real users of the data. They per-
form analyses, run algorithms, and display the results.
MOSES mainly supports them in selecting data and un-
derstanding their characteristics.

• Administrators: all users who contribute to the manage-
ment of the DL, such as security managers, technicians,
and DB administrators. MOSES supports them in mon-
itoring the activities of data scientists and in keeping the
BDP and its processes under control.

• Processes: BDP processes may rely on metadata to be
triggered or to trigger a task or a command.

Overall, MOSES helps the users and their processes to op-
erate efficiently and effectively without turning the BDP into a
data swamp. We can classify the MOSES functionalities into
three main groups, which will be described in Sections 6, 7,
and 8, respectively:

• Object profiling and search: includes all the functionali-
ties aimed at searching, selecting, and describing the ob-
jects stored in the DL. Descriptions range from simple
object properties (e.g., creation date) to complex schema
descriptions. Searching is based on properties, and the
search criteria can be organized according to a complex
syntax.

• Provenance and versioning: includes all the functionali-
ties aimed at describing, at different levels of detail, the
object transformations and relationships.

• Orchestration support: includes all the functionalities
used by the orchestrator. For example, a workflow can
be triggered or tuned based on an object property stored
in the metadata repository.

Figure 1 shows the functional architecture of a BDP em-
powered with MOSES. The components of MOSES are those
in the rightmost part of the figure (in orange), the others are
standard components in charge of producing/consuming, pro-
cessing, storing, and visualizing data. The orchestrator (e.g.,
Oozie in the Hadoop ecosystem) is shown separately due to its
importance in managing the data transformation processes.

MOSES includes a repository aimed at storing all the meta-
data collected, plus an extensible set of components that support
the MOSES functionalities. A crucial component is the Meta-
data Extractor, in charge of automatically feeding the metadata
repository (Section 5). The Metadata Search Engine supports
complex queries on the metadata repository (Section 6). Other
important components are the Provenance Manager, which
traces the transformations of the BDP objects (Section 7) and
the Trigger Engine, which trigger events on metadata changes
(Section 8). The “other components” box is a placeholder to

4

Sources & Destinations

Data Processes

Orchestrator/Workflow Manager

MOSES

Storage

DFS
Other

Storages

Source 1

Source 2

Metadata

Metadata Extractor

Metadata Search
Engine

……

Proc. 1

MOSES InterfacesProcess Interfaces

Web
Interface

Other
Interfaces

Metadata GUI
Workflow

Administration

Dest. n

Proc. 2 … Proc. m

Provenance
Manager

Other Components

Trigger Engine

Push & Pull
Data Flows

Figure 1: Functional architecture of MOSES

emphasize the possibility of extending the system with addi-
tional features (as discussed in the conclusions). MOSES is
completed by a set of ad-hoc interfaces related to the function-
alities implemented. Gray arrows show generic data flows oc-
curring within the DL, while orange arrows show the metadata
flows related to MOSES. The control flows between the Or-
chestrator and the functional processes are not represented in
the figure.

As to orange arrows, the metadata flows entering MOSES
from the data processes and the Orchestrator mainly consist of
push notifications (e.g., the creation of a new object, the pa-
rameters of an operation, or a change of state in a process). As
already mentioned, push notifications are necessary to main-
tain MOSES technology-agnostic. Whenever a wrapper for
an application/process is not available in MOSES, the applica-
tion/process itself must feed the metadata repository. The out-
going flows sent from MOSES to the Orchestrator and to the
data processes carry the metadata needed by the latter to oper-
ate (e.g., the Orchestrator triggers a transformation when a new
object has been detected by MOSES). Finally, incoming meta-
data from the storage system are automatically extracted from
the BDP objects by the Metadata Extractor in pull mode.

4. Metamodel

The metadata repository is the core of MOSES since it de-
fines its potentialities. In this section we initially describe the
different concepts, then we justify our modeling choices.

The metamodel is shown in Figure 2; its concepts, described
below, can be organized in three main regions:

• Object region: includes, for each object, the information
that can be extracted without analyzing its content (i.e.,
the object is considered a black box).

– Object: a data item being stored and processed
(e.g., a table or a file). An object may aggregate
other objects (e.g., a relational database and its ta-
bles), and it may be related to a previous version of
the same object (e.g., in case that object has been
updated).

– Object type: the semantic category of the object.
– Data lake area: the area of the DL each object is lo-

cated in (in some cases, an object may not be stored
in any area, e.g., a database).

– Project: the project(s) each object belongs to.

• Operation region: includes the information related to the
transformations the objects went through.

– Operation: any processing operation executed in
the BDP.

– Operation type: the process whose execution is
modeled by the operation.

– Source: a website, web service, or organization
that provides data.

– Agent: the subject that activated the operation, it
can be either a human or a process.

• Schema region: includes the information collected by an-
alyzing the object content.

– Schema: an object may have one or more schemas,
each consisting of a set of attributes.

– Attribute: a single attribute of an object schema.
– Domain: provides a semantic description of an at-

tribute and indicates the set of values that the at-
tribute can take.

5

Data lake area

Project

Operation

Operation
type

Object

Schema

Object type

Attribute Domain

*

0..1

*

*

reads from
**

writes to *1..*

has
operation

type

1

*

has
schema

*

*

has
object
type

*

1

1..* 1..*

has domain

1..* 0..1

contains

*

0..1

is version
of

after

0..1before 0..1

Entity

name

has property
*

* Property

name
value

writing
type

Ontology term
is described by *

*

Agent

carried
out by

*

0..1

Data
lake

1..*

1

similar to

* *

similarity
type

similar to schema

*

*

similarity
type

Source

reads
from

source

*

*

Figure 2: UML representation of the MOSES metamodel (for simplicity, we omit the generalizations from all classes in the upper part of the figure to class Entity);
the red, green, and blue background reflects the organization into object, operation, and schema regions, respectively.

Importantly, all these classes specialize class Entity, so they all
have a variable set of properties. Some commonly used prop-
erties are summarized in Table 1. The writes to association has
a property as well, named writing type, which can take values
“update”, “append”, “create”, and “overwrite”.

Example 1. Consider a JSON file containing customer data in-
gested into the DL from an e-commerce application. The file is
modeled as an Object with “Customer data” as Object type,
stored in the “Landing” Data lake area of Project “Customer
profiling”. As the JSON documents within the file are heteroge-
neous, the object is linked to several Schema instances (one for
each JSON schema found within the documents), each linked to
its Attributes. Some attributes are linked to a Domain; for in-
stance, “fiscalCode” is linked to the “ItalianFiscalCode” do-
main since its value (e.g., “RSSLCU80A01H501K”) matches
with the regex of the latter. The object is also linked to the On-
tology term “dbpedia.org/ontology/person”. While schema in-
formation is pulled by the Metadata Extractor, the relationship
to the ontology term is pushed by a user. Now, let data scien-
tist Alice launch a Python script to clean and pre-aggregate the
data in the aforementioned object. The script is referenced in
the metamodel as an Operation type and the actual execution
is referenced as an Operation, which reads from the previous
object and writes to a new one (with writing type “create”).
Figure 3 shows the UML representation of this example.

In the following we list some considerations that motivate
our choices in defining the metamodel:

• Since MOSES has been conceived to be domain-

Table 1: Main properties for some entities

Entity Property Sample values
Object category file, table, database

path hdfs://landing/IMG 20190926T.tif
format csv, xml, tif
size 11 MB
storage hive, hbase, neo4j
version 1.0
quality 3.5

Attribute datatype integer, string
Domain reg. exp. {ˆ([a-zA-Z0-9]+)$}

(an alphanumerical string)
values [female, male]

Operation timestamp
parameters [id = value1, title = value2]

independent and extensible, we do not define a priori the
set of instances of Object type, Operation Type, and Do-
main.

• Since MOSES has been conceived to be customizable,
the level of detail with which the metadata are collected
determines the trade-off between the level of detail of the
functionalities and the computational effort required to
keep track of the events occurring in the BDP. Customiza-
tion is not only achieved through the generic Property
class, but also through the level of detail at which objects
can be described. For example, a database can be traced

6

: Object

name = customer.json

: Data lake area

name = Landing

: Project

name = Customer profiling

: Object type

name = Customer data

: Schema

name = sc1

: Schema

name = sc2

: Attribute

name = name

: Attribute

name = address.street

: Attribute

name = fiscalCode

: Domain

name = ItalianFiscalCode
regex = ˆ[A-Z]{6}[0-9]{2}[A-Z][0-9]{2}[A-Z][0-9]{3}[A-Z]$

: Ontology term

name = ont1
dataset = dbpedia.org
resource = ontology.person

: Operation type

name = program.py
descr = customer pre-aggregation

: Operation

name = op1

: Agent

name = Alice

: Object

name = customer2.json

+has
object
type

+is
version

of

+has
schema

+has
schema

+reads
from

+writes
to

+has
operation

type

+is
described

by

+carried
out by

+has
domain

writing
type =
create

Figure 3: UML object diagram corresponding to Example 1 (for drawing simplicity, entity properties are represented as attributes)

as an atomic repository or by distinguishing the single
tables it includes.

• MOSES supports multi-zone, multi-project and multi-
tenant BDPs. While the first two dimensions are explic-
itly modeled through Data lake area and Project entities
respectively, objects’ owners can be stored as properties
of the Project entity.

• The Domain entity is meant to provide a semantic de-
scription of an attribute. This is far more expressive than
the simple datatype information (e.g., integer, string),
which is indicated as a property of the Attribute entity
(see Table 1). Noticeably, the idea of “domain” does
not appear in other approaches in the literature on DLs,
where only mentions of linking to other ontologies and
to “proprietary knowledge graphs” can be found.

• The concept of schema changes radically based on the
type of objects stored (e.g., database, JSON document,
CSV files) and the level of precision with which they are
described (e.g., a database as a whole vs. single database
tables). Since BDP data can also be schemaless, we pro-
vide a schema description for every single object rather
than for a generic object type like in [25].

• To have a complete understanding of data flows, external
sources must be monitored too. In MOSES, external data
sources are explicitly modeled by the Source entity.

Remarkably, the extensible and general-purpose nature of
MOSES pushes the expressiveness of its metamodel beyond the

one offered by related approaches, especially those focused on
specific services only (e.g., [12, 32]) and those that provide a
fixed grain of metadata (e.g., [27, 14]).

To evaluate the coverage of our metamodel from a func-
tional point of view we refer to [13], which classifies meta-
data into intra-object (that describe a single object), inter-object
(that relate multiple objects), and global (that store information
about the whole BDP and are not strictly related to a specific
object, e.g., an event taking place in the BDP independently of
a specific object). MOSES metadata are either intra- or inter-
object; we do not consider global metadata since our focus is
on BDP objects.

In [13] metadata are then related to functionalities. Those
covered by MOSES are:

• Semantic enrichment, which consists in generating a de-
scription of the context of data (e.g., with tags) to make
them better interpretable and understandable. This is one
of the main goals of MOSES. Single objects or groups
of objects are characterized with both structural and on-
tological tags: each Entity of the metamodel optionally
is described by an Ontology term. In the current imple-
mentation, ontological tagging is carried out manually,
i.e., no component has been developed for automatic tag-
ging.

• Link generation is the process of detecting similarities
between objects. In MOSES, similarity is expressed both
at the object and at the schema levels. The metamodel
does not intentionally code the way similarity is com-
puted, thus different semantics can be adopted.

7

• Data versioning refers to the ability of the metadata to
keep track of data changes. The classes and associations
used to this end are is version of, reads from/writes to,
and Operation.

• Usage tracking records the interactions between users
and the objects. This group of functionalities is basi-
cally enabled by class Agent, which specifies which user
created/deleted/transformed a given object or run a given
operation.

Noticeably, the only group of functionalities in [13] not cov-
ered by MOSES is data indexing, which consists in setting up
a data structure to retrieve datasets based on specific character-
istics (keywords or patterns).

Another functionality that is not explicitly supported by
MOSES is data integration [34]. In fact, data integration is a
very complex process, and a hardly-automatable one, especially
for big data applications within a multi-tenant and multi-project
context. However, the metadata collected by MOSES include
information (e.g., the similar to schema property and Domain
entity) that can be used to guide a project-specific data integra-
tion process.

Finally, while the grain of metadata is customizable and ex-
tensible, MOSES does not reach the high level of detail used
in single vertical applications [35, 36], as the latter requires the
collection of huge amounts of metadata. Conversely, MOSES
favors a more coarse-grained approach, which is more appropri-
ate for a general-purpose framework aimed at covering highly-
heterogeneous datasets and transformations.

5. Feeding the Metamodel

Precondition to a powerful metadata exploitation is an effec-
tive metadata feeding strategy. MOSES implements both pull
(i.e., MOSES-driven) and push (i.e., application-driven) modes.
While the mostly-static entities (such as Object type, Opera-
tion type, and Data lake area) are manually fed, for dynamic
entities an automatic approach is mandatory. In all cases, the
metamodel is fed through a set of standard APIs as described in
Section 9.2.

Defining a pull strategy requires defining when MOSES
actively collects metadata and what metadata are collected.
MOSES actively monitors only the changes that take place on
the file system (i.e., insert/update/delete of objects), while the
information related to the operation region must be pushed into
MOSES by the functional processes. Within a highly heteroge-
neous computing environment, monitoring the different func-
tional processes would mean monitoring several different com-
puting engines; besides being practically infeasible, this would
violate the requirement of being technology-agnostic. Note that
adopting a mix of feeding strategies on the one hand enlarges
the quantity of metadata acquired by MOSES and respects its
basic philosophy, on the other hand it makes metadata on a
given object possibly incomplete. More in detail, the metadata
in the object region are available for all objects, those in the op-
eration region are present if the functional process that carried

Algorithm 1 Extractor

Require: MD: the current version of the metadata repository,
O: a new object

Ensure: MD: the updated version of the metadata repository
1: MDÐMDY CollectObjectRegionMDpOq Ź Col-

lect metadata of the object region and update the metadata
repository

2: wr Ð SpecificWrapperpOq
3: if wr “ null then
4: wr Ð ApplicableWrapperpOq
5: if wr ‰ null then
6: MDÐMDY wr.CollectSchemaRegionMDpOq Ź

Collect metadata of the schema region and update the meta-
data repository

7: returnMD

out the operation pushed them to MOSES; finally, the metadata
in the schema region are present only if an appropriate wrapper
is available.

The pull mode is implemented by the Metadata Extrac-
tor (see Figure 1), which initially determines if an appropri-
ate wrapper is available for the object. MOSES extracts dif-
ferent metadata depending on the availability of an applicable
wrapper and on its specificity. The applicability of a wrapper
is driven by rules (e.g., the file extension or the combination of
the DL area and the project). If no specific wrapper is identified,
all the available ones can be tried to verify their applicability.
The wrapper applicability depends on the number of metadata
properly interpreted [27]. In the worst case no applicable wrap-
per is found; the object is considered as a black box and only
the information related to the object region are collected. In
other cases, several alternative wrappers can be adopted. For
example, a satellite image produced by ESA has tiff extension;
although the standard tiff tags (e.g., the band list) can be ex-
tracted by a generic tiff wrapper, only a geotiff wrapper can
extract the geographical information (e.g., geographic bound-
aries). Similarly, a JSON file can be analysed either through a
generic JSON parser or through the one for a specific type of
content [14]. Algorithm 1 provides a more formal description
of the steps described so far when a new object is detected.

In the following, we give an insight into how the Metadata
Extractor identifies different information. Noticeably, each in-
formation can be modified via a push notification by a user or a
functional process:

• Object region:

– Object: the creation/update/deletion of objects is
notified to the Metadata Extractor by the BDP.

– Object type: the object type an object belongs to is
determined through a pattern-based approach; typ-
ical patterns involve the file extension or a specific
format of the file name [27, 16].

– Data lake area: the DL area an object belongs to is
determined through the folder storing the object.

8

– Project: the project an object belongs to is deter-
mined through the folder storing the object.

– is version of: an instance is created if the BDP no-
tifies an update.

• Schema region:

– Schema: determined by parsing the object content.

– Attribute: determined by parsing the object content.

– Domain of an attribute: inferred by Col-
lectSchemaRegionMD either by matching the at-
tribute name with other attributes with a known do-
main or by verifying the compatibility of the at-
tribute value with the values allowed by the do-
mains. In particular, we check whether the value
matches the regular expression associated with the
domain if available, otherwise if it matches the sam-
ple values associated with it.

– similar to schema: measured by scoring (i) the at-
tributes that are present in both schemas [37] and
(ii) those in one schema whose domain is used in
the other schema.

– is similar to: an instance of this association is cre-
ated if the similarity exceeds a threshold. The
similarity is computed by scoring the similarity of
schemas (i.e., similar to schema) included in the
object.

As to semantic metadata, each entity in the metamodel
can be annotated with a set of ontology terms (see Figure 2).
This annotation can be done either incrementally (by training
a model after some manual linking) or by applying some en-
tity linking technique. For instance, in Analyza it is done ei-
ther manually or by applying some heuristics [29], while in
GEMMS it is done manually [14]. Constance [27] is another
approach that, in addition to extracting metadata from sources,
enriches data sources by annotating data and metadata with se-
mantic information.

6. Object profiling and search

Access to metadata is expected to be complex and varied,
ranging from basic search functionalities to more sophisticated
ones. Indeed, discoverability is considered to be a key re-
quirement for data platforms, and it should cover both simple
searches to let users locate “known” information and data ex-
ploration to let them uncover “unknown” information [38].

Search functionalities in MOSES operate at the metadata
level, to let the user extract relevant information from the meta-
model. Direct querying of the data could be enabled by intro-
ducing support for different connectors and querying languages.
However, the focus in MOSES is on helping the user unravel the
chaos in the DL, which first of all requires to enable search at
a higher level. Additionally, object profiling aims at providing
an abstract view of a certain object (or a group thereof) aimed

Table 2: Supported search functionalities with description and targeted agent
(Data Scientist, Process, Administrator)

Functionality Description Agent

Basic search Search entities by structural properties DS, P, A
Schema-driven search Search objects by their intensional features DS, P
Provenance-driven
search

Search objects based on the history of oper-
ations they were subject to

DS, P

Similarity-driven search Find objects that can be either joined or
unioned

DS, P

Semantics-driven search Find entities based on their semantic prop-
erties

DS, P

Profiling Summarize the most important characteris-
tics of an object (or a group thereof)

DS, A

at summarizing its characteristics and relationships with other
objects.

The search-related functionalities supported by MOSES are
summarized in Table 2 and briefly discussed below. The whole
metamodel is open to querying; thus, we devise different func-
tionalities depending on the concepts involved in the search,
where the common goal is the identification and description of
Objects.

1. Basic search. In the simplest scenario, the user looks
for some objects by means of their static properties (e.g.,
their names, paths, sizes, etc.) or their assigned Object
types, Projects, or Data lake areas. The focus of this
search can range from a wide spectrum (e.g., searching
for every object of a certain project) to a narrow one (e.g.,
searching the landing area for small objects that contain
a certain string in their name).

2. Schema-driven search. MOSES supports the search for
objects based not only on their simple properties but also
on their intensional features. This is especially useful
when the user explores the DL to discover objects that
conform to a specific Schema or that contain informa-
tion referring to a given Domain.

3. Provenance-driven search. Exploiting provenance meta-
data means finding objects by navigating the history of
Operations. Such navigation can be carried out in both
directions, i.e., either to discover all the objects obtained
from a certain ancestor or to track down the object(s)
from which another has originated. The latter case is also
referred to as the discovery of canonical datasets, i.e., ref-
erence datasets from which several derivations have been
obtained [39].

4. Similarity-driven search. The similar to arc in the meta-
model enables the discovery of objects based on their
similarities. On the one side, this is useful to discover
datasets to be included in a certain query, either by merg-
ing objects (if they contain the same kind of information
in different forms) or by joining them (if their similarity
identifies a foreign key-primary key relationship); this is
similar to the usage of joinability and affinity relation-
ships in [37]. On the other side, similarity search is use-
ful to group similar objects and enrich the search results,
either by providing a diversified result that lists the main

9

objects from each group or by restricting the search to the
objects of a single group.

5. Semantics-driven search. The semantic metadata in
MOSES further enrich the search capabilities of objects.
In particular, the Ontology terms can be exploited to
search objects without having any knowledge of their
physical or intensional properties, but simply exploiting
their traceability to a certain semantic concept. Clearly,
the expressiveness of the previously described search ca-
pabilities can be extended by coupling them with seman-
tic ones.

6. Profiling. Object profiling aims at providing an abstract
view of a certain object (or a group thereof) that summa-
rizes its characteristics. When looking at single objects,
the profile shows its properties and lists the relationships
with other objects, both in terms of similarity and prove-
nance. A profile can be generated also for groups of ob-
jects (based on some grouping feature, e.g., the Object
type); in this case, the profile also adds a representation
of the intensional features that mostly characterize such
group [25].

The different search functionalities are supported by a
multi-level API layer (see Section 9.2) that translates the users’
requests into queries on the metadata; this ensures also system-
atic access to the metadata from any software tool. Remark-
ably, search-related functionalities serve as a building block for
provenance- and orchestration-related functionalities (see Sec-
tions 7 and 8), as the latter ultimately consist of more extensive
and expressive metadata searches.

7. Provenance and versioning

Data provenance6 (or simply provenance) is metadata per-
taining to the history of a data item (an object in our metamodel)
[41]. Essentially, it describes a transformation pipeline [42], in-
cluding the origin of objects and the operations they are subject
to [30]. Since its introduction for database systems [41, 35, 30],
the relevance of provenance has been well understood also in
other fields [43] due to the growing need for automated data-
driven applications [44].

Following the systematic organization of provenance fea-
tures in [41], we categorize the provenance in MOSES as
coarse-grained and data-oriented since it focuses on storing Op-
erations applied to Objects. Fine-grained provenance is typi-
cally used for single vertical applications [35, 36] since it re-
quires to collect huge amounts of detailed information to en-
able a very detailed tracing. Conversely, coarse-grained prove-
nance is appropriate to ensure a broad coverage of highly-
heterogeneous transformations possibly involving several ap-
plications and datasets. The grain of provenance data in

6Data provenance and data lineage are used in the literature as synonyms or
with slightly different flavors. Henceforth, we will consider them as synonyms
and refer to provenance as in [40].

Table 3: Supported provenance functionalities with description and targeted
agent (Data Scientist, Process, Administrator)

Functionality Description Agent

Data quality Assessing data degradation over pipeline/time DS, P
Debugging Finding issues with operations DS
Reproducibility (Partially) reproducing a pipeline DS, P
Trustworthiness Assessing the reliability of data sources and agents DS
Versioning Marking stable versions of data DS, P

MOSES is actually customizable and extensible, depending on
the set of properties that are captured. Choosing a granularity
is the result of a trade-off between accuracy and computational
effort. For example, storing only the name and the version of
a clustering algorithm enables an approximate reproducibility
of the results, while storing all its parameters makes this func-
tionality much more accurate. The granularity of objects is cus-
tomizable as well since MOSES can metamodel a database as a
whole or even store a separate object for every single table.

As in [31], MOSES adopts an integration approach; indeed,
its APIs can capture provenance events from individual com-
ponents of the DL. Each transformation adds a new Operation
between two Objects carried out by one Agent. Though we
mainly rely on a push approach (i.e., applications send trans-
formation events to MOSES through its APIs), a pull approach
could be pursued as well for specific engines. For example, the
parameters adopted in a machine learning computation can be
easily extracted from the output file through the Metadata Ex-
tractor.

The provenance-related functionalities supported by
MOSES are summarized in Table 3 and briefly discussed
below:

• Data quality. MOSES supports the monitoring of the
quality (e.g., accuracy, precision, recall) of the objects
produced, to notify the data scientist when a transforma-
tion pipeline is not behaving as expected. In the case of
garbage-in/garbage-out pipelines, new objects are gener-
ated with lower accuracy than the previously generated
ones.

• Debugging. Inferring the cause of pipeline failures is
challenging and requires an investigation of the over-
all processing history [45, 38]. To support this process,
MOSES stores the inputs of each operation along with
their versions and the environmental settings in which
each operation is performed (e.g., RAM and CPUs).

• Reproducibility. MOSES enables the re-execution of all
or part of the operations belonging to a pipeline. Given
the objects and operations involved in a new pipeline,
MOSES can determine which operations of precedent
pipelines have to be executed again. For instance, train-
ing multiple times a machine learning model on a dataset
does not require re-executing the ETL that stored the
dataset.

• Trustworthiness: MOSES helps data scientists to trust the
objects produced by tracing them back to their sources

10

Table 4: Supported orchestration functionalities with description and targeted
agent (Data Scientist, Process, Administrator)

Functionality Description Agent

Dynamic/condition-
based behavior

Deciding what computation to run based on
different metadata conditions

P

Triggering Deciding when to run the computation based
on the presence of some metadata

P

Scoping Deciding if the computation must be run,
based on data trustworthiness

DS, P

Resource estima-
tion/prediction

Deciding how to run the computation in terms
of resources needed

DS, P, A

and storing the agents who operated on those objects. In-
deed, some data sources and agents might be more reli-
able than others.

• Versioning: by marking a generated object and its conse-
quent versions (due for instance to changes in a database
schema), MOSES helps data scientists in identifying rel-
evant/stable objects along with their semantic versions,
and to operate with legacy objects.

To enable the collection of the metadata required by the
above functionalities, we exploit the compliance of our meta-
model with the PROV standard [46]. PROV formalizes prove-
nance as a directed acyclic graph, whose nodes correspond to
Objects or Operations in Figure 2. To make the graph acyclic,
every Operation has to write a new Object. This enables a stan-
dard integration with existing provenance tools for the query-
ing and visualization of provenance metadata. Note that all the
functionalities described so far can be easily implemented by
querying the PROV graph.

8. Orchestration support

In a big data architecture, the system orchestrator (or sim-
ply orchestrator) is the component in charge of controlling the
execution of computation activities (or data processes, as we
call them in Figure 1). The orchestrator ensures the activation
and execution of data processes in an automatic manner, either
through a regular scheduling of the activities or by triggering
a process in response to a certain event. Besides the orches-
trator, several other entities (either processes or human beings)
can cover this role to activate some data processes in the BDP.

MOSES supports orchestration activities not simply in a
passive manner (because the activated data processes will
prompt metadata updates), but it is also able to actively support
and enhance such activities. In particular, the orchestration-
related functionalities supported by MOSES are summarized in
Table 4 and briefly discussed below.

• Dynamic/condition-based behavior. The variety of meta-
data collected about each object supports the orchestrator
in deciding what data process should be activated under
different conditions, and deciding how to tune the param-
eters in case of parametric data processes. For instance,
when the orchestrator needs to run a transformation on a
certain Object, the properties and the provenance of the
latter can improve the decision as to the specific Opera-
tion type most suitable for such object.

• Triggering. The orchestrator usually takes into account
several factors to decide when to trigger a certain data
process. To this end, MOSES actively works as a trigger
mechanism by implementing a messaging queue where,
at any changes on a Entity, it pushes a notification. Fur-
thermore, complex conditions determined by the combi-
nation of several events can be defined and pushed on
the messaging queue too. The orchestrator, as well as
any functional process, can subscribe to the queue and
receive the triggering messages.

• Scoping. Before triggering a data process, it is essen-
tial for the orchestrator to assess the trustworthiness of
Objects. By examining the properties and provenance of
the latter, the orchestrator is able to understand where the
data came from, who handled its collection or manipu-
lation, and ultimately if a certain data process should be
activated or not.

• Resource estimation/prediction. When activating a data
process, the orchestrator can negotiate with the cluster’s
resource manager (e.g., YARN) the amount of resources
to assign to such process. To this end, the history of pre-
vious Operations applied to the same Object or to ob-
jects of the same Object types supports the orchestrator
in deciding how the data process should be activated, i.e.,
which is the optimal amount of resources required to ter-
minate successfully while leaving sufficient resources to
the other concurrent process.

9. Implementation

In this section we discuss the implementation of MOSES
we are currently using on different projects; further details on
the case study are provided in Section 10.

9.1. Technological stack

Figure 4 provides the technological details about our imple-
mentation of the functional architecture proposed in Figure 1.
In this section, we discuss both the implementation choices for
the MOSES core and the reference BDP in which MOSES is
used.

MOSES is used within a BDP that builds on the Apache
Hadoop ecosystem, which provides a solid environment with
hundreds of tools that can work on top of it. The hardware ar-
chitecture is a two-rack cluster of 18 Ubuntu machines, each
with a minimum configuration of i7 8-core CPU @3.2GHz,
32GB RAM, and 6TB hard disk drives. At the software level,
the cluster runs the Cloudera Distribution for Apache Hadoop
(CDH) 6.2.0 and Docker; the former is a distribution that
simplifies the installation, integration, and management of a
Hadoop cluster, while the latter provides a virtual layer to de-
ploy at runtime the framework (e.g., a Python environment) to
run any kind of process (be it a MOSES component or a func-
tional process).

The metadata collected and manipulated by MOSES are
stored in Neo4J, an open-source graph database used in both

11

MOSES

Metadata

Metadata Extractor

Metadata Search
Engine

Provenance
Manager

Other Components

Data Processes

Workflow Manager

Storage

DFS
Other

Storages

MOSES Interfaces

Metadata GUI
Workflow

Administration

…

Figure 4: Technical architecture of MOSES

traditional and big data architectures. The graph data model is
recognized in the literature as a unifying model for the repre-
sentation of metadata of heterogeneous objects [16, 47, 48, 49],
as it favors the modeling and storage of highly interconnected
data and it easily accommodates the absence of fixed schemas
(as shown by the metamodel presented in Figure 2, both data
instances and relationships are extensible with a variable set of
properties). The functional components of MOSES are mostly
implemented as a multi-layered architecture of RESTful APIs
(see Section 9.2); the only exception is the Metadata Extrac-
tor, which is implemented as a simple process. All components
and APIs are implemented in Python. As to the MOSES in-
terfaces, they are implemented as web applications in PHP and
JavaScript. In particular, we rely on the D3 JavaScript library
for visualizing metadata and interacting with them.

The DL is hosted on the Hadoop Distributed File System
(HDFS) and is partitioned into several areas, representing the
processing state of the data.

1. Landing: where data are stored immediately after inges-
tion.

2. Working: it contains temporary tables and configuration
data.

3. Harbor: it contains data (completely or partially) pro-
cessed from the landing area.

4. Discovery: it contains data created by data scientists for
experimental purposes; it serves as a safe sandbox, where
data is only taken from (and not published to) other areas.

5. Access: it contains data ready to be accessed by reporting
and visualization tools.

This partitioning is a slight extension of the one proposed in
[9]: the Landing, Harbor, Discovery, and Access areas respec-
tively correspond to the Raw, Trusted, Discovery Sandbox, and
Refined zones in [9]. The Working area differs from the Tran-
sient Loading zone in that the latter is only used in the ingestion
of new data, whereas we use it as a general-purpose temporary
area throughout the whole lifecycle.

Besides files on HDFS, we also employ some DBMSs to
store data, depending on the different case studies.

The BDP also implements the orchestrator through Apache
Oozie, a workflow scheduler system that manages jobs on
the Apache Hadoop ecosystem. In particular, Oozie is used
to schedule and control the execution of both functional and
MOSES processes. The implementation of functional pro-
cesses clearly depends on the specific project, but they typically
consist of applications that either run directly on the underly-
ing framework (e.g., an Apache Spark application), or exploit
Docker to instantiate the required framework at runtime and
then run the actual application.

9.2. API

MOSES metadata and functionalities are made available to
users and processes through a set of RESTful APIs designed
in a multi-layer architecture. APIs are exposed at different lev-
els of expressiveness to decouple high-level calls exposed by
public interfaces (e.g., to answer a provenance-related search
on the metadata) from low-level calls that manage basic inter-
actions with the metadata (e.g., to create or return a specific
node). A subset of the implemented APIs is shown in Ta-
ble 5 and is publicly available for testing on our case study at
http://big.csr.unibo.it/moses/. In particular, the low-
level layer is made by the following calls.

12

• Single manipulation. The /node and /relationship calls
enable the retrieval/insertion of single elements from/into
the metadata repository.

• Transaction management. The /transaction calls provide
a mechanism to build complex sequences of atomic ma-
nipulations that need to be executed as a single transac-
tion. The creation of a transaction returns an ID to be
used as the reference trans id not only to commit or roll-
back the transaction, but also as an optional parameter to
create single elements.

The processes that need to push new metadata (e.g., the
Metadata Extractor, or functional processes in general) often
rely on the transaction management APIs to safely write the
metadata via the atomic manipulation APIs. As to high-level
APIs, a wide set of calls is defined to cover the functionalities
described in Sections 6 to 8. For instance, the search call en-
ables a wide, generic search on the entire metadata repository. It
requires a JSON object that defines (i) the metadata classes that
the user is interested in, and (ii) an optional set of disjunctive
filters to be applied on any of the node or relationships avail-
able; the JSON object is then converted into a Cypher query to
be executed on the metadata graph. The /metadata calls enable
the addition of region-specific subgraphs of metadata and are
used in both push and pull modes. The /prov calls allow users
to obtain the provenance graph for a given node id; the APIs
enable the search to be conducted in either direction (forward
or backward) and for a certain number of steps. Finally, the
/orchestration calls return information useful to the orchestra-
tor to make decisions.

10. Case study

Our implementation of MOSES is multi-project, as it is
actively supporting different projects that rely on our cluster,
ranging from practical applications (mostly in the field of agri-
culture) to pure research activities. The project we present as
a case study is called Agro.Big.Data.Science (ABDS, http:
//agrobigdatascience.it/). It is a regional project whose
goal is to rely on a big data solution to support the control and
management of product chains in the field of agriculture. By
collecting and integrating data from several sources, the tech-
nicians are provided with a comprehensive view of agricultural
fields that supports the decision-making process, especially in
terms of efficient usage of resources (e.g., irrigation, fertiliza-
tion) and timely actions to contrast alarming situations (e.g.,
bug infestations) [50]. We choose this case study in order to
show how MOSES operates in a real-world scenario and how
its metadata and functionalities support the users’ daily activi-
ties.

10.1. Metadata collection

In the context of ABDS, it is necessary to continuously in-
gest new data from a variety of sources that differ by type (either
project-specific or general-purpose) and communication pattern

(streaming or batch). Project-specific sources include IoT de-
vices that stream to our cluster in situ details of a certain culture
(e.g., the humidity registered by a sensor on the field). General-
purpose sources include services that publish open data on the
web (mainly satellite images and weather information); in these
cases, data collection is simply scheduled at regular intervals.
Depending on the source and the type of data, the ingestion pro-
cess includes a more or less complex pipeline of operations that
prepare the data for the analysis. Each operation is a functional
process (scheduled by the orchestrator) that puts new data into
the DL (either by creating new files or by appending rows into
a database) and actively pushes to MOSES the metadata about
the whole process run.

One of the most complex pipelines is the one involv-
ing satellite images, downloaded from the European Spatial
Agency (ESA) webservices and processed to obtain vegetation
indexes [51] (i.e., quantitative measures that are used to verify
the state of the culture in a certain field). The satellite images
pipeline is broken down into three steps, namely (i) download
from the webservice, (ii) pre-processing to convert images from
JPEG to TIF, (iii) actual processing to compute vegetation in-
dexes. An excerpt of the metadata pushed by a whole pipeline
run is shown in Figure 5. Each graph node (i.e., each instance of
Entity in Figure 2) includes not only standard properties (e.g.,
the timestamp of an Operation), but also project-specific prop-
erties (i.e., the granule of the image Object, with reference
to the US National Grid (https://www.fgdc.gov/usng) and
application-specific properties (e.g., the yarn id of the Opera-
tion, storing the ID of the YARN application that run the pro-
cess, which is useful for debugging purposes).

As the functional processes create/update data Objects and
push metadata into MOSES, the Metadata Extractor is triggered
to analyse these objects and pull further information. In the case
of satellite images, the Metadata Extractor relies on GDAL (an
open-source geospatial library) to extract structural metadata,
such as the adopted coordinate system (the EPSG), the extent
of the image (i.e., the minimum bounding box, identified by
the coordinates of the four corners), and the image bands (red,
green, blue, infrared, etc.). All these metadata correspond to At-
tributes in MOSES and are mapped to the respective Domains.

The domains have been manually defined to describe
project-relevant entities in terms of the values they can take;
for instance, the EPSG domain is described by the regular ex-
pression “ˆEPSG:[0-9]{4,5}$”, which accepts strings beginning
with “EPSG:” followed by 4 or 5 numbers. Similar regular ex-
pressions are used to recognize the domains of dates and ge-
ographic coordinates. Other domains with simpler values are
described only by their name and the range of values they ad-
mit (e.g., the “Infrared band” domain admits values in r0, 1s).

10.2. Metadata fruition
The metadata collected via push and pull methods serve

both data scientists and functional process for several purposes.
Among those described in the previous sections, we reckon the
following main applications.

Object profiling and search (Section 6). The most used
functionality is the Basic search, which enables a broad set of

13

Table 5: Description of some low- and high-level APIs to interact with MOSES metadata.

Level Method Path API Description

Low

GET /node/id/{node id} Return node with the given ID
GET /node/name/{name} Return node(s) with the given name
POST /node Create a new node, return ID
POST /node/{trans id} Create a new node within the given transaction, return ID
GET /relationship/id/{rel id} Return relationship with the given ID
POST /relationship Create a new relationship, return ID
POST /relationship/{trans id} Create a new relationship within the given transaction, return ID
POST /transaction Create a new transaction, return ID
POST /transaction/commit/{trans id} Commit transaction with given ID
DELETE /transaction/{trans id} Rollback transaction with given ID

High

POST /search Return subgraph that matches the given filters
GET /prov/forward/{node id}/{step} Return the provenance graph originating from node id
GET /prov/backward/{node id}/{step} Return the provenance graph leading to node id
POST /metadata/object Create the portion of graph referred to the object region
POST /metadata/schema Create the portion of graph referred to the schema region
POST /metadata/operation Create the portion of graph referred to the operation region
GET /orchestration/operation type/{node id} Return the OperationType more frequently used on objects of the same type of the given ID

queries to be issued on the metadata. Administrators use it to
find and verify the results of functional processes, especially
in the early stages of workflows’ development and deployment.
Most importantly, data scientists use it to carry out situational
analysis on the data in an exploratory manner. For instance, in
the process of assessing the feasibility of computing a statisti-
cal model for irrigation advice, search functionalities have been
used to locate and study the data collected from IoT devices
and weather services. To this end, Schema-driven search has
also come into play to extend the research and discover data
with similar properties (e.g., data Objects with Attributes be-
longing to weather-related Domains). The latter property is
also used by functional processes, which rely on domains rather
than specific attribute names or paths. This makes functional
processes robust to schema evolution, especially with respect
to data ingested from external sources. For instance, if ESA
were to change the structure of the published files, the elab-
oration processes would still be able to complete successfully
(provided that the Metadata Extractor is still able to establish
the correct association between attributes and domains).

Provenance and versioning (Section 7). Among the most
used functionalities there is Debug and verification: it is not
unusual for functional processes to fail or to compute wrong re-
sults — especially during the development and testing phases.
The provenance functionalities greatly help data scientists and
administrators in tracing the history of process pipelines, which
are often centered on the IDs of the implicated processes (e.g.,
the workflow ID provided by the orchestrator, or YARN’s ap-
plication ID). The main reasons registered for process failures
are unexpected cluster downtime and sources unavailability. In
both cases, the history regarding objects’ Operations is funda-
mental to understand when and where there has been a prob-
lem to investigate. Another important provenance functionality
concerns the Trustworthiness of data. Besides satellite images
published by ESA, we collect open-source weather information
from two different services, provided by a public institution and
a private non-profit organization respectively. The latter source
is more accurate, as the provided weather data are an extension
of those provided by the former source with the data collected
from additional IoT sensors in certain areas of the region, but

it is not always available. Thus, functional processes that work
on weather data (e.g., to compute the amount of rain fallen in
a certain field) may use either source depending on their avail-
ability. In this scenario, provenance functionalities are used to
establish the trustworthiness of the obtained results by verifying
which source has been used.

Orchestration support (Section 8). Many of the employed
functional processes rely on Triggering functionalities to acti-
vate data transformations; for instance, the workflow in charge
of computing vegetation indexes looks for image Objects ob-
tained from Source ESA that are not yet linked to the Oper-
ation for computing vegetation indexes. MOSES metadata is
also used for Resource estimation. The process for vegetation
index calculation is among the most expensive ones; thus, the
corresponding functional process uses the knowledge on previ-
ous executions to tune the request of resources (i.e., the amount
of memory and CPU power) for the current execution.

11. Discussion & Conclusions

In this paper we presented MOSES, a framework for meta-
data handling in BDPs. MOSES has been devised to support
BDP users in governing the complexity of data and their trans-
formations. With respect to previous research proposals in this
area, which are either described at a high level of abstraction
or are limited to a specific technology or functionality, MOSES
has been designed to cover a broad set of features and is fully
implemented. This allowed us to evaluate its effectiveness in
a set of real projects. Although performing a stress test of
MOSES on huge BDPs is out of the scope of this paper, our
HADOOP-based implementation largely succeeds in support-
ing all common users’ tasks.

The main lessons we learned from the feedback given by
users who worked on projects ABDS (the one presented in Sec-
tion 10) and Cimice.net (i.e., a project to monitor and analyze
the spreading of stink bugs in the Emilia-Romagna region in
Italy) using MOSES can be summarized as follows:

• MOSES largely reduces the user search-time even for
projects with limited size (in terms of objects and carried

14

: Source

name = ESA

: Operation

: Operation type

name = ESA-ingestion

: Object

name = S2A_MSI_...
category = file
path = datalake.abds...
format = zip
size = 316MB
date 2020-08-23
granule = 32TQP

: Object : Object

: Object

: Project

name = ABDS

: Data lake area

name = Harbor

: Data lake area

name = Landing

: Operation

timestamp = 1598280438
parameters.1 = refdate_20200823
parameters.2 = outpath_datalake.abds...

: Operation type

name = ESA-make-L2A

: Operation type

name = ESA-make-TIF

: Operation

: Operation type

name = ESA-make-indexes

+reads
from

source

+writes
to +reads

from
+writes

to

: Operation

+reads
from

+writes
to

+reads
from

+writes
to

+writes
to

+writes
to

+has
operation

type
+has

operation
type

+has
operation

type

+has
operation

type

: Object

: Object

Figure 5: UML object diagram representing the metadata pushed to MOSES by the functional process in charge to download and elaborate satellite images (for
drawing simplicity, entity properties are represented as attributes)

out operations) due to the availability of very detailed in-
formation.

• The design of applications and processes must take into
account the information collected by MOSES to fully ex-
ploit orchestration-related and search functionalities. At
the same time, MOSES customizability is very useful to
adapt the set of collected information to those used by
processes (and human users).

• The effort made to avoid transforming the BDP into a
data swamp shifts from the experience and rigor of users
to that of identifying the correct trade-off between the
amount of information collected and the effort required
to collect it.

• Having a graphical interface available greatly reduces the
learning curve of MOSES and makes it fully exploitable
by users with limited background on BDPs such as data
scientists.

• In our projects, 38% of the metadata have been col-
lected in push mode. This confirms that adopting a semi-
automatic update strategy is a key factor to make a rich
set of metadata available.

We argue that the last point is crucial for the proper setting of
MOSES. Our next research efforts will be aimed at defining a
methodology to identify the most appropriate set of information
to be collected based on the functions to be activated, on the

complexity of the applications, and on the resources available.
Among the many extensions that could be useful, we believe
that the two most important ones are (i) handling metadata ac-
cess and privacy, which is mandatory in multi-tenant and multi-
user scenarios; (ii) improve MOSES user interfaces to further
facilitate its use.

Acknowledgment

This research has been partially funded by Regione Emilia
Romagna. Funding code PG/2018/630767, funding program
POR FESR Programma 2014-2020, Asse 1, Azione 1.2.2.

References

[1] C. Giebler, C. Gröger, E. Hoos, H. Schwarz, B. Mitschang, Leveraging
the data lake: Current state and challenges, in: Proc. DaWaK, Linz, Aus-
tria, 2019, pp. 179–188.

[2] I. G. Terrizzano, P. M. Schwarz, M. Roth, J. E. Colino, Data wrangling:
The challenging journey from the wild to the lake, in: Proc. CIDR, Asilo-
mar, CA, USA, 2015.

[3] Hype cycle for artificial intelligence, https://www.gartner.com/

(2014).
[4] J. Couto, O. T. Borges, D. D. Ruiz, S. Marczak, R. Prikladnicki, A map-

ping study about data lakes: An improved definition and possible archi-
tectures, in: Proc. SEKE, Lisbon, Portugal, 2019, pp. 453–578.

[5] B. Cheng, S. Longo, F. Cirillo, M. Bauer, E. Kovacs, Building a big
data platform for smart cities: Experience and lessons from santander,
in: Proc. Big Data, New York City, NY, USA, 2015, pp. 592–599.

[6] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose, R. Ver-
nica, A. Deutsch, Y. Papakonstantinou, V. J. Tsotras, ASTERIX: towards

15

a scalable, semistructured data platform for evolving-world models, Dis-
tributed and Parallel Databases 29 (3) (2011) 185–216.

[7] S. Nadal, O. Romero, A. Abelló, P. Vassiliadis, S. Vansummeren, An
integration-oriented ontology to govern evolution in big data ecosystems,
Inf. Syst. 79 (2019) 3–19.

[8] S. Sharma, Expanded cloud plumes hiding big data ecosystem, Future
Generation Computer Systems 59 (2016) 63–92.

[9] A. LaPlante, B. Sharma, Architecting Data Lakes, O’Reilly Media, Se-
bastopol, 2014.

[10] F. Ravat, Y. Zhao, Data lakes: Trends and perspectives, in: Proc. DEXA,
Linz, Austria, 2019, pp. 304–313.

[11] Y. Li, A. Zhang, X. Zhang, Z. Wu, A data lake architecture for monitor-
ing and diagnosis system of power grid, in: Proc. AICCC, Tokyo, Japan,
2018, pp. 192–198.

[12] A. Maccioni, R. Torlone, KAYAK: A framework for just-in-time data
preparation in a data lake, in: Proc. CAiSE, Tallinn, Estonia, 2018, pp.
474–489.

[13] P. Sawadogo, É. Scholly, C. Favre, É. Ferey, S. Loudcher, J. Dar-
mont, Metadata systems for data lakes: Models and features, CoRR
abs/1909.09377.

[14] C. Quix, R. Hai, I. Vatov, Metadata extraction and management in data
lakes with GEMMS, CSIMQ 9 (2016) 67–83.

[15] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, F. Naumann, Data
profiling with Metanome, PVLDB 8 (12) (2015) 1860–1863.

[16] A. Y. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, S. E.
Whang, Goods: Organizing Google’s datasets, in: Proc. SIGMOD, San
Francisco, CA, USA, 2016, pp. 795–806.

[17] J. M. Hellerstein, V. Sreekanti, J. E. Gonzalez, J. Dalton, A. Dey, S. Nag,
K. Ramachandran, S. Arora, A. Bhattacharyya, S. Das, M. Donsky,
G. Fierro, C. She, C. Steinbach, V. Subramanian, E. Sun, Ground: A
data context service, in: Proc. CIDR, Chaminade, CA, USA, 2017.

[18] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim, XTRACT:
a system for extracting document type descriptors from XML documents,
SIGMOD Rec. 29 (2) (2000) 165–176.

[19] J. Hegewald, F. Naumann, M. Weis, XStruct: Efficient schema extraction
from multiple and large XML documents, in: Proc. ICDE Workshops,
2006, pp. 81–81.

[20] G. J. Bex, W. Gelade, F. Neven, S. Vansummeren, Learning deterministic
regular expressions for the inference of schemas from XML data, ACM
TWEB 4 (4) (2010) 14.

[21] M. Klettke, U. Störl, S. Scherzinger, O. Regensburg, Schema extraction
and structural outlier detection for JSON-based NoSQL data stores., in:
Proc. BTW, 2015, pp. 425–444.

[22] L. Wang, S. Zhang, J. Shi, L. Jiao, O. Hassanzadeh, J. Zou, C. Wangz,
Schema management for document stores, Proc. VLDB Endowment 8 (9)
(2015) 922–933.

[23] J. Izquierdo, L. Cánovas, J. Cabot, Discovering implicit schemas in JSON
data, in: Proc. ICWE, 2013, pp. 68–83.

[24] D. S. Ruiz, S. F. Morales, J. G. Molina, Inferring versioned schemas from
NoSQL databases and its applications, in: Proc. ER, 2015, pp. 467–480.

[25] E. Gallinucci, M. Golfarelli, S. Rizzi, Schema profiling of document-
oriented databases, Inf. Syst. 75 (2018) 13–25.

[26] F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, P. C. Arocena, Data lake man-
agement: Challenges and opportunities, PVLDB 12 (12) (2019) 1986–
1989.

[27] R. Hai, S. Geisler, C. Quix, Constance: An intelligent data lake system,
in: Proc. SIGMOD, San Francisco, CA, USA, 2016, pp. 2097–2100.

[28] H. Mehmood, E. Gilman, M. Cortés, P. Kostakos, A. Byrne, K. Valta,
S. Tekes, J. Riekki, Implementing big data lake for heterogeneous data
sources, in: Proc. ICDE, Macao, China, 2019, pp. 37–44.

[29] K. Dhamdhere, K. S. McCurley, R. Nahmias, M. Sundararajan, Q. Yan,
Analyza: Exploring data with conversation, in: Proc. IUI, Limassol,
Cyprus, 2017, pp. 493–504.

[30] J. Wang, D. Crawl, S. Purawat, M. H. Nguyen, I. Altintas, Big data prove-
nance: Challenges, state of the art and opportunities, in: Proc. BigData,
Santa Clara, CA, USA, 2015, pp. 2509–2516.

[31] I. Suriarachchi, B. Plale, Crossing analytics systems: A case for inte-
grated provenance in data lakes, in: Proc. e-Science, Baltimore, MD,
USA, 2016, pp. 349–354.

[32] M. Interlandi, T. Condie, Supporting data provenance in data-intensive
scalable computing systems, IEEE Data Eng. Bull. 41 (1) (2018) 63–73.

[33] C. Mathis, Data lakes, Datenbank-Spektrum 17 (3) (2017) 289–293.
[34] M. Lenzerini, Data integration: A theoretical perspective, in: Proc.

SIGACT-SIGMOD-SIGART, Madison, Wisconsin, USA, 2002, pp. 233–
246.

[35] M. Zhang, X. Zhang, X. Zhang, S. Prabhakar, Tracing lineage beyond
relational operators, in: proc. VLDB, ACM, 2007, pp. 1116–1127.

[36] R. Diestelkämper, M. Herschel, Tracing nested data with structural prove-
nance for big data analytics, in: Proc. EDBT, 2020, pp. 253–264.

[37] A. Maccioni, R. Torlone, Crossing the finish line faster when paddling
the data lake with Kayak, Proc. VLDB Endowment 10 (12) (2017) 1853–
1856.

[38] P. Agrawal, R. Arya, A. Bindal, S. Bhatia, A. Gagneja, J. Godlewski,
Y. Low, T. Muss, M. M. Paliwal, S. Raman, V. Shah, B. Shen, L. Sugden,
K. Zhao, M. Wu, Data platform for machine learning, in: Proc. SIGMOD,
ACM, 2019, pp. 1803–1816.

[39] A. Y. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, S. E.
Whang, Managing Google’s data lake: an overview of the Goods system,
IEEE Data Eng. Bull. 39 (3) (2016) 5–14.

[40] B. Glavic, Big data provenance: Challenges and implications for bench-
marking, in: Proc. WBDB, San Jose, CA, USA, 2012, pp. 72–80.

[41] Y. Simmhan, B. Plale, D. Gannon, A survey of data provenance in e-
science, SIGMOD Rec. 34 (3) (2005) 31–36.

[42] M. Herschel, R. Diestelkämper, H. Ben Lahmar, A survey on provenance:
What for? What form? What from?, VLDB J. 26 (6) (2017) 881–906.

[43] J. Stefanowski, K. Krawiec, R. Wrembel, Exploring complex and big
data, Int. J. Appl. Math. Comput. Sci. 27 (4) (2017) 669–679.

[44] I. Altintas, O. Barney, E. Jaeger-Frank, Provenance collection support in
the kepler scientific workflow system, in: Proc. IPAW, 2006, pp. 118–132.

[45] R. Lourenço, J. Freire, D. E. Shasha, Debugging machine learning
pipelines, in: Proc. DEEM@SIGMOD, 2019, pp. 3:1–3:10.

[46] L. Moreau, P. T. Groth, Provenance: An Introduction to PROV, Synthe-
sis Lectures on the Semantic Web: Theory and Technology, Morgan &
Claypool Publishers, 2013.

[47] I. Megdiche, F. Ravat, Y. Zhao, A use case of data lake metadata manage-
ment, Data Lakes 2 (2020) 97–122.

[48] T. Heath, C. Bizer, Linked Data: Evolving the Web into a Global Data
Space, Synthesis Lectures on the Semantic Web, Morgan & Claypool
Publishers, 2011.

[49] G. Klyne, Resource description framework (RDF): Concepts and ab-
stract syntax, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

(2004).
[50] E. Gallinucci, M. Golfarelli, S. Rizzi, Mo.re.farming: A hybrid architec-

ture for tactical and strategic precision agriculture, Data Knowl. Eng. 129
(2020) 101836.

[51] D. W. Deering, Rangeland reflectance characteristics measured by aircraft
and spacecraft sensors, Ph.D. thesis, Texas A&M Univ., College Station
(1978).

16

