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Abstract

Object stores are widely used software stacks that achieve excellent scale-out with a well-defined interface and robust per-
formance. However, their traditional get/put interface is unable to exploit data locality at its fullest, and limits reaching its peak
performance. In particular, there is one way to improve data locality that has not yet achieved mainstream adoption: the active ob-
ject store. Although there are some projects that have implemented the main idea of the active object store such as Swift’s Storlets
or Ceph Object Classes, the scope of these implementations is limited.

We believe that there is a huge potential for active object stores in the current status quo. Hyper-converged nodes are bringing
more computing capabilities to storage nodes —and viceversa. The proliferation of non-volatile memory (NVM) technology is
blurring the line between system memory (fast and scarce) and block devices (slow and abundant). More and more applications
need to manage a sheer amount of data (data analytics, Big Data, Machine Learning & Al, etc.), demanding bigger clusters and
more complex computations. All these elements are potential game changers that need to be evaluated in the scope of active object
stores.

More specifically, having NVM devices presents additional opportunities, such as in-place execution. Being able to use the
NVM from within the storage system while taking advantage of in-place execution (thanks to the byte-addressable nature of the
NVM), in conjunction with the computing capabilities of hyper-converged nodes, can lead to active object stores that greatly
outperform their non-active counterparts.

In this article we propose an active object store software stack and evaluate it on an NVM-populated node. We will show how
this setup is able to reduce execution times from 10% up to more than 90% in a variety of representative application scenarios. Our
discussion will focus on the active aspect of the system as well as on the implications of the memory configuration.

1. Introduction flat permissions [25]]. In all cases, access is done from the ap-
plication to the object store and it implies a certain data transfer

The object store software stack design has proved tobe scal-  _yhich may be intra-node or inter-node, depending on the in-

able and robust, and has become a widely used technology. Dif-  fractructure.

ferent implementations have proven to be invaluable agents in This usage procedure is unable to exploit data locality at
the explosive growth experienced in the cloud arena. Further- its fullest. At best, the application will be copying an object
more, they are also becoming a key technology for a whole lot  (hat resides in memory —e.g., with an in-memory node-local
of different scenarios, such as HPC [15, 4], caching middle- object store such as Redis [31]]; at worst, the application will be

ware [8], or daj[a analytics [32J' . ) transferring big data structures through the network and waiting
The canonical way of using an object store is through a  for 4 high-latency memory tier such as a spinning hard drive.

get/put interface. Objects may have some additional schema In order to avoid those indirections, there is one way to im-
such as columns or data types [2(.’]’. an_d access to data may in-  prove data locality that has not yet achieved mainstream adop-
clude some more fine-grained policies in the form of ACL [29].  (jon: the active object store. Although object stores have ex-

Other object stores may define the object as a binary blob with  serienced an upwards popularity in recent years, their active
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capabilities have been only timidly appearing, both in research
and in production.

The active feature of an object store enables the execution of
code within the object store. For instance, an application could
ship the code to evaluate the average of a dataset and let the
object store compute it without moving any data from it. Later
on Section [3] we elaborate further on the object store stack and
the active capabilities, as well as the synergies between those
and the NVM. In the broadest sense, we can classify as active
object store all object stores that offer certain additional com-
puting capabilities.

These active capabilities can vary and have different goals.
For instance, the ability to execute management routines —defined
for or focused on administration— is an example of a certain
kind of active feature. Active capabilities can also be user-de-
fined; an example of this would be Storlets [28], an extension
for Swift [29]. That design is focused on invocations of user-
defined code on put, get, copy operations in a per-object ba-
sis. For instance, calculating the hash of an object and storing
its value as an attribute of the same object, or masking some
field for privacy reasons and storing the new value on it. Al-
though that approach is much more flexible than the mecha-
nisms present in other systems, it still lacks a basic flow to
enable application-driven calls to routines, arbitrary update of
objects, or access to multiple objects from a single execution.

One possible root cause for the scarcity of active storage
systems is the long-existing chasm between system memory
(byte addressable, volatile, fast, scarce) and storage (composed
of persistent but slow block devices, with huge latencies and
a smaller bandwidth). This gap is now being blurred thanks
to Non-Volatile Memory devices (NVM). Those kind of de-
vices are byte-addressable and have a performance that typi-
cally sits between DRAM and SSD; NVM are faster than block
devices although that comes with a higher cost-per-byte. They
are cheaper than DRAM, and thus less scarce, but they are not
as fast. An application can use NVM as a “fast storage device”;
the application can also go one step further and perform in-
place execution —thanks to the byte-addressable nature of the
NVM. Being able to execute in-place, without data copies to
main memory, can have a great impact on data locality and thus
performance.

Another issue that may have prevented the adoption of ac-
tive storage systems is the major challenges that they present:
resource management becomes much more complex and the
storage system must manage an imbricated competition for re-
sources —both storage and computation.

Bringing closer computation and storage through an active
object store has tremendous performance potential, but those
designs should keep in check the interference. The interfer-
ence endured by storage systems has already been object of
study [42]], and its impact is amplified under an active object
store, as the compute requirements are increased. For example,
in a multi-user or multi-tenant scenario, one heavy computation
execution may impact other time-critical applications, resulting
in an undesired resource competition amongst executions.

There is a family of storage systems that tackle the interfer-
ence issues and some of the aforementioned design challenges

with a distinct approach: ephemeral storage systems, such as
ad-hoc filesystems [S]]. Ephemeral systems are designed to be
executed next to the computation, as opposed to the more tradi-
tional approach of independent storage nodes (shared by multi-
ple applications). In the context of HPC and task-queued sys-
tems, this means that those storage systems can be deployed
using the same nodes than the job, thus having exclusive access
to them avoiding any interference with other jobs. Ephemeral
systems can also be used in other environments; the orchestra-
tion will differ in a case to case scenario, but in all cases the
storage system is deployed on top of the same resources as the
application. Because they are more tightly coupled to the ap-
plication, they can also be optimized for the specific applica-
tion requirements, and can be implemented and used from user
space.

We can see how this frame changes certain challenges and
previously mentioned considerations. For instance, multi-tenancy
and interference is irrelevant for user-deployed node local in-
frastructures; and resource management has small repercussions
in the absence of multi-application interactions. Those kind of
storage systems are able to achieve great performance under the
proper conditions. It follows that an active ephemeral object
store would ensure an extremely high performance, given its
high data locality and its ephemeral strengths. A non-ephemeral
setup with similar characteristics is achievable, but it will be
more sensitive to interference and will also require efforts to ad-
dress inherent challenges such as multi-tenancy, resource man-
agement, etc.

With all those ideas in mind, this article will propose and
discuss an active object store architecture with flexible (user-
defined and application-specific) active routines. In addition to
the fundamental design of the active storage system, we will
also study the impact and potential related to the usage of an
NVM technology within this environment. This kind of mem-
ories are able to leverage data locality thanks to their byte-ad-
dressable nature. It follows that they can be a valuable asset in
our context and greatly improve the performance of data pro-
cessing applications.

In order to evaluate and demonstrate the potential of the
proposed active object store we will use a series of applications
and run them in an NVM-equipped hyper-converged node, un-
der various memory configurations.

The main contributions of this paper are the following:

o Revisiting the active object store concept. We will dis-
cuss its strengths and its potential to exploit data locality
beyond the current state of the art. This study is of spe-
cial relevance, given the appearance of NVM devices that
will change the overhead weights due to their fast access
time and their byte addressable nature, enabling in-site
computation.

o Evaluation of an active object store integrating NVM
technology. We will showcase the characteristics and
performance of an actual implementation of an active ob-
ject store, dataClay [24], leveraging NVM devices to ex-
ploit data locality. Our evaluation will use a set of well-



known kernel applications that serve as representatives of
a wide range of applications and use cases.

e The characterization of the performance across dif-
ferent memory configurations. The evaluation will be
done with Intel Optane DC, an NVM device supporting
different configuration modes. We will evaluate the gen-
eral byte-addressable access to such memories —in Op-
tane terminology, this is called App Direct mode— as well
as an Optane DC exclusive configuration, Memory Mode,
which uses NVM as system memory and DRAM as a
cache layer.

The paper is structured as follows: In Section 2] we will re-
view related work and state of the art context of active object
stores and related storage systems. Section [3|discusses the no-
tion of the object store, including the active capabilities that we
will be using as well as the impact and usage strategies of the
NVM. After that, Section 4| contains an overview of the differ-
ent applications that we will be using for the evaluation. The
software and hardware configuration will be detailed in Sec-
tion @ just before the evaluation (Section @) Finally, Section
contains the discussion and conclusions reached after analyzing
the performance and results obtained.

2. Related work

2.1. Active object stores

The popularity of object stores has soared in the last decades.

They have become ubiquitous in the cloud arena as a flexible
solution to the scale-out requirements of the cloud growth. The
OpenStack group has Swift [29] as their in-house object store.
S3 [3]], from the Amazon ecosystem, has become a de facto ob-
ject store standard. Object stores have also entered the HPC
ecosystem: Ceph [41] is a distributed filesystem targeted for
high-performance with a built-in object store interface. Intel
has also contributed to this field by publishing DAOS, an object
store that has been “designed from the ground up for massively
distributed Non Volatile Memory” [[15]].

Extending some of the aforementioned object stores with
certain active features has been discussed and subject of exper-
imentation. Ceph has the concept of object classes [[11]], a fea-
ture that can be used during build/deploy stage of the storage
system. These shared object classes are able to improve data
locality by the execution of routines (previously deployed into
the storage nodes, aka as OSDs) within the storage infrastruc-
ture itself instead of the client —which is an active feature of the
storage system.

Another project that extends an object store with active fea-
tures is Storlets [28]], which belongs to OpenStack. Its purpose
is to “extend Swift with the ability to run user defined compu-
tations —called storlets— near the data (...)”. This describes the
active feature of an object store as a means to improve data lo-
cality. This feature can be used during runtime, but their trigger
mechanism is limited to specific operations on the object store
(get, put, copy) and the executed code can only involve the ob-
ject that is being accessed.

The aforementioned active features showcase the strengths
of an active object store, but they cannot be used for arbitrary
application flows. For the Storlets project, the scope is limited
due to the trigger mechanisms (not at-will, but limited to the
get, put, copy operations on the object store). For the Ceph
Object Classes, the deployment of classes has dependencies on
the internal functionality of Ceph, which restricts users to build
object classes within the tree. These limitations hinder the ver-
satility of those solutions.

In the context of DAOS, the work of Lofstead et al. [23] pro-
poses an architecture for a future exascale storage system, using
DAOS as backend. It is relevant to mention the Function and
Analysis Shipping mechanisms described in that article. The
main idea behind those code shipping mechanisms is the avoid-
ance of data transfers —which results in an improvement on data
locality. However, those mechanisms are not integrated into the
object store: DAOS is used for persistence (in I/O nodes) while
execution is done in the compute nodes on top of HDF5. The
goal of improving data locality through the shipping of code
is shared with our objectives, but our design goes one step be-
yond and integrates this code shipping and code execution into
the object store, resulting in an active object store.

We can see other storage systems that strive to improve per-
formance by shipping code where data is. The ActiveSpaces
framework [6] is an example: a storage system capable of mov-
ing (and executing) code where the data is being staged. War-
ren et al. [40] discuss an object/array centric approach that is
able to use shared libraries or application executables in order
to perform what we will be calling active operations. Those
approaches show the advantages of active strategies; however
they provide a low-level interface and expect extensive knowl-
edge (from the application developer) regarding the architecture
in terms of network and computation resources.

2.2. Ephemeral systems

Given the computational requirements that an active object
store will have, it is natural to look into the ephemeral designs.
Interference is a problem that arises when storage systems are
shared and the computation cost increases. By using an ephem-
eral system, the storage stack is deployed close and exclusive
to the application (in the same nodes).

A relevant discussion and in-depth analysis on ephemeral
systems has already been done by Brinkmann et al. [S]; that
article discusses the general ideas of ad-hoc file systems as
well as the specific characteristics of three implementations:
BeeOND [[13]], GekkoFS [37]], and BurstFS [39].

By design, ephemeral systems resources are the ones avail-
able for the application; this makes them a perfect candidate
for active storage systems, which are specially sensible to inter-
ference and resource conflicts. An active storage system does
not have to be an ephemeral system, but deploying it as such is
straightforward and eases certain deployment challenges.

2.3. Leveraging different memory tiers

The speed of block storage has been an important challenge
for storage systems. Compared to system memory, block de-
vices have slow access due to their lower bandwidth and higher



latency. That problem has been tackled with different strategies.
An elementary solution to this problem is to not use the disk at
all, which is the basis of the RAMCIlouds infrastructure [30]].
This is a high performance storage system that achieves great
scalability and very low latency by only using the DRAM.

Data Elevator [[7] is an example of a software library that
attempts to address the problem of the storage hierarchy. The
library performs the movement of data between the different
memory tiers, and it does so in an efficient way that is transpar-
ent from the application point of view.

The appearance of non-volatile memory devices created new
research lines and also rejuvenated a whole lot of existing ones.
For example, Fan et al. propose the Hibachi cache [43] and
discuss the improvements of a cooperative cache (which uses
DRAM and NVRAM) between different memory tiers. Her-
mes [21] is an example of a buffering system which is aware
(and takes advantage) of all the different tiers in the storage
hierarchy —including NVRAM. In the distributed file systems
field there have also been some efforts on improving distributed
file systems thanks to the new NVM tier, a topic that has been
explored and evaluated by Herodotou and Kakoulli [12]. A the-
oretical approach combining the three memory tiers (DRAM,
NVM and SSD) for database systems is discussed by Alexan-
der van Renen er al. [36]. All those research topics focus on
a low-level integration, with special highlights on the caching
policies of those systems and their performance from within the
storage system. Our main focus is in the higher level integra-
tion, specifically on how an active object store would be able
to take advantage of the new memory tier and exploit its byte-
addressable nature.

The potential of NVM devices has also been explored within
the database management field. For instance, Facebook re-
searchers designed a system using NVM [9]] which resulted in
a decrease of the DRAM footprint in a production data center
environment while maintaining comparable performance; the
use case in that article is strictly focused on a MySQL storage
engine implementation: MyRocks [10]. Similar results can be
obtained with an Online Transaction Processing database sys-
tem as shown in the work of Liu et al. [22]]. Those articles
demonstrate how a database management system can leverage
NVM in order to achieve a performance comparable to DRAM
at a fraction of its cost.

2.4. Dedicated hardware for active features

The concept of processing data from within its location has
also been explored from the hardware standpoint; that is the
case for Intelligent Disks (IDISKs [20]]) and also discussed by
Kannan et al. [18) [19]. That last line of research evaluates
the active paradigm —on an architecture that includes additional
hardware compute units— with NVRAM technologies. Nider et
al. discuss Processing in Storage Class Memory [27], an arti-
cle that shows promising results on this main idea of processing
in NVM. The data locality obtained during execution in those
articles resembles the one that we will be presenting, but our
infrastructure will be based in a software storage system, more
precisely an active object store —which takes advantage of the
NVM byte-addressable nature through the dax features.

3. Object store

3.1. Foundations

The starting point that we are considering is an object store,

a software stack capable of storing objects (e.g., [29,13,/4]). The
canonical way of using this kind of storage system is through
the get/put interface of the object store. The get operation re-
trieves a byte array —i.e., a previously stored object). The put
operation sends the object data —again, in the form of byte array—
for the storage system to store it.

From the point of view of the application, the dataset is
split onto objects and stored in the storage system. The idea
of distributing (splitting) a dataset onto objects is crucial for
distributed environments —both from the point of view of dis-
tributed storage and distributed execution. The distribution mech-
anisms fall outside the scope of this article, but they are well-
known and ubiquitous; we will be following this “splitting datasets
onto objects” main idea both for the discussion as well as for the
evaluation of applications.

In our specific environment, we will be using an object store
with additional features, such as the active capabilities and the
ability to take advantage of NVM memory. Those aspects are
discussed in the following subsections.

3.2. Active capabilities

The first goal of our proposed storage system is the avail-
ability and exploitation of active features. The active feature is
a mechanism that will enable the execution of code from inside
the object store; that code will be able to access, modify and/or
process objects residing within the object store.

We will refer to the code being executed in the object store
as active method. In order to have a flexible and versatile solu-
tion, those methods should be application-specific. This implies
that there should be some code-shipping mechanism that al-
lows the application developer to send the code for those active
methods to the storage system space; we will consider a reg-
istration mechanism that happens on application initialization.
The aforementioned strategy is not the only way of achieving
our goal, but we believe that doing this active method registra-
tion on application initialization is a reasonable approach: the
active method code definition/registration can be application-
driven and this process is performed outside the execution crit-
ical path —i.e., it does not impact application performance.

During application execution, after the active methods are
registered, the application can invoke those methods. This re-
sembles a Remote Procedure Call mechanism; but the gist of
this execution (the active feature) is that the object store will
have the objects directly accessible and thus will be able to ac-
cess them efficiently and execute the code on them, and then
return the result —this, in most cases, avoids the needless serial-
ization, transfer and deserialization of the whole object.

The active methods —the code executed by the active storage
system— will typically be a fairly precise and narrow data-cen-
tric code. Note that the characteristics of the shipped code are
merely a guideline, as the discussion in this article imposes no
constraints regarding the complexity and shipping of said code.
Howeyver, it is realistic to assume that code offloaded into the
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Figure 1: Configuration modes for the OptaneDC NVM

storage systems will be data-intensive —the code that will bene-
fit the most from the data locality and active capabilities of the
system.

3.3. NVM usage

There are two strong motivations that have driven us to con-
sider supporting NVM devices in our proposed active storage
system:

e They have much better performance than drives, avail-
able at a fraction of the price-per-byte cost of DRAM.
This allows the object store to manage big datasets —
datasets that would not fit in DRAM- without incurring
in the high performance penalties of storing and access-
ing them to/from drives.

e They are byte-addressable, which enables in-place exe-
cution (i.e., direct load/store accesses are possible and
efficient, without moving data to DRAM). Being able to
execute code in-place can boost the data locality; this per-
fectly combines with the idea of an active storage system
that is itself improving data locality.

The NVM devices that we will be using for the evaluation
are Intel Optane DC devices, which have two main operating
modes [14]: Memory Mode and App Direct.

The first operation mode (called Memory Mode, Figure|l(a))
presents a big (but volatile) system memory address space, trans-
parently accessible by all software. This is achieved by the ag-
gregation of the Optane DC memory into a single flat memory
space. This memory space is transparent to the object store and
any software being run in the system. The DRAM of the sys-
tem is used as cache for this memory space. The hardware will
be the one responsible of moving data back and forth between
DRAM and NVM. This mode of operation does not require any
software adaptation to the OptaneDC devices.

Note that under Memory Mode configuration the memory
space remains volatile in nature; if persistence is desired, it
should be managed outside the Memory Mode bound devices.

When the system is configured in App Direct (Figure[I(b)),
the system memory is unchanged and the Optane DC devices
memory is persistent and independent from the main system
memory. This is the canonical way of using any NVM device:
an additional memory tier that can be accessed from the appli-
cation/middleware. Under this configuration the object store is
able to access data both in the DRAM and in the NVM, in a

byte-addressable fashion. In order to use that memory space,
applications can take advantage of the Direct Access (dax) fea-
ture which allows applications direct load/store access to persis-
tent memory by memory-mapping files on a persistent memory
aware file system [33} [1]].

The assignment of persistent memory into one or the other
operation mode is a static parameter and changing the config-
uration of the Optane DC devices will require a reboot of the
machine. It is also possible to segregate the memory into two
regions and use a different mode in each one, and thus each re-
gion will behave according to its configuration. In this article
we will evaluate and discuss each mode separately, which will
allow us to characterize them properly.

3.4. dataClay

The object store that we will be using for the discussion and
evaluation is dataClay [24]], a distributed active object store.
Objects in dataClay can have active methods, and the frame-
work enables the remote invocation of such methods —i.e., the
framework has the required active capabilities that we will be
discussing and evaluating.

On top of the active built-in capabilities, the programming
model of dataClay allows us to integrate the NVM onto the
storage system and support the different operation modes afore-
mentioned. This is done through a widely used NVM library:
pynvm (more information on the software libraries and versions
used is provided in Section [3)). It is worth noting that several
Intel developers contribute to this library, which is an official
pmem.io [35] library.

The basic workflow of application development with data-
Clay starts with the class definition. The semantics closely fol-
lows the object-oriented programming paradigm: a class is de-
fined on a supported object oriented language (currently Python
or Java) and this class includes attributes and methods. The at-
tributes of the class become the schema of the stored objects,
and the methods of the class become the active methods that
we have mentioned earlier. The attributes of an object can be
references to other objects (just as one would expect in an ob-
ject oriented language) and method execution can access other
objects as well, and/or other objects’ methods.

The following snippet shows a basic example on Python of
a class definition that could be registered into dataClay:

class Block(DataClayObject):
@ClassField data numpy.ndarray
@ClassField label str
@dclayMethod (return_="float )
def mean(self):
return self.data.mean()

This example shows a very simple Block class with two
attributes and an active method.

It is encouraged to perform the registration outside the ex-
ecution critical path, before the application execution (during
the initialization step). In dataClay, this registration is done by




a client utility; this utility takes the class definition source code,
checks its validity and sends it to an API endpoint that pro-
cesses the code. After this registration process, any application
will become able to persist and use objects. The invocation of
a method on a persisted object results in an active method ex-
ecution —which constitutes the active capabilities of the object
store.

The following code shows how a Python application may
use the previous Block class example during execution.

from registered.model import Block

b = Block(”MyLabel”, [1, 2, 3])
b. makePersistent ()
m = b.mean() # Remote active method

The transparent behaviour of dataClay is achieved through
the use of stubs. Similarly to the registration process, the re-
trieval of stubs is done through the dataClay client utility. The
utility will connect to the dataClay API and ask for a class; the
endpoint will reply by sending back the stub code of that class.
Those stubs behave identically to the original classes until the
moment that makePersistent is called, i.e., when the object
is persisted into dataClay. From that point on, all attribute ac-
cesses and method invocations result in a transparent RPC to
dataClay, performed by the dataClay client library.

Internally, the dataClay execution subsystem uses the canon-
ical representation of the object according to the object-oriented
programming language. This means that a Python-defined class
will result in Python objects, allocated within a Python inter-
preter. When an active method is invoked on such objects, the
code is executed in the interpreter memory space; there is no
need for additional memory copies or data transformations, a
fundamental property in order to take advantage of the data lo-
cality potential of the system. This property holds true as long
as the object is cached —i.e., while the object is loaded in the
Python interpreter memory space. Object management within
dataClay supports the serialization of objects and their persis-
tence to block storage; this happens automatically on various
scenarios, for example when there is memory pressure, or when
the storage system shuts down. In this article, we are consid-
ering an scenario where the node has plenty of NVM mem-
ory available -meaning we expect no memory pressure, as the
objects can be held in-memory/in-NVM without issue. This
results in executions where all objects maintain that canonical
object representation.

In addition to the services which constitute the storage sys-
tem, dataClay is a library that provides the programming lan-
guage integration for all those active features to work seam-
lessly. From the application developer point of view, this means
that a call to a method on an object will result in a remote active
method execution, transparently managed by the client library.

4. Applications and data structures

Our objective is to show how data locality plays an impor-
tant role on the performance of applications. We have chosen a

set of applications that showcase a diversity of workloads that
are representative of several application domains, such as nu-
merical methods, machine learning algorithms, data analytics
or big data. The applications we propose are: histogram, k-
means, matrix addition and matrix multiplication. They are
well-known kernels of more complex real-life applications. Not
only they are widely used but their behavior is representative of
a much larger set of applications; this will be discussed on a
per-application basis in the next subsections. In this article, and
in the context of the chosen applications, we will focus on the
impact and potential brought by the active object store, and the
general performance attainable with the active features.

For the non-active evaluation, the method will be executed
in the application itself and the object store will transfer the
dataset on demand —just as we would naturally do with an object
store, with no active features nor remote code execution of any
kind. The division of the dataset and the computation hardware
remain the same in both the active and non-active evaluations;
see Section [3] for more details on the software and hardware
configuration.

4.1. Overview and comparison

The four chosen applications will be used as representatives
of a wide scope of applications. The evaluation will consider
two different dataset sizes: small dataset (which fits in DRAM)
and big dataset (which does not fit in DRAM). The dataset is
divided onto objects, for which we will consider two different
sizes: (a) big objects and (b) small objects. The dataset size has
no impact on the object size, only on the number of objects. In
the latter —small objects scenario—, the objects are shaped to be
roughly the size of the CPU cache (about a dozen megabytes)
while the former —big objects— are an order of magnitude big-
ger. The object size affects the method execution and also has
an impact on the granularity of the storage system: smaller ob-
jects will result in more method invocations, which means more
network calls, but with smaller sizes (i.e., less work per object).

The internal structure of the object will naturally vary be-
tween applications; for the applications that we will be dis-
cussing it will be one of the following:

o An array of values —Histogram
e An array of multi-dimensional points —k-means

e A submatrix —Matrix addition and Matrix multiplica-
tion

Before discussing each application individually (onfd.2] #.3]
M.4] andf.5), we will first explain the metrics and indicators that
will help classify them to better understand their behaviour:

Data access pattern. We will differentiate between sequential
and non-sequential access patterns. An application is consid-
ered to have a sequential access pattern if the whole input dataset
is accessed in a predetermined ordered sequence starting at the
beginning and finishing at the end, without “jumps” nor “holes”.



Application || Data access Object | Reuse Computation | Method Output
pattern reuse factor to data ratio | comp. index | size ratio
(ms/MB) (ms/MB) (byte/byte)
. (a) . 7.65 7.63 ~ 10781
Histogram ) Sequential No — 76 763 kB const
(a) . i 6.57 5.08 ~ 10701
k-means ) Sequential Yes 10x 382 131 R0KB const
. (a) . 0.0507 0.0457
Matrix add. (b) Sequential No — 0.139 0.0107 0.5
. (a) . 6x* 5.54 4.50
Matrix mul. ) Non-sequential Yes o 308 505 0.5

(a) big objects

(b) small objects

q Given that these algorithms have a constant output size, this value represents the order of magnitude of the ratio for the datasets chosen in this article (both the
small and the big datasets). The output size ratios will naturally decrease as the input size increases.
+ The data reuse of the k-means algorithm will generally depend on the convergence criteria and the dataset. In this article we have fixed the number of iterations to
10, and that is what the evaluation will show.
I This value reflects the reuse of objects, which is the relevant metric from the object store point of view. The reuse of block submatrices will depend on the shape
(in terms of submatrices) of the input matrix. For the matrix multiplication implementation in particular, the reuse ratio will be equal to the number of submatrices
in the side of a matrix. Le., a 42X reuse ratio happens when the input matrices consists of 42 x 42 submatrices.

Table 1: Comparison on the different complexity and data access patterns for the applications

Object reuse. From the object store point of view, we will con-
sider that an application has object reuse if during its execu-
tion a certain object is accessed more than once. An iterative
algorithm will obviously have object reuse, but other kind of
applications can also have object reuse.

Reuse factor. This factor will be applicable to applications that
have Object reuse. This factor is equivalent to how many times
each object is accessed during an application execution.

Computation to data ratio. This ratio is obtained by dividing
the computation time of a baseline execution —as shown later
in section [6}- by the input dataset size. The units used are mil-
liseconds by megabytes. This ratio gives insight on the general
behaviour of the application. As a rule of thumb, a low ratio
will be an indicator of a memory bound application with low
execution times. On the same fashion, a high ratio would be a
main trait of compute bound applications that have high execu-
tion times.

Method computation index. We know beforehand how many
times a certain method will be executed along a full application
run. The method computation index is obtained by dividing
the total method execution time (extrapolated from the method
execution time baseline) by the aggregated input size of all the
method calls. The units used are the same as the ones used in
the computation to data ratio: milliseconds by megabytes. This
index gives insight on the method behaviour while also taking
into account (implicitly) the object reuse —the input size of all
the method calls will count with multiplicity the input dataset.

Output size ratio. The quantity of write operations is related to
the size of the output dataset. The output size ratio is obtained
by dividing the input dataset by the output, which gives a first
intuition on the relevance of write operations for the applica-
tion. It is a unitless ratio.

(\11.52, 0.25,...0.81, 1.93, 5.29, ... 0.21, 0.75, 0.36, ... 1.36, ... 0.98, 1.61, ... 25.99)
. 2 AN s AN AN g 5/

Object Object Object Object
#1 #2 #3 #m

Figure 2: Object data structure for histogram input dataset

Table|1|contains the results for all the previously explained
metrics. The rest of this section contains further discussion on
each individual application.

4.2. Histogram

The first application is a histogram done onto an array of
floating point numbers generated randomly following a F-dis-
tribution. The F-distribution has been used because its shape
is easily identifiable, it is asymmetric and non-negative. The
intervals of the histogram are 140 predefined bins, spanning
from O to infinity, and are non-homogeneous in size. The his-
togram method aggregates the number of points that fall inside
a bin, and it returns those values —an array of integers, with as
many entries as bins. For a histogram execution the whole in-
put dataset is read once; this means that this application has a
sequential data access pattern with no object reuse.

The general behaviour of the histogram application will re-
semble a whole family of scientific and big-data applications
such as: filtering, max/min finding, linear searches, post-pro-
cessing. .. In general, the reduce step (from a map-reduce pro-
gramming model application) will also follow this same mem-
ory access pattern. The basis of our discussion will be an im-
plementation of the histogram application but the results and
discussion can be extrapolated to all those other applications
—applications which read a big dataset once with no sizeable
write operations.



Data structure. The input dataset is an array of floating point
values. This data structure is split into blocks, each block be-
coming an object in the object store —as shown in Figure [2]
Those objects are numpy arrays of floating point values. The
output data is a numpy array containing integers —the aggre-
gates associated to the bins. This result is of small size and
is returned by the method —it is not stored in the object store.
The output size is several order of magnitudes smaller than the
input, and it is constant in size.

Method characteristics. The code computes the histogram for
a single object (a block). This method returns the evaluation a
partial histogram and —afterwards, outside the method— all the
results are merged onto the final histogram.

4.3. k-means clustering

The next application that will be discussed is an implemen-
tation of the iterative standard algorithm (also called Lloyd’s al-
gorithm) for the k-means clustering method. Given its ubiquity
and for the sake of brevity, we will refer to either the method,
the algorithm, and the implementation, as simply k-means.

The k-means is an iterative implementation in which, for
each iteration, all the points are read and new center clusters
are evaluated. As one can imagine, the memory access pattern
for this is completely deterministic and predictable, given that
all the points are accessed in a single sweep fashion and only
a small quantity of data needs to be written: the cluster centers
—new ones are generated for each iteration. This application
presents a sequential data access pattern, with object reuse.
The reuse factor will depend on the number of iterations.

The input dataset is a cloud of points generated randomly
before starting the application. The number of centers is fixed
at 20. Instead of waiting for convergence criteria of said cen-
troids we have fixed the number of iterations to 10 —i.e., the
reuse factor is equal to 10. This configuration setup does not
change the computational complexity, nor does it have any im-
pact on the execution time of a single iteration. Obviously, a
realistic dataset may need more iterations before reaching con-
vergence and that number of iterations would depend on the ini-
tial centers. However, 10 iterations is enough to showcase the
data reuse phenomenon of the algorithm and ensures that the
results are repeatable and can be extrapolated to real datasets.

We have chosen the k-means clustering algorithm as a rep-
resentative of machine learning algorithms that perform several
sequential reads of the input data. Of course this general be-
haviour is not unique to the k-means and we can find other sci-
entific and machine learning applications with similar patterns
(genetic algorithms, temporal simulations...). The results and
discussion in this article can be extrapolated to any of those ap-
plications that share this same memory access pattern —a big
dataset that is read, whole, several times during the application
execution.

Data structure. The input dataset representation is an array of
n-dimensional points. This data structure is split into blocks,
each block becoming an object in the object store —as shown
in Figure [3| Those objects are numpy matrices, each of which

Number of dimensions
A

((0.58 0.28 0.32 ... 0.21) ‘ .
(0.10 0.25 047 ... 0.57) | O?fa
@ | (0.07 0.54 0.64 ... 0.02) ‘
2 | (0.61 0.11 0.59 ... 0.64) ‘ .
S | (088053 048 ... 0.61) | | Object
°< . | #2
}é (0.62 0.21 0.28 ... 0.94)
E
Z | (0.46 0.68 0.03 ... 0.42) | pumwm
(0.88 0.01 0.73 ... 0.95) | O:Ject
m
L (0.15 0.80 0.97 ... 0.67)

Figure 3: Object data structure for k-means input dataset

represents a set of n-dimensional points. The output data is
itself a numpy matrix, representing the centroids (which are n-
dimensional points). This centroids structure is quite small as
the number of centroids will be orders of magnitude smaller
than the number of points, and thus the method will return the
centroids data structure by value —they will not be stored in the
object store.

Method characteristics. The method part of the algorithm re-
ceives the last iteration centroids as an input. This function is
able to perform categorization for the points in a single object
(the current block) and also evaluate a partial summation for its
points given the centroids. All the partial summations can then
be processed —outside the method— in order to obtain the cen-
troids for the next iteration. Note that both centroids and partial
summations are small data structures; their size is related to the
number of centroids which is orders of magnitude smaller than
the number of points.

4.4. Matrix addition

The matrix addition implementation will use randomly gen-
erated matrices (two n X n square matrices) and perform their
addition (resulting in a third n X n square matrix). The complex-
ity of the matrix addition operation is O(n?).

The data access pattern for the addition operation is pre-
dictable and deterministic: a single sweep is done to both input
matrices; within this sweep the data is written to an output ma-
trix, without reusing the input blocks. The application presents
a sequential data access pattern, with no object reuse.

The memory access pattern of this application can be seen
in a lot of different applications, meaning that the discussion
and results obtained for this application can be extrapolated
to those other ones. For example, map functions (from map-
reduce programming model applications) fall within this spec-
trum, as well as most data transformations kernels. All those
applications are implemented by being applied to a big dataset,
sequentially, and yielding an output dataset, which is exactly
the general behaviour of the matrix addition.



Figure 4: Object data structure for matrix data structures

Data structure. The input dataset are two square n X n matri-
ces. The output dataset is a single n X n matrix. Each matrix
is represented as a two-dimensional array of submatrices —each
submatrix is k X k. Those submatrices are stored as objects in
the object store —as shown in Figure f] The size of the output
matrix equals the size of either of the input matrices, meaning
that the output size ratio is equal to one half.

Method characteristics. The addition of two objects (two k X k
submatrices) is what the method computes. The output of that
function is itself a new object (a submatrix) that may or may not
be put into the object store —i.e., persisted and/or put in NVM.
We will specifically discuss the placement of this output object
in the evaluation.

4.5. Matrix multiplication

The matrix multiplication will use (just as in the matrix ad-
dition) randomly generated n X n matrices. We will consider the
iterative multiplication implementation with O(n*) complexity.
All previous applications have a computational complexity that
matches their storage requirements. But that is not satisfied by
the matrix multiplication: the computational complexity (O(n*))
has a substantially larger growth than its storage (O(n?)). That
difference between storage and computation means that the stor-
age access overhead becomes less and less important (perfor-
mance-wise) when the dataset is increased.

The data access pattern for matrix multiplication is more
complex than the matrix addition. In the discussed implemen-
tation, which uses “block matrices”, the computation of the re-
sult is done by iteration of the output blocks. Each output block
requires a certain quantity of multiplications and additions of
input blocks. Once those multiplications and additions are fin-
ished, the output block can be stored and it won’t be reused
again. Note that there is reuse of the input blocks, as any block
in the input matrices will be used to compute more than one
block of the output matrix. This makes this application have
much more data reuse than previous ones; and even though the
reuse of data follows a deterministic pattern, it is not a trivial
one —e.g., it is not multiple full sweeps as we could observe
in the k-means. This application is a representative of non-
sequential data access pattern with object reuse —as well as
having a method implementation with data reuse.

We have chosen the matrix multiplication as an iconic and
well-known numerical kernel, although we can find other ma-
trix algorithms that will follow similar memory access pattern

on input and output matrices —for example, matrix decompo-
sition algorithms. One can also expect this pattern of non-
sequential reads onto big datasets in certain applications like
mesh-based simulations, data analytics, and others.

Data structure. Same as in E.4 Matrix addition.

Method characteristics. The method is responsible of perform-
ing a multiply-accumulate operation. This is used with the
(initially zero-initialized) output objects (submatrices) in or-
der to perform the matrix row-by-column multiplications and
additions. Using multiply-accumulate mechanisms —which are
sometimes called fused mutiply-add or FMA in low-level jargon—
for matrix multiplication is a well-known approach and it is ap-
propriate for a block matrix multiplication algorithm.

5. Methodology

5.1. Hardware platform

All the experiments will be done in a system equipped with
Optane DC Persistent Memory Modules. The technical specs
of that node are the following:

o 2xIntel® Xeon® Platinum 8260L CPU @ 2.40GHz
e 192GB (12x16GB, 2666MHz) of DRAM

e 6TB (12x512GB modules) of Intel® Optane™ DC Per-
sistent Memory

This machine contains a total of 48 (2 X 24) usable cores.
The machine supports both the Memory Mode and App Direct
execution modes; a reboot is required in order for its mode to
be changed.

All the experiments will be evaluated with the same single
machine, both while using dataClay (active object store) and
while using DAOS (non-active object store). The executions
will be done sequentially, although the numerical libraries will
be taking advantage of the multiple cores through their internal
multithreading capabilities. The availability of two CPU sock-
ets allows us to isolate the application and the object store by
placing them (by binding processes) to different sockets.

If we look into the hardware cost and compare the cost
per gigabyte of DRAM versus NVM we can expect the latter
to be lower; for typical builds, Intel reports savings of up to
30%][16. Persistent Memory also allows a system to dramati-
cally increase the total available memory. For starters, one can
easily find 512GB Persistent Memory DIMM modules. More-
over, the price of a DRAM DIMM can be 5 to 10 times higher
than a same-sized Optane Persistent Memory DIMM][2]].

Moreover, the evolution of storage technologies has always
led to increasing their performance, enlarging their capacity,
and becoming more affordable. This happened with consumer
hard drives and the pattern repeated with the SSD technology. It
is natural to expect a similar evolution with NVM technology.

In this article all datasets will be smaller than the available
Persistent Memory. There is no technical limitation behind this
decision, as the object store is designed to use the disk when



required. However, doing so will incur in staging operations
—just as any storage system would. Those disk staging opera-
tions are completely orthogonal to the active features and to the
evaluation focus.

5.2. Software libraries and deployment

The dataClay framework has been deployed following stan-
dard installation and configuration procedures, and its Python
bindings configured in the system. We will follow a common
ephemeral strategy regarding deployment and usage of data-
Clay framework; in our context, the software stack is deployed
in the same node as the application and they share computation
and storage resources (meaning CPU and memory). An ephem-
eral configuration means that the storage system is not shared
amongst other applications, and that reduces the expected inter-
ference problems. The application and the storage systems do
share resources, but that results in a fair comparison: applica-
tion is executed by the same total available resources, whether
active features are used or not.

Both Memory Mode and App Direct are supported and eval-
uvated. Under the Memory Mode configuration, dataClay re-
quires no changes given the transparent nature of the MM.

For the App Direct configuration, certain code injections are
required. The proposed implementation uses the PMDK [34]
33| libraries (version 1.5), and its pynvm Python bindings [35]
of PMDK (version: 0.3.1). The numerical structures used in
the applications are numpy arrays, represented as contiguous in-
memory buffers —their canonical representation. Generally, any
data structure could be used as long as its in-memory represen-
tation was known —e.g., based on contiguous memory buffers.
We are using a recent (2020) version of Intel Distribution for
Python [17].

The non-active storage system used is DAOS [15], which
is a state of the art object store specifically designed by Intel
for non-volatile memories such as NVMe and Optane DC. The
DAOS software stack has proven itself to have a very high per-
formance, as shown in the 10500 ranking results [38]], where
—at the time of writing this document— DAOS has the highest
score.

This DAOS stack has been deployed following the standard
installation and set up procedures. In order to reduce exter-
nal interference to its minimum for the benchmarks, the DAOS
software has been configured to be using the Optane DC Per-
sistent Memory and no SSD nor replicas. The DAOS stack will
be used in the App Direct configuration, which is the mode in-
tended for DAOS.

6. Evaluation

In order to discuss the potential of an active object store —
compared to a non-active storage system— and the implications
that data locality can have on the application execution perfor-
mance we will be evaluating the four applications explained be-
fore (Histogram, k-means, Matrix Addition and Matrix Multi-
plication) under different configurations.

First and foremost, we will be focusing on the active be-
haviour of dataClay (the object store) while comparing it to a
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non-active object store (DAOS). The evaluation will take into
account the different configuration alternatives of the Optane
DC —the available NVM devices.

With all that in mind, we will be evaluating two differ-
ent dataset sizes. First, a small dataset, where the whole data
structures (both input and output) are smaller than the available
DRAM. The other one, the big dataset, is dimensioned to be
at least twice as big as the system memory, which ensures that
the access to the NVM is realistic —smaller datasets may take
advantage of cache through the faster DRAM, which would re-
sult in over-optimistic execution times. For each dataset size
we will evaluate two different object sizes —as discussed in Sec-
tiond.1I] The object size does not impact the total dataset size;
big objects will result in fewer active method invocations but
with a higher cost (due to the higher data per object).

The four different setups (three active ones with dataClay
with different memory configurations, and one non-active one
with DAOS) are the following:

dC DRAM [dataClay, Active] Consists on an application ex-
ecution where the object store holds all the dataset in
DRAM. This can only be evaluated for the small dataset
as, by design, the big dataset does not fit in DRAM. The
application will invoke the active method within data-
Clay. The NVM is not used in this scenario. The objec-
tive of this configuration is to evaluate the active object
store with the fastest memory.

dC NVM [dataClay, Active] In this configuration, the input
dataset resides in the NVM. The application will invoke
the active method within dataClay. Said active method
will perform in-place execution. The objective of this
configuration is to evaluate the impact of the NVM per-
formance and the potential of in-place execution on NVM.

dC MM [dataClay, Active] When the Memory Mode is con-
figured, the object store holds the dataset in the flat mem-
ory space of system memory —that combines the NVM as
main memory plus DRAM as a cache layer in a trans-
parent fashion. The application will invoke the active
method within dataClay. The objective of this configura-
tion is for comparison when the NVM memory space is
managed by the hardware with a single memory space —
as oposed to the previous configuration where the DRAM
and NVM memory spaces are separated and managed at
the storage system level.

DAOS [DAOS, Non-active] The DAOS object store is used as
the baseline non-active storage system. In this configura-
tion the dataset is held in NVM by the storage stack. The
application will retrieve the objects from the object store
and execute the (non-active) method within the applica-
tion space (in DRAM).

6.1. Histogram

The execution times of the Histogram application can be
seen in the following figures: Figure [5] shows the execution
times for the small dataset and Figure [6] shows times for the
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Figure 5: Execution times of the histogram application for a small dataset
(n = 32 x10%. The dataClay (dC) executions use the active object store
in different configurations, while DAOS is the non-active one. The DRAM ex-
ecution uses no additional memory tier. The NVM execution is done in-place
on the persistent memory space. The MM execution uses the transparent mode
of the OptaneDC called Memory Mode.
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Figure 6: Execution times of the histogram application for a big dataset
(n = 25.6 x 10%). The dataClay (dC) executions use the active object store
in different configurations, while DAOS is the non-active one. The big dataset
does not fit in DRAM. The NVM execution is done in-place on the persistent
memory space, while the MM uses the Memory Mode transparent behaviour
available in the OptaneDC devices.
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big dataset. We will start by looking at the total execution
times (the whole bar, ignoring the lighter hatched portion for
now) for each configuration —on upcoming paragraphs we will
discuss about the meaning and insights given by the method
computational portion.

All the active execution times, regardless of the dataset size
or the object size, are roughly similar —within a 5% between
one another. We can observe that the non-active object store
execution (DAOS) is from a 10% up to a 20% slower. This
shows the overhead caused by the communication —memory
transfers and data copies between the non-active object store
and the application— in comparison to the computation. A sim-
ilar pattern would be shown by any similar application with no
data reuse and high computation to data ratio.

It is important to note that, when comparing the non-active
DAOS executions, using big objects is slower than using small
objects. This shows that the performance toll for the non-active
case is not a consequence of the number of RPC calls. In this
evaluation, small objects are 8 times smaller than big objects
which result in 8 times more RPC. It may seem natural to ex-
pect better performance with less RPC calls. Instead, the cost of
object transfers —required for non-active execution and the re-
sponsibility of the object store— increases with the object size,
which results in slower execution times for bigger objects. This
happens under the DAOS non-active executions for both dataset
sizes.

Upon closer inspection, it is surprising to observe how close
all the active configuration execution times are amongst them.
In order to shed some light on this behaviour we have included
an evaluation of the execution time of the method itself —the
piece of code that is shipped to the active object store. Figure[7]
shows the execution times of the method itself when this piece
of code is executed either in DRAM, in the NVM, or in the
Memory Mode OptaneDC configuration. Given that the Mem-
ory Mode acts as a transparent cache, we have evaluated this
last mode in both a hot and a cold configuration. Note how
for the method execution evaluation under Memory Mode we
are able to control the environment and consider both Aot and
cold execution times. For the full application execution we are
considering the hot execution time for the small dataset, as we
expect everything to fit in DRAM and thus hot. The cold exe-
cution time is used as the estimator for the big dataset; it serves
as a worst-case scenario, assuming that all accesses to the data
miss the DRAM and go to NVM. The lighter hatched bars in
Figure [5] and Figure [6] show the portion of execution time esti-
mated to be due to the method execution.

We have previously shown (see Table[I)) that the histogram
method has high computation times (high method computation
index). This means that, for the active execution modes, almost
all the execution time comes from the method itself and thus the
memory configuration has a small impact on the overall perfor-
mance of the application.

Insights. We have seen how the active configuration —and the
data locality it implies— introduces a 10% to 20% benefit to the
overall execution times. This application showcases an scenario
with no data reuse and a high method computation index. Un-
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Figure 7: Execution times for the histogram method. The DRAM execution
is done with no assistance of other memory tiers. The NVM execution is done
in-place on the persistent memory space. The MM executions correspond to the
transparent Memory Mode available in the OptaneDC devices, which resembles
a caching —hence the hot/cold executions.
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Figure 8: Execution times of the k-means application for a small dataset
(n = 6.4 x 10°). The dataClay (dC) executions use the active object store in
different configurations, while DAOS is the non-active one. The DRAM exe-
cution uses no additional memory tier. The NVM execution is done in-place on
the persistent memory space. The MM execution uses the transparent mode of
the OptaneDC called Memory Mode.

der those assumptions, the application has low sensitivity to the
exact memory configuration, meaning similar performance for
all NVM modes tested.

6.2. k-means

The execution times for the k-means application can be seen
in Figure [§] (for the small dataset) and Figure [J] (for the big
dataset). At a first glance we can see how, once again, there is a
clear benefit on using an active storage system when compared
to the non-active object store. The non-active overhead goes

from 30% —when comparing with the slowest active configuration—

up to a 300%. This increased gap between the active and non-
active setups is greater than on the previous application mainly
due to the data reuse of the application —all data is reused for
each iteration for a total of 10 iterations. This showcases how,
in relative terms under this scenario, the computation time is
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Figure 9: Execution times of the k-means application for a big dataset (n =
51.2x10%). The dataClay (dC) executions use the active object store in different
configurations, while DAOS is the non-active one. The big dataset does not
fit in DRAM. The NVM execution is done in-place on the persistent memory
space, while the MM uses the Memory Mode transparent behaviour available in
the OptaneDC devices.

less relevant and the time consumed by data transfers is more
prominent. However, it is also apparent that this application has
higher sensitivity to the object size as well as the memory con-
figuration, as shown by the higher spread on execution times
across the different configurations.

The k-means method being used —mainly, the pairwise dis-
tances evaluation as implemented in the numpy library— has a
certain quirk: it reads input data several times. That means that
the method implementation is performing multiple read oper-
ations onto the same object; that is a consequence of numpy’s
numerical implementation.

For a better understanding of the method behaviour we have
included the execution times in Figure [I0] The high execution
times on the NVM memory configuration —i.e., when data is
computed in-place in the NVM- suggest that the data reuse in
the method is amplifying the difference of speed between the
DRAM memory tier and the NVM one. The implementation
sensitivity to memory speed also explains the high variability
amongst DRAM-based executions -DRAM and MM (hot).

Insights. This application shows how algorithms that iterate
over the input dataset multiple times —or, more generally, that
have certain reuse along their execution— will obtain great ben-
efits from being executed in an active environment. This is the
consequence of the repeated access to the data, which magni-
fies the gains introduced by the data locality of the active object
store. This application also reminds us the relevance of the nu-
merical low-level implementation; the multiple read operations
done at the numpy library level has a huge impact on execution
times. Further improvements would require low-level knowl-
edge on the numerical library implementation and the develop-
ment of specific strategies for the application —something that
only makes sense for heavily used microkernels which warrants
the resource investment.

6.3. Matrix Addition

The next application used for the evaluation is the Matrix
addition. The execution times for the application when run with
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Figure 10: Execution times for the k-means method. The DRAM execution is
done with no assistance of other memory tiers. The NVM execution is done in-
place on the persistent memory space. The MM executions correspond to the
transparent Memory Mode available in the OptaneDC devices, which resembles
a caching —hence the hot/cold executions.

a small dataset and a big dataset can be seen respectively in
Figure[IT]and Figure [12}

This is the first application that has a sizeable output, so
a distinction is being made on both DAOS and dC NVM: the
result may be stored in the object store (store result) or kept
as volatile (in the DRAM). This distinction is not applicable to
neither the DRAM executions nor the MM ones, as neither of
those modes have different addressable memory spaces. Also
note that having the output result in DRAM is only possible if
the resulting data structure is smaller than the available DRAM.

The decisions on where to store the result will be driven by
the amount and availability of system memory —if there is no
shortage of memory, then the object store could always choose
the fastest memory available, but there will typically be restric-
tions in-place: memory footprint may be restricted or there may
exist certain prioritization.

We will be doing a static decision for the volatile vs store.
More complex applications would require additional thoughts
related to where to place result data structures. The decision
can be entirely developer driven, it can be decided by the soft-
ware stack, or it can be somewhat in-between by including an-
notations and reacting to them with runtime information.

The active configurations have a much better performance
than the non-active ones, specially when the result is stored in
DRAM (volatile result) —that active configuration is 15 times
faster than the best non-active one. Given that the matrix ad-
dition is a memory-bound application, this result could be ex-
pected: avoiding memory transfers is greatly beneficial to the
performance, something that the data locality exhibited by the
active object store is able to achieve. Moreover, having the re-
sult in DRAM while accessing the input dataset through the
NVM is a great way to optimize the available bandwidth: the
execution is performing all read operations from the NVM while
performing write operations to DRAM, avoiding the slower write
operations on the NVM and avoiding contention in both mem-
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Figure 11: Execution times of the matrix addition application for a small dataset
(n = 42000). The dataClay (dC) executions use the active object store in differ-
ent configurations, while DAOS is the non-active one. The DRAM execution
uses no additional memory tier. The NVM execution is done in-place on the
persistent memory space. The MM execution uses the transparent mode of the
OptaneDC called Memory Mode. The result may be held in DRAM (volatile
result executions) or stored in the object store (store result executions).
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Figure 12: Execution times of the matrix addition application for a big dataset
(n = 84000). The dataClay (dC) executions use the active object store in differ-
ent configurations, while DAOS is the non-active one. The big dataset does not
fit in DRAM. The NVM execution is done in-place on the persistent memory
space, while the MM uses the Memory Mode transparent behaviour available
in the OptaneDC devices. The result may be held in DRAM (volatile result
executions) or stored in the object store (store result executions).
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Figure 13: Execution times for the matrix addition method. The DRAM execu-
tion is done with no assistance of other memory tiers. The NVM execution is
done in-place on the persistent memory space. The MM executions correspond
to the transparent Memory Mode available in the OptaneDC devices, which re-
sembles a caching —hence the hot/cold executions.

ories. That is why this execution mode (dC NVM (volatile re-
sult)) has the best performance.

As done with previous applications, we include the method
execution times in Figure [[3] These results illustrate the high
cost of write operations onto the NVM for the following rea-
son: the first three execution modes (DRAM, NVM, and MM
(hot)) are very similar in performance, but they read the input
submatrices from different memory spaces (DRAM reads them
from system memory, NVM reads them from the NVM, and
MM (hot) is expected to use DRAM as it is running hot). How-
ever, they all have in common that they write the output object
to DRAM. The last mode, MM (cold), shows a much worse per-
formance due to the fact that it is writing the output object to
NVM, which results in a noticeable penalty.

Insights. There are two main ideas that can be drawn from this
application, ideas that can be interpolated to many memory-
bound applications. First of all, data locality (and thus, an active
storage system) can bring great benefits to such kind of applica-
tion thanks to the reduction of data transfers and memory copies
—memory operations that are the bottleneck of memory-bound
applications. Secondly, one can generally expect a trade-off be-
tween the memory footprint and performance for such kind of
applications. Given the NVM high write cost, it is beneficial to
perform all write operations onto fastest memory (in our spe-
cific scenario, that means having the output dataset in DRAM).
Just as already discussed in the previous applications, we can
observe how all active scenarios outperform the non-active one.
The active object store has some additional potential which,
in this case, allows for a further performance improvement by
leveraging both memory tiers, which sidesteps the bottleneck
of write bandwidth.
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Figure 14: Execution times of the matrix multiplication application for a small
dataset (n = 42000). The dataClay (dC) executions use the active object store
in different configurations, while DAOS is the non-active one. The DRAM ex-
ecution uses no additional memory tier. The NVM execution is done in-place
on the persistent memory space. The MM execution uses the transparent mode
of the OptaneDC called Memory Mode. The result may be held in DRAM
(volatile result executions) or stored in the object store (store result executions).
The store result execution corresponds to an execution which evaluates the out-
put object in DRAM and, after the active method invocation has finished, trans-
fers it to the object store. The other execution, in-place FMA, performs all the
operation in-place in the NVM, without having any input or output structure in
DRAM.
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Figure 15: Execution times of the matrix multiplication application for a big
dataset (n = 84000). The dataClay (dC) executions use the active object store
in different configurations, while DAOS is the non-active one. The big dataset
does not fit in DRAM. The NVM execution is done in-place on the persistent
memory space, while the MM uses the Memory Mode transparent behaviour
available in the OptaneDC devices. The result may be held in DRAM (volatile
result executions) or stored in the object store (store result executions). The
store result execution corresponds to an execution which evaluates the output
object in DRAM and, after the active method invocation has finished, transfers
it to the object store. The other execution, in-place FMA, performs all the
operation in-place in the NVM, without having any input or output structure in
DRAM.



6.4. Matrix Multiplication

The different execution times can be seen in Figure[T4](small
dataset) and Figure@ (big dataset). The data structures of Ma-
trix Multiplication (input dataset, output dataset, and objects)
are identical to the previous application, Matrix Addition; how-
ever, the memory access pattern and the computation require-
ments are completely different.

We can see a consistent good behavior of the active object
store, specially when using big objects where active executions
are 3 times faster than the non-active ones. The object reuse is
something that amplifies the costs of the non-active approach,
an aspect that we had already seen in the k-means application
(Section[6.2).

There is a huge difference between executions with big ob-
jects and small objects: active executions are almost 5 times
slower when using small objects than the ones using big ob-
jects. This is due to an increase on the active method invocation
count and general data reuse: that factor is 6x for big objects
and 42x for small objects as shown in Table[T} those factors are
a consequence of the different object size.

In the previous Matrix Addition application we had observed
a big impact when having the output dataset volatile or persisted
in the NVM. This difference is softened and it becomes almost
inappreciable. In this case, the long computations required by
the Matrix Multiplication (shown by the high computation to
data ratio in Table [I)) decreases the gap between the different
memory configurations —they all are within 15% between one
another for the small objects, and only 10% for big objects.
This remains true even while doing a write-heavy multiply-and-
add operation in-place in the NVM (labeled in-place FMA); this
configuration is more taxing regarding write operations on the
NVM but it yields a small overhead in relative terms.

We have already discussed the programming and develop-
ment aspect of the volatile vs store placement of the result (see
Matrix Addition evaluation @ and the same considerations
apply for the in-place FMA configuration.

The fastest memory configuration is to store the output Ma-
trix in DRAM (volatile result). However, the decreased gap
between executions implies that we can perform a huge Matrix
Multiplication with virtually zero DRAM footprint with a bear-
able performance degradation, as shown by the in-place FMA
execution times.

As in previous applications, we include the method execu-
tion time analysis in Figure [[6] The method execution when
done with big objects is almost the same (within 10%) across
all configurations, something that matches the behavior of the
application and is explained due to the high computation to data
ratio. For small objects, where the absolute execution times
are lower, the impact of the memory configuration is much
more visible; in both object sizes NVM (in-place FMA) and
MM (cold) are the slower configurations, but the relative dif-
ference is much more apparent when using small objects which
are between 2X and 3x slower.

Insights. This application has shown how, for scenarios with
high computation requirements and significant data reuse, the
data locality plays a main role in the overall performance while
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Figure 16: Execution times for the matrix multiplication method. The DRAM
execution is done with no assistance of other memory tiers. The NVM exe-
cution is done in-place on the persistent memory space. The MM executions
correspond to the transparent Memory Mode available in the OptaneDC devices,
which resembles a caching —hence the hot/cold executions. The method may
perform the fused-multiply-add operation in DRAM or in-place on the NVM;
this last execution corresponds to the in-place FMA one in the figure.

the exact memory configuration is secondary. Even more im-
portant than the available memory and its configuration is the
object size, which will impact the quantity of active method
invocations and it can have a dramatic impact on overall perfor-
mance.

6.5. Known limitations

In this section we have evaluated the potential of active ob-
ject stores by evaluating performance results, in a controlled en-
vironment, with four different applications. However, it is rele-
vant to remember certain limitations that such designs have.

First of all we have observed widely different improvements
depending on the application. This is somewhat expected: per-
formance results during NVM in-place execution will depend
on the data access pattern. However, quantifying a priori this
gain can be challenging, specially for complex real-life appli-
cations.

If we look into the hardware requirements of the storage
system we can observe that the software stack needs both stor-
age and computing capabilities. This may pose a problem, as
a lot of traditional infrastructures segregate nodes into storage
nodes (with almost no spare computing capabilities) and com-
puting nodes (which may not have enough storage). This hin-
ders the ease of adoption of active storage systems.

Having intertwined storage and computing resources results
in more complex management and more fuzzy price / perfor-
mance analysis: scaling up a hyper-converged infrastructure is
costlier than scaling up either compute nodes or storage nodes.
This may become a deal-breaker for an infrastructure migration
plan.

If the active object store is not deployed in an ephemeral
configuration —i.e., instead of being deployed in the same nodes
as the application is deployed in a set of nodes and shared
between different applications concurrently— then interference



problems are expected to arise and become a problem. This is
specially true in time-critical scenarios, in the presence of SLA,
or in similar settings.

7. Conclusions

In this article we have proposed an active object store de-
sign (based on dataClay) and evaluated the potential and im-
provements that such storage system design brings. The soft-
ware stack has proven to be versatile, and it presents very good
performance results. We have performed the evaluation with
different applications which represent a vast set of applications
in HPC, data analytics, and machine learning domains.

As the evaluation has shown, the benefits obtained by this
design will vary depending on the application. However, in
all scenarios, we have observed that the active features pro-
vide substantial gains. We have experiments that show 10%
improvement for an application with no data reuse and high
computation data ratio (represented by the Histogram) and up
to an order of magnitude for a memory-bound application under
the most appropriate memory configuration (Matrix Addition
with the result placed in DRAM).

On top of the aforementioned benefits, obtained through the
active capabilities of the object store, we have also shown dif-
ferent memory configurations and the impact that an NVM de-
vice can have. The byte-addressable nature of this memory tier
enables in-place execution; we have demonstrated how the ac-
tive object store is able to execute applications with datasets
bigger than system memory at near-DRAM speed.

After the evaluation we can conclude that there are two
main data locality improvements that are considered: on the
one hand, the active capabilities avoid any transfers between
the storage system and the application —that is regardless of the
exact memory configuration or the presence of NVM devices.
On the other hand, the byte-addressable memory avoids data
copies between memory tiers (DRAM and NVM) within the
storage system itself. This last aspect shows a great potential
but can also backfire, as it is a slower memory and for instance
the k-means has shown how an explicit memory copy can im-
prove the performance by a 2x factor (pre-copy strategy).

As previously stated, memory-bound applications have great
performance improvements but there are also gains for compute-
bound applications as well. An example of such kind of ap-
plication is showcased in the matrix multiplication application.
Since the data locality overall impact is reduced due to the

higher computation cost, compute-bound applications show lower

sensitivity to memory speeds. We have seen how those kind of
applications can be run almost entirely from within the NVM
(i.e., huge datasets, with minimal memory footprint) while per-
formance degradation is as little as 10% in our experiments —
and still more than 2x faster than non-active executions.

The evaluation of the storage system is done with an ephem-
eral configuration of dataClay, a setup that is available and ready
to be deployed. We believe that both ephemeral storage systems
and NVM can be game-changers agents on computation clus-
ters (at the software and at the hardware level, respectively).
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In this article we have shown some great performance results,
which showcase not only the potential of active object stores
but also the opportunities that these designs bring when com-
bined with other technologies such as NVM.
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