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Abstract

With the increasing number of Internet of Things (IoT) devices, massive amounts of raw data is being generated. The latency, cost,
and other challenges in cloud-based IoT data processing have driven the adoption of Edge and Fog computing models, where some
data processing tasks are moved closer to data sources. Properly dealing with the flow of such data requires building data pipelines,
to control the complete life cycle of data streams from data acquisition at the data source, edge and fog processing, to Cloud side
storage and analytics. Data analytics tasks need to be executed dynamically at different distances from the data sources and often
on very heterogeneous hardware devices. This can be streamlined by the use of a Serverless (or FaaS) cloud computing model,
where tasks are defined as virtual functions, which can be migrated from edge to cloud (and vice versa) and executed in an event-
driven manner on data streams. In this work, we investigate the benefits of building Serverless data pipelines (SDP) for IoT data
analytics and evaluate three different approaches for designing SDPs: 1) Off-the-shelf data flow tool (DFT) based, 2) Object storage
service (OSS) based and 3) MQTT based. Further, we applied these strategies on three fog applications (Aeneas, PocketSphinx,
and custom Video processing application) and evaluated the performance by comparing their processing time (computation time,
network communication and disk access time), and resource utilization. Results show that DFT is unsuitable for compute-intensive
applications such as video or image processing, whereas OSS is best suitable for this task. However, DFT is nicely fit for bandwidth-
intensive applications due to the minimum use of network resources. On the other hand, MQTT-based SDP is observed with increase
in CPU and Memory usage as the number of users rose, and experienced a drop in data units in the pipeline for PocketSphinx and
custom video processing applications, however it performed well for Aeneas which had low size data units.
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1. Introduction

The advancements in internet technologies like 5G and other
allied technologies have accelerated the use of the Internet of
Things (IoT) [1, 2] at a wider scale. With the increasing num-
ber of IoT devices, massive amounts of raw data is being gen-
erated. To cope with the ever increasing data, today’s indus-
tries are looking towards management and computation solu-
tions that enable to manage, process, and control the data flows
in realtime, such as for Artificial Intelligence (AI) services.

To extract actionable insights from such raw data, it needs to
be preprocessed, transported, transformed, and analyzed before
useful knowledge can be extracted from it. To simplify design-
ing and deploying such data processing services, pipelines are
commonly used to compose a set of individual data processing
processes into a single service, where the output of a component
is the input of the next component. This allows to reuse and
compose of common data handling processes into more com-
plex data pipeline services [3].

The data pipelines would be deployed as software services
running seamlessly in the Cloud or inside on-premise servers.
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However, many IoT applications are event-driven and require
performing actions in real-time [4], which often requires large
and expensive data processing clusters (e.g. Apache Spark,
Flink, Storm) to be created to handle large-scale IoT data with
self-adapting scaleable processing [5].

However, with the emergence of Serverless computing, a
novel cloud computing service model that leverages the func-
tion level billing and scaling, designing event-based, real-time
and scaleable IoT data processing has been significantly sim-
plified [6]. Furthermore, such cloud-centric approach requires
all data to be transported into one central data center and has
multiple disadvantages, such as high dependency on end-to-end
connectivity, higher latency, higher transfer and storage costs,
and other typical issues with centralised data collection.

This is where combining Serverless model and data pipelines
can produce significant benefits to avoid some of the disadvan-
tages of cloud-centric approach and reduce the complexity of
designing multi-layer (Cloud, Edge, Fog) IoT applications. In
data pipelines, each task is a process that consumes input data,
manipulates it and produces output data and such tasks are com-
posed into pipelines. This makes it easy to compose common
data processing tasks into more complex data management ser-
vices and potentially deploy some of the pipeline tasks closer
to the data sources (e.g. Edge, Fog laters). In the Serverless
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model, functions are individually deployed services which are
triggered on certain events (e.g. new database record or REST
request arrival), receive data and produce output. Serverless
cloud model has several benefits including fine grained auto
scaling and increased productivity gains due to reusable server-
less functions deployed either on on-premise or on the clouds
[7]. It is also significantly easier to deploy individual functions
in different locations compared to more monolithic applications
(e.g. when compared to Apache Spark data analytic applica-
tions).

To combine both models, Serverless Data Pipelines (SDP)
can be created when serverless functions are used as pipeline
tasks and seamlessly invoked while the data moves through the
pipeline. Serverless functions can be deployed in Cloud, Edge
or Fog environments and data pipeline technologies are used for
data transport, routing and function invocation. To provide one
example: due to low latency demand and bandwidth constraints
of cloud-centric approach, a novel fog computing architecture
[8, 1, 9] was introduced between IoT devices and Cloud servers.
Here, few of data analysis (data pipeline) tasks were moved
from far-away clouds to remote fog nodes that are very near to
data sources, this eventually improves the performance of real-
time services.

This approach is also helped by the advances in fog devices,
which can now be equipped with enough compute (even with
tensor processing units (TPU) and GPUs ) [10] and storage ca-
pacities. It is very useful support to accommodate serverless
frameworks that could accelerate the execution of data pipelines.
However, the disparity of hardware resources available at the
Edge, Fog and cloud leads to an interesting challenge of how to
diversify and prioritize data flow between functions residing at
fog and cloud to meet the expected Quality of Service (QoS).
There are also other related issues which need to be consid-
ered and evaluated. Serverless functions are stateless and its
frameworks only deal with the runtime management of func-
tions, completely separating it from the data management [11].
This separation simplifies serverless computing but has draw-
backs for data-intensive and stream processing pipelines [12]
and that can lead to issue of dealing intermediate data between
the functions in pipeline.

Considering the above mentioned issues and challenges, this
work aims to investigate and compare the suitability of mod-
ern off-the-shelf Data Pipeline (DP) tools [13] [14] and other
frameworks (such as message brokers and object storage ser-
vices) which are integrated with serverless frameworks and can
be used to design dynamic Serverless Data Pipelines. We utilize
three bandwidth and compute intensive real-time fog comput-
ing workloads: Aeneas [15], Pocketsphnix [15] and a custom
Video processing application to extensively measure the per-
formance (w.r.t CPU, memory, disk and network usage) of dif-
ferent SDP architectures in the fog computing environment.

1.1. Motivation
To process this data across edge/fog and cloud environments,

a huge amount of resources (more than the actual demand) are
allocated to process a user’s task in traditional systems, which
is challenging and inevitable in resource-constrained edge/fog

nodes. In this regard, serverless technology plays a significant
role in the deployment of IoT applications by composing into
stateless independent serverless functions across edge/fog and
cloud environments.

However, serverless functions are stateless with high gran-
ular scaling which introduces additional complexity and chal-
lenges in data management between functions residing at edge,
fog, and cloud nodes. Some enterprise solutions such as Azure
IoT or AWS Greengrass use serverless edge functions to pre-
process and push data to enterprise clouds. Data movement
between functions residing at the edge and cloud is often han-
dled by using object storage services like AWS S3. However,
it’s challenging when a large set of functions are deployed in
edge/fog infrastructure and data needs to be transferred on each
function invocation. The object storage may yield higher charges
when more data and more function invocations occur. Even-
though, object storage attains the purpose of handling interme-
diate data but cost, latency, etc., are challenging.

There also exist off-the-shelf DP tools like StreamSet and
Apache NiFi, which provide some support for edge/fog envi-
ronments and can also be utilized to solve the issues, but they
usually manage the flow of data in a more centralized manner
and often require significant computing resources to run effec-
tively.

Alternatively to object storage, its also possible to use data
brokers (e.g. Apache Kafka, MQTT) as Message Queues be-
tween serverless functions for designing serverless data pipelines.
Compared to object-storage, they would require less storage
and may be faster due to more extensive memory usage, which
is highly desirable in edge/fog environments. However, com-
pared to NiFi, it may be more difficult to control the precise
execution flow of pipelines.

The aforementioned challenges have motivated us to in-
vestigate the advantages and disadvantages of different mech-
anisms for integrating serverless platform with data pipeline
platforms. The following subsection will list the contributions
in the proposed work.

1.2. Contributions

In the above context, our contributions in this work can be
summarized as follows:

• We demonstrate how SDP can be deployed in three lay-
ered IoT architectures.

• We propose three approaches for designing Serverless
Data Pipelines with different data handling mechanisms
(Apache Nifi, Message Queues and object storage ser-
vices such as AWS S3).

• We use real time fog computing workloads such as Ae-
neas, PocketSphinx and custom Video processing appli-
cations to compare the performance (such as processing
time) and resource utilization of these different SDP ap-
proaches.

• We provide insights on the suitability of these SDPs for
different types of fog computing workloads.
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The rest of the paper is organized as follows. In section 2,
we present literature survey on current state of art data pipeline
technologies and ecosystem. The proposed SDP architecture
and real time IoT usecases are described in the section 3 and
4, respectively. Following this, three novel SDP approaches
are designed and articulated and implemented for real time fog
computing use cases in section 5 and compared with different
performance metrics in section 6. Finally, the concluding re-
marks and the future works are discussed in section 7.

2. Related works

A number of SDP architectures and solutions have been
proposed in the field of IoT data management in edge, fog and
cloud environments. This section briefly summarizes the recent
work done in the context of SDP architectures and models.

The public cloud service providers such as AWS greengrass
[16], Google Cloud IoT [17] and Microsoft- Azure IoT Edge
[18] have typical IoT data pipeline solutions for industrial, health-
care, smart city and other real time use cases. For example, con-
sider AWS IoT Greengrass, where Lambda service will be exe-
cuted at the edge layer for data acquisition and pre-processing.
Later data is forwarded to the cloud by edge devices and then
it passes through pipeline of activities for post processing and
finally is delivered to the data sink.

Valeria et al. proposed a solution of IoT data stream pro-
cessing in distributed fog and edge computing environments
with decentralized scaleable manner [5] and further extended to
how data processing operators were placed in computing nodes
considering the efficiency, application topology and resources
configurations [19]. These works provide hint that off-the-shelf
data stream processing tools such as Apache Storm can be used
for the task. However, these stream processing tools require
huge computing clusters and in IoT deployments more often de-
vices are heterogeneous with limited computing capacity. More
often IoT workloads are event and time driven which motivates
us to investigate the serverless based data processing pipelines.
Further, SDPs easily been deployed at various levels in the IoT
hierarchy (Edge, Fog and Cloud Infrastructure) with efficient
granular scaling of the serverless functions.

Das et al. [20] proposed a model for efficient execution of
user tasks as serverless functions in edge/cloud environments
and designed a set of data pipelines using AWS Greengrass on
edge devices along with Lambda capabilities. Our approach
looks similar to this model, however it lacks fog based process-
ing pipeline model.

Dehury et al. [21] designed a framework known as CCo-
DaMiC, which aims to ensure data accuracy, trustworthiness,
and validation in SDP. This work directly relates to our pro-
posed DFT based SDP approach. However, CCoDaMiC mainly
focuses on data accuracy and trustworthiness and not on the
performance of the applications. Lixiang et al. [22] designed a
framework for video processing using serverless lambda func-
tions known as Sprocket. Authors demonstrated the efficiency
of serverless functions for faster execution by constructing pipeline
of activities for video handling. However, their primary focus

is to reduce latency and cost by using the techniques of par-
allelism. Interestingly, this work motivated us to consider the
complex video processing use case in our proposed research.

Several techniques and methods have been proposed illus-
trating the use of MQTT for data acquisition from different data
sources via publish/subscribe model [23, 24, 25]. MQTT bro-
kers can act as data carriers and can store data until subscribers
consume it. This approach is well suited to store temporary or
intermediate data between processing elements in SDP. In our
work, one of the approaches uses MQTT together with server-
less framework to construct data pipelines from data source to
sink.

Thus to the best of our knowledge, none of the research
works attempted to investigate and compare the different tech-
niques in the construction of SDP with different approaches for
intermediate data handling between serverless functions.

3. Proposed System

FaaS Engine

Message
Broker

Object Storage
Server

Docker Swarm

Docker
Engine

Edge Infrastructure
Fog Infrastrcture

Data Pipeline
Engine FaaS Engine

Visualize Object Storage
Server

Docker Swarm

Cloud Infrastructure

Data aquistion
tools

Data Pipeline
Engine

Camera

SCARA
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Other
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Figure 1: Proposed SDP architecture

Based on the literature survey, we designed an overall SDP
architecture and the required software services to handle the
flow and execution of data in a pipelined manner, as shown in
Figure 1. The data are generated by the IoT devices (such as
surveillance cameras, SCARA (Selective Compliance Assem-
bly Robot Arm) robot sensors, health monitoring sensors etc.)
and are eventually sent to cloud infrastructure for processing
and storage.

Instead of sending the data directly from IoT device to the
cloud, the data is preprocessed by different computing environ-
ments such as edge computing devices or fog servers through
the execution of serverless functions. As in Figure 1, the data
are sent to Edge infrastructure, followed by the Fog infrastruc-
ture. Both the edge gateways and the fog infrastructure are re-
sponsible for providing the infrastructure to host data manage-
ment and serverless frameworks.

3.1. Edge Infrastructure
Edge infrastructure is mainly responsible for receiving the

data from IoT devices. For this purpose, different data acquisi-
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tion tools or software solutions can be used such as MiNiFi or
SDC Edge, custom services such as Python or other run-time
services, as shown in Figure 1. These solutions usually come
with limited capabilities to process the data. Upon receiving
and processing, edge infrastructure forwards the data to fog in-
frastructure. The detailed description of the services used in
edge infrastructure are described below.

• MiniFi 1: Apache MiNiFi is a super light-weight version
of NiFi made for the edge devices. It can run as a sys-
tem service, and it is centrally managed using Apache
NiFi. Developers can easily design the pipelines using a
set of processors in Apache NiFi and push them into the
MiniFi service. These pipelines can handle preliminary
data operations near to the source, e.g., compressing a
video recorded by drone before sending to cloud/fog to
reduce bandwidth consumption, etc. We use this MiniFi
service in the implementation of DFT tool based SDP as
described in 5.1.

• Custom services: Custom services are similar to the MiniFi
processors. Such services need to be created from scratch
using a specific programming language. E.g., A Python
program can be created to collect and compress the video.
Python-based custom services are created and used in
the implementation of OSS and MQTT-based SDP as de-
scribed in 5.2 and 5.3, respectively.

3.2. Fog Infrastructure

Fog Infrastructure is mainly responsible for processing the
data received from Edge infrastructure, for which, Data pipeline
engine (Apache NiFi2), FaaS engine (OpenFaaS3), MinIO4, and
MQTT5 services are used. The fog infrastructure includes a
group of fog servers deployed in a cluster with a set of par-
ticular software services using Docker Container Engine. The
processed data are then forwarded to the cloud infrastructure to
further process, store, and generate alerts and notifications. The
use and necessity of software services are described below:

FaaS Engine: FaaS Engine is primarily one of the core com-
ponents of this proposed work. Several open-source serverless
platforms are available such as Apache OpenWhisk, OpenFaas,
Kubeless, etc. OpenFaaS serverless platform is used in this
work, as it is lightweight and easy-to-configure over other al-
ternative solutions. OpenFaaS can be installed atop of Docker
or Kubernetes platform. Docker containers are used to host and
execute the serverless functions. The functions can be invoked
using HTTP endpoints with the necessary data. The function in-
vocation is performed in the pipeline by Data pipeline engine,
MinIO event notification system, and MQTT event notification
service.

1https://nifi.apache.org/minifi/
2https://nifi.apache.org/
3https://www.openfaas.com/
4https://min.io/
5https://mqtt.org/

Data pipeline engine: As discussed in Section 1, we use
Apache NiFi, a data pipeline processing platform, which man-
ages the data flow between the systems. This provides a set
of independent processors with specific functionalities to pro-
cess and manage the data. The data flow between processors
is managed via scalable queues. Developers can easily design
custom data pipelines using a flexible user interface and auto-
matically configure, control, and deploy the pipelines in Edge
infrastructure using MiniFi service. This MiniFi-Nifi integra-
tion efficiently manages the orchestrated IoT data processing
from the edge, fog, and cloud, and vice-versa.

Message Queue: Message Queues are published/subscribe
protocol based data carriers between source and sink. We demon-
strate the use of Message Queues to build data pipelines inte-
grated with the OpenFaaS serverless platform. A light-weight
messaging protocol, MQTT, is ideal for small sensors and mo-
bile devices and is suitable for high-latency or unreliable net-
works. MQTT uses different data types such as UTF-8 encoded
string, bit/byte integer, binary data, and UTF-8 string pair. A
serverless function can publish the processed data to MQTT,
and in turn, functions are invoked when data need to be sub-
scribed using web-hooks. The flow of data between MQTT and
serverless platform builds consistent, reliable SDP.

Object storage service: An open-source cloud-based stor-
age solution, MinIO, compatible with Amazon S3, stores the
IoT data. This provides a RESTful API to access/insert/remove
buckets and objects. Moreover, triggers are set to bucket when
its content is accessed/written/removed, and corresponding event
notifications are generated using techniques such as web-hooks,
Message Queues. This is advantageous in IoT applications for
handling event-driven data. It is configured as high-availability
cluster using docker swarm.

3.3. Cloud Infrastructure

Cloud infrastructure is mainly responsible for processing
heavy computation data received from Fog infrastructure and
storing the data. This is also responsible for generating alerts
and notifications to activate other business processes whenever
required. To perform this, a set of services from cloud providers
or user-configured open-source services are used, such as Data
pipeline engine (Apache NiFi, AWS data pipeline, Google Cloud
pipeline, etc.), Object storage service (MinIO/AWS S3/ Google
object storage), Message queues (MQTT/AWS SNS), and Faas
engine (OpenFaaS/AWS Lambda/Google Functions).

The setup and configuration of the FaaS engine, data pipeline
engine, and object storage service are the same as that of the
fog infrastructure. Along with this, the cloud infrastructure
is also responsible for Visualization and Reporting. The pri-
mary job of the visualization is to display processed data us-
ing visualization tools. The Grafana visualization tool is used
to measure Edge/Fog and cloud nodes’ performance metrics in
this work. Additionally, the Prometheus time-series database is
used where performance metrics are collected.
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Figure 2: Abstract view of video processing data pipeline

4. Realtime IoT Use Cases

To compare and evaluate the performance of proposed SDP
approaches, a set of standard fog computing workloads or ap-
plications are considered from the article [15]. The applica-
tions are categorized into latency critical (LC), bandwidth in-
tensive (BI), location aware (LA) and computational intensive
(CI). The corresponding applications from the article [15] such
as Aeneas (BI), PocketSphinx (BI, CI), Yolo object detection
(BI, CI) were considered as real time IoT workloads. These ap-
plications are redesigned into sequence of data flow pipelines
that can spread across edge, fog and cloud infrastructure. The
detail implementation of data flow pipelines are explained be-
low.

4.1. Custom video processing using Deep learning based ob-
ject classification using YOLOv3 and ffmpeg tool

The You Only Look Once (YOLO) makes predictions with
a single network evaluation unlike systems like Region-based
Convolutional Neural Networks (R-CNN) which require thou-
sands of networks for a single image. Hence, its predictions are
1000x faster than R-CNN and 100x faster than Fast R-CNN.

This fog application is ideal candidate to consider because
of bandwidth sensitiveness and requires high network band-
width to send video stream from edge node to cloud and aiming
for faster processing with immediate response. Most of the op-
erations are compute intensive and demand for more CPU and
Memory resources. So, the application is designed to process
preliminary object detection in fog and send to cloud for fur-
ther analysis. To understand precisely, we use a scenario of real
time object detection from the article [26]. The abstract flow of
data in this use case is shown in Figure 2. Here a drone is used
to capture the video footage and to process this, sequences of
operations are carried out as follows:

1. Drone captures video footage and forwards to edge gate-
way using communication protocol such as MQTT or
HTTP or other protocols.

2. Edge gateway compress the video and forwards to fog
nodes.

3. In a fog node, video is decompressed using set of tools
(gzip or zip).

4. The video will be split in to number of frames that can be
processed individually.

5. The frames are passed to YOLOv3 framework and ob-
jects are identified from respective frame.

Decompression

align audio
to text Storage Alert

Cloud/Fog

Compression

Gateway

End-User 

3

1
2

4
5

6

Figure 3: Abstract view of Aeneas data pipeline

6. The raw output generated from YOLOv3 is processed to
json document. This will nicely arrange the raw text into
json elements consisting of identified objects.

7. The json documents are stored in storage service for fur-
ther analysis.

To design the above example in traditional computing plat-
forms, the developer needs to specify a necessary input, config-
uration, and run-time environment to perform required data op-
eration seamlessly by provisioning resources on the fly. How-
ever, it adds an issue of over-provisioning than demand. For
example, short-running tasks like triggering an alert message to
the end-user when a human/animal object is identified don’t re-
quire heavy computation. Thankfully, the Serverless platform
can subsidize this issue by invoking functions whenever events
are triggered by consuming less computation resource. In this
application, entire video processing application is decoupled
into a set of OpenFaaS-based serverless functions as shown in
Table 1. Among which, two major functions are (a) Split and
(b) Yolo as described below.

• Split: Splits the video into multiple frames using ffmpeg,
an image/video editing tool. The number of splits de-
pends on the value given to the fps argument in ffmpeg
command

• Yolo: Yolo is a object detection framework that has a
darknet library.

The rest of the functions mentioned in Table 1 are used as sub-
sidiary functions in the pipeline. This video processing appli-
cation is implemented in all the three SDP approaches, as de-
scribed in below Section 5.

Table 1: Number of serverless functions used
SDP/Application Aeneas Pocketsphinx Video proc.
DFT based SDP 2 3 3
OSS based SDP 5 6 6

MQTT based SDP 2 3 3

4.2. Aeneas: A text-audio synchronisation
The Aeneas tool is specialized for automated synchroniza-

tion of audio to given text file also known as forced alignment.
It automatically generates a synchronization map between a list
of given text fragments and an audio file containing the narra-
tion of the text.
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This fog application is ideal candidate to consider because
of bandwidth intensive and consumes huge network bandwidth
to stream audio files from large set of end user devices to edge
node and cloud node. End users aim for faster response times
and to achieve this, few of the operations are performed in fog
node. We show the scenario of Aeneas based real time applica-
tion and its abstract flow in Figure 3.

Here, end-user device such as mobile device or other de-
vices are used to stream the .wav or .mp3 audio files. Then the
following operations are carried out as follows:

1. End user offloads a .wav file to edge gateway using mo-
bile device.

2. Edge gateway compress the audio and forwards to fog
nodes.

3. In a fog node, audio is decompressed using set of tools
(gzip or zip).

4. The file (.xhtml) is downloaded from the cloud or other
repository used as a input to Aeneas tool. The file con-
tains a text used for alignment in the audio file.

5. The raw .mp3 or .wav is processed using Aeneas tool
along with the given file (.xhtml). The Aeneas tool has
facility to generate the alignment output in json.

6. The json documents are stored in storage service for fur-
ther analysis.

The above traditional data pipeline is redesigned to SDP by
composing these operations in to serverless functions. It has
one major function:

• aeneas: Aeneas is python library for forced alignment of
given text in a audio file and is configured with python3
run time. This function accepts two input files text file
(.txt, .xhtml), audio file (.wav,.mp3) and generates the
aligned output (.json, .mile). It generates .json as a HTTP
response to the invocation.

4.3. PocketSphinx: A Speech-to-text conversion
Its a software engine specialized for speaker-independent

continuous speech recognition [15]. An audio file (.wav) is con-
verted to a defined language in text form using a pre-trained
acoustic model to determine the source and destination lan-
guage for speech-to-text conversion. The sample audio files are
taken from large scale speech repository 6.

In this fog application, we consider a scenario, where end
user submits a .wav file via mobile phone and it needs to be
processed (either fog/cloud) to find a given text in the audio
file. This application is bandwidth and compute intensive, and
requires higher network bandwidth to offload the audio files to
cloud. Hence it is feasible to process near to the data source in
the fog nodes to achieve higher response times. The Figure 4
shows the abstract view of the application with following set of
operations:

1. End user offloads a .wav file to edge gateway node

6http://www.repository.voxforge1.org/downloads/SpeechCorpus
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Figure 4: Pocketsphinx application data pipeline

2. It will be compressed and forwarded to fog/cloud infras-
tructure

3. Decompress the audio file
4. Process an audio file to text format using PocketSphinx

tool
5. Get the text to search in output produced from Pocket-

Sphinx operation
6. Perform text search operation
7. Convert into proper json document
8. Store into storage service for further analysis or usage

and send corresponding alerts.

The overall flow of the above mentioned PocketSphinx ap-
plication is designed in to set of serverless functions as shown
in Table 1. It has one major function:

• pocketsphinx: Pocketsphinx is python library for speech-
to-text conversion using predefined acoustic model. This
function accepts one audio file (.wav,.mp3) and generates
the aligned output (.json). It generates .json as a HTTP
response to the invocation. This PocketSphinx applica-
tion is implemented in all the three SDP approaches, as
described in the Section 5.

We represent F = { f1, f2, . . . , fm} as a set of serverless func-
tions for each application, for example Aeneas for DFT based
SDP has m = 2. Further in the below section, we describe
the specific implementation of SDP approaches and associated
three usecases that are implemented according to design of pro-
posed SDPs.

5. Serverless Data Pipeline (SDP) approaches

Considering the above overall architecture and challenges
mentioned in motivation section, the serverless data pipeline
can be designed by following different approaches. In this sec-
tion, we introduce three approaches: (a) Off-the-shelf data flow
tool based SDP, (b) Object storage service based SDP, and (c)
MQTT based SDP. Further, we implemented the proposed SDPs
for real time IoT usecases as described in the Section 4.

5.1. Off-the-shelf data flow tool (DFT) based SDP
In DFT based SDP, the developer need not have to maintain

the queue, rather we use the queuing capability of Apache Nifi,
which manages the centralized management of data and with
integration of serverless platform.
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Figure 5: DFT based SDP approach using Apache Nifi and OpenFaas.

In this SDP approach, we have used Apache Minifi in the
Edge infrastructure to receive and preprocess the data, as shown
in Figure 5. As discussed in Subsection 3.1, MiniFi service can
run on resource-constrained devices and is autonomously man-
aged using central Apache NiFi from Fog Infrastructure. Here,
sensed data from IoT devices is received into MiniFi using pro-
cessors such as ConsumeMQTT or ListenHTTP, based on the
communication protocol used between edge infrastructure and
IoT devices. Some data preprocessing processors such as data
compression, filtering, and aggregation are also configured but
with limited computing resources and capabilities. MiniFi does
not have GUI and is developed with java/C++ libraries and can
quickly be started as a system service. The data flow with pro-
cessor groups is designed in Apache NiFi and is automatically
pushed into the MiniFi service. MiniFi performs the data oper-
ations and pushes the flow file containing the data to the Apache
NiFi service configured in the fog.

Apache NiFi is used to handle data flow in fog and cloud
infrastructure. Apache NiFi provides a flexible set of proces-
sors for data operations and integration between cross platform
systems. This gives the capabilities to seamless integration of
serverless platform through specific Nifi processors, such as In-
vokeHttp, PutLambda, etc. Such multiple NiFi processors can
be connected to others, allowing the developer to invoke mul-
tiple serverless functions. The key benefit is that Apache NiFi
facilitates queued data that can lend back pressure when lim-
its are attained during data flow processing. Another benefit is
that it has priority queuing to set single/multiple prioritization
schemes that dictate how data is retrieved from a queue. This
allows the developer not to pay much attention to maintain or
implement the queue between each pair of serverless function
invocations.

For the serverless platform, OpenFaaS is used in both fog
and cloud infrastructures. However, public cloud serverless ser-
vices can also be used in the cloud infrastructure such as Ama-
zon Lambda. The serverless function receives the data flow file
as input from invokedHTTP request and sends the processed
data as an HTTP response body. Every serverless function is in-

voked using an HTTP endpoint with respective HTTP methods
(POST or GET). We implemented the DFT based SDP using
real time IoT use cases as described in the below paragraphs.

In Custom video processing application, the Drone sends
the video footage to the edge node. In the edge node, MiniFi
service is configured with GetFile MiNiFi processor to read
video file from disk and forward the video to Nifi in the fog
node. The Nifi in fog infrastructure consists of three main pro-
cessors to invoke three different OpenFaaS serverless functions
(FFmpeg, Yolo, convertTojson). On the other hand, the Nifi in
Cloud infrastructure consists of multiple processors to store the
data (received from Fog infrastructure) into MinIO bucket.

Similarly, in the Aeneas application the end-user mobile de-
vice sends an audio file to the edge node. In the edge node,
MiniFi service is configured with GetFile MiniFi processor to
read audio file received and compressed using gzip processor
and forward it to NiFi configured in the fog node. The NiFi
in fog infrastructure consists of three main processors, first is
decompress processor, second is to invoke two different Open-
FaaS serverless functions (aeneas, getFile(.xhtml)), third is cre-
ating JSON from the output. Finally, this data is stored in the
MinIO bucket using multiple NiFi processors.

The PocketSphinx has similar implementation as above,
but Nifi in fog infrastructure consists of three main processors;
first is decompress processor, second is to invoke two different
OpenFaaS serverless functions (pocketsphinx, text-processing),
third is creating json from the output.

5.2. Object Storage service based SDP

In OSS based SDP, the object storage service will resemble
a persistent queue where the developer can visualize the data
stored in the storage server as a queue. The capability of object
storage service is to trigger an event notification using web-
hooks, making the integration of object storage with serverless
platform flexible.

In this approach, we have used Python service in edge in-
frastructure to receive, preprocess, and transport data from IoT
devices to fog infrastructure, as shown in Figure 6. Here, Python
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requests library is used to invoke serverless functions from edge
Python service to functions residing in fog.

MinIO is used to handle data flow in fog and cloud in-
frastructure. MinIO is an open-source high-performance scal-
able storage service, as described in section 3. The flexible
bucket notifications are a set of events such as inserted, ac-
cessed, deleted and copied. The corresponding events are trig-
gered using Web-hooks. This flexibility makes seamless inte-
gration of storage service and serverless platform invocations.
Apart from this, the MinIO Python client library makes it easy
to code the functions to access the object data from a specific
bucket.

For the serverless platform, OpenFaas is used in both fog
and cloud infrastructure. Here, the serverless functions are in-
voked from the gateway node with data or from the events trig-
gered in MinIO buckets. Furthermore, the serverless function
may store processed data into buckets using the MinIO client
library. Again, events may trigger to invoke functions and con-
tinue until the fog node forwards data to cloud infrastructure.
In the cloud infrastructure, data flows in a similar fashion over
MinIO and OpenFaas serverless platform. This constitutes an
SDP, where object storage with persistent mode acts as an in-
termediate data handling mechanism between serverless func-
tions. The following paragraph will describe the use of OSS
based SDP in designing the real time use cases.

In Custom video application, we use a Python service as
a drone simulator to send the video file to the gateway node.
The gateway node is configured with a Python service to read
a video file and send it to the fog node for processing. In fog
node, MinIO is configured with two buckets: (a) unprocessed to
store raw images and (b) processed to store processed video in
JSON format. These buckets are set with web-hook event noti-
fications to trigger serverless functions when a new data object
is inserted. This implementation uses five serverless functions,
as given in Table 1. However, in Aeneas application, in fog
node, MinIO is configured with two buckets: (a) raw-audio to
store raw images and (b) syncmap to store synchronization map
generated to audio file in JSON format. This implementation
uses six serverless functions, as given in Table 1. Finally, the
PocketSphnix application in the fog node, MinIO is config-
ured with two buckets: (a) raw-pocketsphinx to store raw im-
ages and (b) processed-pocketsphinx to store the converted au-
dio file to text, (c) output-pocketsphinx to store text-processed
data. This implementation uses 6 serverless functions, as given
in Table 1. In the cloud infrastructure, two MinIO buckets are
created, (a) success-pocketsphinx- to store success results from
text processing, (b) failure-pocketsphinx to store failure results
from text processing. These buckets are responsible to store the
processed audio files and output is mainly in text format.

5.3. MQTT-based SDP
In this proposed SDP approach, MQTT is used as a queue

to store the data, different queues are represented by different
MQTT topics and serverless functions can be triggered when
new data objects are published into a specific topic. The gate-
way node receives data from IoT device using the custom Python
service (Python code is written to perform specific operation).

The received data are preprocessed and published to the MQTT
broker with a topic name, as shown in Figure 7.

The topic names need to be subscribed by the OpenFaaS
serverless functions, to consume the data in the queue. For this,
Serverless frameworks should be built in with connectors be-
tween itself and message broker to subscribe the topics and in-
voke corresponding functions. Apart from this, MQTT doesn’t
have the capability to directly trigger an HTTP endpoint upon
the arrival of new data. Thanks to the OpenFaaS community
for developing the openFaas-mqtt connector, which runs as a
service to invoke serverless functions by subscribing to MQTT
topics. OpenFaas has multiple connectors supported for differ-
ent Message Queues. The serverless function processes the data
and publishes the output again to the Message Queue. This pro-
cess continues until the data from the source reaches to the data
sink, as shown in Figure 7. The following paragraphs describe
how the use cases were implemented using the MQTT based
SDP.

Similar to OSS based SDP approach, all the three appli-
cations are configured with python service in the edge node.
In Custom video processing application, the Python service
publishes the video to MQTT broker with topic name. The
openfaas-mqtt connector running in fog node subscribes to the
topic name and invokes the functions. Here, we use three server-
less functions, as given in Table 1 and one openfaas-mqtt con-
nector service. Similarly, in the Aeneas application the Python
service publishes the audio file to MQTT broker with topic
name. The openfaas-mqtt connector running in fog node sub-
scribes to the topic name and invokes the functions. Here,
we use three serverless functions, as given in Table 1 and one
openfaas-mqtt connector service. In PocketSphinx applica-
tion, we use three serverless functions, as given in Table 1 and
one openfaas-mqtt connector service.

For calculating the evaluation metrics in Section 6, we rep-
resent S = {S 1, S 2, . . . , S k} as set of storage units. The stor-
age unit could be processors in NiFi, MQTT queues or MinIO
buckets. Next section will describe about experiment details.

6. Experiment and results

All the proposed SDP approaches are implemented on three
applications as described in the Section 4. Further, the goal is
to measure the performance w.r.t metrics to understand and in-
vestigate efficiency of those SDPs on various applications (text,
audio, video and image applications). In the following section,
we will discuss the metrics used to measure the performance
and analysed the results, further outlined the experience on the
SDP implementation and provided future directions.

6.1. Performance metrics

In this subsection, we will describe various performance
metrics along with their mathematical formulae. The resource
utilization metrics are measured cumulatively on all the three
layers of infrastructure that consists of utilization of edge (Gate-
way) resources, fog resources and cloud infrastructure resource.
Here, concurrent user requests are generated in the sensor nodes
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Figure 7: MQTT based SDP Architecture

Table 2: List of Notation.
Notation Description
P Computation time
CT Communication time
F Set of serverless functions
R Set of n number of concurrent users’ requests

R = {r1, r2, . . . , rn}

D Duration of the user request from source to des-
tination (data sink)

Dat Timestamp recorded at arrival from the source
Dct Timestamp recorded at destination
DAT Disk Access Time
NCT Network Communication Time
S Set of intermediate storage units S =

{S 1, S 2, . . . , S k}

DUat Timestamp recorded when data unit arrived in
the storage unit

DUdt Timestamp recorded when data unit departed
from the storage unit

in all the three use cases with corresponding data such that it
mimics the real time application. The Prometheus and Node
Exporter software solutions are used to collect such metrics.
PromoQL (Prometheus Query Language) is used to calculate
the metrics for specific time period.

• Processing Time: In IoT environments, computation time
and latency are very crucial. In this regard, the SDP pro-
cessing time is directly proportional to response time of
the user requests and therefore we note that these met-
rics as native pipeline performance metrics. Processing
time is measured in seconds, which is defined as the to-
tal time taken to process a data in a pipeline from source
to destination. The source is a sensor node and sink is

a storage/other end point in Cloud Infrastructure as de-
scribed in Section 3. The processing time is addition of
both communication and computation time (latency).
In the below paragraphs, we formulate the mathematical
equations used to calculate these metrics. These metrics
are calculated using logs of MinIO, MQTT, Apache NiFi
and OpenFaaS gateway.

Computation time : The computation time is calculated
as summation of time required to compute a data unit
by individual processing units (serverless functions) in a
data pipeline. Let R be the set of n number of concurrent
users requests R = {r1, r2, . . . , rn}. In our experiments the
value of n is considered from 10 to 300 and each user
request carries a data unit to be processed by serverless
function in the pipeline. The computation time of indi-
vidual ith user request is

P(ri) =
∑
∀ f jεF

P(ri, f j) (1)

where F = { f1, f2, . . . , fm} is a set of m number of func-
tions and P(ri, f j) represents the time taken by the func-
tion f j ∈ F to execute or process the request ri ∈ R.

Communication time: The communication time denoted
as CT (ri) of ith user request is the time required to move
data unit from source to sink in pipeline excluding the
computation time. It’s summation of disk access time
(for intermediate storage units) and network communi-
cation time. Let Dat(ri) be the arrival time at source and
Dct(ri) be the completion time of the ith user request at
sink. The total duration of serving the user request D(ri)
is measured as

D(ri) = Dct(ri) − Dat(ri) (2)
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From equation (1) and equation (2), the communication
time is calculated as

CT (ri) = D(ri) − P(ri) (3)

Further, In the SDP approaches the data units are stored
in the intermediate storage units and served to serverless
functions for processing. The total time that data unit
resides in the storage unit is considered as disk access
time denoted as DAT (ri) is inclusive of time required
to store and access the data units. Let DUat(ri, S j) and
DUdt(ri, S j) be the arrival time and departure time re-
spectively of the ith user requests’ data unit in the storage
unit S j ∈ S . The total duration of disk access time is
calculated as

DAT (ri) =
∑
S j∈S

DUdt(ri, S j) − DUat(ri, S j) (4)

where S = {S 1, S 2, . . . , S k} is a set of k number of storage
units. Finally, network communication time denoted
as NCT (ri) is the summation of time required to move a
data unit (of a user’s request) in network from user’s de-
vice to the sequence of processing units (serverless func-
tion) and intermediate storage units until the final data
sink. Now from the equation (3) and equation (4) net-
work access time is calculated as

NCT (ri) = CT (ri) − DAT (ri) (5)

• Average CPU utilization: The average CPU utilization
is measured in percentage (%) and is calculated over time
period from pipeline invocation till the data is received in
the final destination.

• Average memory utilization: It is measured in percent
(%) and is calculated as sum of total free memory, cache
memory, memory in buffer and divided by total memory.
Similarly, average disk utilization is measured in percent-
age (%).

• Network received: This is calculated as bytes per second
and is calculated as sum of bytes received on the network
over a period of time.

• Network transmitted: It is calculated as bytes per sec-
ond and is calculated as sum of bytes uploaded on the
network over a period of time.

• Disk I/O Read: This is measured in kilobytes and is cal-
culated as sum of bytes read from file system over a pe-
riod of time.

• Disk I/O Write: It is measured as bytes per second and
is calculated as sum of bytes written in to the file system
over a period of time.

6.2. Experimental Setup

The Docker Container Engine v19.03.12 is installed in both
fog and cloud infrastructure in swarm mode. The OpenFaaS
serverless platform is used as a FaaS engine configured in fog
and cloud. OpenFaaS functions are developed using the pro-
gramming language templates (bash streaming and Python 3.7).
OpenFaaS command line interface (CLI) is used to build and
deploy the functions into the OpenFaaS gateway. The Apache
NiFi v1.3.2 is used in both fog and cloud as container ser-
vice. The Apache NiFi user interface is used to design the data
flow and monitor the flow files. The MinIO is deployed using
docker compose service and volumes are mounted in the host
machines. The MinIO client is used to create and configure the
settings for event notifications on bucket.

A set of hardware devices and cloud resources are used to
deploy and setup application services, as shown in Table 3.
Three Raspberry Pi 4B models and MiniX NEO Z83-4U In-
tel Mini PC are used for setting up fog infrastructure. For
cloud infrastructure, the virtual machines of size m2.medium
with vCPU and 8GB RAM resembling similar capacity as AWS
are provisioned from the University’s private OpenStack cloud.
The Raspberry Pi 3B model is used as a gateway node, and all
the edge and fog devices are connected in a LAN with 1000
Mbps network bandwidth using Inteno DG200 router. The fog
devices are connected to cloud services via 1000 Mbps network
bandwidth. The network setup used for interconnection be-
tween edge, fog and cloud environments are dedicated to these
experiments.

Upon setting up of necessary hardware and application ser-
vices, the use cases (Aeneas, PocketSphinx and custom video
processing ) are deployed. The corresponding performance met-
rics are measured, and results are discussed in below subsec-
tions.

6.3. Results and Discussion

We considered scaling the number of users as a parame-
ter to measure the performance of the approaches because the
rate of concurrent arrival of user requests heavily impacts the
pipeline performance. To measure the performance of all the
metrics, several users are scaled from 1 to 15 for video appli-
cations (we used a chunk of video file as one user request) and
10 to 300 for Aeneas, PocketSphinx applications, and the cor-
responding SDP performances were measured. However, for
calculating the processing time we considered 100 users in Ae-
neas and PocketSphinx due to data units were started dropping
in MQTT based SDP.

6.3.1. Performance metrics observed with Aeneas application
The processing time was studied in all the three SDP ap-

proaches, as shown in the Figure 8. Here, the y-axis represents
processing time in seconds, and the x-axis shows the # of users.
The OSS requires a maximum of 540s to complete the 100
users requests, whereas MQTT based SDP and DFT processed
in 330s and 324s, respectively. The OSS had more processing
time as the number of users increases, because MinIO notifi-
cation invocations are synchronous. This pipeline had around
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Table 3: Hardware configuration for experimental setup
Device name Configuration (Processor, RAM) Quantity Node type
RPi 4B model Quad-CoreCortex A72, 4GB LPDDR4 2 Fog node
RPi 3B model Quad-CoreCortex A53, 4GB LPDDR4 1 Gateway node
Virtual machine 4-Core, 8GB DDR4 1 Cloud node
Minix Neo Z64-W10 Quad Core Z3735F (64 bit), 2GB DDR3 1 Fog node
Router Inteno DG200 model with 1000Mbps full duplex 1 Network layer

Figure 8: Aeneas application - Processing time measured in seconds

Figure 9: Aeneas application - Average CPU and Memory utilization

five serverless functions as shown in Table 1 and two functions
were extra to facilitate for retrieving the object data from MinIO
buckets and this can lead to extra processing time. The compu-
tation time in OSS and MQTT based SDP was higher, where as
disk access time was more in DFT. The internal queues in DFT
manages efficient flow of data that makes to stay the data units
in the queue that increase the DAS time. In OSS and MQTT
based SDP, events were triggered as the data units arrived in
to storage units which makes openfaas gateway to push these
asynchronous user requests to NATs queue that increases the
overall function execution time. The average computation time
was highest in OSS with 351s but DFT had lesser computation
with more disk access time of 280s.

The average CPU utilization and Memory utilization were
measured, as shown in the Figure 9. The primary vertical y-axis
shows an average CPU utilization measured in percentage (%)
and the secondary y-axis shows the Memory utilization. The
DFT consumed highest CPU of 36%, whereas MQTT based
SDP consumed a lesser CPU of 21.06% and OSS had moderate

Figure 10: Aeneas application - Average Disk Reads and average Disk Writes
measured in Kilobytes

CPU utilization of 31%. But MQTT based SDP started using
more CPU after 300 users request and further the data units in
the pipeline started dropping.

The Object Store and MQTT-based SDP used more number
of lightweight python-based serverless functions, and DFT had
a higher CPU utilization due to the set of Apache NiFi proces-
sors used in the pipeline that require extra computation power
apart from serverless functions.

The average Memory utilization at the secondary y-axis is
measured in percent (%). The MQTT-based SDP approach
has the highest memory usage footprint of an average 45.92%,
whereas DFT and MQTT based data pipelines used an average
of 40.29% and 36.42% of memory, respectively.

In the Figure 10, the primary y-axis represents disk I/O read
and the secondary y-axis shows a disk I/O writes measured
in Kilo Bytes (KB). In the case of the OSS SDP approach,
18.38KB disk reads which is maximum as compared to DFT
and MQTT with 2.9KB and 1.17KB, respectively for 300 users.

Similarly, OSS had a higher disk writes of 155KB as com-
pared with DFT and MQTT with 83KB and 96KB respectively
for 300 users. The OSS has more disk read/writes due to the
read/write of bucket values based on each trigger. While in
Apache NiFi, data flow is through the queue and doesn’t had
sever disk read/writes.

Network performances of the SDPs were measured as Net-
work receive and transmit bytes as shown in Figure 11. The
OSS and MQTT has highest Network receive bytes calculated
as average overall users 32KB and DFT performed well with
34KB. But for Network transmit bytes, MQTT had the highest
reading with 64.3KB for 300 users. While, DFT had less net-
work transmit bytes of 20KB over 300 users. MQTT recorded
with highest values in terms of network performance due to
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Figure 11: Aeneas application - Average Network Transmit and Average Re-
ceive data and measured in Kilo Bytes

Figure 12: PocketSphinx application - Processing time measured in seconds

each data flow with topic will be published and subscribed over
the network, even in OSS most of the network operations recorded
on buckets with event triggers.

In this application, MQTT based SDP had a lowest compu-
tation time with minimum processing time as compared with
DFT and OSS. Further, MQTT based SDP did not experience
any drop of data units in the pipeline as compared with Pocket-
Sphinx and Custom video application. Moreover, CPU, Mem-
ory consumption and data Read/Writes metrics were also low-
est, but there was raise in Network Receive/Transmit but it was
negligible since the data unit size in the pipeline was very min-
imum. Considering the above metrics and associated SDP per-
formances for Aeneas application, it is evident that MQTT SDP
worked better over OSS and DFT, as shown in suitability table
Table 4.

6.3.2. Performance metrics of the PocketSphinx application
The processing time of the PocketSphix application over all

the proposed SDP’s were measured as shown in Figure 12. The
OSS had the highest processing time of 851s, whereas DFT
had 663s with minimum processing time. This application had
large a set of functions in the pipeline and OSS event notifica-
tions are set to three buckets to store intermediate results. All
the events are triggered asynchronously and lead to a larger pro-
cessing time. As similar to Aeneas, DFT shared highest disk ac-
cess time, whereas OSS and MQTT had maximum computation
time. In MQTT, major challenge was the data unit drop rate in-

Figure 13: PocketSphinx application - Average CPU utilization and average
Memory utilization and measured in %

Figure 14: PocketSphinx application - Average Disk Reads and average Disk
Writes and measured in Kilo Bytes

creased as the number of user requests increased and here, drop
rate was approximately 2%.

The CPU utilization and Memory utilization were observed
in % as shown in Figure 13. The OSS and MQTT equally con-
sumed the CPU of 28% calculated over 300 users as shown in
the primary y-axis, whereas DFT consumed highest CPU 31%.
However, MQTT had more CPU usage when user requests in-
creased which is not suitable in terms of compute intensive and
heavy compute bounded workloads. Similarly as in Aeneas,
DFT uses Apache NiFi and required more CPU to execute pro-
cessors concurrently. The memory utilization shown in the sec-
ondary y-axis, DFT had highest average memory utilization of
46% whereas MQTT used the highest memory of 48% after 300
users.

The disk I/O read and writes are measured in KB as shown
in Figure 14. The OSS leads to more disk read 5KB as com-
pared to DFT with 2KB and least with MQTT-based SDP of
1KB over 300 users. Similarly as in Aeneas, OSS utilizes the
MinIO (S3) storage and at each event triggers on bucket no-
tification, data would read from the disk leading to higher disk
reads. The disk writes were shown in secondary y-axis, as simi-
lar OSS had significant disk writes of 70KB because the number
of buckets used were more as compared with Aeneas and Video
processing application. The least disk writes by MQTT-based
SDP and moderately by DFT is due to data pushed and pulled
in the queue neither directly written nor read from the disk.
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Figure 15: PocketSphinx application - Average Network receive and transmit
and measured in Kilo Bytes

Figure 16: Video processing application- Processing time measured in seconds

The network receives and transmits were measured in KB as
shown in Figure 15. Here, the network received bytes perfor-
mance of OSS had highest as 6KB while DFT had least with
2KB. The secondary y-axis represents the Network transmit
bytes, similarly as above OSS had the highest transmit bytes
with 7KB and DFT had least with 5KB over 300 users. Push
events and notifications events of MinIO make OSS to consume
more Network receive and transmit bytes. Evermore, Pocket-
sphinx uses more buckets as compared with other applications.

Considering the above performance metrics, its observed
that DFT and MQTT performed equally better on Pocketsphinx
application as compared with OSS. However, Pocketsphinx re-
quired more bandwidth to transfer audio files over the fog net-
work and this motivates to consider DFT as suitable SDP shown
in Table 4.

6.3.3. Performance metrics observed for custom video appli-
cation

The video processing application naturally demands huge
computation power and more bandwidth to process and offload
the video files. The quality of the video is determined by frame
rate. A frame per second (fps) is the speed at which individ-
ual still images, known as frames, are displayed in the video.
The higher value of fps in the video requires more resources
to process. So, it is significantly necessary to investigate the
performance metrics based on the change of the fps values. In
our work, we considered fps values scaling from 1 to 15 and
measured the performance. Along with this, its essential to in-

Figure 17: Video processing application - CPU utilization measured in percent
(%)

Figure 18: Video processing application - Memory utilization measured in per-
cent (%)

vestigate the rate of arrival of such user videos as measured in
earlier applications. So, in this section, we will describe the
performance metrics collected based on the change in fps val-
ues and arrival rate of user videos.

The processing time was measured in seconds (s) as shown
in Figure 16. Here, the primary x-axis shows the number of
users The primary y-axis represent the Processing time mea-
sured for number of users. The DFT worked better with 4500s
as compared with OSS and MQTT based SDP with 5520s, 4515s
respectively over 10 users. As like other applications MQTT
had major issue of dropping the data units intermediate pipeline
and it was approximately 28%. The other challenge was, MQTT
openfaas-connector invokes the function carrying heavy data
input, which makes maximum openfaas NATs queue memory
utilization and this raises an exceptions from openfaas gateway.
Similar to other applications, computation time was maximum
in OSS where as DFT has minimum disk access time. The event
triggers in MinIO and topic publish and subscription with huge
multi-media (audio) data took quite higher processing time.

The Figure 17 represents the CPU utilization across scaling
of number of users and fps values. Based on scale of users,
DFT performed better with CPU utilization of 32%, but MQTT
consumed more CPU with 35% over 15 users. However, MQTT
worked better based on the scale of fps values with 23% and
DFT consumed more CPU with 36%. Considering both of the
scenarios, OSS worked well. Even though the MQTT-based
SDP works well in case of fps based scenario but consumed
more CPU in another scenario.

The memory utilization was shown in Figure 18, MQTT
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Figure 19: Video processing application - Disk Reads measured in Kilo Bytes
(KB)

Figure 20: Video processing application - Disk Writes measured in Kilo Bytes
(KB)

based SDP consumed less memory as compared to OSS and
DFT with 34%, 46% and 44% respectively over 15 users. Inter-
estingly, OSS consumed less memory with 35% as compared
with MQTT and DFT with 46% and 49% respectively. The
MQTT-based SDP and OSS were good in terms of memory
consumption considering both of the scenarios.

Disk Read for both of the scenarios shown in Figure 19,
OSS had very few disk reads in both of the scenarios with av-
erage values of 1KB, 6KB respectively. MQTT-based SDP had
more disk reads and DFT moderately worked better in both of
the scenarios.

Figure 20 shows the Disk Writes, MQTT has minimum disk
write in both scenarios with an average value of 966KB, 33KB
respectively. OSS had the highest disk writes based on the num-
ber of users while DFT had more based on the fps. The OSS
will have obviously higher disk writes due to objects stored on
the disks and DFT had more disk writes due to interaction of
NiFi processors with file system.

The Figure 21 and Figure 22 represents the network per-
formance measurement for both of the scenarios in Kilo Bytes
(KB). In terms of network receive bytes in scaling of users
scenario, OSS worked very well with 2KB and DFT moder-
ately better with 4KB, but MQTT had more network receive
bytes with 5.3KB considering 15 users. However, the scaling
of fps values scenario, DFT worked well with 59KB, but OSS
had maximum values over all the SDPs with 215KB. In net-
work transmit bytes, DFT performance was moderately good
with 6KB, 47KB but OSS consumed minimum network re-
sources(receive bytes and transmit bytes) in terms of scaling the

Figure 21: Video processing application - Network receive bytes measured in
Kilo Bytes (KB)

Figure 22: Video processing application - Network Transmit bytes measured
in Kilo Bytes (KB)

users whereas MQTT consumed more network resources. The
MQTT based SDP consumed more network bandwidth due to
publish of the multi-media data over the tcp network and mqtt-
openfaas client always listen to this topics leading to higher net-
work consumption.

Considering the various performance metrics based on scal-
ing of users and fps values, its observed that Video processing
application consumes more CPU due to ffmpeg and YOLOv3
tools and even demand for more bandwidth to offload the multi
media files between edge/fog/cloud infrastructure. However,
DFT consumes less network resources but more CPU and disk
resources, rather OSS uses less CPU but required more network
resources. MQTT based SDP performance shows that its not
suitable for Video processing due to heavy usage of resources.

6.3.4. Suitability analysis
All the proposed SDPs were implemented for three fog com-

puting applications, the observed performance of all metrics vs
all applications are reported in Table 4. The focus of suitabil-
ity analysis was to extract insights from an observed experi-
mental results in selection of best fit SDP for Aeneas, Pock-
etSphinx and Video processing application. The overall results
were summarized with suitability index and corresponding suit-
able SDP for each application was presented in the Table 4.

In this Table 4, average performance metric values were cal-
culated by averaging the recorded values of SDPs performance
across individual application and then minimum and maximum
of such average values were noted and corresponding SDPs
were chosen, as mentioned in the Table 4. Further, suitabil-
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Table 4: Average performance metric values and suitability index calculated across each application
Metrics/Application Aeneas Pocketsphinx Video Processing application

# of Users fps
Average Metric Values7 Min of Avg. Max of Avg. Min of Avg. Max of Avg. Min of Avg. Max of Avg. Min of Avg. Max of Avg.
Processing Time (s) MQTT (MQ) OSS DFT MQ DFT OSS OSS MQ
CPU Utlization (%) MQTT (MQ) DFT OSS/MQ DFT OSS MQ OSS DFT
Memory Utilization (%) OSS MQ MQ DFT MQ OSS OSS DFT
Disk Read (KB) MQTT (MQ) DFT MQ OSS OSS MQ OSS MQ
Disk Writes (KB) OSS DFT MQ OSS MQ OSS OSS MQ
Network Receive (KB) DFT OSS DFT MQ OSS MQ DFT OSS
Network Transmit (KB) DFT MQ OSS MQ OSS MQ DFT OSS
Suitability index (%) MQ (43%) DFT (43%) OSS (43%) MQTT (57 %) MQTT (43 %) OSS (57%) MQTT (57%) OSS (71%) MQTT (43%)
Suitable SDP MQTT DFT OSS OSS

ity index was calculated by counting the SDP names across
each application on both Minimum and Maximum of average
columns and then percentage of their contribution, over all the
metrics were calculated. Because, this helps to decide at what
percent the SDP is suitable (Minimum of average column) or
not suitable (Maximum of average column). Finally, according
to suitability index, the well suited SDP for each application
was noted as mentioned in the Table 4.

As mentioned earlier, Aeneas is BI application and accord-
ing to suitability index, MQTT based SDP is well suited for this
application with 43%, in-spite it has huge network consump-
tion which is not acceptable for BI applications. However, it
had good performance in other metrics. The DFT is not suited
due to higher processing time and disk utilization with 48%. In
PocketSphinx application, MQTT based SDP has suitability in-
dex of 57%, where as it also has a highest not suitability index
with 43%. The OSS had poor performance in all the aspects,
but DFT has 0% index for not suitability, this motivates to con-
sider the DFT as a best suited SDP for PocketSphinx. Finally,
for Video processing application, the performance of OSS was
significant with suitability index of 51% and 71%.

6.3.5. Experience and future directions
The set of experiments and associated results in earlier sub-

sections show that SDPs performance varies significantly ac-
cording to end user application (CI, BI). An IoT has a stochas-
tic and heterogeneity (latency intensive, CI, BI) nature of work-
loads. To process such data oriented workloads the placement
and design of the data pipeline mechanism on fog/cloud is quite
necessary where our research fills this gap.

However, while designing and implementing these SDP ap-
proaches significant portion of time was consumed in design-
ing and developing the serverless functions in various proposed
SDPs. The OSS consumed more time to design as it required
more than five number of serverless functions as shown in Ta-
ble 1, whereas DFT is least with maximum of three functions
because of a set of built-in processors in Apache NiFi that could
handle necessary utility operations such as PUTS3 to store a
data in MinIO were used. But in MQTT based SDP and OSS
we need to write them as functions. The DFT was best in de-
signing and implementing, because state of art Apache NiFi
data pipeline tool was used, which basically reduced efforts
and easily integrated with serverless frameworks. The function

Table 5: Average performance metric values across three applications
Metric/Application DFT OSS MQTT

Processing Time (m) 20.97 23.97 21.77
CPU Utilization (%) 69 61 52

Memory Utilization (%) 97 85 86
Disk Read (KB) 4 19 3

Disk Writes (KB) 102 197 95
Network Receive (KB) 15 31 33
Network Transmit (KB) 22 43 63

templates and associated Docker files of serverless functions
including other utility source files are available in GitHub 8.

Apart from the design experience, the resource utilization
metrics such as CPU, Memory, Disk Reads and Writes are im-
portant in serving the demands of IoT applications, because
the resource demand from end-user requests vary with respect
to the type of the application. For example, video applica-
tion demands for maximum compute and bandwidth resources,
whereas text processing application demands only for band-
width. So to investigate and analyze the resource utilization
metrics and processing time, we calculated the average over all
the three applications (on performance metrics) as shown in the
Table 6.3.5.

The DFT consumed highest CPU (69%) and Memory (97%),
whereas least in network utilization (15KB, 22KB) and pro-
cessing time (20.97m), this indicates that DFT is best suitable
for applications with huge bandwidth demand such as text pro-
cessing. Further, OSS consumed moderate CPU (61%), Mem-
ory (85%) and network utilization (31KB, 43KB), but had large
number of disk read and writes (19KB, 197KB). These results
show that OSS is best fit for video or image processing appli-
cations (bandwidth and compute intensive) due to lesser CPU,
Memory and network utilization. On the other-side, MQTT-
based SDP utilized the highest network resource (63KB, 33KB)
and lesser CPU (52%), disk and moderate memory resources
(86%). So, MQTT-based SDP is best suitable for compute in-
tensive applications, however not suitable for bandwidth sensi-
tive applications.

Even though the SDPs were designed and investigated sig-
nificantly based on different performance metrics, certain chal-
lenges still exist and the key improvements can be undertaken.

8https://github.com/shivupoojar/ServerlessDataPipelines
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The future directions should focus on two aspects. Firstly, on
how to minimize the processing time and resource utilization.
In our analysis, synchronous mechanism was used to invoke
the serverless functions leading to larger processing time and
they should be tested with asynchronous mode. The server-
less function scaling mechanism can also substantially reduce
the processing time and using intelligent scaling mechanisms
could overcome this issue. Secondly, how can SDPs be exe-
cuted on fog/cloud in terms of dynamic and stochastic work-
loads? Serverless operations were focused to fog infrastructure
in this work, however, to achieve user QoS expectations and to
fulfill the dynamism nature, a part of pipeline could be dynami-
cally executed in fog and rest in the cloud. So, several opportu-
nities exist to implement such intelligent decision mechanisms.

7. Conclusions and future work

In this paper, we proposed three Serverless Data Pipeline
(SDP) approaches: DFT, OSS, and MQTT-based SDP using
Apache NiFi, MinIO, and MQTT services, respectively. We
applied these approaches to three different fog computing appli-
cations namely Aeneas, Pocketsphinx and Video processing ap-
plication. We investigated their performance using the metrics
such as processing time (computation time, disk access time
and network access time) and resource utilization (CPU, Mem-
ory, Network and Disk utilization) and rigorously analyzed the
results by calculating a suitability index for each of them. Re-
sults show that MQTT based SDP works best for Aeneas, DFT
performs better for PocketSphinx and for video processing ap-
plication, the OSS performance was good as compared with
SDPs. However, an opportunity exist to improve the perfor-
mance of proposed SDPs by scaling the serverless functions or
using asynchronous invocations. Furthermore, the use of dy-
namic and stochastic workloads in future would help to evalu-
ate the reliably, resilience and throughput etc, of the proposed
SDP approaches.
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