Data-Flow Driven Optimal Tasks Distribution
for Global Heterogeneous Systems

Jordi Garcia, Francesc Aguil6, Adria Asensio,
Ester Simé, Marisa Zaragoza, Xavi Masip-Bruin
CRAAX Lab

UPC BarcelonaTECH
Vilanova i la Geltru, Spain

Abstract

As a result of advances in technology and highly demanding users expectations,
more and more applications require intensive computing resources and, most im-
portantly, high consumption of data distributed throughout the environment.
For this reason, there has been an increasing number of research efforts to co-
operatively use geographically distributed resources, working in parallel and
sharing resources and data. In fact, an application can be structured into a
set of tasks organized through interdependent relationships, some of which can
be effectively executed in parallel, notably speeding up the execution time. In
this work a model is proposed aimed at offloading tasks execution in heteroge-
neous environments, considering different nodes computing capacity connected
through distinct network bandwidths, and located at different distances. In
the envisioned model, the focus is on the overhead produced when accessing
remote data sources as well as the data transfer cost generated between tasks
at run-time. The novelty of this approach is that the mechanism proposed
for tasks allocation is data-flow aware, considering the geographical location
of both, computing nodes and data sources, ending up in an optimal solution
to a highly complex problem. Two optimization strategies are proposed, the
Optimal Matching Model and the Staged Optimization Model, as two different
approaches to obtain a solution to the task scheduling problem. In the optimal
model approach a global solution for all application’s tasks is considered, find-
ing an optimal solution. Differently, the staged model approach is designed to
obtain a local optimal solution by stages. In both cases, a mixed integer linear
programming model has been designed intended to minimizing the application
execution time. In the studies carried out to evaluate this proposal, the staged
model provides the optimal solution in 76% of the simulated scenarios, while it
also dramatically reduces the solving time with respect to optimal. Both mod-
els have pros and cons and, in fact, can be used together to complement each
other. The optimal model finds the global optimal solution at high running
time cost, which makes this model unpractical on some scenarios. The staged
model instead, is faster enough to be used on those scenarios; however, the given
solution might not be optimal in some cases.

Preprint submitted to Elsevier September 15, 2021



1. Introduction

Smart environments provide intelligent services aimed at facilitating users’
everyday tasks while both economizing costs and enhancing sustainability. The
main core technology in smart environments is based on the Internet of Things
(IoT), which comprise a vast sensors network generating detailed information
about any relevant aspect of the environment, all connected through low power
wireless networks to a cloud data center where a rich set of smart services is
processed in areas such as smart transportation, smart health, smart energy, or
smart industry, just to name a few. These types of applications are becoming
more complex and resource-hungry, demanding high performance computing
and, sometimes, immediate answer. For this reason, these applications are
usually executed at the cloud, which guarantees almost unlimited computation
and storage capabilities, ubiquity, elasticity, and benefits from a cost efficiency
model. However, as data becomes more prominent and bulky in modern smart
applications, moving all the data to the cloud before computation poses severe
inconveniences to this model, such as high communication latency, unnecessary
network overload, high risks for failure as well as exposes data privacy [1].

Aimed at mitigating these limitations, fog computing [2] and edge computing
[3] have been proposed as technological solutions to exploit the advantages of
locality. By approaching computing devices to the data sources several advan-
tages arise, such as enabling low latency, reducing data traffic at core networks,
promoting green computing as well as guaranteeing higher privacy. Apparently,
the computing capacity at the edge is much lower than that at the cloud; how-
ever, in [4] the authors estimated in 2018 the potential computing capacity in a
major European city and showed to be 10 to 20 times the largest Amazon Web
Service (AWS) data center. Similarly, in 2015, IBM Research forecasted that
by 2017 the collective computing and storage capacity of smartphones would
surpass all worldwide servers [5]. Although these figures illustrate the enormous
potentiality at the edge, this technology has not been conceived to substitute the
cloud, rather to complement each other and exploit the combined advantages
of both technologies.

The scenario envisioned in this work is flooded with devices, from the edge
up to the cloud, some of which are available to embrace offloaded computing
and ready to execute applications on demand. In such a scenario, smart appli-
cations could be either executed close to the data sources, thus absorbing data
transfer latency, or executed at cloud, providing enhanced computing power
but with a communication penalty. Furthermore, when smart applications be-
come more complex with geographically distributed multi-resource constraints,
the solutions span becomes particularly challenging. For instance, some basic
applications will be simply executed locally; alternatively, for many computing
intensive applications the straightforward solution will be moving the computa-
tion to the cloud. But, in cases where the application data is highly distributed,
or generated at real-time in remote locations, or obtained through streaming



from distributed sources, and where several computing nodes are geographi-
cally distributed and available, solutions which efficiently exploit data locality
can dramatically improve the execution performance.

The applications considered in this research work are large-scale scientific
computing applications using distributed data sources, often comprising sev-
eral interdependent workflows which can be decomposed into dependence con-
strained tasks [6]. Mapping such set of interdependent tasks into computing
resources in heterogeneous systems is an interesting problem of current research.
In the scope of cloud computing, existing container scheduling products cannot
manage efficiently concurrent multi-resource requests when systems are hetero-
geneous [7]. Furthermore, this problem becomes far more challenging in an
open context dealing with a large number of heterogeneous devices distributed
through the edge, considering the physical devices’ location and distance be-
tween them and the distributed geography of data sources and their connectivity
to the system.

In this paper a data-flow driven optimal tasks to resources mapping tech-
nology for global heterogeneous management systems is presented. Specifically,
given an application instance execution request which consists of a set of related
tasks, given a set of physically distributed heterogeneous devices and their re-
spective performance features, and given a set of geographically distributed data
sources, this technology decides, statically, the best tasks to resources mapping
to optimally execute that application in terms of execution time. In the pro-
posed performance estimation model, for any tasks parallelization strategy, the
different costs of executing the tasks on different nodes are estimated, including
the task offloading penalty. In addition, the cost (latency and transfer times) of
accessing the distributed data sets is also considered, both static data sources
and dynamic data flow between running tasks, as well as any eventual data
replication and network congestion. The novelty of this approach is that, to the
best of the authors’ knowledge, this is the first work to consider not only the
heterogeneity and distribution of the computing nodes, but also the geograph-
ically scattering of data sources as well as the effects of the run-time data-flow
for the selected parallelization strategy. In order to find a solution for this more
realistic, but also more complex, scenario, two different optimization strategies
have been considered based on mixed integer linear programming: the Optimal
Matching Model (OMM) which finds a global solution for all tasks in the appli-
cation, and the Staged Optimization Model (SOM) which finds local solutions
by stages. The OMM model finds an optimal solution for the global problem,
but when the number of tasks or the number of nodes is high, the time to find a
solution becomes impractical. The SOM model is fast enough to be used in real
scenarios; however, in some cases, the solution may not be optimal. Although in
some cases the OMM model requires too much time for completion, it has been
used in this paper to validate the quality of the solutions provided by the SOM
model. By comparing the solutions provided by both models, the SOM model
provides optimal solutions in most cases, and near-optimal solutions with a gap
difference below 10% compared to the OMM. In both cases, the time saved by
using the optimization strategy is from 36% to more than 80%.



The work presented in this paper is part of the Progressive Mapping Sys-
tem (PMS), a framework for global resources management designed to monitor
millions of heterogeneous devices spread throughout some sort of broad smart
environment to provide efficient applications execution for optimal performance
[8]. Specifically, the technology presented in this paper focuses on the tasks to
resources matching and has been designed to minimize the application execu-
tion time. Note that other metrics could be considered for minimization as well,
such as energy consumption, quality of service, network load, or any other rele-
vant metric. Finally, note that resources’ mobility, volatility, or task migration,
have not been considered in this research work. A static snapshot for the set of
available resources is assumed, as well as an application instance with a static
and known set of tasks. Considering dynamicity in the system opens a new
dimension in the scheduling problem, which will be considered as future work
and hence, out of the scope of this paper.

The remainder of this paper is organized as follows. In Section 2 the related
work is discussed. Section III describes the problem to solve illustrated with
an example scenario. In Section IV the problem requirements and specification
are discussed, as well as the performance estimation cost model. Section V
presents the two models for optimal tasks to resources matching, OMM and
SOM. Section VI shows the numerical results that validate the mathematical
models and, finally, Section VII presents the concluding remarks.

2. Related Work

Global resources management has long been an important research topic for
the academic community and industry. Indeed, a large number of research con-
tributions may be found in the literature aimed at cooperatively using a large
set of geographically distributed resources set, organized and conceived as a
single powerful computer, such as metacomputing [9], world wide virtual com-
puter [10], global computing [11], volunteer computing [12] or, more recently,
grid computing [13]. These technological proposals have been predecessors of
the current cloud computing paradigm [14], which provides flexible dynamic in-
frastructures, quality of service guaranteed computing environments, and con-
figurable software services, through the management and orchestration of huge
amounts of computing facilities. With the recent advances in cloud computing
and the increasing capabilities of mobile devices, compute-intensive processes
can now run at the edge, on a set of mobile devices with highly limited computa-
tional capabilities, emerging the concept of mobile-cloud computing [15]. This
is achieved by using the communication facilities of mobile devices to estab-
lish high-speed connections to larger computational resources located at cloud.
In the same direction, cloudlets and mobile-edge cloud computing have been
proposed as promising solutions intended to extend the utility of mobile-cloud
computing to provide more powerful compute and storage resources accessible at
the edge of the network [16]; and the EdgeCloud, which is a distributed manage-
ment system for resource continuity in edge to cloud computing environments

[17).



The authors of this paper also have previous experience in the design and
implementation of global resources management systems with the goal of ex-
ploiting the available computing capabilities of edge systems. For instance, the
Fog-to-Cloud (F2C) framework is a distributed system proposing a coordinated
management of the whole set of resources within the cloud continuum spectrum,
i.e., from the edge up to the cloud, building up a multilayered hierarchical coordi-
nated structure [18]. Or, the Progressive Mapping System (PMS), a framework
for massive resources management which performs task to resources mapping
and allocation through progressive slicing techniques [8]. In the context of the
PMS, a load distribution model for single-task fully parallel applications was
also proposed [19]. And more recently, the authors proposed an efficient clus-
tering strategy to optimally handle the whole set of systems at the edge through
clustering policies, turning into much powerful edge instances [20].

In all these environments, a key critical control task to be optimized is an
efficient distribution of the whole set of computational loads into the available
devices. This problem becomes still more complex when devices are heteroge-
neous, as considered in this paper, what is absolutely normal in the envisioned
systems, where cloud, edge and IoT devices are globally deployed. As systems
scale up, applications in the smart era are ever more sophisticated and complex,
leveraging all capabilities driven by technological advances, requiring intensive
computational and communication resources, high energy consumption and,
most importantly, consuming data spread throughout the whole smart environ-
ment. Applications can be usually organized into a set of precedence-constrained
tasks, which can be modelled by directed acyclic graphs (DAG) [21], in which
nodes represent the tasks to be executed and edges represent data communica-
tion between them. Placing independent tasks on different devices and running
them in parallel can speed up computing and, therefore, improve the user ex-
perience. However, this can raise additional delay due to communication and
synchronization overhead between physically distributed devices. Consequently,
placing coordinated tasks on well connected devices may reduce this delay. Fi-
nally, a last consideration refers to the fact that tasks in smart scenarios use
to require data generated (or perhaps, stored) in sensors (or their hosting de-
vice), which are geographically distributed. Similarly, placing tasks close to the
data sources dramatically reduces communications costs and notably increases
performance. For all these reasons, effective resource management and task
scheduling mechanisms are required to improve the application performance
in such smart environments. This is actually the main objective of the task
scheduling problem, namely the design of strategies to allocate tasks in devices
which minimize computation time as well as their offloading costs, and this is
indeed the main research focus in this paper.

Multiple research works have dealt with the task scheduling problem in the
scope of cloud-fog environments in recent years. Most studies have proposed
heuristic solutions due to the problem complexity. Indeed, Wang and Li [22]
established a smart production line simulation and proposed a task scheduling
strategy based on a hybrid heuristic algorithm to minimize delay and energy
consumption. Hoang and Dang [23] proposed a fog-based region architecture



for provisioning nearby computation resources and designed an efficient heuris-
tic algorithm to allocate tasks among regions and remote clouds. Xu et al.
[24] proposed a scheduling algorithm based on particle swarm optimization,
an intelligence evolutionary computing technology for seeking the trade-off be-
tween makespan and cost in a cloud-fog environment. Abdel-Basset et al. [25]
proposed an energy-aware model to tackle the task scheduling problem in a
fog computing environment. They proposed a marine predators algorithm as
a heuristic to improve the quality of service required by users. In a different
work, Abdel-Basset et al. [26] designed a metaheuristic algorithm for tack-
ling task scheduling of Industrial IoT applications in fog computing. In that
work, they used a Harris hawks optimization algorithm based on a local search
strategy to improve the quality of service provided to the users. However, the
proposed model is limited to schedule independent tasks. Hussein and Mousa
[27] presented an efficient task offloading strategy to minimize task response
times in a fog computing environment, driving two evolutionary meta-heuristic
algorithms, leveraging ant colony optimization and particle swarm optimization.
Nevertheless, although the search for heuristic solutions is the most common
way of tackling the task scheduling problem, different mathematical methods
have also been proposed to find optimal solutions to this problem. Liu et al.
[28] proposed an algorithm based on dynamic programming to optimally solve
the dependent task placement and scheduling problem when the edge server
configuration is fixed and known. Zeng et al. [29] proposed a mixed-integer
nonlinear programming problem to minimize task completion time in fog com-
puting systems. Barros et al. [30] proposed a solution to the context-aware
mobile application task scheduling problem for fog computing. To define the
priority of requests, multiple linear regression analysis was used and the optimal
scheduling of tasks was solved using the multi-objective non-linear programming
optimization technique. Additionally, Tran et al. [31] proposed an approach to
task placement on fog computing for IoT application provisioning. The authors
designed an optimization problem and implemented a program in cplex to solve
the problem. However, in that work, the dependency between tasks was not
considered because the tasks composing an application ran in parallel. From a
mathematical perspective, some parallelism could be established with the task
scheduling problem in multiprocessors systems. In this area, several studies
that propose optimal scheduling can also be found. For instance, in [32], Venu-
gopalan and Sinnen proposed a mixed-integer linear programming solution to
the task scheduling problem, assuming that the communication links are iden-
tical. They used problem-specific knowledge to eliminate bilinear forms arising
from communication delays, which reduced the complexity of the problem. In
[33], Valouxis et al. proposed an integer programming model to minimize exe-
cution times for computer applications in a multiprocessor environment. They
suggested distributing DAG nodes into levels and tackling the optimization by
stages for DAGs of big size; however, they did not implement their proposal.
Compared to the related works, the novel contributions of this work are
the following. A task placement mechanism for heterogeneous environments is
proposed, which considers nodes with different computing capability, connected



| % SR ((0)).((0)) =

= l"‘ -

. QQ : Rt
e | . .((o))

Figure 1: Illustrating example of the considered scenario.

through different network bandwidths, located at different distances and, the
most interesting, considering the physical location of the all data sources as well
as the data flow between tasks. Furthermore, a procedure has been designed
to organize tasks hierarchically by levels based on the application’s DAG, so
that each level contains tasks that can be executed in parallel. Based on this
hierarchical tasks distribution, two different optimization strategies have been
designed to obtain a solution to the task scheduling problem and, in both cases,
a mixed-integer programming model has been designed for minimizing the DAG
optimization execution time, globally solving the problem.

3. Problem Description

In this research work, a complex technological scenario is envisioned with
many heterogeneous computing devices, some of which storing data (historical
repositories) and some of which attaching sensing devices (constantly generating
streaming data), all connected through diverse communication technologies. In
such scenario, one node in the system receives a request for application execution
and the system must decide where it should be executed according to some
performance metrics, for instance, execution time. In Fig. 1 an example of a
smart city scenario is illustrated. In the figure, several computing nodes are
shown, some of which host data repositories and/or sensing devices. If one
application (smart service in this case) must be executed, it can be run either
locally or offloaded to any of the available devices, possibly those which host
the application’s required data, or some other device close to them.

The application can be structured as a set of tasks organized through depen-
dency relations. Each task could eventually require some data sets which are
stored in or collected from one, or several, nodes in the system (static data), and
could also generate, at run-time, additional data flows (dynamic data) which,
in turn, could be used by the following tasks. Both, the computation cost and
data sizes, are assumed to be known at launching time. Similarly, the topology



and connectivity of the system available nodes is assumed to be known, includ-
ing nodes’ type and performance features, the connectivity technology, and the
geographical location of nodes to be able to estimate the network delay. It is
also known what data sources has initially each node in the system.

In this context, the problem statement is as follows. Given an application
launching and given a system resources description and topology, find the best
set of nodes to execute the application which minimizes the execution time,
and determine where each application’s task is executed. This problem has to
be solved considering the computational cost, according to the tasks’ load and
nodes capacities, as well as the data flow communication overhead, according
to the location of both the data sets (static data) and the nodes that execute
the tasks and, consequently, produce and consume the run-time data (dynamic
data).

Note that this problem poses several solutions. The trivial solution is to
execute the application in the launching node (local execution). In this case, the
performance depends on the node’s performance and the volume and location
of the required data sources. An alternative solution would be to execute the
application at cloud. This solution potentially provides maximal performance
(assuming you have almost unlimited computing capabilities at cloud), but data
will likely be far away. The optimality of this solution depends, again, on the
volume and location of the required data sources. Differently, another solution
would be to execute the application in a node either owning the data or a
large portion of them. In this case, the overhead of data movement will be
drastically reduced and the performance will depend on the node’s performance
and availability. Finally, a span of alternative intermediate solutions should be
appraised as well, considering any candidate node which trades-off computing
power with locality features.

Lastly, it is worth mentioning that the envisioned scenario becomes much
more complex when considering applications structured as a set of interdepen-
dent tasks, some eventually executed in parallel. In this case, all tasks can be
executed either in a single node or distributed among several nodes to exploit
the advantages of parallel execution. Note that the location of data sources has
to be considered, as well as the dynamic data flow between tasks, which in turn
depends on the geographical location of nodes selected for each task execution.
Now, the span of candidate solutions grows exponentially.

The metric used for optimization in this current implementation is execution
time, considering mainly both computation and communication times in a highly
heterogeneous and distributed environment. Several performance features have
been considered in the model, such as start-up time, network latency, bandwidth
and capacity, nodes’ distance (in number of hops), and so forth, which will be
discussed in detail in the next section. However, alternative performance metrics
could eventually be used, such as network traffic reduction (independently of the
execution time), energy consumption, quality of service, resources rental time
(in a pay-per-use environment), some sort of capital or operational expenses
(CAPEX or OPEX) accounting system, or any other measurable or quantifiable
metric.



4. Problem Requirements and Specification

In this section, the application and resources assumptions and requirements
are described in detail, as well as the current cost model based on the applica-
tion’s execution time estimation.

4.1. Resources Requirements and Specification

Even though this work has been designed as part of a system for massive
resources management, where the number of nodes considered can be poten-
tially huge, in the PMS there is a filtering process based on the application
features, such as the instance locality and run-time specification. This means
that, in practice, the number of nodes considered in this optimal task to nodes
matching will be of the order of several tens. Further details about the devices
management and graph reduction modules, together with the discussion of some
related open research challenges, can be found in [8]. It is also out of the scope
of this work how the nodes discovery and availability is monitored. In fact, in
this work a static set of nodes is assumed to be known and available to execute
any task, and that this availability is constant through all the application exe-
cution. Addressing robustness, volatility and mobility in distributed systems is
a challenging topic and, undoubtedly, should be considered in future stages of
this research.

The system resources are described through the System Resources Graph
(SRG), where nodes represent computing devices and edges represent nodes
connectivity. Each device’s computing power is tagged as a weight in the corre-
sponding node and represents a percentage of relative performance with respect
to one reference node. For instance, a node weighted with 100 yields a per-
formance similar to the reference node and a node weighted with 80 yields an
approximate performance of 80% of the reference node. Note that hardware de-
tails, such as processor or memory and caches features, have been omitted from
the model, defining a weighting mechanism which is clearly a simplification of
the reality; however, it allows having a simple yet effective model, trading-off
accuracy with feasibility.

With respect to the connectivity, the SRG tries to reflect any communication
relationship between nodes in the system, including network bandwidth and la-
tency. As all nodes have access to Internet (otherwise they could not collaborate
in a distributed application execution), all nodes are in fact connected to each
other, posing high complexity in the system description (quadratic with respect
to the number of nodes). In order to simplify this issue, a bandwidth feature is
assigned to each node so that bandwidth between a pair of nodes is estimated
as the minimal bandwidth of both nodes. For instance, if a node is connected to
Internet through 4G with an average bandwidth of 10Mbps and another node is
connected through a 3Mbps WiFi network, then a 3Mbps bandwidth between
both nodes is estimated. Such simplification avoids having to measure (and
specify) each bandwidth between any pair of nodes. Furthermore, assigning the
bandwidth to the node allows estimating easily the channel saturation in case



one node has to receive data from more than one node at a time, which is also
considered in this model.

Latency is a performance metric proportional to the distance between nodes
and highly depends on the nodes’ physical location. However, it is not only
dependent on the physical location but also on how they are connected and
the physical routing between them. Accurately estimating latency is highly
challenging and it is not the purpose of this model. For this reason, the la-
tency between nodes is simplified by considering a delay proportional to the
number of hops. Similarly, to avoid specifying each pair of individual nodes
distances, nodes are grouped according to proximity (approaching a real sce-
nario where nodes are physically grouped through their network provider access
point). Then, the edges connecting groups of nodes are just weighted with some
distance between groups measured in number of hops. The distance between
nodes inside a group is considered to be one single hop.

Finally, the SRG also contains information about data sources (either files
or sensors), which are assigned to nodes. Each node can own some data sources,
and one data source can be replicated in one or more nodes (or, similarly, the
same type of data can be collected from different sensors attached to different
nodes).

For instance, Fig. 2 illustrates one possible SRG. The figure represents three
groups of nodes with five, three, and four nodes, respectively. For simplicity, the
nodes’ tagging is only shown for nodes N7 and N12. The N7 node’s computing
power is weighted with 100, meaning a performance similar to the reference
node, and its bandwidth has been labelled to 6Mbps. Also, N7 owns data
sources F'1, F2 and F3. Similarly, the N12 node’s computing power is weighted
with 70, meaning an approximate performance of 70% of the reference node (this
could be a laptop), and bandwidth of 4Mbp. It owns data sources F'1, F'4 and
F5. The SRG also contains information about the distance between groups of
nodes, being 5 hops between group 1 and group 2, 3 hops between group 1 and
group 3, and 2 hops between group 2 and group 3. Remember that the distance
between nodes within the same group is assumed to be one hop.

;
| CPU: 100%
NG N7 ) BWD: e
! ;
|
!
:
:

F1

Figure 2: Illustrating example of a system resources graph.

10



All weights and related parameters in the SRG are currently being obtained
empirically through profiling of all devices candidate to be part of the system.
With these measures, a catalog of device types and weights is created, as well
as the network interconnection technology. In future research, a classification
of devices through supervised machine learning processes is planned, thus facil-
itating the process of resources categorization.

4.2. Application Requirements and Specification

The applications considered in the proposed optimization model consist of
one or more tasks, requiring data hosted in several system nodes. This is a
typical scenario in smart cities, for instance, where smart services use data
generated from several sensors spread in different city locations. The number of
tasks in the application is fixed and known, and eventually, some of these tasks
can be executed in parallel (static task-level parallelism). In this case, a data
dependency graph specifies dependency relationships between tasks. This type
of applications is different from dynamic task-level parallelism, where a variable
number of tasks are created at run-time according to the program environment.

Each task requires a specific (and generally known) data set (input data).
Input data are, either stored (files) in one or more than one system nodes
(replicas) or generated on-the-fly through some sensor devices (streaming data)
likewise hosted in one or several system nodes. Tasks eventually produce new
data sets (output data) which in turn can be consumed by other tasks (as
input data). Note that in such highly distributed scenario, data-flow driven
tasks distribution is a complex problem which should consider: i) the individual
performance and connectivity of each node in the system; ii) the owners of all
data sources required by the application, and; iii) the tasks’ placement for those
tasks that produce and consume the new data sets.

To be able to estimate the effects of distributing tasks over different nodes,
tasks and data sets must be appropriately weighted. For this reason, one ap-
plication execution instance is specified through a tasks’ DAG, where nodes
represent tasks and edges indicate dependencies between tasks. Nodes in the
DAG are weighted with the execution time, measured in an average computer
(recall that nodes in the system resources graph are weighted as a proportion of
their performance concerning the average computer). Besides, nodes also have
information about the input and output data sets. The input data is a list of
data sets (stored files, sensing data, produced data), and the output data is the
list of produced data in the corresponding node. Edges in the DAG, as explained
earlier, represent the task dependencies of the application, where dependencies
are key to define distinct execution orders which must be preserved, as well as
to express some eventual parallel features which can eventually be exploited.

Finally, note that an application instance will be launched from one specific
node in the system. This fact adds one constraint to the problem: executing the
application, or some of its tasks, in a remote node should consider the cost of
remotely moving the tasks or, at least, launching a remote method invocation.
Even though this cost will presumably be quite low, it must be considered to
favor local executions.

11



T2 T4
TIME: 200 secs TIME: 200 secs
INPUT INPUT:
{-H o - F3
A-r F4
Sl m - D2 -,

T1 < | outpur: OUTPUT: T6
TIME: 100 secs pz o4 LIMEJOSEC
INPUT- { INPUT:

: . 4- D4
OUTRUT: b
o 13 TS OUTPUT

TIME: 200 secs TIME: 200 secs
INPUT: INPUT
4- F3 o - F1
F4 - R2
D1 - D3
OUTPUT OUTPUT
D3 - D5

Figure 3: Illustrating example of a task graph with 6 tasks.

For instance, Fig. 3 illustrates one possible DAG instance. In this exam-
ple, the application is decomposed into six tasks, which are organized through
the dependencies graph. As part of the tasks’ description, the task execution
time allows estimating the weight of the task. Additionally, each task contains
information about the data sets required (input data) and data generated dy-
namically (output data). For instance, T2 uses the data sources F1 and F2
and the dynamically generated data D1 (generated by T'1), and generates D2
as output data. This information allows selecting which nodes own, or are close
to, the required data sources. Furthermore, the system should consider which
nodes execute each task, connecting (approaching) those nodes that dynami-
cally produce data to nodes that consume them. For instance, the node that
executes T2 should be close to the node that executes T4, or the node that
executes T'3 close to the node that executes T'5. Finally, the DAG also reflects
which tasks can be executed in parallel, for instance, tasks 2 and 3, or tasks 4
and 5.

Similar than in the previous subsection, this information is currently ob-
tained empirically through profiling. However, some recent works from our
group are paving the way to estimate the application’s performance through su-
pervised machine learning, in this case, in the scope of a fog-to-cloud framework
[34].

4.3. Cost Model

Given an application’s DAG, the set of resources from the SRG minimizing
its execution time for that specific application must be selected. In order to
measure the execution time for the different resources configurations, the cost
model has to consider computation and communication times.

The computation time is estimated considering the tasks to resources allo-
cation. Remember that tasks are weighted with a computation time measured
in a reference computer, and computing devices are weighted with their relative

12



performance with respect to the reference computer. Therefore, the computa-
tion time for an individual task in a given computing device is estimated by
scaling the task’s computation time with the computing device’s relative per-
formance. And the total computation time is estimated by traversing the DAG
and considering the following cases: tasks with dependencies are executed se-
quentially, independent tasks executed in a single computing node are executed
sequentially, and independent tasks executed in different computing nodes are
executed in parallel, overlapping their estimated computation times. Finally,
considering that the application is launched in a specific node, a small delay is
added if the application is executed in a different node to reflect the latency for
remote execution. Although this delay is irrelevant in most applications (30 ms,
obtained as an average ping time), it allows the launching node to be favoured
in case of equal conditions.

The communication time is estimated assuming both, the time to access the
data sources (file systems or streaming data) and the data flow generated and
consumed dynamically by the running tasks. The time to access a data source is
estimated as follows. Given a node which owns a data source, and a node which
needs the data source, the time to access the data source is estimated as the
latency plus the communication time. The latency is computed as the distance
between the two nodes (specified in the SRG as number of hops) multiplied by
30 ms (obtained as an average one-hop ping time), and the communication time
is computed as the data volume (specified as part of the application instance
description), divided by the bandwidth between the two nodes (assumed as the
minimal bandwidth of both connecting nodes). Note that a data source could be
in more than one node (replication) so, in this case, the selected source node will
be the one which provides higher efficiency. The time to move data between
running nodes is estimated similarly. Assuming the two nodes that execute
related tasks which generate and consume a certain volume of data, the time
to move the dynamic data flow is estimated as the latency (proportional to the
nodes’ distance), plus the communication time (proportional to the dynamic
data volume and bandwidth between both nodes). Furthermore, accessing any
local data set is assumed to be cost-less. Finally, in this cost model, an eventual
network saturation has been considered when a node has to receive data from
several other nodes. In this case, when the receiving node has a bandwidth
higher than that of the sending nodes, then it can receive from several nodes in
parallel as long as the aggregated bandwidth is lower or equal than that of the
receiving node. Any remaining data will be received in successive data transfers.

Note that this cost model does not try to deliver an accurate performance
prediction. This is just a reasonable approximation for an extremely complex
problem, which considers sequential and parallel computation, data sources ac-
cess communication time and latencies including the presence of replicas, dy-
namic data flow communication between running tasks, as well as an eventual
network saturation. The goal of the performance optimization module is to
provide an optimal tasks to nodes matching in a fast time. For this reason,
the trade-off between some loss in accuracy (through some execution model
simplification) and the feasibility of the solver has been considered.

13



5. Optimal Tasks to Resources Matching

As mentioned earlier, an application is decomposed into a set of tasks with
dependency relationships, modelled through the tasks’ DAG. A DAG is a di-
graph G = (V, E)) where vertices represent tasks (V' = T) and the set of directed
edges E is defined by ordered pairs (T;,7;) € E, with T;,T; € V, such that
T; depends on T3, i. e., the directed edges represent dependency relationships
between tasks. Each vertex T of the DAG is assigned a label, indicating the
workload (M;) to be carried out, as well as information about the input data
set (data files F) and output (output data sets D) of the task in question.

A static set of heterogeneous devices is assumed to be available to exe-
cute any task, represented through the SRG. The SRG is a resource graph
G' = (V', E’), where vertices represent computing devices (V' = N) and edges
{N;, N;} represent connectivity between devices. Each vertex N; of the SRG
has assigned a label, indicating the computing capacity (a;2) of the device as
a percentage of the relative performance with respect to a reference node, as
well as the relation of data sources (data files ) that are hosted on the device,
and a label indicating the bandwidth assigned to the node N; (By,). An each
edge {N;, N;} of the SRG is labelled with the distance between the devices (in
number of hops) and the bandwidth (By, ;) between nodes.

Static task scheduling is a complex problem to consider, which has been
demonstrated to be NP-hard [35]. Similar than in other related works, as de-
scribed in Section 2, mixed-integer linear programming technology is used to
solve the optimization problem. Two different strategies have been designed to
model this problem. The first strategy is OMM, which targets the task schedul-
ing as a global model. In this case the solution obtained is optimal, but the
complexity could become unfeasible for large problems. The second strategy is
SOM, which uses a greedy algorithm based on a combinatorial process to find
a local optimal solution by stages. In this case, solutions obtained are an upper
bound for the OMM solution, but the solving time becomes fast enough to be
used in real scenarios. Both strategies require the distribution of the tasks DAG
by levels so that only tasks without dependencies are located at each level. This
undoubtedly facilitates tasks to run in parallel, thus reducing the application
execution time. In the next subsection, how the DAG is distributed among
stages is described, which is necessary for both strategies, OMM and SOM.
Afterwards, the OMM and SOM problem formulation are deeply described.

5.1. DAG Stages Distribution

In this section, given the DAG G of an application, the procedure to establish
a distribution of tasks by levels is described. To this end, the set of tasks T
is partitioned into task independent sets, that is, T = US:O T, such that T,
contains tasks that can be executed in parallel at stage s.

These sets of tasks Ty, Ty,...,Tg C V are defined in such a way that:

(a) T, NT; =0 for i # j,

(b) no task in Ty is a depending task,

14



(c) each task in T, depends on some task in Ts_q for s > 1,
(d) there is no task that depends on any task in Tg.

Given a vertex T' of the DAG, let us consider the following sets of vertices.
'Y(T)={T"eV/(T,T") € E} and T~ (T) ={T" € V/(T'",T) € E}

The partition Uf:o T, is obtained from the DAG G using the following
algorithm:

1. The set Ty contains those tasks 7' such that T~ (T) = .

Assign s < 0.

Assign the working set T,, « Ts.

Assign s + s+ 1.

Set A =Urper, IH(T).

Set B, = T, N A and assign T, + (T, \ B,) foreach r=1,...,5— 1.
Assign T + A.

If there is some vertex T in Ty having I't(T') # (), then go to step 3).
9. Otherwise stop and output the sets Top,...,Tg.

®© NS ot W

Note that step 6) is not executed when s = 1. In addition, the set A in step 5) is
defined from T,, following a modified BFS process. The generation of the DAG
structure has been proven to be an NP-complete problem in the worst case (see

[6])-

5.2. The Optimal Matching Model

Aimed at solving the Optimal Matching Model (OMM) problem, the follow-
ing sets and parameters are defined:

Set of tasks.
Set of nodes.
Set of data and files; i.e., D U F.
Set of stages. Each task T; is executed in one and only one stage.
Set of partitions of each stage, defining data movement order
within a given stage.
Y7, Binary with value 1 if task T; is executed at stage s; 0 otherwise.
PN Binary with value 1 if data file ¢ is initially available at node N;;
0 otherwise.

6% Binary with value 1 if task T; requires data ¢; O otherwise.
Binary with value 1 if task T; generates data ¢; 0 otherwise.

R, Integer, representing the amount of data of data type ¢, in bits.
&r,n,  Binary with value 1 if task T; must be executed at node Nj; 0

otherwise.

In;n;  Continuous representing the latency between nodes N; and Nj.
or,n;  Continuous representing the penalty applied when task Tj is exe-
cuted at node Nj.

RFRnd Z2 3

15



Bn,n;  Continuous representing the available bandwidth between nodes
N; and Nj; in bps.
By, Continuous representing the node’s capacity at a given time, in
bps.
a1 Parameter representing the computation startup time of node N;.
Qo Parameter representing the computational capacity of node N;.
M; Parameter representing the amount of single instructions of task

T.

In addition, the following decision variables have been defined:

rr;n,  Binary. Value 1 if task Tj is executed at node Nj.
y‘}\i Binary. Value 1 if data ¢ is available at node N; at stage s.
qui N, Binary. Value 1 if task T; uses data ¢ from node N;.
u‘]]\fip N, Binary. Value 1 if data ¢ is moved from node N; to node N; at
stage s and partition p.
ef\’[’i N, Continuous, accounting data move time between N; and N; at
stage s, partition p.
%’i N, Binary. Value 1 if data is moved from N; to N; at stage s, partition
p.
vf\’;i Continuous, accounting data access time for N; at stage s, parti-
tion p.
w® Continuous, accounting maximum execution plus data transmis-

sion time at stage s.

Then, the mixed-Integer Linear Programming (MILP) model for the OMM

problem is defined as:

Minimize OMM Cost
where the OMM Cost, or the objective function, is defined by:
OMM Cost = Zws + Z Z OT,N; " TT,N;
SES T;eT Nj eN
and subject to:
Z TT; N, =1VT; €T
N;eN
rr,N; 2 &nn; VT € T,N; €N
Yy, =py, Va€Q,N; eN,s=0

(1)

y%isﬂ) <wyy + Z(é%j +¢7,) 7, N Vg EQ,N; €N s€S\s =S| -1

T;eT

16

(6)



ydd + 0+ V5 - TT.N;
yIeTy > N+ 21,enOn, +¢1,) 0k, oy VgeQ,N,eN,seS\s=1S|—1

bng -
7
> 2y, =0 VTieT,qeqQ (8)
N;eN
2y, <D u% VI €T,q€Q,N; €N (9)
seS
VseS N, eNT;,T, €T, e Q
27Ny < Zqon, T 0igM - (2 — 07 - g, - TTyN, — 07, VI, TTLN,) a1)
VseS,N; e NT;, T, € T, € Q
D ulim, 2 2, — bigM - (1= 0, 1, wrv)
pelP (12)
Vge Q,s€S,T;, € T,N;, N, e N: N; # Ny,
ui/n, Smyn; V9 € Qs €S, peP, Ny, N; €N (13)
my N, <Y ulhy Vs €S,p €P,N;,N; €N (14)
qeQ
> By, -m¥ y; <By,Vs€S,peP,N; €N (15)
N, €N
ej\’,gN > Iy, +Z ?\pr fbigM'(lfmf\’iNj)
q€Q NN (16)
VSGS,pGP,Ni,N'GNiNZ‘%Nj
vy, = €nn, Vs E€S,peP,N;, N; €N (17)

M;
w® >Zv —&—ZWT ajl—l——) rr,N; Vs €S,N; €N (18)
pEP T;€T

The objective function (1,2) minimizes the total time to execute the appli-
cation. Equation (3) guarantees that all tasks are executed in one and only
node; while equation (4) assigns a task to be executed in a particular node if it
is required. Equations (5)-(7) deal with data availability at the nodes for each
stage. Specifically, equation (5) ensures that data initially available at node N;
is available at the first stage, s=0. Equation (6) ensures that if data ¢ is not
available, moved or generated in a given node N; for a given stage s, that data
is not available in that node at the next stage. Equation (7) guarantees that if
data ¢ is available in a node N; at stage s or if data is required or generated in
that node, it will be available also in the next stage (data remains in the node).
Equations (8) and (9) guarantee that each task accesses the data needed, and
that only nodes where the required data is available can be selected as source

17



of data, respectively. Equations (10) and (11) ensure data to be moved to a
node is only moved from one and only one node (i.e., there is only one source of
data for all tasks executed in the same node requiring that data). Equation (12)
accounts if data ¢ is moved between each pair of nodes for each stage. Equations
(13) and (14) ensure that if no data is moved between two nodes at a given par-
tition for a stage, no data is moved between that nodes at that stage, and vice
versa, respectively. Equation (15) guarantees that the maximum bandwidth in
the target nodes is not exceeded when moving data to them. Equation (16)
accounts the maximum time to move data between pairs of nodes in each stage
and partition of stage. Equation (17) accounts the maximum time to access
data from a given node, stage and partition of stage. Finally, equation (18)
accounts the total time required (data transmission time plus execution time)
for each stage.

In terms of complexity, the OMM optimization problem is NP-hard in the
worst case, since it is based on the static task scheduling problem, which was
proved to be NP-hard [35]. Regarding its size, the number of variables is in the
order of O(|Q| - |S| - |P| - |N|*) and the number of constraints is in the order of
O(|Q| - IS| - N|- [2 AT 4+ N - T + |N] - |1P|] ). Considering a scenario based on
a 30-nodes network, 6 tasks to be executed in 4 stages, 4 different data types
and partitions, the number of variables and the number of constraints are in the
order of 10* and 10°, respectively; which makes the above mathematical model
impracticable to be solved in short times. Indeed, increasing the number of
tasks and nodes, rapidly makes the problem to be intractable, even using state-
of-the-art computer hardware and the latest commercially available solvers.

Recognized the size and complexity of the OMM problem, in the next sub-
section, an algorithm to solve this problem in realistic scenarios is proposed.

5.8. The Stage Optimization Model

Aimed at solving the Stage Optimization Model (SOM) problem, first, a
combinatorial procedure is defined to compute the minimum transmission time
7(i,7) of Tj’s input data (F; and D;) to node N;. To this end, assume some
independent tasks, Ty = {Tj,,..., T}, }, have to be executed at some fixed
stage s. The process from the point of view of task T; € T, is described as
follows. Consider:

e T has input data F; = {F,,,..., Fuaj} and D; = {Dvl,...,Dvﬁj} which
are ordered sets. That is, file data of type u; is at position [ of the set IF;.
Note that |F;| = a; and |D;| = §; for a;, 8; € {0,1,...}.

e F,, € F; is located at nodes Nf:s = {Ny,,...,Ngg, }. The subindex [ of
Nfs stands for the position { in the set IF;.

e D, €Djis located at nodes NkD’s = {Na,,...,Na,, }. The subindex k of
NP, refers to position k in the set D;.

18



For each F,,, € F; consider the set V;* = {(f1,w),..., (fe,,w)}, L € {1,...,a;}.
For each D,, € D; consider the set V;P = {(d1,vt),...,(dr,,vx)} for each
ke{l,...,B;} The sets VlF and VkD contain the indices of nodes owning F,
and D,,, respectively. Let V; be the Cartesian product defined by

Vj:V1F><-~><V£leDx---xVﬂ?. (19)

An element e of V; is an (o + 3;)—tuple, where each component of this tuple
will be given by a pair (‘node index’, ‘data type index’), that is

e = ((al,ul), ey (aaj7uaj)7 (blvvl)a LR (bﬁj7vﬁj)) (20)

with (a;,u;) € ViF' for 1 € {1,...,;} and (bg,vx) € ViP for k € {1,...,5;}.
The set V; contains the indices of all nodes containing input data at stage s.
All possible ways of obtaining input data when e ranges in the set V; are ob-
tained. Let S(e) be the set whose elements are the components of e, that is
S(e) = {(a1,u1),...,(@a;,Ua;), (b1,v1),...,(bg;,v,)}. Let P(S(e)) be the set
of partitions of S(e). Each partition P € P(S(e)) defines a way of transmitting
the T}’s input data to node IV;. And all different ways of doing these transmis-
sions are defined by some partition. Clearly, those partitions that allow parallel
transmissions have to be prioritized. To this end, partitions P € P(S(e)) are
considered with sets A € P of either |A| = 1 or, when |A| > 1, sets that fulfill
the condition Z(p,q)EA By, < By,. Let us denote the set containing this type
of partitions by P;(e), where index ¢ corresponds to the node N; pointed by the
first argument of 7(7, j). The quantity By stands for the capacity of a generic
node N.

The condition }, ,yc4 Bn, < By, over the sets A with |A[ > 1 in partitions
of P;(e) is necessary for parallel transmission when possible. At the same time,
many partitions not showing optimal transmission time do not belong to the
set P;(e). Thus, the algorithm filters many transmission ways with related non-
optimal transmission time at a given stage s.

Let 6(i,p, q) be the transmission time of F, (or Dy) from node N, to node
N; when g = w; (or ¢ = vy) for each (p,q) € A, A € P and P € P;(e). This
quantity is defined by

, 0 p=i
0(i,p,q) = 21
(i,p,9) {lNin+cip-Rq b4, (21)

1
By;ng *

Then, for (p,q) € A, the transmission time of all input data contained in
node N, is given by

¢(i, A) = max{0(i, p,q) : (p,q) € A}. (22)

So, the minimum transmission time ¢(¢, j, e) for the data sets F; and D; to
be transmitted from nodes in S(e) to node N; is

t(i,j,e) = min ZQSZA

PeP; e)

where R, is the amount of data of F, (or D,) and ¢;, =

19



Therefore, the minimum transmission time 7(, j) is given by

T(i7j) :geli‘gt(ihjv e)' (23)
Note that there is some element e* € V; such that (¢, j,e*) = 7(¢, j) and those
nodes which give this minimum value can be traced from the element e*. Note
also that, when applying this combinatorial algorithm, e* is the first element
found in V; giving minimum transmission time. In fact, more than one element
in the set V; may give this minimum value.

Once all 7(7,j) have been calculated for a given stage s, the related linear
problem intended to find which nodes execute tasks in stage s can be solved.
Assume the scenario has n total nodes and the stage s has m, tasks T, =
{T},,..., T}, }. Define the set of indices J, = {j1,...,Jm.} from the set of
tasks T,. Next, the variables and coeflicients of the following MILP program
are detailed:

rr;n; Binary variable. Value 1 if task Tj is executed at node Nj.

t; Continuous variable. Communication and computing time for
node N;.
t* Continuous variable. The maximum maxi<;<n, t;. This variable

is also the objective function to be minimized.
7(i,j) Coefficient. Minimum transmission time of 7;’s input data to node

N;.
a1 Coefficient. Computation startup of node N;.
a2 Coefficient. Computational capacity of node N;.
M; Coefficient. Amount of single instructions of task Tj.
Mg Coefficient. Number of task at stage s.

The following linear problem gives the minimum time to run tasks in stage
T, and also it gives which node executes each task.

Minimize t*

under restrictions:

ZxT1N¢'<T(iaj)+ai1+Mj):ti7 (i=1,...,n) (24)

‘ a2
JE€Js
t;<t*, (i=1...,n) (25)
arn, =1, (GeJ) (26)
=1
> arn, <mg, (i=1,....n) (27)
JEJs
Z Z "I;TjNi = mS' (28)
i=1jeJ,

20



Equation (25) sets minimum time ¢* as the maximum value of ¢; for 1 < i <
n. Equation (26) enforces task T runs on some node for each j € J,. Equation
(27) imposes a node to execute mg tasks at most. Equation (28) assures all
tasks in Ty will be executed.

Once the selection of nodes by the linear problem is done, stage s ends. Then,
data transmitted and generated by tasks is updated in the scenario. Next, a new
stage begins. A solution to the SOM problem is obtained by adding all local—
stages’ optimal times. This solution will be an upper bound for the optimal
global time.

Regarding the time complexity, the model needs to apply two algorithms
at each stage. A combinatorial algorithm that filters many non-optimal trans-
mission ways of input data between nodes and then, a MILP problem. Both
algorithms have an NP-hard time complexity in the worst case [36]. The MILP
problem needs the coefficients 7(i,j) which have been pre-computed by the
above mentioned combinatorial algorithm. Furthermore, this problem has n-mg
binary variables, n + 1 continuous variables and 3n + my + 1 restrictions. The
filtering process of the combinatorial algorithm makes the SOM model light
enough in practice.

6. Illustrative and Numerical Results

In this section, the scenarios considered to generate problem instances are
described, including reference scenarios defining benchmark values. Next, the
proposed OMM and SOM models are validated, and the performance results are
compared in terms of cost and time to solve the problem, for both the OMM
and SOM models as well as the considered benchmark reference scenarios.

6.1. Scenarios Description

In order to test the efficiency and effectiveness of the proposed models, three
sample applications have artificially been created with different degrees of par-
allelism and dependencies. They consist of 1, 2, and 6 tasks, and are referred
to as App-1, App-2, and App-6, respectively. App-1 is a basic application with
a single task, using four static files. App-2 is an application with two depen-
dent tasks using two static files each, and moving some dynamic data from the
first to the second task. And App-6 is the application with 6 tasks illustrated
previously in Figure 3. Note that tasks 72 and T'3 depend on T'1, and that the
couple T2 and T4 (executed in sequence) can be executed in parallel to the cou-
ple T3 and T'5 (also in sequence). In addition, tasks 2 to 5 are using four static
files, and all dependent tasks must transfer some dynamic data among them.
Moreover, the number of partitions is set to 4, since it allows to transfer data
and files between nodes in all the cases evaluated (thus avoiding infeasible prob-
lem instances), and defining more partitions results in increasing complexity, as
shown in the complexity analysis for the ILP model. Table 1 summarizes the
main characteristics of all applications. The size of the static files and dynamic
data is 10MB each. The penalty applied when the application is executed in

21



a different node than the launching node is 30 ms per hop, from the launching
node to the node selected for the initial task execution.

Table 1: Description of the applications.

Parameter App-1 | App-2 | App-6
Launching node N1 N1 N1
Num. Tasks 1 2 6
Num. Stages 1 2 4
Num. Files 4 4 4
Max. Files per Task || 4 2 2
Num. Data 0 1 5

Min. Exec. Time 100 300 600

In addition, based on the selected applications, a reference scenario is defined
in which all tasks are executed locally in the node that launches the application
execution. That is, no workload distribution is performed; therefore, these
cases represent the base benchmark to compare with. These cases are referred
as App-1 BM, App-2 BM and App-6 BM. The (ideal) case is also defined in
which a given application is executed in the node it is launched at, assuming
both the node performs as the best/reference node and all files required by the
application are available in that node. It is worth noting that, in this case, the
time to execute the application is the total time to finish each stage (assuming
the best computing resources in the node). These cases are referred as App-1
Min, App-2 Min and App-6 Min.

Regarding the resources topologies, a set of different scenarios have been
created varying the number of nodes from 5 to 50, and generating random
SRGs. The process to generate each network topology is described as follows.
Given a certain number of nodes NN, a random number of groups of nodes
NG is generated (remember that nodes are grouped according to proximity,
to be considered when computing distance, i.e., number of hops) by assuming
an average of 8 nodes per group NG = NN/8 and then adjusting this value
randomly as NG = NG + rand(—NG/2, NG/2) (and making sure the number
of groups is, at least, 1). Then, a random number of nodes is assigned to each
group of nodes, making sure that the total number of nodes is finally NN.
For each node, the computing power has been assigned randomly between 25%,
50%, 75% and 100%, as well as the bandwidth, which has been assigned from
1 to 4 Mbps. Furthermore, each node has a probability of 33% to own a file,
33% - 33% to own two files, and so forth (up to four files). Finally, distances
between each pair of groups of nodes have been assigned randomly between 1
to 5 hops.

Both models, SOM and OMM, have been implemented in Python. To solve
the problem instances for SOM, SageMath [37] was utilized; whereas the prob-
lem instances for the OMM problem have been solved using CPLEX [38]. A
64-bits computer built upon 12 Intel core ES-2620 v2 at 2.1GHz and 128 GB
RAM has been used in all cases.

22



GBEDL § 2= poccocsocoscsocscssog

EN1@BWD:1Mbps: : CPU: 100% |
0 ! i NSUEIS) oyn ambps |

____________________ i F2

i CPU:SO% i ! -F3 :
1N2 BWD:3Mbps ¢ {_ ________ _-F4

i CPU:100% | | CPU: 100% |
iN3AEEE) pwp: 1Mbps | | NA(™HIE) BwD: 1Mbps |
| P F1 :

Figure 4: 5-node network topology.

6.2. Optimization Models Validation

Before comparing performance results of the proposed models, the OMM and
SOM have been validated. To that end, first, problem instances based on the
App-1 described before (i.e., an application with a single task) are addressed.
It is worth noting that, in these cases, the proposed models should find the
optimal solutions. Next, an arbitrary problem instance based on App-2 has
been analyzed to illustrate the impact (on the cost) when SOM is considered
against the optimal solution, obtained by OMM.

Consider App-1 (see Table 1 for the summary of its main features), and
the 5-node topology depicted in Fig. 4 . In this example, the solution that
minimizes the execution time is to execute App-1 at node N5 and move file F'1
from node N/ to it. After solving the corresponding problem instances for the
proposed models, both models provide the optimal solution, as expected. In
this case, the cost is 183.946 s; which is computed as the sum of the time to
move file F'1 to N5 (83.916 s), the processing time for the task at node N5 (100
s) and the penalty (30 ms) due to executing the task in a different node that
the launching node, N1. The time of executing App-1 at the launching node is
468.937 s. That is, the application is executed in about 60% less time (284.991
s) when the workload is distributed according to the proposed models.

As previously described, for single-task applications both models provide
optimal solutions. Fig. 5 shows the results obtained for solving problem in-
stances with 5-node network topologies and App-1 with the proposed models.
In addition, the benchmark and ideal values are shown. Relative time savings
of 86%, 55% and 60% are observed against the values obtained for the reference
scenarios for problem instances numbered as 1, 4 and 5, respectively. It is worth
recalling that, the network topology depicted in Fig. 4 has been considered in
problem instance 5. For problem instances 2 and 3, the optimal solution is to
execute the application at the same node it is launched. Moreover, although
results obtained for instance 1 are very close to the ideal ones, it is worth noting
that, for that instance node NJ is the one having all required files and the best
computing resources. The cost is 100.03 s, which includes the penalty added by
executing the task in a different node than the launching node (N1).

23



f— OApp-1BM
 App-1 SOM
B App-1 OMM

— App-1 Min

Cost (s)

1 2 3 4

Problem instance

Figure 5: Cost against problem instance for App-1 and 5-node network topologies.

For completeness, let us now focus on a specific problem instance in which
the solutions obtained by the models are different; i.e., non-optimal solutions
are obtained by SOM. An instance of the App-2 (see Table 1 for details) and the
5-node network topology illustrated in Fig. 4 have been considered. In this case,
identifying the optimal solution is not as obvious as in the previous example,
shown for App-1. After solving the problem utilizing SOM, the solution obtained
is to execute the first task at node N4 and the second task at node N5; which
implies that: i) at the first stage file F2 is moved from node N5 to node N4,
and 1) at the second stage, data generated by the first task needs to be moved
from node N4 to node N5. The cost in this case is 467.862 s. However, this is
not the optimal solution; which, in fact, is obtained when solving the problem
utilizing OMM and consists in executing both tasks at node N5, thus moving
only file F'1 from node N/ to node N5. From the solution obtained, the optimal
value is 383.946 s. The reasoning behind this is that the SOM aims at finding
the best solutions for each stage in order, with no global knowledge about other
stages. Differently, the OMM solves the problem globally; that is, considering
the interrelation between tasks that are executed at different stages.

Interestingly, the value obtained when no workload distribution is considered
(i.e., both tasks are executed at node N1) is 735.634 s. Therefore, considering
the workload distribution to solve that problem instance results in time saving
higher than 47% and 36% when OMM and SOM are utilized, respectively.

6.3. Performance results

After validating the proposed models, their performance is compared in
terms of the solutions obtained and time to solve the problem; which, in the
case of OMM, includes the time to generate problem equations in addition to
the time to solve them and obtain the solution, after invoking the solver. To
that end, several problem instances for App-1, App-2 and App-6 are generated.

Fig. 6 shows average cost values obtained for App-1 (Fig. 6a), App-2 (Fig.
6b) and App-6 (Fig. 6¢) against the number of nodes. Each point in the figure

24



1300 T T T T T T T T 1300 '

- a 1200 - b)
1200 — wetwn 1 1 2 [ App-2 Min
1100 - pa-1 SOM 1100 — = App-2 SOM
1000 o ApplOMM 1000 = App-2 OMM
900 - e App-lBM apn T = - App-2 BM
800 800
—_— —_ u = 4
T o700 - b 700 - L R
B 600 | B 600 | -
o » o u
© 50 - hel O s5p0 |
200 T no awo | * } ]
R - PUN 3 5 E ~ E . } : |
300 + '-.___._4 *.w' ; 300 b---mmmmm e e T
200 3 e 200
S i
— ——
100 ””””,”””””””,”””},”” ”,i”,i ,,,,, 100 -
0 . 0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
# nodes # nodes
3900 T
3600 - C) ————— App-6 Min
3300 - —4— App-6 SOM
3000 & App-6 OMM
2700 - A App6 BM
2400 -
—_ i . k-
@ 2100 . 4
FUEEEEE S
B 1800 U
© 1s00 | i
1200 T ,
900 F T 1
60 T ety ]
300 -

5 10 15 20 25 30 35 40 45 50
# nodes

Figure 6: Cost against number of nodes for App-1 (a), App-2 (b) and App-6 (c).

is the average value for 5 executions, corresponding to a different network topol-
ogy and a fixed number of nodes ranging from 5 to 50, as previously described.
For completeness, 95% confidence interval is also depicted for OMM and SOM
lines. As expected, for App-1, results obtained for both proposed models are
the same, i.e., optimal; therefore, in the figure, both OMM and SOM lines are
overlapped and seen as a single line. Interestingly, as it can be observed in Fig.
6a, the proposed models significantly reduce the execution time of the appli-
cation, compared to the benchmark scenarios, where no workload distribution
is performed. Furthermore, the results depicted in Fig. 6b and Fig. 6c, cor-
responding to applications having more than one task (i.e., App-2 and App-6,
respectively), show that, on average, OMM performs slightly better than SOM
for some App-2 problem instances (e.g., see results for 5 and 10 nodes); whereas
this difference increases for some App-6 problem instances (e.g., see results for
25 and 30 nodes). However, as it can be seen in the figures, both OMM and
SOM curves are quite close; thus showing that the solutions obtained by SOM
are very close to the optimal ones. In addition, it is worth noting that, for

25



App-6 and 25 nodes, one instance could not be solved optimally in more than
2.5 hours; similarly, for App-6 and 30 nodes, three instances could not be solved
optimally (after more than 2.5 hours). Therefore, these instances have not been
depicted in the results shown in the figures. In summary, the SOM is able
to effectively find a solution for any problem instance and network topology,
whereas the OMM eventually fails in providing an optimal solution in some ex-
treme cases. In all cases, solutions obtained through SOM are almost identical
to those provided by OMM, and clearly improve performance compared to the
reference scenarios.

Tables 2 and 3 provide deeper insight about the gap of SOM against the
optimal value, as well as the time saving (relative and absolute) of SOM against
the benchmark values for App-2 and App-6, respectively. As described above,
SOM performs very similar to OMM. On average, the gap between the cost
of the solutions obtained by SOM and the optimal ones is below 6% and even
close to 0% for App-2 and the number of nodes considered; whereas in the worst
case (i.e., for App-6 and 30 nodes), the gap is close to 10% and it is below 8%
for App-6 and any number of nodes up to 25. Although the gap for App-6
when considering more than 30 nodes cannot be obtained in relatively short
times, it is clear that the gap value will be between 0% and the gap to App-6
Min value (i.e., 600 s). In addition, SOM clearly outperforms the reference
scenarios, resulting in time savings from 36% to more than 80%.

Table 2: Performance comparison for App-2.

Num. Gap to | Relative Absolute
nodes optimum | savings savings
5 3.6% 49.7% 465 s

10 6.0% 45.0% 341 s

15 2.4% 40.2% 275 s

20 0.7% 40.0% 261 s

25 1.5% 36.3% 247 s

30 0.0% 39.4% 235's
35 0.7% 35.9% 193 s
40 1.2% 71.9% 913 s
45 0.8% 53.1% 397 s

50 2.8% 48.8% 369 s

In addition, the Shapiro-Wilk test has been done to prove that, for each
application considered (App-1, App-2 and App-6) and number of nodes, the cost
(execution time) fits a Normal distribution. Next, a variance-ratio test has been
performed with significance level alpha=0.05 and proved that there is no sample
evidence to reject the population variances equality. Finally, the population
means have been compared through a test of differences among means with
significance level o = 0.05 and proved that there is no sample evidence to reject
the population means equality. Therefore, based on the statistical analysis, it
can be verified that the SOM provides performance results in terms of cost very

26



Table 3: Performance comparison for App-6.

Num. Gap to | Relative Absolute
nodes optimum | savings savings
5 0.4% 61.6% 1641 s
10 4.1% 64.9% 1430 s
15 0.4% 58.8% 1115 s
20 2.1% 61.1% 1169 s
25 7.7% 51.3% 881 s
30 9.7% 57.8% 1036 s
35 - 55.1% 862 s
40 - 80.2% 3040 s
45 - 66.4% 1425 s
50 - 66.6% 1435 s

close to OMM. Such evidence can be observed in Fig. 6, where 95% confidence
intervals for the mean are depicted.

Despite the results obtained, it is also a must to analyze performance in
terms of time to solve the different problem instances, since scalability of the
proposed models may be compromised when increasing the number of nodes in
the network. Fig. 7 represents the average time required to solve the problem
instances for both models SOM and OMM. In addition, 95% confidence intervals
for the mean are depicted for OMM and SOM lines. It can be seen that the
time to solve the problem grows exponentially for OMM, being this growth very
clear with applications having more than one task. Moreover, as previously
described, some instances could not even be solved optimally in more than 2.5
hours. Notwithstanding, there is few growth with the number of nodes when
SOM is considered. Indeed, the average time to solve the problem instances is
below 1 second and below 2 seconds when App-2 and App-6 are considered,
respectively. Regarding App-1, the time raises up to 80 seconds for 50 nodes.
The reasoning behind this fact is the number of input data files in App-1’s
tasks. This number is greater than those assigned to tasks in the other cases,
this is, 4 input data files for the task in App-1 against 2 input data files for
tasks in App-2 and App-6, as shown in Table 1 (Max. Files per Task). Thus,
App-1’s combinatorics grow as the number of nodes turns to be large. This
combinatorial growth is greater than that of task stages in App-2 and App-6.
So, when the number of nodes is considerably large, the solving time for App-1
tends to be larger than that of the other applications.

In summary, in view of the results shown, it is clear that the solutions found
by the optimization models for workload distribution dramatically reduce the
applications’ execution time, compared to the original programs. Although
solutions provided by the OMM are optimal, the SOM has been proven to be
an effective, yet efficient model to find almost optimal solutions in very short
solving times. The execution times for the SOM optimized problem instances
are very close to the optimal times, while the model scales very well with the

27



3600

3300 —e— App-1 SOM
3000 | ® - App-1 OMM
9700 L App-2 SOM
App-2 OMM
. 2400 |
I —— App-6 SOM
g 2100 | & App-6 OMM
= o1800
oo
=
S 1500
[}
(73]

1200 -

500 - }

600 -

300 i

0 m—h -
5 0 15 20 25 30
#nodes

Figure 7: Solving time against number of nodes.

number of nodes and the number of tasks and stages. Assuming the short SOM
solving times reported to be below 1 and 2 seconds, and considering that the
absolute time savings for all optimized applications are in the order of some
hundreds of seconds, the whole optimization process does not add significant
overhead to the total application execution time. This means that comparing
the optimizing time plus the execution time against the original benchmark,
time savings are still similar to those previously described, specifically, as high
as 80%. For this reason, the authors believe that the proposed SOM strategy can
be utilized to efficiently and effectively distribute workloads aimed at reducing
applications’ execution time in global heterogeneous systems.

7. Conclusions

The research work presented in this paper is part of a global resource man-
agement framework designed to manage large volumes of heterogeneous com-
puting devices distributed in some type of intelligent environment. This paper
presents the technologies used in the module responsible for finding the best
mapping between an application instance launched for execution and the avail-
ability of resources, for optimal performance. The novelty of this approach is
that the tasks to resources allocation is aware of the data flow, considering both
static data sources and run-time data between running tasks, and providing an
optimal solution to a highly complex problem.

Two mathematical models of mixed integer linear programming have been
designed to minimize the execution time of an application, treating the problem
globally (Optimal Matching Model) and by levels (Stage Optimization Model),
taking into account the tasks that can be run in parallel as well as the data
flow between them. Multiple experiments have been carried out to verify the

28



efficiency and effectiveness of the proposed models, and shown that although
OMM provides optimal solutions to the problem, it does not scale well, as
expected. However, it allows us to verify that SOM provides performance results
in terms of cost very close to the optimal solution, but feasible in terms of solving
time. Specifically, results show that the SOM provides optimal solutions in most
evaluated scenarios (76%), while near-optimal solutions were very close to the
optimal ones, with a performance difference below 6% on average. Moreover,
considering all the scenarios evaluated, the average solving time for SOM is of
few seconds (below 9 seconds), while it raises to hundreds of seconds (more than
450 seconds) when OMM is considered. Given the fact that SOM scales well
as the number of nodes, tasks and stages increases, it is our candidate to be
applied in a real optimization module.

It is out of the scope of this work to analyze how the nodes discovery and
availability is monitored. Instead, in this paper a static snapshot of the available
resources set has been assumed. Addressing robustness, volatility, and mobility
in this scenario is a challenging topic and will be part of future stages of this
research. Furthermore, in this work, an application instance is assumed with
a static and known set of tasks, which is not always a realistic assumption. A
future line of research will be undoubtedly leveraging machine learning tech-
nology to forecast the application behaviour and provide accurate estimation of
its performance. Finally, additional efforts will be made to evaluate heuristic
solvers to find near-optimal solutions at extremely short times.

Acknowledgment

This work has been supported by the Spanish Ministry of Science, Innovation
and Universities and by the European Regional Development Fund (FEDER)
under contract RTI2018-094532-B-100, and has been partially supported by
Huawei Technologies, Santa Clara, CA.

References

[1] A. Botta, W. de Donato. V. Persico, A. Pescapé. On the Integration of
Cloud Computing and Internet of Things. In 2nd International Conference
on Future Internet of Things and Cloud, Barcelona, Spain, August 2014.

[2] F. Bonomi, R. Milito, J. Zhu, S. Addepalli. Fog Computing and its Role
in the Internet of Things. In 1st Workshop on Mobile Cloud Computing,
Helsinki, Finland, August 2012.

[3] Y. C. Hu, et al. Mobile Edge Computing: A key technology towards 5G. ETSI
white paper, September 2015.

[4] J. Garcia, et al. Do we really need cloud? FEstimating the fog computing
capacities in the city of Barcelona. In Workshop on Managed Fog-to-Cloud,
as part of the 11th IEEE/ACM International Conference on Utility and
Cloud Computing (UCC), Zurich, Switzerland, November 2018.

29



[6] IBM Research @ Insight 2015, Global Technology Outlook. Data
Transforming Industries. https://www.sgrp.ch/images/sgrpdata/events/
IBMResearch.pdf [Accessed: January 2021].

[6] M. W. Convolbo, J. Chou. Cost-aware DAG scheduling algorithms for min-
imizing execution cost on cloud resources. In Journal of Supercomputing,

Vol. 72(3), January 2016.

[7] Y. Hu, H. Zhou, C. de Laat, Z. Zhao. Concurrent container scheduling on
heterogeneous clusters with multi-resource constraints. In Future Generation
Computing Systems, Vol. 102, January 2020.

[8] J. Garcia, X. Masip-Bruin, Y. Lu. The Progressive Mapping System Archi-
tecture for Global Resources Management. In 28th IEEE International Con-
ference on Computer Communications and Networks (ICCCN), Valencia,
Spain, July 2019.

[9] L. Smarr, C. E. Catlett. Metacomputing. In Communications of the ACM,
Vol. 35(6), June 1992.

[10] A. S. Grimshaw, W. A. Wulf. The LegionVision of a Worldwide Virtual
Computer. In Communications of the ACM, Vol. 40(1), January 1997.

[11] G. Fedak, C. Germain, V. Neri, F. Cappello. XtremWeb: a generic global
computing system. In First IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid), Brisbane, Australia, May 2001.

[12] D. P. Anderson. BOINC: A System for Public-Resource Computing and
Storage. In 5th TEEE/ACM International Workshop on Grid Computing,
Pittsburgh, PA, November 2004.

[13] F. Berman, G. Fox, A.J.G. Hey (editors). Grid Computing: Making the
Global Infrastructure a Reality. Wiley (ISBN: 978-0-470-85319-1), April
2003.

[14] L. Wang, et al. Scientific Cloud Computing: Farly Definition and Ezperi-
ence. In 10th IEEE International Conference on High Performance Comput-
ing and Communications, Dalian, China, September 2008.

[15] T. Soyata et al. Accelerating Mobile-Cloud Computing: A Survey. In Com-
munication Infrastructures for Cloud Computing (chapter 8), IGI Publishing
Hershey, PA, September 2013.

[16] X. Chen, L. Jiao, W. Li, X. Fu. Efficient Multi-User Computation Of-
floading for Mobile-Edge Cloud Computing. In IEEE/ACM Transactions on
Networking, Vol. 24(5), October 2016.

[17] J. S. Murthy. EdgeCloud: A Distributed Management System for Resource
Continuity in Edge to Cloud Computing Environment. In the Rise of Fog
Computing in the Digital Era, 2019.

30



[18] X. Masip-Bruin, et al. mF2C: Towards a Coordinated Management of the
ToT-fog-cloud Continuum. In 4th Workshop on Experiences with the Design
and Implementation of Smart Objects (SmartObjects2018), Los Angeles,
CA, June 2018.

[19] J. Garcia, et al. A Preliminary Model for Optimal Load Distribution in
Heterogeneous Smart Environments. In the 20th IEEE International Con-
ference on High Performance Switching and Routing (HPRS), Xi’an, China,
May 2019.

[20] A. Asensio, et al. Designing an Efficient Clustering Strategy for Combined
Fog-to-Cloud Scenarios. Future Generation Computer Systems, Vol. 109,
August 2020.

[21] X. Q. Pham, E. Huh. Towards task scheduling in a cloud-fog computing sys-
tem. In 18th Asia-Pacific Network Operations and Management Symposium
(APNOMS), Kanazawa, Japan, October 2016

[22] J. Wang, D. Li. Task Scheduling Based on a Hybrid Heuristic Algorithm
for Smart Production Line with Fog Computing. Sensors (Basel). Vol. 19(5),
March 2019.

[23] D. Hoang, T. D. Dang. FBRC: Optimization of task Scheduling in Fog-
Based Region and Cloud, In IEEE Trustcom/BigDataSE/ICESS, Sydney,
Australia, August 2017.

[24] R. Xu, et al. Improved Particle Swarm Optimization Based Workflow
Scheduling in Cloud-Fog Environment. In Business Process Management
Workshops. Lecture Notes in Business Information Processing, Vol. 342,
2018. Springer, Cham.

[25] M. Abdel-Basset, et al. Energy-Aware Marine Predators Algorithm for Task
Scheduling in IoT-based Fog Computing Applications. In IEEE Transactions
on Industrial Informatics, June 2020.

[26] M. Abdel-Basset, D. El-Shahat, M. Elhoseny, H. Song. Energy-Aware Meta-
heuristic Algorithm for Industrial Internet of Things Task Scheduling Prob-
lems in Fog Computing Applications, in IEEE Internet of Things Journal,
July 2020.

[27] M. K. Hussein, M. H. Mousa. Efficient Task Offloading for IoT-Based Ap-
plications in Fog Computing Using Ant Colony Optimization. In IEEE Ac-
cess, Vol. 8, February 2020.

[28] L. Liu, et al. Dependent Task Placement and Scheduling with Function Con-
figuration in Edge Computing. In IEEE/ACM 27th International Symposium
on Quality of Service (IWQoS), Phoenix, AZ, June 2019.

31



[29] D. Zeng, et al. Joint Optimization of Task Scheduling and Image Placement
in Fog Computing Supported Software-Defined Embedded System. In IEEE
Transactions on Computers, Vol. 65(12), December 2016.

[30] C. Barros, V. Rocio, A. Sousa, H. Paredes. Job Scheduling in Fog Paradigm
- A Proposal of Contert-aware Task Scheduling Algorithms, In International
Conference on Information Technology Systems and Innovation (ICITSI),
Bandung - Padang, Indonesia, 2020.

[31] M.-Q. Tran, et al. Task Placement on Fog Computing Made Efficient for
IToT Application Provision, Wireless Communications and Mobile Comput-
ing, Vol. 2019, January 2019.

[32] S. Venugopalan, O. Sinnen. ILP Formulations for Optimal Task Scheduling
with Communication Delays on Parallel Systems. In IEEE Transactions on
Parallel and Distributed Systems, Vol. 26(1), January 2015.

[33] C. Valouxis, et al. DAG Scheduling using Integer Programming in heteroge-
neous parallel execution environments. In 6th Multidisciplinary International
Scheduling Conference (MISTA), Ghent, Belgium, August 2013.

[34] S. Sengupta, J. Garcia, X. Masip-Bruin, A. Prieto. An Architectural Schema
for Performance Prediction Using Machine Learning in the Fog-to-Cloud
Paradigm. In the 10th IEEE Annual Ubiquitous Computing, Electronics and
Mobile Communication Conference (UEMCON), New York, USA, October
2019.

[35] Y. Zhang, et al. Cost Efficient Scheduling for Delay-Sensitive Tasks in Edge
Computing System. In IEEE International Conference on Services Comput-
ing (SCC), San Francisco, CA, 2018.

[36] K. H. Rosen (editor). Handbook of Discrete and Combinatorial Mathemat-
ics, CRC Press ISBN 0-8493-0149-1 (2000).

[37] SageMath, the Sage Mathematics Software System (Version 9.0), The Sage
Developers, 2020, https://www.sagemath.org [Accessed: January 2021].

[38] IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/
products/ilog-cplex-optimization-studio [Accessed: January 2021].

32



