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Abstract—In the medical domain, data are often collected 

over time, evolving from simple to refined categories. The 

data and the underlying structures of the medical data as to 

how they have grown to today's complexity can be 

decomposed into crude forms when data collection starts. 

For instance, the cancer dataset is labeled either benign or 

malignant at its simplest or perhaps the earliest form. As 

medical knowledge advances and/or more data become 

available, the dataset progresses from binary class to multi-

class, having more labels of sub-categories of the disease 

added. In machine learning, inducing a multi-class model 

requires more computational power. Model optimization is 

enforced over the multi-class models for the highest possible 

accuracy, which of course, is necessary for life-and-death 

decision making. This model optimization task consumes an 

extremely long model training time. In this paper, a novel 

strategy called Group-of-Single-Class prediction (GOSC) 

coupled with majority voting and model transfer is 

proposed for achieving maximum accuracy by using only a 

fraction of the model training time. The main advantage is 

the ability to achieve an optimized multi-class classification 

model that has the highest possible accuracy near to the 

absolute maximum, while the training time could be saved 

by up to 70%. Experiments on machine learning over liver 

dataset classification and deep learning over COVID19 lung 

CT images were tested. Preliminary results suggest the 

feasibility of this new approach. 
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I. INTRODUCTION 

Medical data are usually collected over time, and the data 

schema might have evolved from data that are composed of 

simple to refined categories. For example, when medical 

records about cancer disease were initially collected, they may 

only be labeled either benign or malignant in the simplest form. 

As medical knowledge about the disease advances by medical 

discovery or better electronic patient record technology 

becomes available, the features in the dataset expand from 

embracing binary class to multi-class. More labels of sub-

categories of the disease are added accordingly. However, the 

same complex data are made up of several classes of data, 

putting together as a multi-class dataset. This multi-class 

dataset is possible to be decomposed back to several subsets, 

each of which only contains certain binary classes of data. 

 What factors should be considered when determining 

whether to use multiple binary classifiers or one multiclass 

classifier for such data in medical informatics? Perhaps creating 

a complex multiclass classifier is not the best option. 

Alternatively, if we want multiple binary classifiers to work 

together, a general strategy is similar to the One-vs-All set. In 

One-vs-All, you essentially have an expert binary classifier that 

is really good at recognizing the pattern from everyone else, and 

the implementation strategy is usually cascading. For example, 

we could have a quatro-class classification model with classes 

Normal, Class A, Class B, and Class C. Figure 1 shows an 

illustration of a One-vs-all example: 
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Fig. 1.  Multiple one-versus-all binary-class classifiers 

 

One approach is to build a model that does multi-category of 

disease classification. In a very simple example, there are four 

outputs from a disease classifier:: [None, Class A disease, Class 

B disease, Class C disease]. There are two ways to approach 

this: One option uses a multi-class classifier.  

Multi-class classifier: [None, Class A disease, Class B 

disease, Class C disease] 

Another option is to use multiple binary classifiers such as 

follow: 

Single-classifier A: [None, Class A disease] 

Single-classifier B: [None, Class B disease] 

Single-classifier C: [None, Class C disease] 

 

Distinguishing which is a better option and in which 

condition the option works better is not easy. Multi-class 

classifiers have the following advantages and disadvantages. 

The advantages are: Easy to use out of the box since there is 

only one model to deal with, and is convenient when you have 

many classes in the dataset. The disadvantages are usually 

slower than binary classifiers during training; they could really 

take a while to converge for high-dimensional problems. Some 

popular multi-class classifiers are Tree-based algorithms and 

artificial neural network type of algorithms. 

 

1.1 Motivation 

One-vs-All classifiers’ advantages and disadvantages are as 

follow. The advantages are simplicity and fast convergence are 

usually resulted from binary classifiers. It is good and perhaps 

transparent pertaining to interpretable or explainable AI that is 

good to have a handful of individual classifiers that offer the 

probability of how the prediction of classes comes about. 

However, the disadvantages may be cumbersome to deal with 

when you have too many classes unless a systemic model is 

available. Training individual classifiers over subsets of data 

may lead to class imbalance-related problems that lead to bias, 

e.g. if you have a large number of samples of none and few 

samples of a particular disease type, or vice-versa. Some 

popular methods are most ensemble methods, support vector 

machines and pruning-enabled tree algorithms that trim off tree 

branches biased towards a majority class. 

In One-vs-All, you essentially have an expert binary 

classifier that is good at recognizing one pattern from all the 

others, and the implementation strategy is typically cascaded.  

Although the one-vs-all classification concept has been 

around for some years, it did not gain the popularity as 

deserved, probably due to some cons. The limitations that we 

observe from one-vs-all and the corresponding solutions we 

propose are as follows. 

1.2 Contribution 

A novel strategy called Group-of-Single-Class prediction 

(GOSC) coupled with majority voting and model transfer is 

proposed for achieving optimally maximum accuracy at only a 

fraction of the required long training time. The main advantage 

is the ability to achieve an optimized multi-class classification 

model that has the highest possible accuracy near to the 

absolute maximum, while the training time could be minimized. 

Since many individuals and independent binary-class 

classifiers are hard to handle, a solution is to have an ensemble-

like methodology to harness a collection of expert binary-class 

classifiers. This is the principle of Group-of-Single-Class 

prediction (GOSC). Each expert binary-class classifier delivers 

a single-class SC prediction, with probability scores and 

resulting rules explaining the outcomes. The final prediction is 

inferred by majority voting, which logically evaluates and 

selects the most probable result from the most reliable model. 

A reliable model is deemed one with high composite 

performance over several essential indicators such as accuracy, 

kappa, false-alarm rate, balanced precision and recall, etc. 

Furthermore, after optimization, each SC classifier (SCC) 

shares and copies its best model configuration within the GOSC 

framework. The best model configuration of a SCC would be 

transferred to the construction of a multi-class classifier. This is 

similar to transfer learning in deep learning terminology. It 

helps spare the time-consuming model optimization for the 

multi-class classifier. As a result, the users can opt to use either 

a near-optimal multi-class classifier or majority voting of a 

group of SCC’s. This novel methodology is suitable for medical 

informatics based on the assumptions that medical records are 

built over time, from binary-class to increasingly complex 

multi-class add-ons. 

The remainder of this paper is organized as follows. The 

related work in Section 2 reviews similar one-vs-all 

classification examples that have been applied prior and 

followed by our proposed methodology, namely GOSC in 

Section 3. The experiment is conducted and described in 

Section 4. The discussion of the experiment results is presented 

in Section 5. Section 6 concludes the paper. 

II. RELATED WORK 

Related works to the aspects of the growth of complexity in 

medical data, hence the motivations of this research, and some 

background of transformation from multi-class to binary class 

classifiers are reviewed in this section. 

As the electronic Health Record technology matures, the 

complexity of the data grows in several directions. 

Developments of new clinical cases enable more data features 

to be added in describing the data. The increasing ease and 

advances of data collection and big data archiving techniques 

give rise to data volume. Cloud computing and online platforms 

enable PACS to fuse multiple data sources more easily than 

ever. For example, [1] reported multiple sources of data could 
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be successfully aggregated onto a patient-centric health data-

sharing platform. 

Given the abundance of health data and disease-related data 

that grow in increasing complexity, scientists are eager to get 

on mining them for insights and discovery and building 

predictive models over the data for classification. A lot of 

research efforts were focused on single disease analysis. A great 

deal of machine learning was applied to analyze the data about 

a single disease. Uddin et al. [2] compared the performance of 

single disease prediction using a range of supervised machine 

learning algorithms. Ding et al. [3] investigated machine 

learning algorithms for predicting individual diseases. Nguyen 

et al. [4] proposed a special machine learning network model 

for predicting whether breast cancer will relapse or not, 

focusing on only a single disease and binary outcome. 

Moreover, research progresses towards finding the relations 

and risks of how certain diseases might have occurred together 

in the same data record. Multi-label classification gained 

popularity, expanding the single horizon of a particular to 

considerations of multiple diseases or symptoms that 

simultaneously show up, e.g., a heart attack is associated with 

blood pressure, hypertension, obesity, healthy diet and diabetes, 

etc. Another complexity is a multi-class model that is built on 

data that encompasses multiple classes. The prediction target is 

not merely binary but spans several possible classes. This 

usually gives a more precise classification assessing which 

exactly is the characteristic or severity level of disease. For 

example, in cancer staging, there are four major levels, ranging 

from stage 0 that is a healthy body, to stage 1, where the cancer 

cells are small and confined in a small area, to stages 2, 3 and 

4, which eventually spreads to other parts of the patient's body. 

Bayati et al. [5] invented an inexpensive method for multiple 

disease prediction. 

Multi-class Classification (MCC) classifies the testing data 

into more than two classes, e.g., class A, class B and class C. 

Each data is labeled to one and only one class by MCC. Data 

can be classified into one of the classes A, B, or C, but at the 

same time cannot be both.  

In the medical domain, numerous researchers report on  

predicting or analyzing the likelihood of having a single disease 

at a time. For diabetes analysis, Neuvirth et al. [9], Shivakumar 

et al. [8] and Yeh et al. [7] built models that classify a disease 

by the presence or absence of the disease. Likewise, for 

predicting the presence of cerebrovascular disease, the same 

type of models was constructed [7, 10]. Typically, binary 

classification takes care of the predictions of single diseases. 

Nevertheless, several related diseases may simultaneously 

occur where binary classification is insufficient to handle 

multiple classes effectively. Runzhi et al. [6] attempted to use 

an ensemble multi-label classification model for predicting the 

risks of multi-diseases from physical examination records.  

In millennia, Allwein et al. [11] were pioneers in unifying 

from several simple classifiers into a multi-class classifier 

capable of handling multiple binary problems. The 

experimental results prove that their method offers a feasible 

alternative to the commonly used multi-class models, giving 

rise to the popular adoptions of support vector machines and 

AdaBoost. Dong et al. [2] extended the idea to a tree structure 

of nested hierarchical that replaces a multi-class model of 

multiple classes by individual binary-class models. The method 

generated random partitions of ensembles of sampling trees, 

and it is proven to be an effective approach in lieu of a multi-

class model. The researchers also managed to fix the 

unbalanced binary class problems over the fact that the 

partitioned data may contain too much class-irrelevant data and 

too few class-specific data. Galar et al. [3] has extensively 

tested such concept of simplifying a multi-class to a number of 

binary-class models, calling them one-versus-one and one-

versus-all, etc. 

Galar and his team tested a number of popular machine 

learning algorithms from the literature, such as decision tree, 

SVM, IBL and rule-based methods. The results show the 

binarization approach, which decomposes a multi-class model 

to multiple binary-class models, has certain benefits. The 

results are verified by statistical significance analysis. It was 

found that the robust techniques include J48 (decision tree), 

JRip (rule-based method) and SVM have significant advantages 

when the multi-class problem is turned into binary-class 

models. But instance-based learning technique like kNN has 

little difference. 

Fürnkranz [14] compared the one-versus-one decomposition 

techniques with respect to the suitability of decision tables and 

decision trees. The comparison is against popular ensemble 

methods such as bagging and boosting and bagging. The results 

indicate that an appropriate method for combining the outputs 

is needed to achieve performance improvement using 

confidence estimates. 

Based on the relevant literature, it is confirmed that the prior 

works have shown breaking down a complex multi-class 

classifier into the binary class classifier. The advantage is 

observed from converting a single multi-class model into a 

group of binary-class models. However, the extent of 

advantages varies from algorithm to algorithm. We are inspired 

to assure the performance of grouping up binary-class models 

and using them as if they are one multi-class classification 

model. Another way is to balance the imbalanced class data 

after decomposition, just as the same problem was fixed in [2]. 

It is known that choosing the right parameters is crucial to 

which model performance is sensitive [15][16]. In light of 

ensuring a good level of accuracy for a classification model or 

algorithm, one aspect is to get the model parameters optimized, 

which are able to maximize the model performance. Hence, this 

becomes a motivation in this study to embrace parameter 

optimization as a part of an investigation of model binarization. 

III. PROPOSED METHODOLOGY 

Extending from Galar et al. [3], a methodology based on a 

Group-of-Single-Class prediction (GOSC) plus certain 

modifications are proposed.  A traditional multi-class 

prediction methodology, in Figure 2a works by supervised 

learning a model from a training dataset that consists of 

multiple classes. Like a standard supervised learning process, 

the dataset of multiple classes is loaded into an induction 

process where training and validation occur, learning a model 
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over the data. Once training is done, the model becomes mature, 

this multi-class classifier (MCC) is ready for making  

predictions by loading in some unseen testing data. 

 

 
Fig. 2a. A traditional multi-class prediction methodology  

 

By the design of the GOSC methodology, the model 

induction and testing process is expanded to three layers, as 

shown in Figure 2b. Firstly the full training dataset is split by 

the classes, partitioning it into multiple training datasets. Each 

has a group of data associated with a particular class label. The 

individual subset of data of a single class that has binary labels 

(existence of a particular disease versus non-existence of that 

disease) is used to train a single binary-class classifier. The 

number of single binary-class classifiers is equal to the number 

of classes. Prior to these binary-class classifier trainings, the 

data subset that is often imbalanced will be subject to 

rebalancing, using resample and/or SMOTE [17]. 

Each of the individual binary-class classifiers is subject to 

cross-validation parameter optimization called 

CVParameterSelection [18]. It performs parameter selection by 

cross-validation to find a set of parameters that give the best 

performance. It is known that optimal parameters yield optimal 

model configuration, therefore optimal performance for a 

classifier [19][20][21]. However, the searching process is 

tedious and time-consuming, especially if it were to be done by 

trial-and-error manually. CVParameterSelection selection 

function automates the search by testing out users‘ specified 

ranges of parameters that contribute to the base classifier's 

model setup. After the classifier model is optimized and the 

optimal parameters are found, the new model is ready for 

subsequent predictions. The level of prediction accuracy is 

supposed to improve as well [22]. 

With a group of binary-class classifiers optimized and ready 

to predict, a majority voting mechanism [23] is applied at the 

prediction phase. The full framework of the Group-of-Single-

Class prediction methodology is shown in Figure 2b. 

 

 
Fig. 2b. The framework of Group-of-Single-Class prediction methodology  

Majority voting is a typical ensemble machine learning that 

uses a group of binary-class classifiers instead  of an MCC [24]. 

For predicting a continuous future variable, such as forecasting 

or regression, the output from a voting ensemble will be the 

mean of the predicted results from the group of prediction 

models [25]. 

For classifying samples into discrete labels, as in our case of 

medical disease classification, a hard majority voting (MV) 

method is used [26]. The hard MV mechanism collects the 

outputs of all the binary-class classifiers, each classifier votes 

for a particular class. Hard MV collects the votes and selects a 

winning class with the most votes as the final prediction 

outcome. When two or more votes are in deuce, the tie is broken 

by judging from the classifiers' accuracy performance. The one 

that has the highest level of accuracy has the winning vote. The 

predicted probabilities for classes are summed up.in the soft 

MV method [26]. Then it predicts the winning class to which 

the sample should be classified by the class with the largest sum 

probability. Users could optionally choose between hard or soft 

MV methods to handle the group voting and make collective 

predictions from the individual binary-class classifiers. 

One innovation in our methodology is the model transfer 

technique. The model transfer is referred to the concept of 

copying the optimal parameters from the best performing 

binary-class classifiers to the multi-class classifier prior to its 

training [27]. The motivation is to speed up the whole training 

process for MCC, which includes parameter optimization, 

model construction and n-fold cross-validation. The parameter 

optimization times are known to be extremely long for the 

multi-class model. In contrast, the parameter optimization times 

for binary-class classifier is much shorter. The imbalanced data 

due to splitting the original training sets into subsets of binary-

class data need to be rebalanced. It is an important criterion to 

produce a good quality well-trained binary-class model, which 

contributes to producing good optimization results in optimal 

parameters. The model transfer concept is similar to transfer 

learning in deep learning [29], where the initial configuration 

of a model is pre-trained from something else which was trained 

with similar domains (e.g. pre-training object recognition of a 

cat prior to transfer learning the model configuration to 

recognition of a lion). In our methodology, the model transfer 

is about finding the key model parameters that are influential to 
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the machine learning model performance, from the binary-class 

classifier to the MCC. 

The working logic of this proposed GOSC methodology is 

shown in two parts in Figures 3a and 3b, respectively. There are 

two options of operations by the GOSC methodology.In 

general, the two options share the same initial tasks, such as 

generating split data subsets according to each of the existing 

binary classes. Rebalance the majority and minority class data 

if necessary. Train and optimize each individual binary-class 

classifier. Record the time performance as well as the model 

training performance in accuracy and other related performance 

measures. If an ultimate MCC is not required, perform majority 

voting, soft or hard, by choice of the user, and obtain the voting 

result as the final prediction result. The logic is depicted in 

Figure 3a. If an MCC is required for subsequent predictions, as 

shown in Figure 3b, a candidate binary-class classifier with the 

highest prediction accuracy is nominated for model transfer. Its 

optimized model parameters are copied to the initial 

configuration of MCC. Thereafter, the MCC is used directly in 

subsequent prediction without going through a tedious and long 

parameter optimization process. 

 

 

 
Fig. 3a.  The workflow of Group-of-Single-Class prediction methodology – Part 

one, when MCC is not needed. 

 

 

 
Fig. 3b.  The workflow of Group-of-Single-Class prediction methodology – 

Part two, when MCC is needed. 

 

IV. EXPERIMENT 

Two experiments are carried out to validate the concept of 

GOSC prediction. The first experiment involves using a 

traditional two-dimensional structured dataset with 70 columns 

of features that characterize 1000 rows of features. The last 

column of the dataset is the class categories to which the data 

map to in classification. There are four class labels in the 

dataset: normal, carcinoma only, and carcinoma-jaundice. The 

dataset comes from a physician's donation9 to the HEPAR 

project [30], run by the Institute of Biocybernetics and 

Biomedical Engineering of the Polish Academy of Sciences in 
collaboration with doctors from the Medical Center for 

Postgraduate Education. The HEPAR system contains a 

database of medical records of the gastroenterology clinic of the 

Warsaw Institute of Nutrition. The data has 70 nominal 

attributes and 10,000 case histories. The presence or absence of 

symptoms for 70 signs determines whether a patient suffers 

from liver disease. An earlier attempt was made to build a 

causal network based on HEPAR, shown in Figure 4. It could 

be seen how the attributes have causal relations with one 

another and with the predicted target as well. 
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Fig. 4.  Belief network of an earlier attempt on HEPAR data  

 

This dataset represents a typical scenario of medical data 

collection – it started with basic classification between normal 

and carcinoma. Results of further tests are fused to the data, 

refining the data with an extra category of carcinoma-jaundice. 

Of course, these three categories could be extended to more and 

deeper sub-categories if needed in the future. This illustrates an 

example of how GOSC could be applicable in boosting the 

prediction performance when multi-class medical data are dealt 

with appropriately. 

The second dataset came from Kaggle [31]. The dataset 

carries three classes, each class of images are labeled as normal, 

infected by bacteria and infected by virus. The images are 

loaded into a deep learning network powered by Darknet, 

running on Google Colab GPU environment for training the 

network. One deep neural network trained as expert SCC for 

each class of x-ray images. One multi-class network is trained 

too, which should be able to recognize and distinguish three 

classes of images during testing the unseen. A total of four deep 

neural networks are trained; one is for classifying three classes 

as a multi-class classifier, and three networks as SCCs 

recognizing only their respective class of images. Figure 5 

shows a sample of these three types of x-ray images. 

 

 
Fig. 5.  A sample from each of the three classes of x-ray images 

 

The objective of this experiment is twofold. We need to show 

that our GOSC works equally well on conventional structured 

medical datasets using popular machine learning algorithms 

and x-ray images using convolution-style deep learning, one of 

the most current medical imaging prediction methods. The 

other objective is to investigate how the training pattern in the 

performance curve of training error versus epoch behave in 

multi-class classification combining the recognition powers of 

three classes in one model compared to a single expert SCC 

recognizing an only class of disease ignoring the rest. 

Intuitively, training a multi-class convolution neural network is 

more difficult and complex than training a binary-class 

network. Once this investigation is completed and the 

hypothesis is established, subsequent studies would be on 

transfer learning in terms of model parameters transfer (like 

how GOSC advocates) in sequel experiments. 

On the other hand, the HEPAR liver cancer dataset will be 

used to test GOSC thoroughly. The dataset is first divided into 

subsets such as a full dataset, the dataset that contains instances 

of normal and carcinoma-only, and the dataset that contains 

instances of normal and carcinoma-jaundice. The full dataset 

naturally and originally consists of instances of the three 

classes: normal, carcinoma-only, carcinoma-jaundice in the last 

column of the data matrix. Each data subset constitutes a 

corresponding model, known as a multi-class model, binary 

class model 1 (carcinoma-only) and binary class model 2 

(carcinoma-jaundice) for short naming. 

All three classification models in our experiment will be 

subject to model optimization. For simplicity, only the two most 

important model parameters will be optimized to the 

appropriate values, giving rise to the highest accuracy after 

optimization. Two-level iterating loops are used to try through 

the parameter values of the two variables in a wrapper fashion. 

In each iteration, two candidate values from the testing 

parameters are used to build a trial model and its accuracy will 

be measured in three-fold cross-validation. This optimization 

process is simplest but takes a very long time to loop through 

combinations of variable values in building, evaluating, and 

discarding candidate models. This optimization guarantees the 

best parameter values, thus the best model setup for any given 

dataset with a given machine learning algorithm. However, in 

the case of a multi-view classification model, such optimization 

will take a significantly long time. One of the advantages of 

GOSC is to eliminate the optimization run on multi-class 

classification. Instead, finding the right model parameters from 

its peers – those SCCs from the subsets of the full dataset, and 

transfer over the values of the parameters from the best 

performing optimized SCC to the multi-class classifier, without 

running the optimization from the full dataset for the multi-class 

classifier. 

A collection of representative machine learning algorithms is 

tested in the experiment. They are two algorithms belonging to 

tree-based classification – J48 [32], an implementation of 

Classification and Regression Trees in Java and SPAARC [33], 

known as a fast decision algorithm. Two algorithms belong to 

rule-based classification – JRip, which is a propositional rule 

learner stands for Java Repeated Incremental Pruning to 

Produce Error Reduction (RIPPER) [34] and a decision list that 

uses separate-and-conquer (PART) [35]. A classical black-box 

model by multiple perceptrons [36] is used too. The machine 
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learning algorithms are open-source codes developed by 

scholars, available on Weka - Waikato Environment for 

Knowledge Analysis, a machine learning software suite is 

written in Java developed at the University of Waikato, New 

Zealand. It is free software licensed under the GNU General 

Public License. 

Five performance evaluation criteria are considered here. 

They are accuracy, kappa, ROC, FP and time cost. Accuracy is 

the percentage of correct classifications. Cohen's kappa 
coefficient (κ) is a statistic that measures the agreement 

between evaluators on qualitative (categorical) items. 

Generally, it is considered to be a more robust measure than 

simple accuracy in data mining, which is simply the number of 

correctly classified data over the total. Kappa is sometimes 

taken as a  reliability measure for a data mining model. ROC is 

sometimes known as the AUC-ROC curve in full. AUC (Area 

Under the Curve) ROC (Receiver Operating Characteristics) 

curve.  It is one of the most important metrics for testing the 

effectiveness of any classification model. ROC is the 

probability curve and AUC is the degree or measure of 

separability. This indicates how well the model can distinguish 
between classes. The higher the AUC, the better the model 

predicts that 0 is 0 and 1 is 1. Similarly, the higher the AUC, 

the better the model can distinguish between diseased and non-

diseased patients. The ROC curve is drawn using the ratio of 

TPR to FPR, where FPR is on the x-axis and TPR is on the y-

axis. TPR (True Positive Rate) / Recall /Sensitivity = 

TP/(TP+FN). Specificity=TN/(TN+FP). FPR=FP/(TN+FP).  In 

general, an AUC of 0.5 suggests no discrimination (i.e., ability 

to diagnose patients with and without the disease or condition 

based on the test), 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 

is considered excellent, and more than 0.9 is considered 
outstanding. FP is FPR as above, known as false alarm rate. The 

higher it is, the more falsely detected cases as positive, which 

are negative.. Cost of time is the number of CPU seconds 

required to create or update a machine learning model in data 

streams. Accumulated time is the total spent on all training 

instances. Hardware platform - MacBook Pro with 2.9 GHz 

Intel Core i5 processor and 8 GB LPDDR3 at 2133 MHz. 

The experiment results are charted as bar charts in Figures 

6-11, respectively. The machine learning modelIn performance 

with respect to each of the five indicators (accuracy, kappa, 

ROC, FP and time cost) for each model induced by each of the 

five algorithms are compared vis-à-vis over four approaches 
within the framework of GOSC – (1) original where default 

model parameters are used without any optimization; (2) full 

optimization which runs through two-loops-of-iterations for the 

best pairs of parameters values; (3) model enhancement by 

taking up the best parameters values that were found from one 

of the SCCs, and (4) model enhancement by copying over the 

best parameters values that were found from the other SCC.  

Figures 13 and 14 show the deep learning errors in RMSE 

curves on the logarithmic scale during the model construction 

process, in terms of current errors and average errors, 

respectively.  

 
Fig. 6a.  Accuracy comparison of models by Decision Tree - J48 

 

 
Fig. 6b.  Accuracy comparison of models by Decision Tree - SPAARC 

 

 
Fig. 6c.  Accuracy comparison of models by Rule-based Model - PART 

 

 
Fig. 6d.  Accuracy comparison of models by Rule-based Model - JRip 
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Fig. 6e.  Accuracy comparison of models by Black-box Model - Neural 

Network 

 

 
Fig. 7a.  Kappa comparison of models by Decision Tree - J48 

 

 
Fig. 7b.  Kappa comparison of models by Decision Tree - SPAARC 

 

 
Fig. 7c.  Kappa comparison of models by Rule-based Model - PART 

 

 
Fig. 7d.  Kappa comparison of models by Rule-based Model - JRip 

 

 
Fig. 7e.  Kappa comparison of models by Black-box Model - Neural Network 

 

 
Fig. 8a. ROC comparison of models by Decision Tree - J48 

 

 
Fig. 8b. ROC comparison of models by Decision Tree - SPAARC 

 



 

 

9 

 
Fig. 8c. ROC comparison of models by Rule-based Model - PART 

 

 
Fig. 8d. ROC comparison of models by Rule-based Model - JRip 

 

 
Fig. 8e. ROC comparison of models by Black-box Model - Neural Network 

 

 
Fig. 9a. FP comparison of models by Decision Tree - J48 

 

 
Fig. 9b. FP comparison of models by Decision Tree - SPAARC 

 

 
Fig. 9c. FP comparison of models by Rule-based Model - PART 

 

 
Fig. 9d. FP comparison of models by Rule-based Model - JRip 

 

 
Fig. 9e. FP comparison of models by Black-box Model - Neural Network 
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Fig. 10a.  Time comparison of models by Decision Tree - J48 

 

 
Fig. 10b.  Time comparison of models by Decision Tree - SPAARC 

 

 
Fig. 10c.  Time comparison of models by Rule-based Model - PART 

 

 
Fig. 10d.  Time comparison of models by Rule-based Model - JRip 

 

 
Fig. 10e.  Time comparison of models by Black-box Model - Neural Network 

 
Fig. 11.  Radar chart of performance indicators comparison of Accuracy, Kappa 

and ROC 
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Fig. 12.  Radar chart of performance indicators comparison of False Positive 

Rate and Time cost. 

 

 
Fig. 13.  Current error curves for deep learning models of four types. 

 

 
Fig. 14.  Average error curves for deep learning models of four types. 

 

V. RESULTS DISCUSSION 

Observing over the experiment results from Figures 6-9 

clusters of graphs on various performance indicators (accuracy, 

kappa, ROC and FP), some significant remarks are listed as 

follow: 

1. In general, parameter optimization enhances a model 

resulting in better performance than the original model in all 

cases. 

2. Full parameter optimization on a multi-class model often 

generates the best performance, which can be taken as a 

comparative benchmark. 
3. The performance of the multi-class model by any one of 

the model transfers is close to (and slightly less than), which by 

full parameter optimization at around 9%. 

4. The performances of the multi-class model by the possible 

model transfers may not always be equal, except for J48 and 

PART. These two classifiers use information gain as a node 

selection criterion in common. In an artificial neural network, 

one of the model transfers is better than the other, different by 

less than 9%, close to and slightly lower than full optimization 

by approximately 4.1%. 

5. For algorithms PART and SPAARC, there is a very 
significant improvement using parameter optimization. The 

performances by full and model transfer optimizations are very 

close too. Therefore, it suggests that model transfer is quite a 

feasible solution to trim down the optimization time while 

significantly enhancing the prediction performance. 

6. By the designs of the algorithms, JRip and artificial neural 

networks are relatively strong and stable models. However, 

optimizing the parameters helps marginally increase the 

performance compared to the other algorithms under test. In 

other words, these two algorithms do not show much 
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improvement when their model parameters are optimized. For 

example, in Figure 9d, the false-positive rates for JRip are very 

similar between optimized and otherwise models. 

7. For binary-class models, copying the parameters that have 

been optimized from another binary-class model produce 
similar but less perfect performance compared to its own 

optimization. But it still outperforms the original model without 

optimization at any rate. 

As a concluding remark, a full parameter optimization yields 

the best performance; however, it could be replaced by the 

model transfer method as there shows little difference between 

full and model transfer optimizations. 

While known as time cost, the timing performance for each 

experiment run is measured from the beginning of model 

construction to the end. That excludes multi-fold evaluation 

time. It can be seen from Figures 10a-e where that full 

optimization is always the most time-consuming approach. The 
difference between a model being optimized and original could 

be up to 100 folds, as in Figure 10d for JRip. On the bright side, 

the time taken for model construction by using model transfer 

is always much lower than that for full optimization. This 

proves that it is possible to use model transfer in lieu of full 

optimization to achieve on-par performance at only a fraction 

of the time cost. 

In Figures 11 and 12, the five performance indicators are 

stretched over radar charts over the five testing algorithms in 

vertices. The results are shown in marginal percentage gains 

with respect to the performance improvement using model 
transfer optimization over the original model without any 

optimization. In Figure 11, it can be clearly observed that 

algorithms such as artificial neural networks and JRip only have 

marginal performance increases in control of the other three 

algorithms. Decision tree SPPAARC has the greatest gain when 

model transfer optimization is used, in all the accuracy, kappa 

and ROC. The runner-up algorithms, J48 and PART, show the 

same. In particular, Kappa has gained the most compared to 

Accuracy and ROC using optimization. That means the models 

have become more reliable, being able to generalize well. In 

Figure 12, the results of false-positive rate and time costs are 

laid over the radar chart of five algorithms. Again, the two 
stable algorithms, artificial neural networks and JRip have little 

performance gains in false-positive rate. J48, SPAARC and 

PART, which are largely decision tree-based algorithms, 

greatly reduced false-positive rates. Ironically, JRip has the 

greatest gain in reducing the time up to almost 700% when it 

comes to time cost-saving. Artificial network networks and 

PART also have a significant reduction in time cost when 

model transfer optimization is used. In contrast, J48 and 

SPAARC have already been quite fast in model construction, 

with little time cost gain and optimization. In summary, false-

positive rates are lowered by approximately 300% for tree-
based algorithms, and time cost is hugely saved for JRip as well 

as neural network and PART when transfer model optimization 

is used. 

GOSC is also tested on deep learning models of several 

types. According to the given COVID19 lung infection dataset, 

four deep learning model trainings were set up. Each model is 

trained with a particular dataset of various classes. The single 

class models are trained with datasets with only individual 

classes, i.e., single-class normal, single-class bacteria, and 

single-class virus. The multi-class model is trained with the 

dataset containing all three classes - normal, bacteria and virus. 

In deep learning, it is anticipated that error curves descend 

sharply in the early period of epochs. Then the curves decay to 

equilibrium as the errors continue to drop at a decreasing rate. 
In Figure 13, it is observed that the error curve of the multi-

class model has the least error relative to the single-class 

models at the early descend. However, the curve of the multi-

class model remains higher than the rest of the error curves of 

the other single-class models. This observation indicates two 

phenomena: the model is learned better when multi-class 

training data are availablethan to single-class monotonous 

training data. Secondly, the multi-class model finds it hard to 

converge to a very low steady-state error rate in the period of 

curves decay. In contrast, the single-class models decay sooner 

than the multi-class model and have lower error rates than the 

multi-class model. It is due to the complexity of the multi-class 
learning and the data. The latter phenomenon essentially hints 

that the operation involved in multi-class learning takes takes 

longer than single-class learning. The complexity infers that a 

full optimization (which is organic to multiple executions of 

learning in search of the right parameters) at a multi-class model 

will be at high costs, in terms of time and difficulty to attend a 

reasonable low error rate. On the other hand, a single-class 

model can achieve it relatively more easily. This implies it is 

potentially possible and feasible to use model transfer copy 

under GOSC methodology to enhance the multi-class model 

and save time on model parameter optimization. It is noted that 
GOSC methodology would not only be applicable in medical 

domain. Other domains such as speech recognition, computer 

network load balancing, and remote health monitoring, where 

supervised learning is the most focused, would be benefited by 

GOSC. 

VI. CONCLUSION  

A novel computing methodology called Group-of-Single-Class 

prediction (GOSC) coupled with majority voting and model 
parameter transfer is presented in this paper. GOSC is for 

attaining optimally high (or near best) accuracy for multi-class 

classification, using the model transfer method from the binary-

class model, which is lighter and much quicker than full 

optimization. The binary-class model is built on the same 

training dataset as the multi-class model. Two sets of 

experiments were conducted, one on a structured two-

dimensional data matrix with instances about patients who 

might have liver carcinoma and other complications. The other 

dataset is a collection of X-ray images of three groups of normal 

patients, who are suffering from lung pneumonia infected by 
bacteria, or who are infected by virus. The datasets are made 

into multi-class and binary-class compatible for experiments. 

Having both data types representing electronic medical records 

in the two most popular formats in our experimentation, GOSC 

was tested, and the results were satisfactory. Decision tree types 

of classifiers gained up to 4.2% for SPAARC and 2.9% for J48 

and PART. Their false positive rates are primarily reduced 

by31.7% for J48 and around 28% for others. Kappa statistics 

could be interpreted as generalization ability upon testing 

unseen data. Generally, there is improvement using GOSC from 

4.6% to 6.7% except for JRip and artificial neural networks that 
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hardly can reach up to 1%. They are quite stable with little 

improvement in accuracy in kappa. However, they gain the 

most from time-cost. While J48 and SPAARC, which are the 

tree-type classifiers, gained 9.9% in saving time in model 

optimization. In contrast, JRip and artificial neural networks 
gained as high as 68.2% and 34.3%, respectively. Overall, 

GOSC via simulation experimentation is shown to achieve an 

enhanced prediction performance to an almost  generally, 

aximum extend by using the model transfer method instead of 

full optimization. In all cases, GOSC shows its advantages in 

terms of maximizing the performance without a very high time 

cost. As future works, more medical records are to be tested, 

and full transfer learning, including hyperparameter 

optimization with GOSC for convolution neural networks, is to 

be implemented and tested. 
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