
HEGrid: A High Efficient Multi-Channel Radio Astronomical Data
Gridding Framework in Heterogeneous Computing Environments
Hao Wanga, Ce Yua, Jian Xiaoa,∗, Shanjiang Tanga, Min Longb,∗ and Ming Zhuc,d

aCollege of Intelligence and computing, Tianjin University, No.135 Yaguan Rood, Haihe Education Park, Tianjin, 300350, China
bDepartment of Computer Science, Boise State University, Boise, ID 83725, USA
cNational Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100101, China
dCAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences

ART ICLE INFO
Keywords:
Radio astronomy
Gridding
Multi-channel
High efficient
Heterogeneous architecture

ABSTRACT
The challenge to fully exploit the potential of existing and upcoming scientific instruments like large
single-dish radio telescopes is to process the collected massive data effectively and efficiently. As a
"quasi 2D stencil computation" with the "Moore neighborhood pattern," gridding is the most compu-
tationally intensive step in data reduction pipeline for radio astronomy studies, enabling astronomers
to create correct sky images for further analysis. However, the existing gridding frameworks can either
only run on multi-core CPU architecture or do not support high-concurrency, multi-channel data grid-
ding. Their performance is then limited, and there are emerging needs for innovative gridding frame-
works to process data from large single-dish radio telescopes like the Five-hundred-meter Aperture
Spherical Telescope (FAST). To address those challenges, we developed a High Efficient Gridding
framework,HEGrid, by overcoming the above limitations. HEGrid is the first effort to solve the grid-
ding of multi-channel data from the large single-dish radio telescope by multi-pipeline concurrency
in the CPU-GPU heterogeneous environment. Specifically, we propose and construct the gridding
pipeline in heterogeneous computing environments and achieve multi-pipeline concurrency for high
performance multi-channel processing. Furthermore, we propose pipeline-based co-optimization to
alleviate the potential negative performance impact of possible intra- and inter-pipeline low computa-
tion and I/O utilization, including component share-based redundancy elimination, thread-level data
reuse and overlapping I/O and computation. Our experiments are based on both simulated datasets
and actual FAST observational datasets. The results show that HEGrid outperforms other state-of-the-
art gridding frameworks by up to 5.5x and has robust hardware portability, including AMD Radeon
Instinct GPU and NVIDIA GPU.

1. Introduction
Effective and efficient data processing methods are an

emerging need to fully exploit the potential of existing and
upcoming scientific instruments and accelerate scientific
discovery, such as data processing for the large single-dish
radio telescopes FAST, Arecibo, Effelsberg andGreen Bank,
etc. To record sky images from a wide range of frequencies,
large single-dish radio telescope receivers contain a large
number of independent channels with various band cover-
age settings. Five-hundred-meter Aperture Spherical Tele-
scope (FAST) [3, 7, 16, 27], the world’s largest single-dish
radio telescope, has been in operation since 2020. FAST re-
ceivers comprise 65,536 independent frequency channels (a
significantly large but typical number for many large single-
dish radio telescopes) and generate a massive volume of ra-
dio astronomical data across all frequency channels at a rate
of 10-20 PB-size per year [16].

To obtain the correct sky images from such data, grid-
ding is one of the critical steps which maps non-uniform
data samples onto a uniformly distributed target grid map
(referred to as target map) for further analysis. It is usually
themost computationally intensive and time-consuming step
[12, 21, 25] due to the huge size of data in multiple channels.

∗Corresponding author
xiaojian@tju.edu.cn (J. Xiao); minlong@boisestate.edu (M. Long)

ORCID(s):

For those reasons, there is a great need for fast and high-
performance gridding frameworks to process multi-channel
radio astronomical data from large single-dish radio tele-
scopes.

Gridding algorithm is similar to stencil computation
since it iteratively updates each target cell based on neighbor-
ing points and can be treated as one type of "quasi 2D sten-
cil computation" with "Moore neighborhood pattern"[20].
However, gridding also differs from the stencil computation
in the following ways: (1) the number of selected neighbor-
ing points for each cell may not be fixed but vary signifi-
cantly; (2) the number and location of neighboring points
for each cell is not determined till the cell is updated. These
two features pose a challenge for effective access to neigh-
boring points contributing to the calculation. In addition,
there would be much more neighboring points used in grid-
ding than in the stencil computation. For instance, in some
gridding applications with high sampling densities, the num-
ber of neighboring points could reach nearly 90,000, adding
additional challenge for cells update.

A number of gridding frameworks have been developed
for processing data from various types of radio telescopes.
Among them, Cygrid [26] is one of the most popular and
effective gridding frameworks. It supports multi-core CPU
architecture and has been applied to the Effelsberg-Bonn HI
Survey and the Galactic All-Sky Survey [2]. However, as
discussed above, the gridding is more suitable for imple-

Hao Wang et al.: Preprint submitted to Elsevier Page 1 of 12

ar
X

iv
:2

20
7.

04
58

4v
1

 [
cs

.D
C

]
 1

1
Ju

l 2
02

2

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

mentation on GPU architectures rather than CPU, due to its
features of single instruction, multiple data stream (SIMD).
Our previous work, HCGrid [22], gridding framework pro-
totype designed in CPU-GPU heterogeneous computing en-
vironments for the large single-dish radio telescope, such as
the FAST, which has demonstrated promising performance
in the experiments with simulated datasets. However, HC-
Grid does not support high-concurrency processing ofmulti-
channel data due to its low utilization of heterogeneous re-
sources. It is worth noting that there are other gridding algo-
rithms used in CPU-GPU heterogeneous architectures, such
as [5], [17], [19], [21], [31], but none of them were designed
for and can be applied to single-dish radio telescopes.

To overcome the limitations of existing gridding frame-
works, combined with our previous work, we propose
HEGrid, a high efficient gridding framework for the multi-
channel data gridding of the large single-dish radio tele-
scope. HEGrid is the first effort to solve the multi-channel
data gridding of the large single-dish radio telescope by
multi-pipeline concurrency in the CPU-GPU heterogeneous
environment, it can port well for different GPU architec-
tures including NVIDIA and AMD Radeon Instinct series.
Specifically, given gridding’s computational correlation and
data correlation, our contributions are:
(1) We present the design of the HEGrid, including the

building of the gridding pipeline and the multi-pipeline
concurrency implementation.

(2) We propose pipeline-based co-optimization to alleviate
the potential negative performance impact of possible
low intra- and inter-pipeline computation and I/O uti-
lization, which includes component share-based redun-
dancy elimination, thread-level data reuse and overlap-
ping I/O and computation.

(3) We port HEGrid to various GPU architectures, such
as NVIDIA and AMD Radeon Instinct series, enabling
HEGrid with robust hardware portability.

(4) We are releasing our implementation as open-source1
for further research and use in achieving efficient grid-
ding of astronomical data for current and upcoming
large single-dish radio telescopes.
The rest of the paper is organized as follows. We provide

the background on gridding algorithms and the motivation
for innovative methods in Section 2 and discuss the related
work in Section 3. In Section 4, we describe the design of
HEGrid and optimization methods we used. Section 5 com-
pares HEGrid to other gridding frameworks by conducting
various performance experiments using both simulated and
actual observational data from FAST. Section 6 concludes
the paper.

2. Background and Motivation
2.1. The Need of Gridding

Radio telescope consists of antenna and array receivers
which detect radio signals from astronomical sources in the

1https://github.com/HPCAstroAtTJU/HEGrid

18
17

16

19
7

6
15

8
2

1
5

14

9
3

4
13

10
11

12

D
ec

lin
at

io
n

Right Ascension

18
17

16

19
7

6
15

8
2

1
5

14

9
3

4
13

10
11

12

A

B

Figure 1: A schematic layout of 19-beam receiver of FAST and
an example of two adjacent drift scans with areas A and B.
The dotted lines show the drifting tracks of individual beams
[6, 7, 28].

(a) Scatter (b) Gather

output cell
sample point

output cell
sample point

Figure 2: Input-oriented scatter (left) and output-oriented
gather (right) gridding methods. Circles represent input data
points and squares represent output cells.

sky. Given the size of the large single-dish radio telescope,
deploying the telescope in a "drift scan" is usually needed as
a feasible and near-optimum sky survey strategy. The "drift
scan" means moving the telescope’s receivers to a target az-
imuth and then fixing the telescope. Since the earth rotates
once in 24 hours, various celestial objects enter the receiver’s
field of view once, recorded in a coordinate of two directions:
right ascension and declination.

Figure 1 shows the layout of 19-beam receivers of FAST
and the "drift scan" strategy of FAST’s survey [7]. FAST
adopts a fixed rotation angle of the beam pattern toward a
certain declination on the sky, and the drifting drags the re-
ceiver along the right ascension direction. By rotating the
array by 23.4°, the most uniform coverage in the declina-
tion direction and super-Nyquist sampling can be achieved
[16]. After a 24-hour scan of a certain declination, a new
declination is taken for new surveys of objects [16, 28].
The received continuous data streams are stored in a multi-
dimensional array according to values of channel number,
right ascension, declination, forming a multi-dimensional
datacube. However, this strategy can cause a problem, the
coverage of the raw recorded data has a much denser grid
resolution in the right ascension direction than in the decli-

Hao Wang et al.: Preprint submitted to Elsevier Page 2 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

Pre-processing

memory adjustment

Build look-up table (LUT)Raw data

Cells Update

LUT

Number of neighborhood points

 Neighborhood location

Ch 1

pixel_idx
update

coordinate value

output cellcoordinate

①
② ③

④

⑤
⑥

⑦Target map

Ch 0 Sort
pixel_idx key

memory adjustment

Figure 3: The overview of the HEGrid pipeline. The step of pre-processing runs on CPU. It first computes and sorts the pixel_idx
of the raw data points, then adjusts the raw data memory, building a look-up table. The step of cells update runs on GPU,
which loads the target map, raw data, and LUT, then computes the contribution region and updates the target cell. ch0 and ch1
represent different frequency channels.

nation direction [9, 10], limiting itself to be directly used for
scientific analysis, which requires a uniform interval in the
two spatial directions of right ascension and declination to
obtain high quality of sky image. Like X-ray computed to-
mography [4], gridding can be seen as an image reconstruc-
tion method in radio astronomy, which solves the problem of
uneven distribution of raw data points in the sampling space.

As with stencil computation, the kernel of a gridding
computation typically contains a weighted sum of neighbor-
ing points for each target cell, and applies two methods of
scatter or gather to the calculation [29]:
(1) Scatter: The scatter method traverses each input data

point and broadcasts its sampling value to other output
cells within the convolution kernel. Then the sampling
value is weighted and updated to each target output cells,
as shown in Figure 2 (a).

(2) Gather: The gather method traverses each output cell
and searches for neighboring points within its convolu-
tion kernel. Then it adds upweighted values and updates
to the output cell, as shown in Figure 2 (b).

2.2. The Gridding Algorithm
The gather-based gridding algorithm is as follows. Af-

ter determining a target grid map, the output value for each
targeted grid cell is calculated as the weighted sum of all
neighboring samples. Let S = {s1, s2,⋯ , sN} denote N
discrete, non-uniformly spaced input samples in the right
ascension-declination plane (ra-dec). Each sample sn ∈
S, (n ∈ {1, 2, ..., N}) has equatorial coordinates (�n, �n)(i.e., right ascension and declination) and a sampled value
of V [sn]. For the output grid map, the ra-dec plane is di-
vided into a regular, uniform grid with I × J cells as G =
{g1,1, g1,2,⋯ , gI,J}. For any cell gi,j ∈ G with central co-
ordinates (�i,j , �i,j), its re-sampled value V [gi,j] equals theweighted sum of raw data S related to gi,j .

V [gi,j] =
1
Wi,j

∑

n
V [sn]w(�i,j , �i,j ; �n, �n). (1)

sn ∈ S represents any raw input sample with a weighted
contribution to gi,j ; w(�i,j , �i,j ; �n, �n) is a convolution ker-
nel (weighting function) depending on positions of the
output cell and raw data points, usually related to dis-
tances between input and output coordinates; and Wi,j =
∑

nw(�i,j , �i,j ; �n, �n) is the normalisation coefficient.

3. Related Work
Gridding is one of the most critical tasks in processing

radio astronomical data such as pulsar data, spectral line data
and so on. Several gridding frameworks have been devel-
oped and customized for such data processing in the field of
radio astronomy. Cygrid [26] is one of the state-of-the-art
works and runs only on the CPU platforms, which has been
applied to studies like the Effelsberg-Bonn HI Survey and
the Galactic All-Sky Survey[2]. However, its gridding per-
formance is limited by the CPU architecture because it can’t
handle well the main features of gridding: single-instruction
and multiple data (SIMD) stream. Modern parallel proces-
sors, such as GPU instead of CPU should be able to provide
a better platform for such SIMD operations.

HCGrid [22] is designed for gridding data from single-
dish radio telescopes. It is based on CPU-GPU heteroge-
neous architecture and can achieve good performance for
single-channel data. However, it does not support the high
concurrency processing of multi-channel data due to its low
utilization of heterogeneous resources.

Image-Domain Gridding [21] implemented the gridding
on both CPU and GPU, and has been deployed to the LO-
FAR (Low-Frequency Array) Central Processing center. It
utilizes CUDA stream and relatedmathematics library to op-
timize the gridding. However, it cannot be applied to single-
dish radio telescopes, and the portability of the algorithm is
not desirable.

Other methods including [5], [17], [19] and [31]. For in-
stance, [19] developed a work-distribution scheme for grid-

Hao Wang et al.: Preprint submitted to Elsevier Page 3 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

ring_idx = 0, pixel_idx = 2, length = 6

ring_idx = 1, pixel_start_idx = 6, pixel_idx = 8, length = 5

Figure 4: Raw data points are partitioned into different pix-
els. Each pixel has its index information, including pixel_idx,
ring_idx, ring length, etc.

ding using GPU, which can reduce the memory access time
of computing device, and map observed samples onto a grid
with high efficiency. [17] optimized the algorithm using
thread coarsening strategy, which makes each thread to han-
dle multiple samples simultaneously. However, like Image-
Domain Gridding, all those existing methods are only de-
signed for radio telescope array but not fully applicable to
the large single-dish radio telescopes.

4. Design of HEGrid
This section introduces the design and implementa-

tion of our multi-channel radio astronomical data gridding
framework, HEGrid. We first explain the design of the
HEGrid pipeline and present the capabilities of multiple
pipeline concurrency on heterogeneous architecture. Then,
the details of pipeline-based co-optimization strategies were
given. Furthermore, we port HEGrid to heterogeneous com-
puting environments with different GPU architectures.
4.1. HEGrid Pipeline

Figure 3 shows the pipeline of HEGrid. First, an ef-
ficient look-up table (LUT) is built in the pre-processing
step to accelerate the contribution point acquisition process.
Second, to accelerate the most time-consuming cell update
step, we achieve cell update parallelization by using SIMT
instruction-level parallelism on GPU.
4.1.1. Building the Efficient LUT

As discussed in Section 1, uncertainty (location, num-
ber) of contribution points brings challenges to the cell up-
date. We design an efficient lookup table with the help of
HEALPix2[11]. With HEALPix, the raw data points on the
celestial surface are partitioned into different pixels with dif-
ferent indexes, as shown in Figure 4.

Figure 5 gives an example for illustrating the process
of lookup table build in Figure 3. First, the 17 raw data
points Si(i = 1, 2..., 17) are partitioned into 9 pixels (A
∼ I), and then the pixel_idx was sorted as shown in Fig-
ure 5 (step 1 in Figure 3). The Block Indirect sort al-
gorithm is utilized in our work, its average time complexity

2HEALPix is a software package for hierarchical equal-area isolatitude
pixelation on spherical surfaces in astronomy, which makes fast, accurate
statistical or astrophysical analysis of massive all-sky datasets.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17raw data

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

F H I C G H C A F G D E C B H D Apixel_idx

A A B C C C D D E F F G G H H H I

S8 S17 S14 S4 S7 S13 S11 S16 S12 S1 S9 S5 S10 S2 S6 S15 S3

r1

r7

r3 r4 r5 r6ring_idx

S'
1 S'

2 S'
3 S'

4 S'
5 S'

6 S'
7 S'

8 S'
9 S'

10 S'
11 S'

12 S'
13 S'

14 S'
15 S'

16 S'
17

1 7 10 17

A B C

F G H
D E

I

r3 r4 r5 r6

Sort

Memory location adjust

r3 A 1
r4 D 7
r5 F 10
r6 I 17

LUT

Figure 5: The schematic diagram of pre-processing. Top: Par-
tition 17 raw data points Si(i = 1, 2..., 17) into 9 pixels from
"A" to "I". Middle: Adjust memory location of the raw data
points based on the sorted pixel_idx. Bottom: Build a lookup
table based on the partitioned pixels.

is(NlogN). Second, the location of coordinates and sam-
pling value in memory for the raw data points was adjusted
according to their pixel_idx (steps 2 , 3). Third, af-
ter computing the ring_idx of the latitude ring where differ-
ent pixels are located, the lookup table is built based on the
ring_idx, pixel_idx, and sampling points index (step 4).
The pre-processing step runs on CPU because there is a se-
ries of logic operations.
4.1.2. Parallelizing Cell Updates

Vectorization is a common technique employed in paral-
lel processors. Cell update step has computational character-
istics of single instruction multiple data streams. In HEGrid,
we manually vectorize the cell update on GPU in a SIMT
manner.

Algorithm 1 shows the workflow of the cell update step.
After loading the data points and lookup table from the host,
we first compute the pixel_idx of the target cell, and deter-
mine the region (including the range of the ring, the starting
pixel index on the contribution ring, and the offset between
different contribution rings) of the contribution points for the
target cell. Then, with the help of the developed lookup ta-
ble in Section 4.1.1, the contribution points are loaded ring-
by-ring from device memory to the streaming multiproces-
sor (SM)3, and their weights contributed to the target cell is
computed. When a thread finishes its task for one target cell,
we cache the temporary results to register memory.

As the smallest unit of SM execution and GPU resource
3We mainly use terminology from NVIDIA hardware, such as SM,

block, and warp, equivalent to CU, workgroup, and wavefront in AMD ter-
minology.

Hao Wang et al.: Preprint submitted to Elsevier Page 4 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

Algorithm 1: Cell Update Workflow
Input: sorted data, LUT, target map
Result: updated cells

1 for target_cell[0] to target_cell[n] do
2 Compute the pixel_idx of the target cell;
3 Compute the min contribution ring ring_min;
4 Compute the max contribution ring ring_max;
5 for ring_min to ring_max do
6 Compute the min contribution pixel

pixel_min;
7 Compute the max contribution pixel

pixel_max;
8 Compute the min indices i of raw data in

pixel_min;
9 Load the contribution points raw_data[];

10 while pixel_idx of
raw_data[i] ≤ pixel_max do

11 if d(target_cell[], raw_data[i]) ≤ R
then

12 Compute the weight sum;
13 Compute the weighted value;
14 end
15 i = i + 1
16 end
17 end
18 Normalize the weighted value;
19 Update cell;
20 end

scheduling for NVIDIA GPU and AMD GPU, the thread
warp is the key to achieve efficient cell update. In a warp,
all threads execute in a single-instruction, multiple-thread
(SIMT) manner [14]. Target cells on the same row have the
same contribution ring and the difference is that its contri-
bution points may locate in different regions of the contri-
bution ring. Furtherly, as shown in Figure 6, the contribu-
tion points on the same contribution ring for adjacent tar-
get cells have overlapping contribution regions. To enable
HEGrid could port to the computing environments with dif-
ferent GPU architectures and obtain a high cache hit rate on
GPU, we propose an efficient organization strategy for paral-
lel threads onGPU. The detail is that we use one thread block
as a vector, and each of the threads in the thread block is re-
sponsible for one target cell. In addition, we assign the par-
allel threads along the longitude direction, and each thread
warp is responsible for the computational tasks of the con-
secutive target cells. Figure 7 shows the parallel threads
assignment in HEGrid. The warp number in each row
equals cell_num_one_row / 32 (64)4. By organizing paral-
lel threads in this way, using warp as the task parallelization
unit, we can strengthen the portability of the HEGrid across
different GPU architectures. Furthermore, our thread as-
signment strategy also considers the data reusability of inter-
threads. The threads responsible for adjacent target cells can

4The warp size (wavefront) in AMD GPU is 64.

cri+1cri

ring i

ring n

crn

Figure 6: The location in memory of the contribution points
for adjacent target cells on different rings. Different colors
rectangles represent the contribution regions of different target
cells, and shaded rectangles are the contribution points shared
by the adjacent target cells.

warp 0 warp n

Figure 7: HEGrid parallel threads assignment in GPU. n×warp
will be responsible for one-row target cells.

T1

Pre-processing (CPU) HtoD Cell Update (GPU)

Time Line

DtoH

T2 T3 T4

Figure 8: The experimental timeline of the HEGrid pipeline.
HtoD and DtoH: "Host to Device" and "Device to Host".

reuse the data cached in the GPU L1/L2 cache.
4.2. Multi Pipeline Concurrency

As discussed in the Section 1, because receivers typi-
cally cover a wide range of frequencies, the sky survey of
large single-dish radio telescopes collect sky data using a
large number of, independent frequency channels. Thus, the
data processing in those channels are naturally independent
to each other. Combining multi-channel radio astronomical
data characteristics, we explore the process-level paralleliza-
tion and implementation of multi-channel gridding in this
section.
4.2.1. Profiling

GPU supports multi-stream parallel execution [8, 13,
23], which can facilitate the HEGrid to realize process-level
parallelization on GPU, by dispatching the cell update for
different channels to different streams.

We analyzed the time spent at each stage of the HEGrid
pipeline. Figure 8 shows our experimental results. The
length of the rectangle represents the duration. It can be seen
that T 1 > T 3 > T 2 > T 4.

The prerequisite of using GPU streams in the grid-

Hao Wang et al.: Preprint submitted to Elsevier Page 5 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

Raw data

Channel
0 ~ N CPU Process HtoD
 GPU Stream

Time Line

DtoH

Serial execution

Pipeline

Concurrency

Performance
Improvement

Target map

Channel N

CPU Process HtoD
 GPU Stream DtoH

waitProcess_m HtoD
 Stream_n DtoH

Pre-processing (CPU) HtoD Cell Update
(kernel) DtoH Pre-processing (CPU) HtoD Cell Update

(kernel) DtoH

Channel 0

channel_l

Figure 9: Multi pipeline concurrency on heterogeneous architecture. "wait" or idle stream waiting for data is mainly determined
by the GPU’s hardware transfer mechanism, where when two adjacent streams in the same direction (e.g., from the host to the
device) are requesting to transfer data, the stream which requests first could block the other stream.

ding computation is that each stream executed concurrently
should have access to data processed from the CPU, i.e.,
the CPU has to provide sufficient channels of data to each
stream. Therefore, while the CPU is still processing data
from multiple channels using sequential execution, multi-
ple GPU streams can execute concurrently only if T 1 +
T 2 < T 3. Otherwise there will be idle streams waiting for
data and degenerated to serial execution. However, the time-
line in the HEGrid (T 1 + T 2 > T 3) is exactly opposite to
the prerequisites (i.e., T 1 + T 2 < T 3), which prevented
performance improvement using GPU streams.
4.2.2. Pipeline Concurrency and Scheduling

As we analyzed, partial parallelization of the HEGrid
pipeline can only achieve in some instances. Otherwise, it
will degrade to serialize. In short, if there is concurrency
in the pre-processing and data transfer, different GPU ker-
nels can start asynchronously. To achieves process-level par-
allelization of gridding, we propose multi pipeline concur-
rency on heterogeneous architectures, shown in Figure 9.

By combining CPU multi-process and GPU multi-
stream, we achieve multi pipeline concurrency. The pipeline
scheduling needs to be considered at both inter-and intra-
pipeline levels. We found through experimental analysis
that the data processing time at each stage, such as pre-
processing, cell update, and the overall, is similar for differ-
ent channels. Therefore, the optimal two-level scheduling
policy followed by pipeline should be FIFO. As shown in
Figure 9, the data from channel_l will load to the idle pro-
cess_m, and the idle stream_nwill process the data from pro-
cess_m.
4.3. Pipeline-based Co-optimization
4.3.1. Component Share-based Redundancy

Elimination
As mentioned in Section 4.1, data points in different

channels with the same coordinate correspond to the same
HEALPix pixels. In HEGrid, each pipeline can build up its
lookup table and load it from host to device. It’s not hard to

Memory adjust

(value in channel_0)

HtoD

(s1)
 Stream 1 DtoH

(s1)

Memory adjust

(value in channel_1)

HtoD

(s0)
 Stream 0 DtoH

(s0)

HtoD

(LUT, RA, DEC)

Memory adjust

(value in channel_n)

HtoD

(sn)
 Stream n DtoH

(sn)

Shared
Component

① ② ④

③

Figure 10: Component share-based redundancy elimination.
The shared component is responsible for pixel_idx computa-
tion and sort, adjustments of coordinates storage in memory
and lookup table construction.

see that this causes the existence of redundant computations
and redundant data transfers. We design a "shared compo-
nent" mechanism to eliminate the duplicate construction of
the lookup table. The pre-processing steps plotted in Fig-
ure 3 are divided into stages as shown in Figure 10. Steps
1 , 2 , 4 are assigned to shared components because

they can be reused in all pipelines. Furthermore, a fixed size
memory was allocated in the device, and the LUT, coordi-
nates, and sampling value were loaded only once from the
host to the device. In the concurrency pipeline, the data from
the shared component will be broadcasted to the cell update
kernel of each pipeline.
4.3.2. Asynchronous Data Transfer and Computation

As the number of concurrency pipelines increases, the
number of data exchanges between CPU and GPU will also
increase accordingly. In order to reduce the cost of memory
allocation, we implement a memory pool that can be reused
by the gridding kernel. Each GPU stream can access its frac-
tion of the memory pool through its stream id. We then al-
locate pinned memory on the host side to obtain the highest
bandwidth. Since the host CPU feeds cell update tasks to
GPU asynchronously, the computation and data transfer can
be overlapped.

Hao Wang et al.: Preprint submitted to Elsevier Page 6 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

4.3.3. Thread-level Data Reuse
In some gridding applications with high sampling densi-

ties, the number of neighboring points for one target cell can
achieve 90,000, which challenges data transfer between the
SM and devicememory. From experiment analysis, adjacent
cells on the same row have the similar contribution region
at high output resolution. To increase the data reusability
between different threads, we assign threads to be responsi-
ble for the computational tasks of multiple adjacent cells.
In addition, the adjacent cells corresponding to the same
thread will use the same intermediate results in the computa-
tion, such as the contributing rings and starting contributing
points, etc.
4.4. Porting to different GPU architectures

With the advent of numerous accelerators with differ-
ent architectures, hardware portability is becoming a fea-
ture that should be present in typical scientific applications.
As a data-driven astronomical application, gridding should
have portability on different GPU architectures. ROCm56 is
AMD’s open-source software platform for GPU-accelerated
high-performance computing and machine learning [1, 15,
18]. An efficient thread assignment scheme is designed for
the cell update step on GPU, in Section 4.1.2, to enable
HEGrid could adapt to AMD GPU and obtain high perfor-
mance. Through the ROCm platform, we successfully port
HEGrid to the AMD GPU architecture and run it on the In-
stinct MI50 GPU. In addition, HEGrid can also run on the
GPUwith AMD’s latest CDNA architecture. There are chal-
lenges in porting HEGrid to the AMD GPU. First, ROCm
does not support texture memory bound, we allocate global
memory instead. Second, the performance profiling tools
integrated with ROCm are under development and are not
yet perfect. Currently, we manually tune the size of thread
blocks to get better performance and have not yet done fur-
ther profiling and optimization of performance based on ar-
chitecture, which is part of our future work.

5. EXPERIMENTS
In this section, we perform detailed evaluations of

HEGrid, in aspects of overall performance, the performance
impact of the optimization scheme, the portability on dif-
ferent GPU architectures, and the accuracy of HEGrid.
We used both simulated datasets and actual observational
datasets from FAST in the experiment and compared the
HEGrid to other gridding frameworks.
5.1. Experimental Setup
5.1.1. Hardware Configurations

Experiments are conducted on two servers with different
GPU architectures, namely Server_V with Xeon Gold 6151
CPU andNVIDIAV100GPU, and Server_Mwith Xeon E5-
2620 CPU and AMDMI50 GPU. Their hardware configura-
tions are shown in Table 1.

5https://rocmdocs.amd.com/en/latest/index.html
6https://github.com/ROCm-Developer-Tools

5.1.2. Datasets
As performance could be data dependent, we use two

different datasets for the performance evaluation, as shown
in Table 2. The first is a simulated datasets generated with
the observation parameters of FAST. The second is an actual
observational datasets collected by FAST. It is worth noting
that the simulated dataset differs from the actual dataset with
a much larger data size at each channel (107 vs 106). This is
because FAST has not yet completed a full survey of the sky,
and it requires multiple repeat scans of the same target sky
area to get as complete a picture of the sky as possible. Addi-
tionally, FAST will complete a more comprehensive survey
in the coming period, and more complete data are not yet
available for performance analysis, so we use simulated data
with high sampling density (i.e., the datasets with large data
sizes) for the performance analysis in some experiments.
5.1.3. Performance Metrics

We use speedup as our main metric to measure the per-
formance changes. In Section 5.2 and 5.4, the speedup is
the ratio of the baseline running time to the running time
of HEGrid. A state-of-the-art gridding framework with the
shortest running time (i.e., the best) would be selected as the
baseline. In Section 5.3, the speedup is the ratio of the run-
ning time of the non-optimized HEGrid (i.e., baseline) to the
running time of the optimized HEGrid.
5.2. Overall Performance

The comparison between HEGrid and other state-of-the-
art gridding frameworks is shown in Table 3. It can be seen
that HEGrid outperforms other frameworks by up to 5.5x
performance speedup in all experiments. This demonstrated
the advantage of HEGrid in radio astronomy data gridding.

Specifically, on the simulated dataset, we evaluate
the dependence of performance on data size per channel.
HEGrid has the best performance compared to Cygrid and
HCGrid. It’s 5.5x faster than Cygrid. This benefits from
our design of HEGrid running on CPU-GPU heterogeneous
architectures and the high process-level parallelism in the
gridding.

On the FAST’s observed data, we evaluate the depen-
dence of performance on the number of frequency chan-
nels. HEGrid also outperforms Cygrid and HCGrid. It’s
4.3x faster than HCGrid. This demonstrates the effective-
ness of our parallelization strategy of multi pipeline concur-
rency and other optimization techniques.
5.3. Analysis of Performance Optimizations
5.3.1. Redundancy Elimination

Our optimization scheme on the CPU eliminates the du-
plicate computations in the pre-processing step. We now
measure the performance of HEGrid under the optimization
of component share-based redundancy elimination. Figure
11 and Figure 12 show the overall performance improve-
ments brought by our scheme on the simulated dataset and
FAST’s observed data respectively.

First, under the simulated datasets with different data
sizes, the average performance improvement brought by the

Hao Wang et al.: Preprint submitted to Elsevier Page 7 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

Table 1
Hardware configurations for experiments.

Server Server_V Server_M

Processor CPU GPU CPU GPU

Model Xeon Gold 6151 Tesla V100 Xeon E5-2620 Instinct MI50
Transistors 14nm 12nm 22nm 7nm
Cores 16 5120 32 3840
Base Frequency (MHz) 3000 1245 2100 1200
Max Frequency (MHz) 3400 1380 3000 1746
Device Memory Type - HBM2 - HBM2
Device Memory Clock (MHZ) - 876 - 1000
Device Memory Bandwidth (GB/s) - 897 - 1024
Device Memory Size (GB) - 16 - 16
Host Memory Size (GB) 128 - 128 -

Table 2
Datasets for Experiment.

Dataset Simulated Observed (by FAST)

File Format HDF5 HDF5
Beam Size 180′′ 180′′
Map Size 60◦ × 20◦ 60◦ × 20◦
Map Center (30◦, 41◦) (30◦, 41◦)
Points Num 1.50E + 07 ∼ 1.90E + 07 2.83E+06
Channels Num 50 10 ∼ 50
File Size 2.91 ∼ 3.68 GB 3.32 GB

redundancy elimination is 3.2x. Specifically, compared with
Figure 12, performance improvement of redundancy elim-
ination scheme is more obvious for large datasets. This
is because the duplicate lookup table construction and the
duplicate data loading from the host to the device will be
one of the major performance challenges in processing the
large datasets. Therefore, the performance benefits of the
redundancy elimination strategy will be more obvious. Sec-
ond, the performance improvement is also evident in the
data observed by FAST with different frequency channels,
demonstrating the effectiveness of our strategy for multiple
pipeline concurrency. In addition, the performance improve-
ment exhibited with a channel count of 50 is slightly lower
than that of Figure 11, which further proves the performance
advantage of the redundancy elimination strategy for large
datasets, the scale of data from FAST will need to handle in
the future.
5.3.2. Threads Concurrency on GPU

HEGrid vectorizes the cell update on GPU in a SIMT
manner. We evaluate the HEGrid performance by vary-
ing the size of the thread blocks on NVIDIA V100 GPU.
The data used in this section is the simulated dataset with
1.5 × 107 and 1.9 × 107 data sizes, respectively. Figure
13 shows the HEGrid running time under different thread
block sizes. We can observe that before reaching the optimal
thread organization configuration (e.g., near 352), the per-
formance improves as the size of the thread block increases.
This is because more threads are being scheduled to exe-

1 . 5 x 1 0 7 1 . 6 x 1 0 7 1 . 7 x 1 0 7 1 . 8 x 1 0 7 1 . 9 x 1 0 70 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

Sp
eed

up

Figure 11: Performance improvement of redundancy elimina-
tion scheme under the simulated datasets with different data
sizes.

1 0 2 0 3 0 4 0 5 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

Sp
eed

up

Figure 12: Performance improvements of redundancy elimi-
nation scheme under the FAST’s observed data with different
frequency channels.

cute on the SM. After that, when the number of threads per
block is greater than 352, the running time begins a linear in-
crease again. The reason is that the V100 has a total number
of 65,536 registers for each SM, while the HEGrid’s kernel
uses 88 registers as we analyzed using the nsight-compute
tool [24, 30]. It means that the maximum (also optimal)
of block sizes that can be scheduled to execute on the SM
would be 352, which could schedule two blocks to SM (use
2 × 352 × 88 = 61, 952 registers, less than 65,536), that is
2×352 parallel threads execution on the SM. However, even
onemorewarp is added, i.e., the block size is 352+32 = 384,
there would be nomore blocks (e.g., two blocks required reg-
isters would be 2 × 384 × 88 > 65, 536.) to be scheduled to
execute on the SM, that is only 384 parallel threads execu-

Hao Wang et al.: Preprint submitted to Elsevier Page 8 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

Table 3
Comparison of the performance of gridding frameworks (Running Time (s)).

Dataset Simulated Observed (by FAST)

Datasize / Channel num 1.50E+07 1.60E+07 1.70E+07 1.80E+07 1.90E+07 10 20 30 40 50

Cygrid 165.87 171.37 178.99 187.31 194.6 77.77 79.01 80.12 80.97 84.76
HCGrid 173.25 178.82 189.01 196.43 206.28 25.5 52.02 79.58 113.12 137.1
HEGrid 30.21 32.77 35.27 38.2 40.94 7.15 12.77 18.29 24 29.6

Speedup (HEGrid) 5.49 5.23 5.07 4.90 4.75 3.57 4.07 4.35 3.37 2.86

0 6 4 1 2 8 1 9 2 2 5 6 3 2 0 3 8 4 4 4 8 5 1 2
3 0
4 0
5 0
6 0
7 0
8 0

Ru
nti

me
 (s)

N u m b e r o f t h r e a d s p e r b l o c k

 1 . 5 ×1 0 7

 1 . 9 ×1 0 7

Figure 13: Performance as a function of the size of the thread
blocks on NVIDIA V100 GPU.

0 6 4 1 2 8 1 9 2 2 5 6 3 2 0 3 8 4 4 4 8 5 1 23 5
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5

L1
 / L

2 h
it r

ate
 (%

)

N u m b e r o f t h r e a d s p e r b l o c k

 L 1 h i t r a t e
 L 2 h i t r a t e

Figure 14: L1 and L2 hit rate as functions of the size of the
thread blocks on NVIDIA V100 GPU.

tion on the SM, and the performance will degrade.
In addition, the GPU L1/L2 cache hit rate changes with

the thread block sizes also demonstrate our thread paral-
lelization scheme’s effectiveness on GPU.We assign threads
on the GPU in a way that takes into account the reusability of
data between different threads. As depicted in Figure 14, be-
fore reaching the optimal thread organization configuration
(e.g., near 352), the hit rates of L1 and L2 increase with the
increase of the thread block size. These results show that our
thread organization scheme meets our expectations. That is,
improving the GPU L1/L2 cache hit rate by organizing par-
allel threads through improving the inter-thread data reuse
rate responsible for adjacent target cells.
5.3.3. Streams Concurrency on GPU

Now, we analyze the performance improvements from
the multi-streams concurrency on GPU. Here we have ex-
panded the experimental dataset, i.e., added two sizes of ob-

served sky fields, 5◦×5◦ and 10◦×10◦, and two beamwidths,
180′′ and 300′′(A small beamwidth represents a high output
resolution and more target cells on the map). The data size
of the extended dataset range from 1.5×105 to 1.5×107. Fig-
ure 15 shows the performance improvements using different
streams compared to the default stream. Here we use "R*-
S*" to represent a specific output resolution and sampling
density of the experimental data, for example, RH-SH for an
output resolution of 180′′ and a sampling size of 1.5 × 107,
RL-SM for an output resolution of 300′′ with a sample size
of 1.5×106, and the rest of the cases and so on. Based on the
results presented in the figure, one can make the following
observations. First, multiple streams can yield significant
performance improvements compared to using the default
stream, up to 55% in the current experiments, which benefits
from the overlapping between different streams. Second, the
performance improvement brought by the multiple concur-
rent streams is more pronounced in the low output resolution
and small observation field cases. On the contrary, the per-
formance improvement percentage tends to decrease. This is
because at low output resolutions or small observation fields,
the number of cells on the output map is smaller, allowing
more streams to be concurrent and a higher concurrency be-
tween different streams. On the contrary, the computation
will change to compute-intensive in the higher output reso-
lutions or larger observation fields, and the concurrency of
streams will decrease due to the resource limitation of the
GPUs. Third, the performance improvement from multiple
concurrent streams is more pronounced at low sample sizes.
On the contrary, the computation will change to memory-
intensive in the larger sample size, and the concurrency of
streams will decrease due to the I/O limitation. In addition,
performance improvements tend to flatten out after a thresh-
old number of streams, which is determined by the resources
of the device.

Overall, we could conclude that multi-stream concur-
rency could significantly improve the performance in most
cases. Specifically, the optimal concurrent stream configu-
ration needs to be tuned based on the observations, output
resolution, and device resources, and dynamically adjusting
the stream configuration for optimal performance is part of
our future work.
5.3.4. Thread-level Data Reuse

We also propose a thread-level data reuse scheme tar-
geting the high output resolution and large data size. Fig-

Hao Wang et al.: Preprint submitted to Elsevier Page 9 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

0
1 0
2 0
3 0
4 0
5 0
6 0

Per
for

ma
nce

 (%
)

 R H - S L R H - S M R H - S H R L - S L R L - S M R L - S H

2 3 4 5 6 7 8 9 1 00

1 0

2 0

3 0

4 0

Per
for

ma
nce

 (%
)

N u m b e r o f s t r e a m s
Figure 15: Performance of varied number of streams. The top and bottom represent the results of the experimental analysis for
the gridding of two observation sky fields of size 5◦ × 5◦ and 10◦ × 10◦, respectively. The vertical axis represents the performance
improvement with different streams compared to using the default stream (one stream).

1 . 5 x 1 0 7 1 . 6 x 1 0 7 1 . 7 x 1 0 7 1 . 8 x 1 0 7 1 . 9 x 1 0 70 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

Sp
eed

up

 γ = 2 γ = 3

Figure 16: Performance improvement of thread-level data
reuse scheme.
 = 2 and
 = 3 presents
 adjacent cells
shared same contribution region.

ure 16 shows the performance improvement.
 is the reuse
factor, representing each thread responsible for
 adjacent
grid cells. We can observe that, for large data sizes, thread-
level data reuse scheme can achieve up to 1.2x performance
speedup. The major reason is that it reduces the workload of
the contribution points searching on the host and overhead of
data loading between device memory and SM. For example,
the computation complexity changes from(N) to(N∕
),
N is the number of cells in the target map.
5.4. Performance Portability

To demonstrate the performance portability of HEGrid,
using the simulated datasets and FAST actual observation
datasets, we also evaluate HEGrid on Server_M with AMD
Instinct MI50 GPU. The comparison of HEGrid, and Cy-
grid is shown in Table 4. Cygrid-16 and Cygrid-32 rep-

resent Cygrid experiments using 16 and 32 CPU cores.
We can observe that running on Server_M, HEGrid also
presents promising performance, outperforming Cygrid by
up to 3.8x performance speedup, which demonstrates the
performance portability potential of HEGrid under differ-
ent GPU architectures. It is undeniable that HEGrid run-
ning on Server_M exhibits a performance gap compared to
running on Server_V with V100 GPU. The reasons behind
this include. First, the limited hardware resources of the
MI50 GPU compared to the V100 GPU results in low con-
currency of the HEGrid’s pipelines. Experimental analysis
reveals that for HEGrid, thread blocks can only schedule up
to 128 parallel threads concurrently on theMI50 GPU SM to
get "relatively better" performance. Second, as introduced
in Section 4.4, the performance profiling tools integrated
with ROCm are not yet complete, and we currently manually
tune the size of thread blocks to obtain better performance.
Therefore, besides organizing parallel threads to obtain high
performance, no further performance analysis and optimiza-
tions have been done based on the architecture, which is part
of our future work.
5.5. Accuracy

Along with the performance analysis, we evaluate the
accuracy of the gridding results by comparing Cygrid and
HEGrid results using actual FAST observational data.

Figure 17 shows the real sky images of one of the FAST
surveys obtained from the gridding of HEGrid (left) and Cy-
grid (middle), respectively, and their differences (right) for
comparing the accuracy of HEGrid and Cygrid. We can ob-

Hao Wang et al.: Preprint submitted to Elsevier Page 10 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

Table 4
Comparison of the performance of Cygrid and HEGrid (Running on Server_M, Running Time (s)).

Dataset Simulated Observed (by FAST)

Datasize / Channel num 1.50E+07 1.60E+07 1.70E+07 1.80E+07 1.90E+07 10 20 30 40 50

Cygrid-16 163.15 171.17 177.85 177.95 185.43 86.31 83.16 88.11 85.79 87.04
Cygrid-32 161.95 169.96 178.21 185.98 187.21 83.62 85.35 85.45 87.57 91.24
HEGrid 70.75 75.5 77.42 80 85.62 21.7 50.88 78.16 99.56 125.87

Speedup (HEGrid) 2.29 2.25 2.30 2.22 2.17 3.85 1.63 1.09 0.86 0.71

Figure 17: FAST sky images for accuracy comparison. The top and bottom represent two gridding results from two different
frequency channels. The gridding results from HEGrid (left), Cygrid (middle) and their difference (right) are presented.

serve that all-sky details can be clearly reconstructed and re-
solved in both cases and the difference between HEGrid and
Cygrid, which is mainly caused by the different hardware ar-
chitectures, is almost negligible. Overall, we can conclude
that HEGrid retains high accuracy but better performance
and is a better option for radio astronomical data gridding
for large single-dish radio telescopes.

6. Conclusions
Effective and efficient data processingmethods are an ur-

gent need to fully exploit the potential of current and upcom-
ing scientific instruments. Gridding is the most computa-
tionally intensive step in the data reduction pipeline for data
from multiple frequency channels collected by radio tele-
scopes. Fast and high-performance gridding frameworks of
multi-channel radio astronomical data for large single-dish
radio telescopes are expected to address the challenges.

In this paper, we develop a high efficient and scal-
able gridding framework, HEGrid, for multi-channel ra-
dio astronomical data of the large single-dish radio tele-
scopes. Specifically, we propose and construct the grid-
ding pipeline in CPU-GPU heterogeneous environments and
achieve multi-pipeline concurrency. Furtherly, we propose
pipeline-based co-optimization strategy to alleviate the po-
tential negative performance impact of possible low intra-
and inter-pipeline computation. Our experiments are based

on both simulated datasets and FAST’s actual observed
datasets. The results show that HEGrid shows very com-
petitive performance compared with other state-of-the-art
works.

Our future work plan for the optimization and applica-
tion of HEGrid includes the following aspects. First, for
the ROCm version of HEGrid, we plan to perform detailed
performance profiling and optimization based on AMD’s
GPU architecture, including the latest CNDA architecture,
to improve performance further. Second, we plan to achieve
architecture-aware optimization, enabling HEGrid could au-
tomatically adapt to different heterogeneous architectures
(CPU and GPU with different architectures) and obtain high
pipeline concurrency. Third, we plan to scale HEGrid to
the cluster with multiple GPU accelerators to handle larger-
scale datasets. Such as developing a more efficient resource
scheduler in HEGrid for processing different batches of ob-
servations with varying sampling densities and sky area
sizes. In addition, introducing HEGrid into the data reduc-
tion pipeline of FAST as a user toolkit.

7. Declaration of competing interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Hao Wang et al.: Preprint submitted to Elsevier Page 11 of 12

HEGrid: High Efficient Multi-Channel Radio Astronomical Data Gridding Framework

8. Acknowledgments
This work is sponsored by the Joint Research Fund in

Astronomy (grant Nos.U1731125, U1731243, U1931130)
under a cooperative agreement between the National Nat-
ural Science Foundation of China (NSFC) and the Chinese
Academy of Sciences, NSFC grant No.11903056; as well
as the National Natural Science Foundation of China (grant
Nos.61972277).

References
[1] Abdelfattah, A., Barra, V., Beams, N., Bleile, R., Brown, J., Camier,

J.S., Carson, R., Chalmers, N., Dobrev, V., Dudouit, Y., et al., 2021.
Gpu algorithms for efficient exascale discretizations. Parallel Com-
puting 108, 102841.

[2] Bekhti, N.B., Flöer, L., Keller, R., Kerp, J., Lenz, D., Winkel, B.,
Bailin, J., Calabretta, M., Dedes, L., Ford, H., et al., 2016. Hi4pi:
a full-sky h i survey based on ebhis and gass. Astronomy & Astro-
physics 594, A116.

[3] Bigot-Sazy, M.A., Ma, Y.Z., Battye, R.A., Browne, I.W., Chen,
T., Dickinson, C., Harper, S., Maffei, B., Olivari, L.C., Wilkin-
son, P.N., 2015. Hi intensity mapping with fast. arXiv preprint
arXiv:1511.03006 .

[4] Blas, J.G., Abella, M., Isaila, F., Carretero, J., Desco, M., 2014. Surf-
ing the optimization space of a multiple-gpu parallel implementation
of a x-ray tomography reconstruction algorithm. Journal of Systems
and Software 95, 166–175.

[5] Cárcamo, M., Román, P.E., Casassus, S., Moral, V., Rannou, F.R.,
2018. Multi-gpu maximum entropy image synthesis for radio astron-
omy. Astronomy and computing 22, 16–27.

[6] Carrad, G., Sykes, P., Moorey, G., 2006. A cryogenically cooled seven
beam 21 cm wavelength receiver front end for the arecibo radio tele-
scope, in: Proc. Workshop Applications Radio Science, pp. 15–17.

[7] Dunning, A., Bowen, M., Castillo, S., Chung, Y.S., Doherty, P.,
George, D., Hayman, D.B., Jeganathan, K., Kanoniuk, H., Mackay,
S., et al., 2017. Design and laboratory testing of the five hundred
meter aperture spherical telescope (fast) 19 beam l-band receiver, in:
2017 XXXIInd General Assembly and Scientific Symposium of the
International Union of Radio Science (URSI GASS), IEEE. pp. 1–4.

[8] Durrani, S., Chughtai, M.S., Hidayetoglu, M., Tahir, R., Dakkak, A.,
Rauchwerger, L., Zaffar, F., Hwu, W.m., 2021. Accelerating fourier
and number theoretic transforms using tensor cores and warp shuffles,
in: 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), IEEE. pp. 345–355.

[9] Fabello, S., Catinella, B., Giovanelli, R., Kauffmann, G., Haynes,
M.P., Heckman, T.M., Schiminovich, D., 2011. Alfalfa h i data
stacking–i. does the bulge quench ongoing star formation in early-
type galaxies? Monthly Notices of the Royal Astronomical Society
411, 993–1012.

[10] Giovanelli, R., Haynes, M.P., Kent, B.R., Perillat, P., Catinella,
B., Hoffman, G.L., Momjian, E., Rosenberg, J.L., Saintonge, A.,
Spekkens, K., et al., 2005. The arecibo legacy fast alfa survey. ii. re-
sults of precursor observations. The Astronomical Journal 130, 2613.

[11] Gorski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K.,
Reinecke, M., Bartelmann, M., 2005. Healpix: A framework for high-
resolution discretization and fast analysis of data distributed on the
sphere. The Astrophysical Journal 622, 759.

[12] Griffin, A., Ensor, A., 2018. End-to-end modelling of the imaging
pipeline in radio astronomy, in: 2018 IEEE 10th Sensor Array and
Multichannel Signal Processing Workshop (SAM), IEEE. pp. 480–
484.

[13] Jain, T., Cooperman, G., 2020. Crac: checkpoint-restart architecture
for cuda with streams and uvm, in: SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis,
IEEE. pp. 1–15.

[14] Jung, J., Park, D., Jo, G., Park, J., Lee, J., 2021. Snurhac: A run-

time for heterogeneous accelerator clusters with cuda unified mem-
ory, in: Proceedings of the 30th International Symposium on High-
Performance Parallel and Distributed Computing, pp. 107–120.

[15] Leinhauser, M., Widera, R., Bastrakov, S., Debus, A., Bussmann,
M., Chandrasekaran, S., 2022. Metrics and design of an instruction
roofline model for amd gpus. ACM Transactions on Parallel Comput-
ing 9, 1–14.

[16] Li, D., Wang, P., Qian, L., Krco, M., Dunning, A., Jiang, P., Yue, Y.,
Jin, C., Zhu, Y., Pan, Z., et al., 2018. Fast in space: considerations
for a multibeam, multipurpose survey using china’s 500-m aperture
spherical radio telescope (fast). IEEE Microwave Magazine 19, 112–
119.

[17] Merry, B., 2016. Faster gpu-based convolutional gridding via thread
coarsening. Astronomy and Computing 16, 140–145.

[18] Otterness, N., Anderson, J.H., 2020. Amd gpus as an alternative
to nvidia for supporting real-time workloads, in: 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020), Schloss Dagstuhl-
Leibniz-Zentrum für Informatik. pp. 10:1–10:23.

[19] Romein, J.W., 2012. An efficient work-distribution strategy for grid-
ding radio-telescope data on gpus, in: Proceedings of the 26th ACM
international conference on Supercomputing, pp. 321–330.

[20] Träff, J.L., Hunold, S., Mercier, G., Holmes, D.J., 2021. Mpi col-
lective communication through a single set of interfaces: A case for
orthogonality. Parallel Computing , 102826.

[21] Veenboer, B., Petschow,M., Romein, J.W., 2017. Image-domain grid-
ding on graphics processors, in: 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), IEEE. pp. 545–554.

[22] Wang, H., Yu, C., Zhang, B., Xiao, J., Luo, Q., 2021a. Hcgrid: a
convolution-based gridding framework for radio astronomy in hybrid
computing environments. Monthly Notices of the Royal Astronomical
Society 501, 2734–2744.

[23] Wang, J., Zhang, X., Li, Y., Lin, Y., 2021b. Exploring hw/sw co-
optimizations for accelerating large-scale texture identification on dis-
tributed gpus, in: 50th International Conference on Parallel Process-
ing, pp. 1–10.

[24] Wang, P., Wang, J., Li, C., Wang, J., Zhu, H., Guo, M., 2021c. Grus:
Toward unified-memory-efficient high-performance graph processing
on gpu. ACM Transactions on Architecture and Code Optimization
(TACO) 18, 1–25.

[25] Wang, R., Tobar, R., Dolensky, M., An, T., Wicenec, A., Wu, C.,
Dulwich, F., Podhorszki, N., Anantharaj, V., Suchyta, E., et al., 2020.
Processing full-scale square kilometre array data on the summit super-
computer, in: SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE. pp. 1–12.

[26] Winkel, B., Lenz, D., Flöer, L., 2016. Cygrid: a fast cython-powered
convolution-based gridding module for python. Astronomy & Astro-
physics 591, A12.

[27] Yue, Y., Li, D., Nan, R., 2012. Fast low frequency pulsar survey.
Proceedings of the International Astronomical Union 8, 577–579.

[28] Zhang, K., Wu, J., Li, D., Krčo, M., Staveley-Smith, L., Tang, N.,
Qian, L., Liu, M., Jin, C., Yue, Y., et al., 2019. Status and perspec-
tives of the crafts extra-galactic hi survey. Science China Physics,
Mechanics & Astronomy 62, 1–9.

[29] Zhao, T., Basu, P., Williams, S., Hall, M., Johansen, H., 2019. Ex-
ploiting reuse and vectorization in blocked stencil computations on
cpus and gpus, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage andAnalysis, pp.
1–44.

[30] Zhou, K., Krentel, M.W., Mellor-Crummey, J., 2020. Tools for top-
down performance analysis of gpu-accelerated applications, in: Pro-
ceedings of the 34th ACM International Conference on Supercomput-
ing, pp. 1–12.

[31] Zhu, Y., Hou, J., Song, Y., Zheng, Y., Huang, T., Wu, H., 2020. Pro-
cessing data of correlation on gpu, in: Big Data in Astronomy. Else-
vier, pp. 139–163.

Hao Wang et al.: Preprint submitted to Elsevier Page 12 of 12

