
Efficient and Lightweight Indexing Approach for Multi-dimensional Historical
Data in Blockchain

Bikash Chandra Singha, Qingqing Yea, Haibo Hua,∗, Bin Xiaob

aDepartment of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR
bDepartment of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR

Abstract

In blockchain, stateful data are stored globally and sequentially in the form of key-value pairs. Recently, to
improve the query performance of stateful data, blockchain indexing has been studied. However, existing works
only consider one-dimensional data and perform poorly when extended to multi-dimensional and historical data. To
overcome these issues, in this paper we propose two new blockchain indexing models. The first model is Two-tier
Deterministic Appended Only Skip List (TDASL) that improves from LineageChain [15, 16] by using an additional in-
dexing layer on top of a skip list to quickly retrieve the state versions and by using prefixes to query multi-dimensional
state versions. The second model is Predefined Partitioned B-plus Tree (PPBPT), which paves the way of adopting
B-plus tree in blockchain by addressing the challenge of its heavy reconstruction cost upon updates. To do so, PPBPT
copies a predefined B-plus tree, which is used for generating indexes for blockchain historical data, thereby reducing
reconstruction costs. We conduct extensive experiments to verify the effectiveness of the proposed approaches under
various parameter settings.

Keywords: Blockchain, Distributed Ledger, Index, Blockchain State Query

1. Introduction

Blockchain is a decentralized ledger system that allows mutually distrusting parties to maintain a common, im-
mutable ledger without a central authority [22]. In essence, the ledger itself is a chain of blocks that stores ordered
list of transactions and are linked together with cryptographic hash. Since this ledger is distributed to nodes across a
network that do not trust each other, they run a consensus protocol (i.e., PoW, PoS) to consistently append new blocks
to the ledger. This guarantees blockchain to support various cryptocurrencies such as Bitcoin [11] and Ethereum [20],
for its transparency, fault tolerance, traceability, temper resistance and reliability. In fact, there are many other systems
such as e-commerce [7], supply chain management [17], and heath-care [9] that can benefit from such features. As
such, in recent years blockchain has gained tremendous popularity in these business sectors.

However, as more transactions occur in the system, the amount of data on the blockchain grows substantially. For
example, a report shows that the Bitcoin Satoshi Version (BSV) Scaling Test Network (STN) can process more than
9,000 transactions per second. Despite being a testing network, STN shares most of its technical capabilities with the
BSV, the mainnet to scale up its on-chain.1 As such, in order to handle such a large volume of data, it is essential
to design indexing approach to efficiently find the blockchain state. However, several studies have shown that the
existing blockchain concepts are struggling when querying its data [1, 19, 23].

Furthermore, new blockchains such as Ethereum and Hyperledger Fabric adopt the concept of smart contract [10],
a set of automated executable codes or rules that operate on the blockchain. A smart contract has its states stored
into the blockchain, and update them by transactions. The current state is known as the world state, whereas the

∗Corresponding author
Email address: haibo.hu@polyu.edu.hk (Haibo Hu)

1https://www.prnewswire.com/news-releases/9-000-transactions-per-second-bitcoin-sv-hits-new-record-301217145.html

Preprint submitted to Elsevier October 25, 2021

This is the preprint version of the following article: Singh, B. C., et al. (2023). "Efficient and lightweight indexing approach for multi-dimensional historical
data in blockchain." Future Generation Computer Systems 139: 210-223 which is available at https://doi.org/.10.1016/j.future.2022.09.002.

This is the Preprint Version.

blockchain ledger stores the complete history of transactions. As such, the use of smart contract makes the blockchain
grow even larger. In order to efficiently query these large amounts of data, many studies have attempted to build
indexing approaches for blockchains [15, 14, 19, 6, 21, 16]. Unfortunately, these existing approaches can only query
one-dimensional value while in practice data stored in a blockchain are usually multi-dimensional.

Also, values stored in blockchains have different update frequency. For example, in E-commerce each user account
is associated with multiple attributes, such as account balance and product ratings (a.k.a., reputation scores). While
the former is frequently updated by transactions, the latter is not. As such, the world state of the blockchain is
frequently updated for balance rather than reputation scores. If one only wants to query the latter, she does not have
to search all the states of the blockchain, but only need to traverse those states when the reputation scores are created.
Unfortunately, existing blockchain indexing models [15, 14, 19, 6, 21, 16] do not support such query types.

To solve both issues, in this paper we propose two index schemes, namely, TDASL (Two-tier Deterministic Ap-
pended Only Skip List) and PPBPT (Predefined Partition B-plus Tree), for blockchain to support historical queries
on multi-dimensional data. The former extends LineageChain [15, 16], an state-of-the-art index that can query one-
dimensional blockchain data. TDASL uses a deterministic skip list to index the multi-dimensional historical data
versions, and puts an extra layer on top of it to retrieve historical data. Furthermore, TDASL is more generic than
LineageChain as it is implemented on the chaincode (i.e., smart contract) instead of the Hyperledger Fabric storage
system.

While TDASL can perform update efficiently on the appended-only skip list, there are many blockchain applica-
tions where the query performance is essential. A recent study has adopted the concept of B-plus tree in blockchain
and proposed EBTree [21]. However, such approach suffers from huge reconstruction costs due to the frequent genera-
tion of blockchain data. Inspired by Partitioned B Tree (PBT) [14], in this paper we propose a second index Predefined
Partition B-plus Tree (PPBPT) to index the historical data of the blockchain. PBT requires less reconstruction costs
because it maintains the partitions of the B-plus tree, and writes any changes recorded to the corresponding partition.
However, PBT suffers from two issues when adopted in blockchain. First, it still has a considerable reconstruction
cost when rebuilding the B-plus tree in those partitions of newly generated blocks. Second, PBT can not index
multi-dimensional blockchain state version.

PPBPT addresses both issues by creating a predefined B-plus tree and use this tree to index the multi-dimensional
historical data versions. More precisely, it is a predefined B-plus tree with a specific height and order, and it uses
consecutive integer numbers as the keys (i.e., nodes). We treat these keys as seat numbers, and each seat reserves a
blank space to store a multi-dimensional state version. When the first B-plus tree is full with state versions, a new
B-plus tree with a new partition number will be created by copying the predefined B-plus tree and store the newly
generated state versions into its blank space associated with the keys. The advantage is that we do not need to rebuild
a new B-plus tree just to store the new state versions, instead we only duplicate the predefined B-plus tree to make a
new one. In this way, the reconstruction cost of the B-plus tree can be lower than PBT in the blockchain.

To summarize, we make the following contributions in this paper:

• We propose a novel index TDASL for querying historical data in blockchain. It exploits a deterministic skip list,
and builds a search layer on the top of the skip list to quickly search older versions of historical data. TDASL
works efficiently in a dynamic data generation environment.

• We also propose another indexing PPBPT based on partitioned B-plus tree for querying historical data of
blockchain. This index fits well where less dynamic data is generated.

• We adapt both TDASL and PPBPT to query multi-dimensional historical data into blockchain.

• Through extensive experimental results, we show the feasibility and efficiency of both indexes against state-of-
the-art index LineageChain under various parameter settings.

The rest of the paper is organized as follows. Section 2 provides a review of recent indexing approaches for
blockchain data. In Section 3, we briefly introduce the storage model of Hyperledger Fabric and Ethereum blockchains
and describe the basic concept of the existing model, LineageChain. Section 4 describes the problem statement. The
proposed methods TDASL and PPBPT are extensively described in Section 5 and in Section 6, respectively. In Section
7, we discuss the implementation process of the proposed models and show the experimental results. Finally, Section
8 outlines the conclusion of this paper and shows the future work.

2

2. Related Work

Researchers have proposed many solutions to implement indexing methods that can search historical data on the
blockchains. Below we discuss the notable work done in this direction and compare it with the models we propose in
this paper.

Recent research has attempted to integrate database design with blockchain and vice versa. As a result, blockchain
is becoming an increasingly important topic in database research [12, 18, 2, 3]. Therefore, on the one hand, some
studies considered to start with a database and add blockchain features on top of it. For example, in [12], the authors
presented a blockchain relational database with the help of PostgreSQL. In particular, they made extensive modifica-
tions to PostgreSQL to integrate the blockchain features in order to support relational database functions. Likewise,
studies in [18, 8] proposed approaches that mount the blockchain features on top of databases. In such a system, each
peer in the blockchain has its own local database, running transactions through a consensus protocol to update the
database, and the ledger acts as a secure, shared log storing transactions.

On the other hand, some are considered to have started with a blockchain and built database features on top to it.
For example, in [2, 3], the authors installed a database layer on top of a blockchain such as Hyperledger Fabric or
Ethereum. However, this approach only provided a put() / get() query interface to the database, which has relatively
limited functionality to support various blockchain systems. J. Gehrke et al. in [4] proposed similar approach by
considering cloud infrastructure. In particular, they used system logs to synchronize the instances into database.
Therefore, this solution first requires the underlying database system to support log shipping. So this system cannot
be compatible with other existing databases.

S. Wanget al. at [19] designed a storage engine for the Hyperledger blockchain to support forkable applications.
To this end, the authors completely replaced Hyperledger’s storage engine with a new storage system called ForkBase
that supports version tracking. Also, the authors of [15, 16] developed LineageChain using the ForkBase storage
system. They implemented LineageChain on top of Hyperledger, and used ForkBase to support the indexing model.
LineageChain is basically a skip list indexing approach designed for blockchain. However, one of the major problems
with LineageChain is that this approach requires a huge amount of time to query historical data of older versions in
the blockchain. In addition, LineageChain and other existing blockchain data indexing approaches [14, 19, 6, 21] can
query for one-dimensional values associated with key-value pairs. But the fact is, in some cases, we need to look up
multi-dimensional values associated with key-value pairs. These queries are not possible with traditional blockchain
indexing models [15, 14, 19, 6, 21, 16]. To solve this problem, in this article, we propose an indexing approach called
TDASL, which allows us not only to quickly query old versions of data, but also can query multi-dimensional state
values. Also, instead of replacing the Hyperledger Fabric storage system as did in LineageChain[15, 16], we use
chaincode (i.e., smart contract) to implement TDASL in Hyperledger Fabric.

However, some studies developed B-plus tree for the blockchain to promote the benefits of the B-plus tree for the
blockchain. For example, in [21], the authors designed EBTree, an index based on B-plus tree. Indeed, the B-plus
tree incurs huge reconstruction costs due to the frequent generation of blockchain data. However, the paper in [14]
gave some ideas based on the partitioned B tree (PBT), which can be better adapted to blockchains than the traditional
B-plus tree. In fact, PBT requires less reconstruction cost because it maintains the partitions in the B-plus tree, and
PBT writes all changes to the corresponding partition. However, inspired by PBT, we proceed a step further in order
to reduce the cost of rebuilding B-plus to index historical blockchain data. Therefore, in this article, in addition to
TDASL, we propose another index called the Predefined Partition B-plus Tree (PPBPT). This indexing method can
also query multi-dimensional historical data in blockchain.

3. Preliminaries

In this Section, we provide a brief description of the storage model of Hyperledger Fabric and Ethereum blockchains.
Also, we briefly describe the existing blockchain index LineageChian, which provides the basis for our proposed
model TDASL.

3.1. Storage Model
Hyperledger Fabric and Ethereum use an account-based data model. This data model assumes that each account

can store a value (e.g., balance), and a valid transaction associated with the account can update the status of that

3

account, that is, it can modify the value and create a new state in world state. More precisely, the world state can
be randomly updated by smart contracts (i.e., smart contracts can submit transactions) and contains the latest state
of each account, while at the same time, executed transactions are included into blocks and the blockchain ledger
establishes a cryptographic chain among blocks. This prevents anyone from modifying the committed transactions.
Now, we briefly explain the storage models of Hyperledger Fabric and Ethereum blockchains.

Data Model for Hyperledger Fabric. Hyperledger uses Merkle Bucket Tree (MBT) for indexing key-value pairs
[23]. MBT consists of a combination of a Merkle tree and a hash table. More particularly, the hash table puts the
key-value pairs into the buckets that get position at the bottom level of MBT, and the keys are sorted into each bucket.
On the other hand, MBT uses the Merkle tree on top of hash table to form a tree using the buckets’ cryptographic
hashes in order to prove the existence of a key-value pair. More precisely, MBT computes the hashes of each bucket,
uses these hashes to create the internal nodes of the Merkle tree, and continues to obtain the root node of Merkle tree.
The number of children of an internal node refers to Fan-out and the cordiality of the bucket set refers to capacity.
The capacity and fan-out are predefined and can not be changed for the duration of their lifetime.

Data Model for Ethereum. Ethereum uses Merkle Patricia Trie (MPT) [20, 23] for its data model. MPT is a
radix tree with cryptographic authentication. MPT consists of four types of nodes, namely extension, branch, leaf and
null: (i) The extension node (EN) contains a shared nibble and a pointer to the next node and the shared nibble refers
to the common sequential character(s) of the keys from left to right; ii) The branch node is an array of 16 elements
and a value and Each element indexes a single corresponding child node and stores a nibble; iii) A leaf node refers
to child node and it consists of two items: remaining character(s) of the key and the values; iv) A null node does not
contain any content indicating the end of the path.

3.2. LineageChain
Recently, in [15, 16], the authors proposed LineageChain which provides an indexing approach for account-based

data model that utilizes skip list for querying blockchain data. The main idea is that LineageChain captured data
provenance during smart contract execution and produced a Directed Acyclic Graph (DAG) based on the states of
blockchain. Then, in order to support queries, LineageChain built a skip list index on top of the DAG, namely
Deterministic Append-only skip List (DASL). Usually, in the skip list, there are multiple linked lists Li, where i =

{0, 1, 2, ..., }. In order to design the content of Li, LineageChain considered the sequence of blockchain state version
numbers Vk = 〈v0, v1, ...〉 for identifier k, where vi < v j for all i < j. The state version Vk belongs to the linked lists
Li based on the interval j and each interval has the range of Ri

j =
[
jbi, (j + 1)bi], where b is the base of DASL. More

particularly, only the smallest state version belongs to the linked lists Li, if it takes place in the corresponding interval.
Based on this process, LineageChain designed the skip list DASL.

However, if DASL has a large number of state versions, then LineageChain takes more times to search the older
state versions. In particular, using this method, queries that read historical data backwards take longer, thereby
delaying the execution of other transactions. It is worth noting that malicious users could use this opportunity to carry
out a denial of service attack. LineageChain attempted to mitigate this kind of attacks by increasing the transaction
fee of gas. However, this mechanism also applies to the rational users who actually need to access too old state
versions in the blockchain. In addition, LineageChain mainly considered the one-dimensional value associated with
the blockchain account. Therefore, it is not possible to use this approach to query of multi-dimensional state version.

4. Problem Statement

This paper studies the indexing problem for multi-dimensional blockchain historical data. In fact, the historical
record of the multi-dimensional blockchain state is sequentially generated by blockchain transactions. In order to
distinguish and track the dimensions of the blockchain states we use prefix fields. More particularly, we build the
indexing approaches with the multi-dimensional blockchain states and prefix values in order to use the indexing
models to perform the search and insert operations of the blockchain historical data. As such, in the following, we
define the multi-dimensional blockchain state, the transaction that updates the state accordingly, the prefix that can
track the multi-dimensional blockchain state based on its dimension and two basic operations (i.e., insert and search).

Definition 4.1. Multi-dimensional Blockchain State. Let a set of values U = {val1, val2, .., valn} be associated with
a blockchain account k. A multi-dimensional state S k,vi,U is composed of a set of values U associated with an identifier
k and a state version vi. The dimension of the state S k,vi,U is equal to |U |.

4

Symbol Description
k a blockchain account
U the set of values associated with k

S k,v,U a multi-dimensional blockchain state
vi the i-th state version

txn a blockchain transaction
vl latest state version
b block in blockchain
d distance between states in blockchain
h height of a node in T DAS L
b base number in T DAS L
N number of nodes in a B-plus tree

Table 1: Notations

We consider that the blockchain world state stores key-multidimensional value pairs. Therefore, we define each
entry in the world state as a tuple (key, (val1, val2, .., valn)), where key be a unique identifier of the blockchain state,
(val1, val2, .., valn) be the set of different types of values associated with a key key, transactions can update these values
and create new state. Therefore, we retrieve these entries from the world state to chaincode with an additional field v
(i.e., version) for creating the historical blockchain states for each account. So, each entry in the chaincode is a tuple
of (key, v, (val1, val2, .., valn)), where v be the version number of the state and v is treated as an integer number. It can
start at 0 and increments by 1 in order. The main notations are listed in Table 1.

Definition 4.2. Transaction. Let a set of values U = {val1, val2, val3, ..} be associated with a blockchain account k.
A transaction txn be valid if and only if it updates at least one value u ∈ U of the blockchain state S k,vi,U , resulting a
new state S k,vi+1,U′ , where S k,vi,U , S k,vi+1,U′ , vi < vi+1 and U , U′.

In our assumption, we divide transactions into two categories: i) partially updated transaction: A transaction txn
refers to a partially updated transaction if and only if it updates at least one but not all values in U = (val1, val2, ...valn)
associated with a key key, thereby generating a new state; ii) fully updated transaction: A transaction txn refers to a
full value updated transaction if and only if it updates all values in U = (val1, val2, ...valn) associated with a key key,
resulting a new state.

Example 4.1. Figure 1 shows the overall processing steps of how the multi-dimensional values in the world state is
updating based on the transactions. We can see that the transaction txn1 modifies only one value and changes the
state from S (k1,v1,(B2,R0,..) to S (k1,v2,(B3,R0,..) for the identifier k1. While txn1 modifies all values of k2, thereby updated the
state from S (k2,v1,(B8,R10,..) to S (k2,v2,(B9,R11,..). This shows that the transaction txn1 can be part of both categories with
respect to its associated key. We can also see in Figure 1 that txn3 modifies only one value of the associated key k4.
Therefore, it refers to a partially updated transaction.

Definition 4.3. Prefix. Let a set of values U = {val1, val2, val3, ..} be associated with a blockchain account k. Prefix
is defined as a field in a state entry consists of a number of |U | entities and each entity counts the changing sequence
of its corresponding value exist in U = {val1, val2, val3, ..} updated by the blockchain transactions. More specifically,
P =

⋃|U |
j=1 p j, where p j refers to j-th prefix value of j-th value of U updated by transaction.

By categorizing transactions, we can identify which specific values are being modified by these transactions. To
do this, we use pre f ix as an identifier that can identify the specific value changed by a transaction, and we also use
pre f ix value as a counter that can count the changing sequence of that value associate with a specific key.

Example 4.2. Figure 2 shows the evaluation of state history of the identifier k2 derived from Figure 1. For simplicity,
we consider two state values, one is balance (B) and the other is reputation (R) associated with blockchain keys. Since
we consider two state values in this example, the bits of the prefix are two in order to distinguish the state value. More
precisely, 01 represents reputation value, and 10 represents balance value. In addition, we keep the corresponding

5

Figure 1: States update based on transactions

Figure 2: Evaluation state history for identifier k2

counter of the prefix, which is used to calculate whether the committed transactions change that particular value.
It can be seen from Figure 2 that in state S k2,v2, the transaction txn1 in block b updates two values (B,R), so the
prefix value is 0 in both cases. In the next state S k2,v3, transaction txn2 updates the balance but does not change the
reputation, therefore the prefix 01 has a value that is increased by 1, indicating that the reputation has same value
in the current state S k2,v3 and the previous state S k2,v2. On the other hand, the prefix 10 has 0 in this state S k2,v3,
indicates that balance is updated from the previous state S k2,v2 by the transaction txn2 in block (b + 1).

It is worth noting that the value of a prefix is constantly increasing unless its corresponding value is updated by
a transaction. This happens when blockchain transactions update other values to generate new states. Therefore, by
looking at the prefix values, we can track the state versions in order to query the corresponding updated value (e.g.,
reputation or balance). However, users need to perform some operations using the indexing approach. In this paper,
we focus on two fundamental operations: state insertion and state search.

Definition 4.4. State Insertion. Let a set of states of an account k be indexed as Ii−1 = I(S k,v1,U1,P1 , S k,v2,U2,P2 ,,

S k,vi−1,Ui−1,Pi−1). Let S k,vi,Ui be a multi-dimensional state and the set of its associated prefix value Pi =
⋃|U |

j=1 p j generated
by a transaction txn. More specifically, the state version with its prefix values defined as S k,vi,Ui,Pi , be inserted for
indexing as I(Ii−1, S k,vi,Ui,Pi), where the index function I() performs the insertion operation for the newly generated
state.

Definition 4.5. State Search. Let a query Q(v, u, r), where the query state version v, the value u and the number of
states r, returns all state versions Q(v, u, r) = {o ∈ I : ∃u ∈ U || ∀u ∈ U, |o| ≤ r}, where o is the resulting states, I is
the indexing database contains a set of multi-dimensional states and U be a set of values.

Now, we present our proposed indexing approaches: i) TDASL (Two-tier Deterministic Appended only Skip List)
(see Section 5 for details), ii) Predefined Partitioned B-plus Tree (PPBPT) (see Section 6 for details).

6

Figure 3: Two-tier Deterministic Appended only Skip List (TDASL) indexing approach

5. Two-tier Deterministic Appended Only Skip List (TDASL)

In practice, some applications in the blockchain generate data with a high frequency. As such, it is essential to cope
this feature with the indexing model. To do so, this approach can work well as it can update its index efficiently with
frequently generated data. More specifically, TDASL uses a skip list, so it can quickly update its index by appending
state versions to the skip list.

However, the blockchain state versions are generated in sequence. For example, suppose that S k2,v2,(B9,R11,..) and
S k2,v3,(B10,R11,..) are two distinct states generated sequentially with state versions, namely, v2 and v3. It is obvious that
v2 < v3. With this fact in mind, we design TDASL with the latest state appended to its previous state. In particular,
TDASL is appended only approach as like in [15]. However, TDASL has two-tier index: i) the upper tier is used for
finding the searching range of the bottom tier that contains the query state; ii) the bottom layer is a variant version
of skip list [13] that uses the concept of deterministic skip lists to index and query the blockchain states. Figure 3
depicts the entire procedure of the TDASL approach. The nodes that appear in TDASL are the state entries (shown in
Figure 2). For simplicity, we consider that the nodes in TDASL consists of state version, prefix values for reputation
and balance, respectively.

In order to design the bottom tier, we leverage the deterministic skip list. As we know, the skip list consists of
multiple lists (levels) and a node may belong to multiple levels. The Figure 3 illustrates that each level of the skip list
has different skipping intervals to select nodes. In general, the skipping interval is bi for the i-th level Li, where b is
the base number (e.g., b=2). Each level probably has several nodes, based on the size of the nodes. For example, in
Figure 3, if we consider the second level of the skip list, then it always proceeds to select the nodes in the list with
a skip distance of 22 = 4. Therefore, the possible selected nodes in the second level of the skip list are: {4,8,12,16}.
Similarly, if we proceed to fourth level of the skip list, the skip distance is 24, so the selected nodes in this list be {16}.
It is worth noting that the first node (state version) 0 we keep for all levels. Finally, the fifth level cannot be formed in
figure 3 because so far there are not enough nodes in the skip list to make this level.

The upper tier helps to find the appropriate location in the skip lists (i.e., bottom tier) where the searching node
could be appeared, that can speed up the search process in the skip list. To do so, we embodied some entries as
shortcuts in the routing path. However, it is challenging to determine which entries should be promoted to the upper
layer from the skip list. To this end, we consider the number of entries in the top tier based on the number of levels in
the skip list. For example, if there are N levels in the skip list, the number of entries in the top tier is N. Each entry
consists of two routing nodes, which are selected based on their heights in the skip list.

For example, we can see from Figure 3 that TDASL has five levels in the skip list. Thus, it has five entries at the
top tier. For the first entry, we assign i=0, and j=1, therefore we get the nodes for the first entry is (bi, b j) = (1, 2),
if b = 2 (we can consider large value for b). In the second entry, we increase the value of i and j by 1, they become

7

1 and 2, so the nodes of the second entry are (2i, 2 j) = (2, 4). Likewise, we can select the state versions for the next
entries. But for the last entry (that is, fifth entry here), the selected nodes are (24, 25) = (16, 32). Since the node 32
has not been created yet, so it points to the latest node (that is, 17 in Figure 3), and this entry will be updated until 32
is generated.

Insert. To insert a new node into TDASL, we first need to determine which linked lists should include this node.
For example, we want to insert state version 16 into TDASL as shown in Figure 3. The fact is that L0 contains all
nodes since its skip distance is 20. Therefore, we put the new node 16 in L0, and then if this condition 16 mod 2l = 0
is met, we continue to increase the list level for the node 16, where l refers to the list levels {0, 1, 2, .., 4} in the skip
list. After that, we find the appropriate entry in the top tier to which it belongs to. To do this, we first need to find
the index in the top tier with blog216c, that is, 4. Since 16 is a new node, there is no indexing with 4 yet at the upper
layer. Therefore our system updates the fourth routing entry with 16 and generates a new entry in the top tier with 16
as its fifth routing entry, and this entry nodes are pointed with 4. In addition, we adjust the prefix values of node 16
with its previous node 15. In particular, since the version 16 has prefix value 1 for balance and 0 for reputation and its
previous version 15 has 8 for balance and 0 for reputation, therefore, the adjusting score will be 9 and 0 in Figure 3.
Similarly, we can perform the insertion operation with a node 17 as shown in Figure 3. Note that blog217c, refers to 4,
and the index points to the exact entry in the top tier. Since there is already a routing node 16, this will be the second
routing node in this entry. The thing is that the second routing node will be updated with the next new node until we
get a new entry in the top tier.

Lookup. To perform the lookup procedure with TDASL approach, we first calculate the index value in the top tier
of TDASL. For example, we illustrate the lookup process for state version 12. The index value of 12 is blog212c = 3
in the top tier, indicating that 12 exists in the range of nodes [8,16]. Then, we measure the distance from the largest
node, d = 16 − 12 = 4. After that, we find the appropriate level in the skip list to start the search. To do this, we
compute dlog2de= dlog24e = 2, indicating that the search starts from node 16 at the L2 level. Then we proceed to find
the state version 12. Moreover, we want to further search the previous states from the state 12, and these states have
updated values of different dimensions (e.g., balance/reputation). Then, in the state version 12, we can see that the
prefix value for reputation is 5, means that 5 successive states have the same reputation value as no transactions have
updated its reputation so far. In this case, the state version 12 and the reputation prefix 5 implies that the desired state
version, (12−5)−1 = 6 has a new reputation. In addition, the prefix value for balance is 0, indicating that state 12 has
updated balance, and its previous state also has a different balance and this state is, (12 − 0) − 1 = 11. So, our desired
state versions are 6 and 11 that we have to traverse. To do this, we can repeat the process we did for state version 12.

Algorithm 1: TDASL append()
Input: v, be the state version to be appended in TDASL
Output: nodes of the top tier, toptier; nodes of bottom tier levelnodes

1 Let levelnodes = []
2 Let toptier = []
3 Let vtop−tier =

⌊
log2(v)

⌋
4 Let level is initialized to zero
5 if (vtop−tier ∈ toptier) then
6 Let update the latest entry of toptier with version v as second node
7 for i = level; i ≤ vtop−tier; i + + do
8 if v mod 2i == 0 then
9 levelnodes.append(v)

10 else
11 Let create a new entry with version v as first node in toptier

12 for i = level; i ≤ vtop−tier; i + + do
13 if v mod 2i == 0 then
14 levelnodes.append(v)

15 Return: levelnodes, toptier

8

Algorithm 2: TDASL search()
Input: v, be the state version to be searched in TDASL
Output: true if v be found in TDASL; f alse otherwise

1 Let levelnodes be the nodes exist at bottom tier
2 Let toptier be the nodes exist at top tier
3 Let n, be the number of states we want to search
4 Let check be initialized to zero
5 Function Search(v):
6 while check ≤ n do
7 Let vtop−tier =

⌊
log2(v)

⌋
8 if (vtop−tier ∈ toptier) then
9 Let the nodes range of the levelnodes between fnode and snode

10 Let distance, d = snode − v
11 Let applevel =

⌈
log2(d)

⌉
12 for i = applevel; i ≤ 0; i − − do
13 if cur− > levelnodes() == v then
14 Let pre f ix, be the corresponding prefix value that can point to the next state
15 version = v − pre f ix
16 check + +

17 S earch(version)
18 searchoutput = true
19 else if cur− > levelnodes.le f t() ≥ v then
20 cur− > levelnodes = cur− > levelnodes.le f t()
21 search(cur− > levelnodes)
22 else
23 cur− > levelnodes = cur− > levelnodes.down()
24 search(cur− > levelnodes)

25 else
26 searchoutput = f alse

27 Return: searchoutput

28 End Function

Now, we separately analyze the storage and query costs of TDASL in more detail.
Storage overhead. Let vl be the latest state version. In this case, the top tier requires a maximum of 3

⌈
logb vl

⌉
pointers, and the bottom tier requires 2vl. Therefore, the total storage required to build TDASL is 3

⌈
logb vl

⌉
+ 2vl,

which is slightly higher than the storage 2vl required for LineageChain [15, 16].
Query time. In TDASL, the top tier refers to the nodes that are relatively taller than other nodes. In other words,

the nodes do not have equal height in the TDASL. The all possible heights for a node can be defined in a set as
follows: Nh = {h|vl%bh = 0, h ∈ {0, 1, 2, 3, ...}, h ≤

⌈
logb vl

⌉
}. Assume that the latest entry in the top tier consists of⌈

logb vl/b1
⌉

and
⌈
logb vl/b0

⌉
, which are the second-highest and first-highest nodes in the bottom tier that cover the

largest area (i.e., almost 50% of the nodes) in TDASL. In this case, we need the maximum number of pointers to

traverse this area. More precisely, the pointers required for level L0 is: (vl −
vl

b
) − 1 =

vl

b.b0 − 1, if b=2. For L1, it

is,
vl

b.b1 − 1. For i-th level, it takes at most =

⌈
vl

b.bi

⌉
− 1 =

⌈
vl

b(i+1)

⌉
− 1. Therefore, the maximum number of pointers

is:
∑dlogb vle

i=0

⌈
vl

b(i+1)

⌉
− 1 =

bvl − 1
b(b − 1)

, need to traverse to find the desired state version, which is smaller than
bvl − 1
b − 1

required by LineageChain [15, 16]. In addition, suppose that we want to query the state version vq. LineageChain
always starts the search from the latest version vl, so the distance is DL = vl − vq. Conversely, TDASL uses the top tier

9

Figure 4: Empty Predefined Partitioned B-plus Tree (PPBPT) with serial numbers

entries to find the searching range in the bottom layer. In this case, vl ∈ V , where V = {
⌈
vl/b0

⌉
,
⌈
vl/b1

⌉
, ..,

⌈
vl/blogbvl

⌉
}.

Therefore, the distance DT = vl − vq is less than or equal to DL. Consequently, DT < DL, when vq appears in any
entry at the top tier of TDASL except the latest entry, otherwise DT is equal to DL.

Algorithm 1 represents the whole process of inserting new state version in TDASL approach. As shown in Algo-
rithm 1, given a new state version v as input, this design adds the lists at the bottom tier and also compute an entry in
the top tier, where v belongs to. To do so, we first check whether v belongs to the top-tier toptier or not. If it does (see
line 5), then we update the entry with v as the second node, otherwise we create a new entry in toptier, where v be the
first node of this entry (see line 11). Later, we add v to the underlying lists in the bottom tier (see lines in 7- 9 or 12-
14).

Algorithm 2 depicts the entire process of seeking version v with TDASL. For this, we find the entry in the top
tier, where v is involved and this entry makes the searching range in the bottom tier to find v (see lines 8-9). Next,
we compute the exact location to start the search at bottom tier (see lines 10-11). After that, we proceed to find v
at the bottom tier (see lines 12-24). However, when we find v, then we can further look for the state versions for n
consecutive times, which contain the new values (reputation or balance). To do this, we use the recursive function
Search() (see lines 12-18).

6. Predefined Partitioned B-plus Tree (PPBPT)

However, there are many blockchain applications that require relatively better query performance rather than
update performance of the indexing model. For this kind of blockchain applications, our second approach, Predefined
Partitioned B-plus Tree (PPBPT) can be well applied. PPBPT implements a variant of the B-plus tree, which can
provide relatively better query performance.

Moreover, TDASL is a variant of the skip list. In essence, although it has better update performance for its index,
it takes more time to find nodes that appear on the baseline of the skip list. On the other hand, a B-plus tree does not
have this limitation and can retrieve any node in about the same amount of time as the node gets its position at the
same level in B-plus tree. However, a blockchain is a special type of data structure in which blocks are frequently
generated. Therefore, it is not suitable to use the existing traditional B-plus tree [23] on the blockchain. More
particularly, every new blockchain data can often generate a new rebuild B-plus tree, which significantly increases the
cost of reconstruction. However, PBT (Partitioned B Tree) [5, 14] attempts to reduce the cost of building a B-plus tree
by splitting the entire tree into multiple partitions, and then write any modification of the record exactly once at the
eviction time of the corresponding partition. As such, PBT still has considerable construction cost.

To address this issue, we propose Predefined Partitioned B-plus Tree (PPBPT). The main idea is that we first create
a predefined B-plus tree with some fields that represent the metadata of this tree. More precisely, we design a B-plus
with a specific height and order, and use consecutive integer numbers as the keys in B-plus tree. We treat these keys
as the seat number that we reserved for storing the state versions. Figure 5 depicts the predefined partitioned B-plus
tree. Eventually, PPBPT consists of a number of B-plus trees and each B-plus tree are separated and represented with
individual partition number. Therefore, PPBPT has two parts: i) a root head node that contains PPBPT’s metadata ii)
a predefined B-plus tree with empty space.

Root head node. The root head node contains the metadata of B-plus trees that mainly specifies the identification
and properties of the tree. In particular, we consider three fields, i) partition: specifies the partition number of a B-plus
tree, ii) range of sequence numbers for state versions: specifies the range of the state versions that are going to take

10

Figure 5: Predefined Partitioned B-plus Tree (PPBPT) with state versions

position in corresponding B-plus tree, iii) occupied version number: indicates the version number that already take
position in the empty space associated with the serial number identical with the version number.

For example, in Figure 5, there are two records in the root head node. The first record is < 0, (0 − 11), 11 >,
indicating that the partition number of B-plus tree is 0, which can store the version numbers from 0 to 11, and the last
field 11, indicates this tree is full of state versions as it is equal to the last element of the state versions. On the other
hand, for the record < 1, (12 − 23), 12 >, it has empty spaces for state versions 13 to 23 since its last field, that is 12
is not equal to the last state version, which is 23.

Predefined B-plus tree with empty space. First of all, we define the order m, and height h of the B-plus tree.
Then we compute the size of the tree, N=

∑h
l=1 ml. After that, we suppose to consider serial numbers starting from 0

to N − 1. Using these numbers, we design a B-plus tree with order m and height h. Moreover, we add free space to
each serial number for keeping the prefix values associate with the state versions. Initially, these spaces are empty in
B-plus tree, but it is sequentially filled up with prefix values of versions. For example, Figure 4 shows a predefined
B-plus tree that contains serial numbers from 0 to 11. Now, in the followings, we explain the insertion and search
operations on PPBPT.

Insert. In initial phase, PPBPT has only one B-plus tree with partition number 0. When this tree is full of nodes
(versions), PPBPT generates a second B-plus tree with a partition number of 1, which is a copy of the predefined
B-plus tree as shown in Figure 5. For example, in Figure 5, we consider the size of each B-plus tree is 12. Now, let us
assume that state version 11 is generated by a transaction in blockchain. In this case, PPBPT first checks which B-plus
tree may contain the version 11, and then finds where it belongs to. To do this, PPBPT divides the version number
11 by its size (e.g., here it is 12), refers to the partition number 0, and then performs a modular operation, that is,
11 mod 12 = 11 indicates that version 11 will be inserted at position 11 of the B-plus tree whose partition number is
0. In this case, PPBPT advances from the root node to the B-plus tree 0 as shown in Figure 5. Since the location of the
version 11 is 11, it moves to the right of 9, then finds the location 11 and stores the adjusted prefix value in the blank
space associated with 11. In particular, since the prefix value of version 11 is 1 for balance and 0 for reputation, and
its previous version 10 has 9 for balance and 0 for reputation, so the adjusted score is 10 and 0, as shown in the Figure
5. This is the entire process of inserting a new version in PPBPT. Moreover, since the B-plus tree < 0, (0 − 11), 11 >
is full after inserting 11, so PPBPT copies the predefined B-plus tree with partition number 1, as shown in Figure 5.
As such, it does not need to reconstruct the second B-plus tree with the upcoming state versions, thereby reducing the
construction cost of PPBPT. Then it updates the root head node with < 1, (12 − 23),− >, indicating that the B-plus
tree 1 can contain version numbers from 12 to 23.

Lookup. The search operation is quiet similar to insertion operation. For example, suppose that we want to search
version 12 in PPBPT, as shown in Figure 5. To do this, first, we need to compute the tree’s partition number, i.e.,⌊

12
12

⌋
= 1, and its location, 12 mod 12 = 0, indicating that 12 exists at location 0 in tree 1. Then PPBPT proceeds

to this specific tree and start searching from top of the tree. Since the position 0 is less than 3, it goes to the left of

11

Algorithm 3: PPBPT insert()
Input: v, be the state version to be inserted in PPBPT
Output: true if version v is inserted; false otherwise

1 Let bPlus be the predefined B-plus tree generated with order M and height h
2 Compute Ts =

∑h
l=1 Ml

3 Let B-plus tree contains sequence numbers {0, 1....(Ts − 1)}
4 Let Partition = []
5 Let Root be the root head node
6 Compute the partition number, vp =

⌊
v

Ts

⌋
7 Compute the position, vposition=v mod Ts

8 Let curroot=Root
9 Let finish=false

10 if vp == curroot− > Partition then
11 Let S N be the sequence number in bPlusvp equal to vposition

12 if S N is empty then
13 SN.UPDATE(pre f ixes)
14 f inish = true
15 else
16 no update required
17 f inish = f alse

18 if vposition == (Ts − 1) then
19 Let generate bPlusvp+1 by copying the bPlus
20 Root.UPDATE ((vp + 1), (Ts × (vp + 1),Ts × (vp + 1) + (Ts − 1)),−)

21 Return: f inish

3 and find the location of version 12. Also, we can further search the earlier states from the state 12 based on the
updated values of different dimensions (e.g., balance/reputation). To do this, we need to pay attention to the prefix
values of the state 12. The state 12 has the prefix value for reputation 6, which refers that 6 successive states have
the same reputation value. Therefore, the desired state version (12 − 6) − 1 = 5 has a new reputation. In addition,
the prefix value of the balance is 0, which means that the state 12 has updated the balance, and its previous state also
has a different balance. This state is (12 − 0) − 1 = 11. Therefore, we need to traverse state versions 5 and 11 to find
different reputation and balance, respectively. To do this, we can repeat the process we did for the state version 12.

Now, we explain in detail the storage and query costs of PPBPT.
Storage overhead. In PPBPT, the order of each B-plus tree is m and height is h, so the size of the B-plus tree is

N =
∑h

l=1 ml. Now, suppose vl be the number of versions to be indexed in PPBPT. In this case, PPBPT requires the
number of B-plus trees,

⌈
vl/N

⌉
, to store this number of versions vl. In addition, the root head requires to store

⌈
vl/N

⌉
records. Therefore, the total storage required to construct PPBPT is (vl +vl/N), which is less than the storage required
by TDASL and LineageChain.

Query time. The query time for worst, average and best cases for searching a version is, logm(vl −N × (
vl

N
− 1)) +⌈

vl/N
⌉

= logmN +
⌈
vl/N

⌉
, where vl be the latest state version and N is the size of each B-plus tree in PPBPT.

Algorithm 3 depicts the entire process of inserting nodes into PPBPT approach. At initial phase, it generates a
predefined B-plus tree bPlus and root head node Root (see lines 1-5 in Alogrithm 3). Then, it computes the partition
number of the B-plus tree and position where the version v belongs to (see lines 6-7). Next, Algorithm 3 proceeds to
check the computed partition number into the root head node Root and goes to the specific B-plus tree to search the
sequence number that is equal to vposition and insert prefix values of the version v into that place (see lines 10-13 in
Algorithm 3). Furthermore, if v’s position number is equal to the last serial number of B-plus tree then Algorithm 3
automatically generate the next B-plus tree by coping the predefined tree as the current B-plus becomes full of size
with v (see lines 18-20). As a result, PPBPT needs less rebuilding cost to make the B-plus tree with its state versions.

Algorithm 4 describes the search operation of PPBPT indexing model. For this, it takes the state version v as input

12

Algorithm 4: PPBPT search()
Input: v, be the state version to be searched with PPBPT
Output: true if version v is found; false otherwise

1 Let bPlus be the predefined B-plus tree generated with order M and height h
2 Compute Ts =

∑h
l=1 Ml

3 Let Partition = []
4 Let Root be the root head node
5 Compute the partition number of B-plus tree, vp =

⌊
v

Ts

⌋
6 Compute the position, vposition = v mod Ts

7 Let n, be the number of consecutive state versions from v that we want to search
8 Let check be initialized to zero
9 Function Search(vp, vposition):

10 Let curroot=Root
11 while check ≤ n do
12 if vp == curroot− > Partition then
13 Let S N be the sequence number in bPlusvp equal to vposition

14 Let pre f ix, be the corresponding prefix value associated with S N
15 version = vposition − pre f ix
16 vp =

⌊
version

Ts

⌋
17 vposition = version mod Ts

18 check + +

19 S earch(vp, vposition)
20 searchoutput = true
21 else
22 searchoutput = f alse

23 return searchoutput

24 End Function

and then compute the B-plus tree’s partition number vp and position vposition where v could be appeared (see lines 5-
6). It then calls the function search() with these parameters to find the version v. It also sets the number n to specify
the number of consecutive state versions the user would like to find based on state dimensions (e.g., reputation or
balance). After that it checks whether vp exists in the root head (see line 12), and if so, it looks for the location of this
version v in the B-plus tree, otherwise v does not exist in PPBPT. Next, it checks the corresponding prefix values that
associated with this position to find the versions to proceed to next (see lines 15-17). To do so, it uses the recursive
function search() (see line 19) and this process goes up to n times.

7. System Evaluation

We have implemented the proposed approaches based on Hyperledger Fabric, and evaluate its feasibility and
performances accordingly in this section.

7.1. Experimental Setup

We implemented the proposed indexing models in Hyperledger fabric v2.0 with the help of chaincode. To set up
the Hyperledger environment, we considered two organizations, one orderer, two endorsers, and two peers. Then,
we created 16384 transactions for an account under a peer. As we mentioned, our proposed model can index multi-
dimensional state values associated with blockchain accounts, therefore we considered that each transaction can mod-
ify any dimension of the state values associated with the account. For experiments, we considered two to sixteen
dimensions of the state value. Therefore, we generated almost sixteen prefix fields to indicate which state values of
the account was modified by blockchain transactions. For example, if a transaction modifies the account’s balance
and / or reputation of that account, assign 0 to the corresponding prefix field, and 1 to that prefix if its associated state

13

Figure 6: Construction times for PPBPT, LineageChain, TDASL and PBT

value is not modified. We constantly checked for updates and increment the prefix value by 1 if transactions did not
continuously change a certain state value. To do so, we created a function invoke in a chaincode and generated 16384
state versions.

However, existing research [15] implemented their indexing approach for tracking state versions in Hyperledger
Fabric by replacing Hyperledger’s storage layer with their own implementation. We did not change anything of Hy-
perledger. However, in order to implement our indexing models, we first store all the state versions with the indexing
approaches in chaincode. In particular, we have built three functions; one for PPBPT, another for LineageChain, and
the next for TDASL, respectively. The chaincode uses these functions to build the aforementioned indexing approaches
individually. Then we deployed the chaincode in Hyperledger Fabric. Moreover, we built an application to interact
with the deployed chaincode and used these functions to query the state version.

Our experiments were performed on a system running Ubuntu 20.04, which is equipped with Intel® Core™
i7-10700KF CPU @ 3.80GHz × 16 and 64GB of RAM.

7.2. Results and Discussion

We carried out several experiments to evaluate the performance of our proposed indexing approaches. The exper-
iments were designed in order to consider five objectives in mind.

In the first experiment, we measured the construction times of the indexing approaches LineageChain, TDASL,
PPBPT, and PBT. Essentially, this experiment compares the construction times of each model by changing the number
of the state versions to observe the construction times required for each model.

In the second experiment, we computed the query time of our proposed approaches in order to compare the
performance with the existing model LineageChain for single dimensional state version. Moreover, TDASL and
LineageChain use the skip list and in skip list, the nodes’ heights are not same. Some nodes appear at express list and
some are in the baseline list. Therefore, we believe the nodes that appear at the top levels can be found faster than
other nodes. On the other hand, PPBPT uses B-plus tree where all nodes exist at the same level. In order to investigate
this, we divided this experiment into two parts: (i) measure the query time to find the particular state versions that
appear at the top levels in TDASL and LineageChain; and (ii) measure the query time for the state versions that appear
in the baseline of TDASL and LineageChain. It is important to note that no matter where these particular versions are
in PPBPT as all nodes have the same height in PPBPT.

Third, we carried out an experiment to compute the storage needed by these indexing approaches to query single
dimensional state version. To be more precise, we evaluated the storage cost of the indexing approaches by varying
the version sizes.

In the fourth experiment, we conducted experiments for multi-dimensional state. With this aim, we considered
two aspects: i) the query time of PPBPT and TDASL for searching multi-dimensional state version; ii) the update
time for newly generated multi-dimensional state version in indexing models PPBPT and TDASL. The aim of this
experiment is to evaluate the performance of the proposed models PPBPT and TDASL when the multi-dimensional
state versions are frequently queried and updated in blockchain.

Finally, we carried out an experiment to compute the storage space required by these indexing approaches for
multi-dimensional state version. More precisely, we evaluated the storage cost of the indexing approachesTDASL and

14

(a)

(b)

Figure 7: Latency of state version query obtained with PPBPT, LineageChain and TDASL : (a) increasing state distance 210 and 211 (b) increasing
state distance 210 − 1 and 211 − 1

PPBPT by varying the size of the multi-dimensional state versions.

7.2.1. Construction Time
This experiment focused on showing the construction times for LineageChain, TDASL, PPBPT and PBT models

by successively taking into account different sizes of blockchain states, as shown in Figure 6. In particular, as we
stated that we generated 16384 state versions. We ran this experiment six times by increasing the size of the state
versions by 2731 (approximately) shown on x-axis and the time is plotted on y-axis in Figure 6. It can been seen
that LineageChain requires less time in order to build its index than other approaches. In addition, as several studies
have shown, traditional B-plus tree requires more construction time because blockchain data is generated more often
[14, 21]. It is worth noting that PBT can reduce this time [14]. It can be seen from the Figure 6 that the time required
for PPBPT is significantly less than PBT. However, it takes more time than LineageChain and TDASL.

7.2.2. Single dimensional blockchain state version
In this section, we conducted experiments by considering the single dimension of blockchain state and compute

the query time and storage overhead of LineageChain, TDASL and PPBPT in order to compare their performances.
Latency of state versions query. In this experiment, we investigated to query state versions from two aspects.

First, we focused on the state versions that appeared at higher levels of TDASL and LineageChain except at the base
level. To do so, we considered the state distances 210 and 211 respectively and increase these distances accordingly
in order to compute the query times of the indexing models. Figure 7a shows the state distance in x-axis and query
times in y-axis. It can been seen From Figure 7a that LineageChain needs more time to query the old state versions,
whereas, TDASL provides the better performance than LineageChain when looking for old state versions. In the case
of continuing to track newer versions, its performance is going to equivalent to the LineachChain, as shown in Figure
7a. This is because the query distance from the search point becomes equal in the two methods. We also compared

15

Figure 8: Storage space required for PPBPT, LineageChain, and TDASL

the performance of PPBPT with LineageChain and TDASL. Figure 7a shows that PPBPT requires almost the same
amount of query time for all versions. Moreover, in Figure 7a, it can been observed that PPBPT provides the less
query time than TDASL and LineageChain.

Furthermore, we investigated the performance of PPBPT, LineageChain, and TDASL when querying state versions
that appear in the baseline of the skip list. To do this, we calculated the query times of the indexing models by
considering the state distances 210 − 1 and 211 − 1 respectively and increasing the distances accordingly. Figure 7b
shows that LineageChain’s query time is increasing gradually from new versions to the old versions. Moreover, from
Figures 7b and 7a, it can been seen that the query time of LineageChain is longer for the versions appearing at the
baseline compared to the versions appearing at the top levels of the skip list. Similarly, it can be seen from Figures 7a
and 7b that TDASL needs more time to query the versions that exist at the baseline of the skip list. However, it can
also be observed that TDASL performs better than LineageChain when querying the older versions, whereas it takes
almost the same amount of time to query the newer versions as compared to LineageChain. In addition, it is worth
noting that Figure 7b shows PPBPT provides the shortest query time for searching any versions than LineageChain
and TDASL. Moreover, it can be observed from Figures 7a and 7b that PPBPT needs almost same amount of time to
query any state versions. In other words, PPBPT provides the same query time for the worst, average, and best cases
that we have not seen with TDASL and LineageChain.

Storage Overhead. In this experiment, we investigated the storage overhead of PPBPT, LineageChain, and
TDASL. For this, we considered to design these indexing approaches with increasing number of state versions. In
particular, we considered to increase the state versions 2731 for each time and examined the overhead of PPBPT,
LineageChain, and TDASL respectively.

Figure 8 shows the result of comparison among PPBPT, LineageChain, and TDASL. It can been observed that
PPBPT’s overhead is smaller than LineageChain and TDASL. Moreover, Figure 8 also demonstrates that TDASL
requires more space than LineageChain since it uses an additional layer in the top of the skip list.

7.2.3. Multidimensional blockchain state version
In this experiment, we considered that a blockchain state has multiple dimensions, and if any transaction changes

any dimension of the state, the state of the blockchain will be updated accordingly. Therefore, examining update
and query times of the proposed indexing models for multi-dimensional state is an important aspect. Moreover, we
investigated the storage cost of the indexing models for multi-dimensional blockchain state. For this, we did not
consider LineageChain as it can not support to search multi-dimensional state value. In the following, we explain
these experiments accordingly.

Query latency. We conducted this experiment to check the performance of TDASL and PPBPT in terms of query
latency for multi-dimensional state versions. For this experiment, we considered various dimensions (e.g., 2-D, 4-D,
etc.) of the blockchain states with various query distances (e.g., 30, 60, 90, etc.) for computing the query latency.
More precisely, we run the query from latest state to find the states by varying query distances, as shown in Figure
9. From Figure 9, it can be seen that PPBPT’s query latency is lower than TDASL to query the multi-dimensional
blockchain state.

16

(a) (b) (c)

(d) (e) (f)

Figure 9: Latency of the multi-dimensional state query with increasing state version query distances

Update time. This experiment investigated the time required by TDASL and PPBPT to update their indexes
with the multi-dimensional blockchain state. It can be observed from Figure 10 that PPBPT requires more time than
TDASL to update its index with the multi-dimensional state.

Therefore, it can be concluded from Figures 9 and 10 that PPBPT is more useful for searching purpose, but it is
slightly worse in case of updating its index than TDASL when data is generated very frequently. In addition, it can
also be concluded that TDASL is perfect for dynamically generated data as it can update its index in fast way but it
needs more time to search the state versions than PPBPT.

Storage Overhead. We conducted this experiment to compute the storage cost for TDASL and PPBPT considering
various dimensions of the blockchain state. Figure 11 shows the result. To perform this experiment, we have increased
the number of states on the x-axis, and computed the storage for two dimension to sixteen dimension of the blockchain
state. The results show that when we considered more dimensions for the blockchain state, each model requires more
space. However, it can also be observed that PPBPT needs less storage cost for all dimensions compared to that of
TDASL.

8. Conclusion

In this paper, we have presented two indexing models for blockchain historical data, namely T DAS L and PPBPT .
Our proposed approaches can find the state version much faster than LineageChain [15, 16]. Moreover, these proposed
models can handle the multi-dimensional historical data in order to efficiently query state versions. Experimental
results show that PPBPT is more efficient than LineagChain and T DAS L in terms of query and storage perspectives,
but it needs more time than T DAS L to build and update its index. Consequently, PPBPT is perfectly suitable in the
blockchain environments where query performance is essential and data generation frequency is low. On the other
hand, T DAS L is good to use where more dynamic data is generated as it can update its index quickly. In addition, the

17

Figure 10: Update times required for multi-dimensional states with PPBPT and TDASL

Figure 11: Storage cost required for multi-dimensional states with PPBPT and TDASL

results also show that PPBPT does not have the worst, average, and best case, so it provides almost the same query
times for all state versions, whereas, T DAS L and LineageChain provide different query times for the state versions
that appear in the baseline and higher levels of the skip list.

Although, PPBPT has a significantly lower construction cost than PBT , but still it has a higher construction
cost than T DAS L and LineageChain. Therefore, in the future, we will try to extend this work in order to reduce
the reconstruction and update costs of PPBPT . We will also focus on user privacy preferences to query historical
blockchain data.

References

[1] P. Du, Y. Liu, Y. Li, H. Yin, and L. Zhang. Etherh: A hybrid index to support blockchain data query. In ACM Turing Award Celebration
Conference-China (ACM TURC 2021), pages 72–76, 2021.

[2] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy. Blockchaindb: A shared database on blockchains. Proceedings of the
VLDB Endowment, 12(11):1597–1609, 2019.

[3] M. El-Hindi, M. Heyden, C. Binnig, R. Ramamurthy, A. Arasu, and D. Kossmann. Blockchaindb-towards a shared database on blockchains.
In Proceedings of the 2019 International Conference on Management of Data, pages 1905–1908, 2019.

[4] J. Gehrke, L. Allen, P. Antonopoulos, A. Arasu, J. Hammer, J. Hunter, R. Kaushik, D. Kossmann, R. Ramamurthy, S. T. Setty, et al. Veritas:
Shared verifiable databases and tables in the cloud. In CIDR, 2019.

[5] G. Graefe. Sorting and indexing with partitioned b-trees. In CIDR, volume 3, pages 5–8, 2003.
[6] H. Gupta, S. Hans, S. Mehta, and P. Jayachandran. On building efficient temporal indexes on hyperledger fabric. In 2018 IEEE 11th

International Conference on Cloud Computing (CLOUD), pages 294–301. IEEE, 2018.
[7] Z. Liu and Z. Li. A blockchain-based framework of cross-border e-commerce supply chain. International Journal of Information Manage-

ment, 52:102059, 2020.
[8] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto.

Bigchaindb: a scalable blockchain database. white paper, BigChainDB, 2016.

18

[9] M. Mettler. Blockchain technology in healthcare: The revolution starts here. In 2016 IEEE 18th international conference on e-health
networking, applications and services (Healthcom), pages 1–3. IEEE, 2016.

[10] B. K. Mohanta, S. S. Panda, and D. Jena. An overview of smart contract and use cases in blockchain technology. In 2018 9th International
Conference on Computing, Communication and Networking Technologies (ICCCNT), pages 1–4. IEEE, 2018.

[11] S. Nakamoto and A. Bitcoin. A peer-to-peer electronic cash system. Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf, 4, 2008.
[12] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, and P. Jayachandran. Blockchain meets database: Design and implementation of a blockchain

relational database. arXiv preprint arXiv:1903.01919, 2019.
[13] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM, 33(6):668–676, 1990.
[14] C. Riegger, T. Vinçon, and I. Petrov. Efficient data and indexing structure for blockchains in enterprise systems. In Proceedings of the 20th

International Conference on Information Integration and Web-based Applications & Services, pages 173–182, 2018.
[15] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang. Fine-grained, secure and efficient data provenance on blockchain systems.

Proceedings of the VLDB Endowment, 12(9):975–988, 2019.
[16] P. Ruan, T. T. A. Dinh, Q. Lin, M. Zhang, G. Chen, and B. C. Ooi. Lineagechain: a fine-grained, secure and efficient data provenance system

for blockchains. The VLDB Journal, 30(1):3–24, 2021.
[17] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen. Blockchain technology and its relationships to sustainable supply chain management.

International Journal of Production Research, 57(7):2117–2135, 2019.
[18] F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal. Chainifydb: How to blockchainify any data management system. arXiv preprint

arXiv:1912.04820, 2019.
[19] S. Wang, T. T. A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen, W. Fu, B. C. Ooi, and P. Ruan. Forkbase: An efficient storage engine for

blockchain and forkable applications. arXiv preprint arXiv:1802.04949, 2018.
[20] G. Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.
[21] H. XiaoJu, G. XueQing, H. ZhiGang, Z. LiMei, and G. Kun. Ebtree: A b-plus tree based index for ethereum blockchain data. In Proceedings

of the 2020 Asia Service Sciences and Software Engineering Conference, pages 83–90, 2020.
[22] C. Xu, C. Zhang, and J. Xu. vchain: Enabling verifiable boolean range queries over blockchain databases. In Proceedings of the 2019

international conference on management of data, pages 141–158, 2019.
[23] C. Yue, Z. Xie, M. Zhang, G. Chen, B. C. Ooi, S. Wang, and X. Xiao. Analysis of indexing structures for immutable data. In Proceedings of

the 2020 ACM SIGMOD International Conference on Management of Data, pages 925–935, 2020.

19

