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Abstract

With the widespread diffusion of Massive Online Open Courses (MOOCs), educational recommender systems have become central
tools to support students in their learning process. While most of the literature has focused on students and the learning opportu-
nities that are offered to them, the teachers behind the recommended courses get a certain exposure when they appear in the final
ranking. Underexposed teachers might have reduced opportunities to offer their services, so accounting for this perspective is of
central importance to generate equity in the recommendation process. In this paper, we consider groups of teachers based on their
geographic provenience and assess provider (un)fairness based on the continent they belong to. We consider measures of visibility
and exposure, to account (i) in how many recommendations and (ii) wherein the ranking of the teachers belonging to different
groups appear. We observe disparities that favor the most represented groups, and we overcome these phenomena with a re-ranking
approach that provides each group with the expected visibility and exposure, thus controlling fairness of providers coming from
different continents (cross-continent provider fairness). Experiments performed on data coming from a real-world MOOC platform
show that our approach can provide fairness without affecting recommendation effectiveness.

Keywords: Educational recommender systems, provider fairness, geographic groups.

1. Introduction

Historically, recommender systems have been used to pro-
mote the consumption of items [1]. Their recent employment
in domains such as tourism [2, 3], health [4, 5], and educa-
tion [6, 7], has shown that this class of algorithms can support5

users in their decision-making processes, beyond pure sales and
streams.

Educational recommender systems have particularly flour-
ished, due to the widespread use of Massive Online Open Courses
(MOOCs) [8]. In MOOC platforms, recommender systems learn10

users’ learning needs and preferences, and direct them towards
possible resources of interest [6]. With the recent pandemics,
the subscription to MOOC platforms has increased by 25-30%1,
which makes the research on recommender systems in these
platforms more and more relevant. Among the many types of15

entities that can be recommended in MOOC platforms, we fo-
cus on the main one, i.e., course recommendation.

Producing effective recommendations is not the sole goal in
a domain such as education. Indeed, the emergence of biases,
such as course popularity, can push the recommendation of only20

popular courses [6] or affect users’ learning opportunities [9]. If
we go beyond the learners’ perspective and of how recommen-
dations can affect them, to consider a multi-stakeholder per-
spective [10, 11], we can observe that teachers are also directly
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affected by how recommendations are produced. Indeed, when25

their courses are recommended by an algorithm, they receive a
certain exposure in the final ranking. Under- or over-exposing,
certain providers might generate or exacerbate disparities and
affect the opportunities that are given to teachers to offer their
services. When these disparities are associated with sensitive30

attributes, a recommender system unfairly discriminates teach-
ers (provider unfairness) [10, 12].

In this paper, we focus on possible unfairness emerging
from the provenience of the teachers offering the courses. Specif-
ically, we tackle a continent-based perspective, considering de-35

mographic groups formed by the continent of provenience of
the teachers2. Previous studies have shown that geographic per-
spectives can impact the way users consume items [13]. Delv-
ing into the context of our study, considering a geographic per-
spective to provider fairness is a problem of central relevance40

in the context of course recommendation to (i) avoid affecting
teachers belonging to geographic areas that have low represen-
tation in the data, by under-recommending their courses, and
(ii) increase cultural diversity in the recommendation process,
by putting learners in touch with courses coming from different45

parts of the world. Hence, equity for providers from a geo-
graphical perspective can provide benefits to both teachers and
learners.

Our study begins by assessing unfairness, considering the
share of recommendations associated with a demographic group,50

2In the context of this work, we will refer to a group of teachers belonging
to a certain continent simply as a “demographic group”.
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Figure 1: Country imbalance. Cumulative percentage of learners’ feedback
(in blue) and online courses (in green) for each country in COCO [15].

and contextualizing it to the representation of the group in the
data. We will consider two forms of representation, based on (i)
the number of courses the teachers in a group offer and (ii) the
number of interactions between learners and the courses offered
by that demographic group. Specifically, we assess unfairness55

by considering both the visibility received by the teachers in a
group (i.e., the percentage of recommendations having them as
teachers) and their exposure, which accounts for the position in
which courses are recommended [14]. Hence, with these two
metrics, we measure, respectively, (i) the share of recommenda-60

tions of a group and (ii) the relevance that is given to that group.
Both metrics are relevant to assess disparate impact in this con-
text. Visibility alone might lead a group of teachers not being
reached by learners in case they appear only at the bottom of the
list, and exposure alone might not guarantee that the courses of65

a group are being offered to enough learners (indeed, if we op-
timized only for exposure, then a single course at the top of
the recommendation list for one learner would lead that group
to get high exposure, but might mean that the opportunities for
that group to get recommended to other learners are strongly70

reduced). We do this assessment on state-of-the-art collabo-
rative recommendation approaches, covering both model- and
memory-based approaches and point- and pair-wise algorithms.

Our choice to shape demographic groups based on their
continent of provenience was made because a country-based75

perspective led to a too fine-grained granularity. Considering
the data we work with (presented in detail in Section 3), the
teachers come from 74 different countries. Figure 1 presents the
imbalance in the rating and course distributions, considering the
countries in descending order, based on our two notions of rep-80

resentation. We can observe that the top-20 countries respec-
tively attract and cover around 90% of the ratings and courses.
This severe imbalance shows that mitigating unfairness at the
country level would be unfeasible, due to the very high number
of countries we deal with and the low representation of the great85

majority of countries. We discuss in Section 6 how to deal with
fairness at the country level.

We mitigate disparities emerging from our previous assess-

ment with a novel multi-class re-ranking strategy, which opti-
mizes both the visibility and exposure given to teachers, based90

on their representation in the data. Thanks to our approach, we
can regulate how recommendations are distributed along with
the different demographic groups (cross-continent provider fair-
ness), following a distributive norm based on equity [16].

Our contributions can be summarized as follows:95

• We consider, for the first time in the literature of ed-
ucational recommendation, provider fairness for demo-
graphic groups based on their geographic provenience;

• We assess unfairness on real-world data coming for a
MOOC platform;100

• We mitigate unfairness with a novel approach and evalu-
ate its effectiveness.

The rest of the paper is structured as follows: in Section 2
we cover related work, and in Section 3 we provide the founda-
tion to our study. We assess unfairness in Section 4 and mitigate105

disparities in Section 5. Finally, we conclude our paper in Sec-
tion 6.

2. Related Work

This section presents literature related to our work. We di-
vided it into different sections, according to the topics we an-110

alyze. First of all, we start with education recommender sys-
tems. Next, we overview related work on visibility and expo-
sure in rankings. We continue by analyzing provider fairness in
recommender systems literature and then focus on the specific
topic of our work, fairness in education Artificial Intelligence.115

Finally, we conclude this section contextualizing our work with
respect to the existing literature.

2.1. Educational Recommender Systems

Recommender systems in educational platforms can involve
the suggestion of different entities, such as courses [6, 17, 18],120

threads [19, 20], peers with whom to connect [21, 22, 23], and
learning elements [24, 23]. In this section, we focus on course
recommendation, which is the main focus of this paper. When
designing course recommender systems, several sources of data
are considered, such as previous user preferences [18, 25, 26]125

the combination between user preferences, demographic data,
and pre-requisites [27], or the learning style of learners [28].
The classic recommendation models are employed to process
the recommendations, namely collaborative filtering [6, 27, 18,
25], content-based filtering [17, 18], and hybrid approaches [29].130

Specifically, in this work, we focus on collaborative filtering al-
gorithms.

2.2. Visibility and Exposure in Rankings

Given a ranking, visibility, and exposure metrics respec-
tively assess the number of times an item is present in the rank-135

ings [30, 31] and where an item is ranked [32, 33]. They were
introduced in the context of non-personalized rankings, where
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the objects being ranked are individual users (e.g., job candi-
dates). These metrics can operate at the individual level, thus
guaranteeing that similar individuals are treated similarly [32,140

34], or at group level, by making sure that users belonging to
different groups are given adequate visibility or exposure [31,
33]. Under the group setting, the visibility/exposure of a group
is proportional to its representation in the data [35, 36, 37].

2.3. Provider Fairness in Recommender Systems145

The concepts of visibility and exposure have a direct im-
pact on the providers behind the recommended items. When
a system does not discriminate providers based on sensitive
attributes, it is known to offer provider fairness (P-fairness).
P-fairness guarantees that the providers of the recommended150

objects that belong to different groups or are similar at the in-
dividual level, will get recommended according to their repre-
sentation in the data. In this domain, Ekstrand et al. [38] as-
sessed that collaborative filtering methods recommend books
of authors of a given gender with a distribution that differs from155

that of the original user profiles. Liu and Burke [39] propose
a re-ranking function, which balances recommendation accu-
racy and fairness, by dynamically adding a bonus to the items
of the uncovered providers. Sonboli and Burke [40] define the
concept of local fairness, to equalize access to capital across160

all types of businesses. Mehrotra et al. [41] assess unfairness
based on the popularity of the providers. Several policies are
defined to study the trade-offs between user-relevance and fair-
ness. Kamishima et al. [42] introduce recommendation inde-
pendence, which leads to recommendations that are statistically165

independent of sensitive features.

2.4. Fairness in Educational Artificial Intelligence

Defining when a user or a group of users gets discriminated
by an Artificial Intelligence (AI) system highly depends on the
context that is being studied [43, 44, 45, 46]. Yu et al. [47] as-170

sessed that a fair prediction, for the under-represented groups,
of long- and short-term students’ success is only possible if
institutional data is integrated with the learning management
system data. In the context of adaptive learning technologies,
Doroudi and Brunskill [48] have shown that the existing algo-175

rithms can be inequitable when they rely on inaccurate mod-
els; the integration of the additive factor model, usually em-
ployed to perform knowledge tracing, can improve fairness in
these systems. Hu and Rangwala [49] have focused on models
that ensure individual fairness when predicting students at risk180

of underperforming. Individual fairness was also guaranteed
to learners in course recommender systems, by ensuring equal
learning opportunities [9].

2.5. Contextualizing our Work

As our analysis of the existing literature shows, our work185

provides novelty in the intersection of the four areas we have
analyzed. Specifically, the concepts of visibility and exposure
were never analyzed for demographic groups based on their
provenience. None of the educational AI systems has dealt
with our notion of fairness. Specifically, our work is the first190

to provide fairness guarantees to teachers based on their prove-
nience, thus enabling recommender systems to tackle equity in
the learning process from a novel perspective.

3. Preliminaries

Here, we present the preliminaries to provide foundations195

for our work. First of all, Section 3.1 details the recommenda-
tion scenario. Next, the metrics are described in Section 3.2.
In Section 3.3, we present the recommendation algorithms. Fi-
nally, we describe the dataset used in this study in Section 3.4.

3.1. Recommendation scenario200

Let U = {u1, u2, ..., un} be a set of learners, C = {c1, c2, ..., c j}

be a set of courses, and V be a totally ordered set of values that
can be used to express a preference together with a special sym-
bol ⊥. The set of ratings result from a map r : U × C → V ,
where V is the ratings’ domain. If r(u, c) = ⊥ then we say that205

u did not rate c. To easy notation, we denote r(u, c) by ruc. Now,
we can define the set of ratings as R = {(u, c, ruc) : u ∈ U, c ∈
C, ruc , ⊥}. These ratings can directly feed an algorithm in the
form of triplets (point-wise approaches) or shape learner-course
observations (pair-wise approaches).210

To assess the real impact of the recommendations, we con-
sider a temporal split of the data, where a fixed percentage of
the ratings of the learners (ordered by timestamp) goes to the
training and the rest goes to the test set [50].

The recommendation goal is to learn a function f that esti-215

mates the relevance (r̂uc) of the learner-course pairs that do not
appear in the training data (i.e., ruc = ⊥). We denote as R̂ the
set of recommendations, and as R̂G those involving courses of a
group G, i.e., R̂G = {r̂uc : u ∈ U, c ∈ G ⊆ C}.

Let A = {a1, a2, ..., ag} denote the set of g geographic areas220

in which courses are organized. Specifically, we consider a ge-
ographic area as the continent of provenience of each teacher
providing a course. We denote as Ac the set of geographic ar-
eas associated with a course c. Note that, since teachers of a
course could be from different geographical areas, several ge-225

ographic areas may appear in a course, and thus, |Ac| ≥ 1. In
case two teachers belong to the same geographic area, it ap-
pears only once. We use the geographic areas to shape g demo-
graphic groups, where the ith demographic group is defined as
Gi = {c ∈ C : ai ∈ Ac}, for i = 1, . . . , g.230

3.2. Metrics

In this section, we describe the metrics used in our analysis
and experiments, i.e., the representation of a group, disparate
visibility, and disparate exposure.

Representation. The representation of a group is the number235

of times in which that group appears in the data. We consider
two forms of representation, based on (i) the number of courses
offered by a group and (ii) the number of ratings collected for
that group. We define with R the representation of a group G
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(RC denotes a course-based representation, while RR a rating-240

based representation):

RC(G) = |G|
/
|C| (1)

RR(G) = |{ruc : u ∈ U, c ∈ G ⊆ C}|
/
|R| (2)

Eq. (1) accounts for the proportion of courses of a group,
while Eq. (2) for the proportion of ratings associated with a
group. Both metrics are between 0 and 1.

The representation of a group is measured by considering245

only the training set.

Disparate Impact. We assess unfairness with notions of dis-
parate impact generated by a recommender system. Specifi-
cally, we assess disparate impact with two metrics.

Definition 1 (Disparate visibility). The disparate visibility of a250

group is computed as the difference between the share of rec-
ommendations for items of that group and the representation of
that group:

∆V(G) =

 1
|U |

∑
u∈U

|{r̂uc : r̂uc ∈ R̂G, c ∈ G ⊆ C}|
|R̂|

 − R∗(G) (3)

where ‘*’ refers to C or R. Its range is in [−R∗(G), 1−R∗(G)]; it
is 0 when there is no disparate visibility, while negative/positive255

values indicate that the group received a share of recommenda-
tions lower/higher than its representation. This metric is based
on that considered by Fabbri et al. [30].

Definition 2 (Disparate exposure). The disparate exposure of
a group is the difference between the exposure obtained by the260

group in the recommendation lists [14] and the representation
of that group:

∆E(G) =

 1
|U |

∑
u∈U

∑k
pos=1

1
log2(r̂u

G(pos)+1)∑k
pos=1

1
log2(r̂u

C (pos)+1)

 − R∗(G), (4)

where r̂u
G(pos) denotes the rating r̂uc that takes position pos in

the list R̂u
G = {r̂vc : v = u, c ∈ G ⊆ C}, u ∈ U, sorted by a de-

creasing order.265

This metric also ranges in [−R∗(G), 1−R∗(G)]; it is 0 when
there is no disparate exposure, while negative/positive values
indicate that the exposure given to the group in the recommen-
dations is lower/higher than its representation.

Remark. We do not define a unique “disparate im-
pact” metric, to control both visibility and exposure, so
that teachers are recommended enough times and with
enough exposure. A unique metric would not allow us
to balance both, by compressing everything in a unique
number. Later in this paper, we show why both metrics
are relevant to enable provider fairness in this context.

270

3.3. Recommendation algorithms

In this work, we consider five state-of-the-art Collabora-
tive Filtering approaches, which are known to be the most em-
ployed class of algorithms for course recommendation [6]. We
cover both classes of point-wise and pair-wise approaches and275

memory-based and model-based algorithms. In addition, we
consider two baseline algorithms.

Our baselines are non-personalized algorithms, which will
allow us to contextualize the results obtained with different classes
of approaches.280

• MostPopular recommends items based on their popular-
ity in the dataset, by counting the number of items an
item was rated. In this way, the algorithm considers only
the item perspective, without associating the ratings to
the individual users and their preferences.285

• RandomGuess establishes the maximum and minimum
ratings in the data and returns a random rating for each
user-item pair to predict.

For the class of memory-based approaches, we consider the
following neighborhood-based algorithms:290

• UserKNN [51] selects the K neighbors closest to the tar-
get user, and recommends the elements that other users
more similar to him liked.

• ItemKNN [52] works in a similar way to the previous
one, but in this case the target user is recommended the295

items that are more similar to other items that they liked
before.

Matrix Factorization algorithms divide the data into matrices,
representing them in latent factors to determine the degree of
affinity that users and items have with those factors. For this300

class of approaches, we consider the following algorithms:

• BPR. [53] Bayesian Personalized Ranking is a state-of-
the-art algorithm, optimized to generate recommendation
lists, creating a probability function from the Bayesian
probability function. The preference function is based on305

the ratings of pairs of items.

• BiasedMF. [54] Basic factorization of the matrix that in-
cludes the global mean, user bias, and item bias.

• SVD++ [55] takes into account the implicit interactions,
as well as the user’s latent factors and the item’s latent310

factors.

3.4. Dataset

We analyze data from the educational context, exploring
the role of the geographic provenience of teachers in the rec-
ommendation process. We remark that the experimentation is315

made difficult because there are very few large-scale educa-
tional datasets coming from this specific field of online edu-
cation. To the best of our knowledge, COCO [15] is the only
educational dataset that contains the geographic provenience of
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the users. The dataset was collected from an online course plat-320

form, and includes 43,045 courses and 4,123,127 learners who
gave 6,564,870 ratings. Each course is associated with one or
more teachers, belonging to 74 different countries.

We pre-processed the dataset to remove all users with less
than 3 ratings. Our final dataset contains 12,472 courses and325

298,644 learners, which provided 1,296,598 ratings. Out of
these courses, 379 are associated with two or more continents,
while the rest to only to one.

We shape demographic groups considering the following
continents: Africa, Asia, Europe, North America, Oceania, and330

South America. No course from the seventh continent (Antarc-
tica) was available in the dataset.

Other educational datasets, proposed by [56, 57, 58], gener-
ally include (learner, course, rating) triplets only, as needed in
traditional recommendation scenarios, thus not fitting the prob-335

lem tackled in this study (no information about the teachers’
sensitive attributes is available).

4. Disparate Impact Assessment

In this section, we run the algorithms presented in Sec-
tion 3.3 to assess their effectiveness and the disparate impact340

they generate. Before doing so, we present the experimental
setting and analyze the training data, to get insights into the
representation of the different groups.

4.1. Experimental setting
For the dataset presented in Section 3.4, the test set was345

composed of the most recent 20% of the ratings of each learner.
To run the recommendation algorithms presented in Section 3.3,
we considered the LibRec library (version 2). For each user,
we generate 100 recommendations (denoted in the paper as the
top-n) so that we can mitigate the disparate impact through a350

re-ranking algorithm. The final recommendation list for each
learner is composed of 20 courses (denoted as top-k).

We performed a grid search to optimize the hyper-parameters
of each algorithm and we chose the ones that achieved the best
NDCG. Intending to facilitate the reproducibility of our exper-355

iments, we detail the hyper-parameters used to run each algo-
rithm:

• UserKNN. similarity: Pearson; neighbors: 50; similarity
shrinkage: 10;

• ItemKNN. similarity: Cosine; neighbors: 200; similarity360

shrinkage: 10;

• BPR. iterator learnrate: 0.01; iterator learnrate maximum:
0.01; iterator maximum: 100; user regularization: 0.01;
item regularization: 0.01; factor number: 10; learnrate
bolddriver: false; learnrate decay=1.0;365

• BiasedMF. iterator learnrate: 0.01; iterator learnrate max-
imum: 0.01; iterator maximum: 10; user regularization:
0.01; item regularization: 0.01; bias regularization: 0.01;
number of factors: 10; learnrate bolddriver: false; learn-
rate decay: 1.0;370

Table 1: Group representation. Course-based (RC) and rating-based (RR)
representations of each group. Groups appear in alphabetical order by the name
of the continent.

RC RR

Africa 0.0569 0.0492
Asia 0.1043 0.0526
Europe 0.1974 0.1812
North America 0.5268 0.5796
Oceania 0.0443 0.0694
South America 0.0702 0.0680

• SVD++. iterator learnrate: 0.01; iterator learnrate max-
imum: 0.01; iterator maximum: 13; user regularization:
0.01; item regularization: 0.01; impItem regularization:
0.001; number of factors: 10; learnrate bolddriver: false;
learnrate decay: 1.0.375

To evaluate recommendation effectiveness, we measure the
ranking quality of the lists by measuring the Normalized Dis-
counted Cumulative Gain (NDCG) [59].

DCG@k =
∑
u∈U

r̂u
G(pos) +

k∑
pos=2

r̂u
G(pos)

log2(pos)

NDCG@k =
DCG@k
IDCG@k

,

The ideal DCG (IDCG) is computed by sorting courses based
on decreasing true relevance (true relevance is 1 if the learner380

interacted with the course in the test set, 0 otherwise). The
higher the better.

4.2. Characterizing Representation

The first step towards the assessment of disparate impact is
to characterize the representation of the different groups in the385

data, which we present in Table 1.
The first phenomenon we can observe is that the ranking

of the groups is the same, regardless of the form of represen-
tation we consider. Most of the courses are taught by North
American teachers, covering almost 52.7% of the courses. Eu-390

rope follows with 19.7% of the courses, and Asia takes a 10.4%
share. The remainder of the groups (Africa, Oceania, and South
America) have less than 10% representation. This imbalance
associated with North America is exacerbated when consid-
ering the rating-based representation, where the group covers395

around 60% of the ratings. This leads the rest of the groups to
have a lower representation w.r.t. the course-based one, regard-
less of Oceania, which accounts for 6.9% of the ratings. We
conjecture that learners might interact with courses from Ocea-
nia because its main language is English. We performed an400

additional analysis of the language of the courses, which con-
firmed that the vast majority of the courses where teachers are
from Oceania are taught in English. This analysis connects the
vast number of interactions between learners and courses from
North America with their interactions with courses from Ocea-405

nia.
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We cannot draw similar conclusions for the two spoken lan-
guages both in Europe and South America, Spanish and Por-
tuguese. Indeed, we observed that Spanish learners following
courses in Spanish, mainly do from courses that are also orga-410

nized in Spain. The same holds for South American learners
and the courses in Spanish they interact with, which are mainly
organized in South America. For the courses in Portuguese,
learners from Portugal and Brazil mainly interact with courses
provided in their own country. Hence, the representations of415

Europe and South America are not directly affected by the fact
that the continents share two languages.

Observation 1. North America represents the major-
ity group, with over 50% of the offered courses. These
courses attract even more interactions by the learners,
thus increasing the group’s rating-based representation.
All the other groups have a rating-based representation
that is lower than the course-based one, minus Oceania.
Hence, when courses are offered in English, a group at-
tracts a share of ratings higher than the rate of courses
it offers. The same does not hold for courses in Spanish
and Portuguese, where learners mainly follow courses in
these languages organized in their own country.

4.3. Assessing Effectiveness and Disparate Impact

In this section, we report the results in terms of effectiveness420

(NDCG) obtained by each algorithm, and the disparate visi-
bility and exposure associated with each demographic group,
based on the two forms of representation. Table 2 summarizes
the results.

The first aspect that emerges is that the most effective algo-425

rithm in terms of NDCG is ItemKNN. Interestingly, this leads
the algorithm to return, for several groups, visibility or expo-
sure proportional to the number of ratings. This scenario is the
case for the exposure in Europe and North America, obtain-
ing the lowest ∆ER, and for South America in terms of visibil-430

ity (∆VR). The second most performing algorithm in terms of
NDCG is BPR; we can connect this result to the analysis of the
dataset made in [6], where it was observed that most of the rat-
ings were equal to 5. Hence, most of these interactions can be
treated as binary observations, leading to the capability of the435

algorithm to produce a good ranking in this context. For the
remaining groups, this is the approach that better adjusts to the
rating-based representation, in terms of visibility (∆VR) for Eu-
rope, North America, and Oceania, and of exposure (∆ER) for
Africa and South America. North America and South America440

are also, respectively, the two groups receiving the best visibil-
ity and exposure, given to them by BPR.

Observation 2. Ranking effectiveness is associated with
good visibility and exposure when considering a rating-
based representation of the groups. The ratings given by
learners help to produce good recommendations and to
adapt to the preferences (in terms of ratings) that each
demographic group had received.

Focusing on the course-based representation, two interest-
ing phenomena can be observed. The first is that Random Guess445

is the one adapting best to the offer in terms of courses. This
phenomena is the case for the visibility, ∆VC , in all the groups,
and for the exposure, ∆EC , in Europe, Oceania, and South Amer-
ica. South America is also the place where the best (and al-
most perfect) visibility and exposure are given to a group, also450

thanks to Random Guess. Nevertheless, this is also the algo-
rithm that achieves the worst NDCG. Hence, a random choice
of the courses to recommend adapts well to the offer of each
group but is not effective. The other algorithm offering a good
course-based visibility exposure is SVD++. What we can ob-455

serve here is the presence of exposure equity for both the major-
ity group (North America) and one of the smallest ones (Africa).
This means that the factors built by the algorithm capture well
the original distribution of the data, thus adapting well to the
course offer. Also, in this case, the NDCG of the algorithm is460

very low, leading to the following observation.

Observation 3. If an algorithm can provide a group with
equitable visibility and exposure, when considering its
representation in terms of offered courses, then its effec-
tiveness is very low.

Finally, we can analyze the scenarios in which the most se-
vere disparities can be observed. Trivially, Most Popular is the
algorithm associated with the highest disparate impact values,465

which can be observed for North America. This result connects
to previous studies on popularity bias in educational recommen-
dation [6, 7], and extends them to the unfairness provided by an
algorithm.

Observation 4. Popularity-based recommendation exac-
erbates disparities, favoring the largest group and at the
expense of the smallest ones.

470

5. Mitigating Disparate Impact

The previous section allowed us to observe that groups are
receiving disproportional visibility and exposure concerning their
representation in the data. In this section, we propose a re-
ranking algorithm to mitigate disparities. The algorithm intro-475

duces courses of the disadvantaged groups in the recommenda-
tion list, to reach visibility and exposure proportional to their
representation.

A re-ranking algorithm is the only option when optimiz-
ing ranking-based metrics, such as visibility and exposure. An480

in-processing regularization, such as those that have been pre-
sented in [42, 60], would not be possible, since at the pre-
diction stage the algorithm does not predict if and where an
item will be ranked in a recommendation list; hence, no di-
rect comparison with these approaches is possible. This is not485

due to the specific choice of algorithms, since this consider-
ation would also hold for list-wise approaches. Re-rankings
have been introduced to reduce disparities, both in the context
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Table 2: Results of state-of-the-art recommender systems before mitigation. Each column reports the results of an algorithm, with the first line containing the
global Normalized Discounted Cumulative Gain (NDCG). The table continues with one block per demographic group, reporting (i) the Disparate Visibility when
considering the rating-based representation as a reference (∆VR), (ii) Disparate Exposure when considering the rating-based representation as a reference (∆ER),
(iii) Disparate Visibility when considering the course-based representation as a reference (∆VC), and (iv) Disparate Exposure when considering the course-based
representation as a reference (∆EC). The underlined values indicate the best ones for each metric and demographic group, while those in bold indicate the overall
best result for each metric.

AF AS EU NA OC SA
MostPop ∆VR -0.0492 -0.0054 -0.0393 0.1364 0.0254 -0.0680

∆ER -0.0152 -0.0145 -0.0538 0.1057 -0.0028 -0.0194
∆VC -0.0569 -0.0571 -0.0556 0.1893 0.0505 -0.0702
∆EC -0.0226 -0.0260 -0.0575 0.1206 0.0082 -0.0228

RandomG ∆VR 0.0066 0.0504 0.0159 -0.0497 -0.0257 0.0024
∆ER 0.0028 0.0125 0.0064 -0.0148 -0.0077 0.0009
∆VC -0.0011 -0.0013 -0.0003 0.0031 -0.0006 0.0001
∆EC -0.0004 -0.0005 -0.0002 0.0012 -0.0002 0.0000

UserKNN ∆VR 0.0259 0.0043 0.0378 0.0367 0.0505 0.0456
∆ER -0.0105 -0.0069 -0.0180 0.0397 0.0012 -0.0056
∆VC -0.0065 -0.0527 0.0081 0.0367 -0.0008 0.0153
∆EC -0.0128 -0.0102 -0.0196 0.0411 0.0016 -0.0001

ItemKNN ∆VR -0.0120 -0.0122 0.0058 0.0045 0.0120 0.0019
∆ER -0.0052 -0.0043 -0.0016 0.0050 0.0070 -0.0009
∆VC -0.0197 -0.0639 -0.0105 0.0573 0.0371 -0.0016
∆EC -0.0066 -0.0197 -0.0066 0.0248 0.0098 -0.0003

BPR ∆VR -0.0053 -0.0124 0.0025 0.0009 0.0096 0.0047
∆ER -0.0016 -0.0044 -0.0054 0.0061 0.0049 0.0004
∆VC -0.0130 -0.0642 -0.0138 0.0537 0.0347 0.0025
∆EC -0.0038 -0.0213 -0.0106 0.0275 0.0083 -0.0001

BiasedMF ∆VR 0.0331 0.0021 0.0332 0.0060 -0.0672 -0.0073
∆ER 0.0269 -0.0072 0.0038 -0.0138 -0.0219 0.0123
∆VC 0.0254 -0.0496 0.0169 0.0589 -0.0421 -0.0095
∆EC 0.0271 0.0000 -0.0033 0.0049 -0.0151 0.0108

SVD++ ∆VR 0.0012 -0.0010 0.0244 -0.0161 -0.0259 0.0175
∆ER 0.0024 0.0028 0.0040 -0.0189 -0.0065 0.0162
∆VC -0.0130 -0.0642 -0.0138 0.0537 0.0347 0.0025
∆EC -0.0001 -0.0150 -0.0014 -0.0008 0.0017 0.0157

of non-personalized rankings [31, 14, 32, 61, 33, 35] and of rec-
ommender systems [41, 62, 39], with approaches such as Max-490

imal Marginal Relevance [63]. However, all these algorithms
optimize only one property (either visibility or exposure). As
we will show later in our ablation study, optimizing for one
metric is not enough. Nevertheless, we studied the impact of
the approach by Liu and Burke [39] in our context, which aims495

at introducing provider fairness via a re-ranking approach. Con-
cretely, the predicted relevance is increased if a provider has not
appeared yet in the top-k of a user. Since we are dealing with
a provider fairness setting, we increase the predicted rating if a
geographic area has not appeared yet in the ranking of a user.500

We remind readers to [39] for the technical details of the re-
ranking approach we compare with. Hyperparameter λ of the
original algorithm proposed in [39] was set to 2.

5.1. Algorithm

Our mitigation algorithm is based on the idea to move up505

in the recommendation list the course that causes the minimum
loss in prediction for all the learners, until the target visibility

or exposure is reached. Our approach at introducing fairness
via a re-ranking is the only one providing guarantees that eq-
uity of visibility and exposure is possible since we keep chang-510

ing the recommendation list until equity from both perspectives
is reached. The approaches at the state of the art, based on Max-
imal Marginal Relevance, make interventions on the predicted
relevance for the items, thus not optimizing and not offering
guarantees for the final visibility and exposure goals.515

The mitigation algorithm is described in Algorithm 1, while
Algorithm 2 describes the its support methods. The input is a
recommendation list for all the learners (the top-n items) and
the target proportions to reach of each continent. The output is
the re-ranked list of courses.520

The first method, called optimizeVisibilityExposure (lines
1-6), calls our mitigation function twice, to have the first inter-
vention in terms of visibility and the second one in terms of ex-
posure. The first mitigation call (line 3) is devoted to targeting
the desired visibility, to make sure the courses of the disadvan-525

taged groups are recommended enough times. This mitigation
step adds the courses of the disadvantaged groups to the top-k.
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Input: recList: ranked list (records contain user, item, prediction, exposure, continent, position)
targetProportions: list with the target proportions of each continent

Output: reRankedList: ranked list adjusted by visibility and exposure
1 define optimizeVisibilityExposure (recList, targetProportions)
2 begin
3 reRankedList← mitigation(recList, “visibility”, targetProportions) ; // mitigation to target the desired visibility

4 reRankedList← mitigation(reRankedList, “exposure”, targetProportions) ; // mitigation to regulate the exposure

5 return reRankedList ; // re-ranked list adjusted by visibility and exposure

6 end

7 define mitigation (list, reRankingType, targetProportions)
8 begin
9 itemsIn, itemsOut, possibleS waps, continentList ← list(), list(), list(), list() ; // initializes 4 empty lists to store

candidate items to add to the list, candidate items to remove, all possible swaps of items, and the

disparities per continent, respectively

10 proportions← initialProportions(list, reRankingType); // compute continents’ proportions in the ranked list

11 continentList← updateDisparity(proportions, targetProportions) ; // updates disparity of each continent

12 foreach user ∈ list do // for each user

13 foreach list.item ∈ top-n do // we loop over all items that belong to this user

14 if checkPosition(list.item, itemsOut, reRankingType)==True and
checkDisadvantagedGroup(list.continent,continentList)==False then

15 itemsOut.add(list.item) ; // adds the item as possible candidate to move out if it belongs to an

advantaged group and belongs to the top-k

16 else if checkPosition(list.item, itemsOut, reRankingType)==False and
checkDisadvantagedGroup(list.continent,continentList)==True then

17 itemsIn.add(list.item) ; // adds the item as possible candidate to move in if it belongs to a

disadvantaged group and it is not in the top-k

18 end
19 end
20 while !itemsIn.empty() and !itemsOut.empty() do
21 itemIn← itemsIn.pop( f irst); // item ranked higher in the top-n, outside the top-k

22 itemOut ← itemsOut.pop(last); // item ranked lower in the top-k

23 loss← itemOut.prediction − itemIn.prediction ; // compute the loss if swapped the elements in the list

24 possibleSwaps.add(id, user, itemOut, itemIn, loss); // add the possible swap

25 end
26 end
27 sortByLoss(possibleSwaps); // sort the possible swaps by loss, from minor to major

28 i← 0;
// do swaps until the target proportions are reached

29 while proportions < targetProportions and i < len(possibleSwaps) do
30 elem← possibleS waps.get(i) ; // gets candidate swap of items with the minor loss

31 if checkPosition(elem.id, elem.itemOut, reRankingType)==True and
checkDisadvantagedGroup(elem.itemIn.continent,continentList)==False then

32 list← swap(list, elem.itemOut, elem.itemIn); // makes the swap of the candidate with the minor loss

33 exp← itemOut.exposure − itemIn.exposure; ; // computes the exposure difference of the swap performed

34 proportions← updateProportions(elem.itemOut, reRankingType, exp,−1); // reduces continents’ proportions

35 proportions← updateProportions(elem.itemIn, reRankingType, exp, 1); // adds continents’ proportions

36 continentList← updateDisparity(proportions, targetProportions) ; // updates disparity of each continent

37 i← i + 1 ; // advances to the next possible swap with minor loss

38 end
39 return list ; // re-ranked list

40 end
Algorithm 1: Visibility and exposure mitigation algorithm

The second mitigation call (line 4) is devoted to regulating the
exposure, by moving courses up in the top-k inside the recom-
mendation list, to reach the target exposure.530

In lines 7-40, the mitigation method regulates the visibility
and exposure inside the recommendation list. First of all, sev-
eral lists are initialized (line 9). Next, in lines 10 and 11, the

continent’s proportions and their disparities are computed. Fol-
lowing, from line 12 to 26, the algorithm computes for each user535

all possible swaps of disadvantaged groups that can be done in
their recommendations list. Note that it loops over all items
(i.e., courses) that belong to each learner and it checks two situ-
ations, (i) the course’s position in the list and (ii) if the course is

8



1 define checkPosition(item, itemsOut, reRankingType) // check the position of an item

2 begin
3 if reRankingType == “visibility” then return item.position < top-k ;
4 else if reRankingType == “exposure” then return item.position < itemsOut.last.position ;
5 end
6 define checkDisadvantagedGroup (continent, continentList) // check disadvantaged continent

7 begin
8 for cont ∈ continent do sumDeltas += continentList.get(cont) ; // adds the disparity of the continent

9 return (sumDeltas > 0);
10 end
11 define initialProportions(list, reRankingType) // check initial continents’ proportions

12 begin
13 proportions← 0; // set up each continent’ proportion to 0

14 foreach user ∈ list do // for each user

15 foreach list.item ∈ top-k do // we loop over the top-k items that belong to this user

16 if reRankingType == “visibility” then
17 for cont ∈ list.continent do proportions[cont] += 1 ;
18 else if reRankingType == “exposure” then
19 for cont ∈ list.continent do proportions[cont] += list.exposure ;
20 end
21 end
22 end
23 return proportions
24 end
25 define updateProportions(item, reRankingType, exp, value) // update proportions after a swap

26 begin
27 if reRankingType == “visibility” then
28 for cont ∈ item.continent do proportions[cont] += (1 × value) ;
29 else if reRankingType == “exposure” then
30 for cont ∈ item.continent do proportions[cont] += ( exp × value) ;
31 end
32 return proportions
33 end
34 define updateDisparity(proportions, targetProportions) // update disparities after a swap

35 begin
36 continentList ← proportions − targetProportions
37 return continentList
38 end

Algorithm 2: Support methods for the main mitigation algorithm

in a disadvantaged group or not. So, in the end, possibleS waps540

contains a set of swaps, where each swap contains the user, the
item to extract, the item to add in the recommendation list (top-
k) of that user, and the loss we would observe if the swap was
done. After that, we sort the possible swaps by loss (line 27).
Next, a while loop deals with all the swaps (lines 29-38). We it-545

erate through all possible swaps until the target proportions are
reached or there are no more swaps available. Before the swap
method is called, we check that the candidate swap still makes
sense. That is, the candidate course to move up still belongs to
a disadvantaged group and the candidate to move down is still550

in an advantaged group. If the conditions are satisfied by the
candidate swap, we proceed to make the swap and update both
the group proportions and the disparities. Finally, the method
returns the re-ranked list (line 39).

Algorithm 2 details the support methods called in Algo-555

rithm 1. The checkPosition method (lines 1-5) is responsible

for checking the position of an item in the list, taking into ac-
count if we perform a visibility or exposure mitigation. In lines
6-10, the method checkDisadvantagedGroup verifies whether
the item belongs to a disadvantaged continent or not. Note560

that the method contains a for loop since multiple continents
may occur in a course. In that case, we compute the total
sum of disparities to define a global disparity of the course.
The method returns true when the disparity is positive, false
otherwise. The method initialProportions (lines 11-24) com-565

putes the proportion of each continent. In case of mitigating
visibility it accounts the number of courses per continent and,
when it mitigates exposure, it computes the sum of exposure
per continent. Specifically, the updateProportions method (see
lines 25-33) updates the proportions per group, based on the570

ranking type. In case of mitigating visibility, it updates the
number of courses per continent and, when it mitigates expo-
sure, modifies the sum of exposure of each continent. Finally,
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the method updateDisparity (lines 34-38) computes the dif-
ferences between the current proportions per continent and the575

target proportions.

5.2. Impact of mitigation
In this section, we analyze the impact of our mitigation al-

gorithm, analyzing both the recommendation effectiveness and
the visibility and exposure given to the different groups.580

Remark. Since our study is based on a temporal split of
the data, we could not run any statistical test to assess the
difference in the results between the original algorithm
and our re-ranking.

In Table 3, we report the results obtained by our algorithm
after mitigating to regulate both visibility and exposure, hav-
ing as target the rating- and course-based representations of
the group.3 Readers should note that we are reporting only585

the NDCG values, because we successfully mitigated both dis-
parate visibility and exposure for all groups; all the values were
exactly 0, with some minor deviations at the third or fourth dec-
imal in very few cases. What we can observe is that the effec-
tiveness of the algorithm shows negligible losses in both cases.590

Observation 5. Cross-continent provider fairness for de-
mographic groups of teachers can be achieved without
having a negative impact in terms of recommendation ef-
fectiveness. Thanks to our approach, we can distribute
the recommendation in equitable ways between the dif-
ferent groups, without affecting the learners.

In Figure 2, we visually show the benefits of moving from
the original models to our mitigation in terms of disparate vis-
ibility and exposure, considering both a rating- and a course-
based representation of the groups. The results confirm that we595

can provide consistent benefits and introduce equity, regardless
of the algorithm, the metric, and the form of representation we
consider.

To validate our mitigation strategy, which optimizes for both
the target visibility and exposure, we run an ablation study,600

where we mitigate only for visibility. Results are reported in
Table 4. The disparate visibility is mitigated by design. What
we can observe is that in all of the groups and all the representa-
tions, disparate exposure is never fully mitigated. Referring to
the phenomena we previously highlighted, Most Popular still605

over-exposes North America by 10%, at the expense of other
groups, such as Europe (-5%). More broadly, we can observe
that the disparate exposure values remain more or less the same
as those of Table 2.

Observation 6. Regulating the visibility given to a group
does not provide the group with enough exposure. Dis-
parities in terms of exposure are attenuated, but not fully
mitigated. Specific interventions to regulate the given ex-
posure are needed.

610

3The last line, indicating the NDCG values returned after running the miti-
gation with the baseline approach, will be analyzed in the context of Section 5.3.

To sum up, the ablation study shows that it is not enough
to mitigate unfairness for demographic groups only consider-
ing the visibility received by the teachers in a group. Thus, our
proposal of mitigating both visibility and exposure is an imper-
ative need. The novelty of our approach comes from the idea615

of considering both metrics, visibility, and exposure, to address
provider unfairness. It is important to remark that our results
show that the proposed algorithm (see Algorithm 1) can reach
the target proportions with a minimal loss in NDCG.

5.3. Contextualization with the State of the Art620

In this section, we compare the results of our mitigation
with that proposed in [39]. Table 5 reports the obtained results.

While our approach is capable of introducing equity by mit-
igating both disparate visibility and exposure, as we have pre-
viously observed, this is not the case for the baseline approach625

in our context. Indeed, disparities are reduced by little concern-
ing those returned by the original models, and, in some cases,
they are even slightly worse. This effect is because the baseline
approach favors the introduction in the top-k of courses pro-
duced in more than one continent (in other words, belonging to630

more than one geographic group). This observation means that,
while a disadvantaged group might gain visibility and/or expo-
sure, the accompanying group also receives the same treatment,
even though it might be advantaged.

The reason why the original approach can only partially635

mitigate disparity is since an item of the group becomes more
relevant than what it was predicted, whenever that group is not
yet in the top-k. Once the group is included in the recommen-
dation list, the items stop getting a boost. However, there is
no guarantee that disparities are fully mitigated. On the con-640

trary, our approach keeps injecting items in the top-k as long as
disparities are fully mitigated.

Observation 7. Introducing provider fairness requires
interventions at recommendation-list level. Mitigating
by boosting predicted relevance for the disadvantaged
groups does not provide guarantees of equity of visibil-
ity and exposure are fully mitigated. Disparities are only
partially mitigated.

6. Conclusions and Future Work

Accounting for provider fairness in the recommendation pro-645

cess is a central aspect to account for equity in the way rec-
ommendations are produced. In this paper, we considered a
course recommendation scenario and assessed unfairness for
demographic groups based on the continent of provenience of
the teachers. We run state-of-the-art collaborative filtering ap-650

proaches on real-world data coming from a MOOC platform,
and observed disparities in the visibility and exposure at the ex-
pense of the smaller demographic groups. We mitigated these
disparities with a novel re-ranking multi-class approach, which
adjusted the final ranking based on the target visibility and ex-655

posure, thus enabling cross-continent provider fairness to teach-
ers. Results have shown that the disparities in visibility and ex-
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Figure 2: Disparate impact. Disparate impact returned by the state-of-the-art models (thick bars) and by the mitigation proposed in [64] (thin bars). Each figure
contains one section for each algorithm and a color for each continent. The text at the bottom of each figure contains the NDCG returned by the original model
and after the mitigation, separated by a “/”. In (a) and (b), we report the disparate visibility and disparate exposure obtained when considering a rating-based
representation, while in (c) and (d), the disparate visibility and disparate exposure obtained when considering a course-based representation representation.

11



Table 3: Results of state-of-the-art recommender systems after full mitigation (both visibility and exposure). Normalized Discounted Cumulative Gain
(NDCG) of the original algorithm, after mitigating based on the rating-based representation (VR → ER), after mitigating based on the course-based representation
(VC → EC), and after mitigating with the baseline.

NDCG MostPop RandomG UserKNN ItemKNN BPR BiasedMF SVD++

Original 0.0193 0.0006 0.0372 0.2068 0.1401 0.0007 0.0044
VR 0.0195 0.0006 0.0368 0.2066 0.1398 0.0007 0.0045
VC 0.0187 0.0006 0.0367 0.2039 0.1373 0.0007 0.0043

VR → ER 0.0183 0.0006 0.0340 0.2008 0.1334 0.0007 0.0045
VC → EC 0.0173 0.0006 0.0342 0.1952 0.1334 0.0007 0.0043
Baseline 0.0193 0.0002 0.0376 0.2075 0.1400 0.0005 0.0036

posure can be overcome without affecting the recommendation
effectiveness for learners.

While we have highlighted that mitigating disparities at the660

level of individual countries can be very challenging, it is still
relevant to generate equity also at this granularity. Indeed, highly
represented countries inside a continent (e.g., the United States
in North America) can be over-exposed, thus maintaining un-
fairness. In future work, we plan to introduce a two-stage pro-665

cess to regulate the distribution of recommendations inside a
continent and guarantee fairness for teachers also at this level.

At the moment, only the dataset we considered in this study
is available to study these phenomena. In the future, we plan to
enrich other existing educational datasets with synthetic demo-670

graphic groups to validate our approach under different scenar-
ios.

Finally, we plan to study our multi-class mitigation in dif-
ferent application scenarios, such as movies or books, to study
the impact of recommender systems in the context of pure con-675

sumption items.
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Table 4: Results of state-of-the-art recommender systems after mitigating only for visibility. Each column reports the results of an algorithm, with the first two
line containing the global Normalized Discounted Cumulative Gain (NDCG) obtained after the two mitigations. The table continues with one block per demographic
group, reporting (i) the Disparate Visibility when considering the rating-based representation as a reference (∆VR), (ii) Disparate Exposure when considering the
rating-based representation as a reference (∆ER), (iii) Disparate Visibility when considering the course-based representation as a reference (∆VC), and (iv) Disparate
Exposure when considering the course-based representation as a reference (∆EC).
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Table 5: Disparate impact with different mitigation strategies. Disparate impact metrics returned by the different models for each continent (AF: Africa,
AS: Asia, EU: Europe, NA: North America, OC: Oceania, SA: South America). For each algorithm we report the results obtained by the baseline and by our
multiclass mitigation, in terms of disparate visibility and exposure when considering the rating-based representation as a reference (∆VR and ∆ER lines) and with
the course-based representation (∆VC and ∆EC lines).
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