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Abstract

A growing number of service providers are exploring methods to improve server utilization and reduce power consumption by
co-scheduling high-priority latency-critical workloads with best-effort workloads. This practice requires strict resource allocation
between workloads to reduce contention and maintain Quality-of-Service (QoS) guarantees. Prior work demonstrated promising
opportunities to dynamically allocate resources based on workload demand, but may fail to meet QoS objectives in more stringent
operating environments due to the presence of resource allocation cliffs, transient fluctuations in workload performance, and rapidly
changing resource demand. We therefore propose PROMPT, a novel resource allocation framework using proactive QoS prediction
to guide a reinforcement learning controller. PROMPT enables more precise resource optimization, more consistent handling of
transient behaviors, and more robust generalization when co-scheduling new best-effort workloads not encountered during policy
training. Evaluation shows that the proposed method incurs 4.2x fewer QoS violations, reduces severity of QoS violations by 12.7x,
improves best-effort workload performance, and improves overall power efficiency over prior work.

1. Introduction

User-facing applications, such as e-commerce and video-
conferencing, represent a critical and growing class of work-
loads for service providers. Performance of these high-priority
(HP) workloads is often synonymous with user experience,
so service providers usually specify strict Quality-of-Service
(QoS) requirements. Conventional approaches to meet these re-
quirements, such as executing these HP workloads in isolation
(i.e., one workload per machine), can ensure satisfactory perfor-
mance, but are undesirable due to substantial over-provisioning
during periods of low demand. More recently, service providers
have sought to ameliorate these adverse effects by opportunis-
tically co-scheduling best-effort (BE) workloads, thereby en-
abling higher average resource utilization. Co-scheduling can,
however, introduce substantial resource contention between HP
and BE workloads that may compromise user experience.

Prior work has explored a variety of methods to limit re-
source contention by strictly managing the resource allocation
for each workload. Simple approaches, such as statically al-
locating resources to the HP workload based on peak demand,
are usually highly inefficient since average demand is often sub-
stantially lower than peak demand [1, 2]. Incremental improve-
ments are possible by adjusting resources on a time-of-day ba-
sis, although deviations from historic averages may compro-
mise QoS guarantees [3, 4]. For these reasons, recent work has
explored dynamic resource allocation as a more adaptable so-
lution. These approaches vary; some exploit workload-specific
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knowledge [5, 6], several apply general search-based methods
[7, 8, 9, 10, 11] or tabular reinforcement learning [12, 13], and a
few recent works consider deep reinforcement learning [14, 15].
In general, these dynamic methods provide promising improve-
ments in BE performance, but may compromise QoS in more
stringent operating environments as they cannot appropriately
accommodate QoS cliffs, transient fluctuations in workload per-
formance, and rapidly changing resource demand. Addressing
these limitations requires innovative solutions that can proac-
tively and precisely predict the effects of changing and even
unseen workload demands.

In this paper, we propose Predictive Resource Optimization
for Multiple Prioritized Tasks (PROMPT), a novel machine
learning framework for dynamic resource allocation. PROMPT
is designed around proactive QoS predictions in order to elim-
inate the fundamental reliance on QoS measurements observed
in prior work. These QoS predictions, derived from gen-
eral resource contention indicators, are shown to provide more
fine-grained insight into potential worst-case behaviors and
more consistent feedback for a reinforcement-learning-based
resource allocation controller. Furthermore, while many prior
works assume a predominantly fixed set of workloads [14, 15],
PROMPT is designed to handle more general operating con-
ditions in which co-scheduled BE workloads may change fre-
quently, thereby avoiding any sacrifices in HP QoS that could
be introduced by online search or policy re-training. Evalua-
tions on a real-world networking platform show that PROMPT
incurs 4.2x fewer QoS violations, reduces the severity of QoS
violations by 12.7x, improves BE performance, and improves
overall power efficiency compared with prior work.
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Figure 1: Generic reinforcement learning framework.

The rest of the paper is organized as follows: Section 2 pro-
vides background on reinforcement learning and related work
on dynamic resource allocation; Section 3 describes several
key challenges in dynamic resource allocation that are not ad-
dressed by prior work; Section 4 details our proposed resource
allocation framework; Section 5 describes methodology and
evaluation; Section 6 concludes.

2. Background & Related Work

2.1. Reinforcement Learning
Reinforcement learning is a branch of machine learning

founded upon self-guided learning and optimization of prob-
lems that can be modeled as a sequence of control decisions
[16]. Fundamental to this learning process are the specifica-
tions for state, action, and reward, as illustrated in Figure 1. The
environment defines the task that we seek to optimize, which
corresponds to the compute node and its resource allocation.
The state st represents the observable information about our
environment, such as workload behaviors and current resource
utilization. This state information is passed to the agent, repre-
senting the decision-maker, which continuously interacts with
the environment by taking actions at. Finally, rewards rt are
given as a signal to either encourage or discourage changes in
the environment resulting from prior actions. In the context of
this paper, the overall goal of the agent is to learn a resource
allocation policy π∗ that maximizes cumulative rewards, with
discounting over time (γ), serving as a proxy for user-defined
goals such as workload QoS (Equation 1).

π∗ = arg max
π
E[

∑
t≥0

γt ∗ rt |s0 = s, π]. (1)

2.2. Related Work
Applications for resource allocation optimization span di-

verse domains, ranging from wireless communication networks
to smart electric grids. Naturally, each domain introduces its
own unique challenges in applying resource allocation opti-
mization, thus the need for continued research.

One broad category of work focuses on cluster-level sched-
ulers that assign workloads to compute nodes [17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38] and adapt these assignments based on either historical or
predicted resource demand [4, 39, 40, 41, 42]. These cluster-
level schedulers usually assume minimal and/or constant re-
source contention between co-scheduled workloads or assume

that this resource contention will be handled by per-node, dy-
namic resource allocation controllers, which are the target of
our work.

Approaches for dynamic resource allocation in cloud ap-
plications have varied dramatically. Most early works were
limited by available resource partitioning mechanisms, so were
designed around relatively coarse-grained heuristics to reduce
contention by temporarily pausing BE workload execution
[43, 44, 45, 46]. Other works apply workload-specific knowl-
edge [5, 6], which is generally not practical in cloud appli-
cations. More recent work can be divided into two general
categories: search-based methods and reinforcement-learning-
based methods.

Search-based methods can be further decomposed into
works using hill-climbing [7, 8], genetic algorithms [9], and
Bayesian optimization [10, 11]. Most search-based methods
rely upon online search to determine appropriate resource al-
locations. This search can, however, lead to significant QoS
violations in highly-dynamic operating environments (Section
5). Concurrent research on HP networking workloads in-
stead uses offline search to generate a lookup table for online,
load-driven optimization, but does not support co-scheduling
with BE workloads [47]. Among reinforcement-learning-based
methods, two are based on tabular Q-learning [12, 13] and two
are based on deep Q-learning [14, 15]. Tabular methods cannot
effectively scale to multiple workloads/resources and exhibit
oscillatory control behaviors in practice [15]. Different from
our work, RLDRM [14] assumed a static set of workloads, fo-
cused on allocation of a single resource (last-level cache), and
used current workload demand and resource allocation as the
state for the reinforcement-learning controller which, as dis-
cussed in Section 3, greatly restricts handling of transient QoS
violations and generalization to unseen BE workloads. Twig
[15] was instead designed to co-schedule HP workloads only
so cannot be used with BE workloads and, similar to all prior
work, is fundamentally reliant upon QoS measurements so can-
not be used to mitigate transient QoS violations.

Another largely orthogonal category of work explores dy-
namic resource allocation for microservices (i.e., loosely cou-
pled, intercommunicating HP workloads) [48, 49, 50, 51].
Those works primarily focus on specialized mechanisms to
identify critical execution paths between microservices. In con-
trast, networking workloads described in this paper have very
few execution paths per traffic direction (i.e., to/from the user),
so would not meaningfully benefit from critical-path detec-
tion. Moreover, all paths in each direction may be executed
as a single thread, which prevents path-level resource alloca-
tion. Works on microservices also generally do not consider re-
source contention, so would require a node-level resource allo-
cation controller in order to co-schedule BE workloads. Lastly,
we note that the QoS prediction mechanism introduced in Seer
[48] is fundamentally limited due to its use of queue depth as
the only information source, which exhibits the same problem-
atic behaviors as direct QoS measurements (i.e., often zero and
highly transient).
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(a) Maximum observed HP packet drop rate (i.e., dropped packets per sec-
ond) across all one-second intervals in a 100-second period.
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(b) HP QoS measurements at one second sampling interval.

Figure 2: HP QoS behavior when co-scheduling a HP networking workload with a BE machine learning workload. HP workload demand is held at a fixed rate
using an external traffic generator.

3. Preliminaries

3.1. Problem Formulation
In this paper, we consider an operating environment with

two priority levels for workloads: 1) HP workloads with strict
performance (i.e., QoS) targets and 2) BE workloads without
strict performance targets. Formally, we denote these work-
loads W = {WHP

1 , ...,WHP
x ,WBE

1 , ...,WBE
y }. Similarly, we denote

HP workload QoS targets as Q = {QHP
1 , ...,QHP

x }. Measured
performance for workload w, which can vary over time t, is then
denoted as Pmeas(Ww,t). Each physical compute node on which
workloads are co-scheduled generally has multiple resources,
R = {R1, ...,Rn}, each with a finite number of discrete units to
be allocated, denoted as R∗ = {R∗1, ...,R

∗
n}. At each timestep t,

each workload w must be allocated a portion of each resource r,
denoted as Rr,w,t. The goal of workload co-scheduling, as given
in Equation 2, is to allocate these finite system resources in a
manner that maximizes performance for BE workloads while
satisfying QoS targets for all HP workloads. Note that the re-
source allocation required to satisfy HP QoS targets may con-
tinuously vary over time along with changes in HP workload
demand (e.g., packets per second), thus the need for dynamic
resource allocation.

maximize
y∑

w=1

Pmeas(WBE
w,t )

subject to Pmeas(WHP
w,t ) ≥ QHP

w ∀w = 1, x & ∀t = 1,T

R∗m ≥
∑
w∈W

Rr,w,t ∀r = 1, n & ∀t = 1,T

(2)

3.2. Challenges
Workload co-scheduling using dynamic resource allocation

offers distinct advantages over traditional static methods, but
requires precise mitigation of resource contention to preserve
QoS. This contention can manifest as diverse challenges, sev-
eral of which have not been adequately addressed by prior
work. We demonstrate these challenges by characterizing a
prominent network-edge workload — the virtual Broadband

Network Gateway (vBNG). This workload serves an essential
role as the access point for business, residential, and wholesale
connectivity [52]. Strict QoS goals must be maintained to en-
sure continuity of service. Note that the demonstrated behaviors
are observed across a wide variety of workload co-scheduling
scenarios, which we discuss further in Section 5.

3.2.1. QoS Cliffs
Many workloads, even in isolation, exhibit dramatic perfor-

mance degradation when resources are lowered beyond a criti-
cal threshold (i.e., QoS cliff). These effects become more pro-
nounced when co-scheduling workloads due to contention over
shared resources. As an example, Figure 2(a) shows packet
drop rate of an HP vBNG workload when co-scheduled with
a BE machine learning workload. Moving from 10% to 20%
BE memory bandwidth allocation (all remaining resources are
allocated to the HP workload) has relatively low impact on HP
packet drop rate. In contrast, a further increase to 30% mem-
ory bandwidth allocation can incur a 10-100x increase in drop
rate (at higher cache allocations). The significant penalties in-
curred when falling off a QoS cliff have led many prior works
to adopt conservative QoS slack thresholds of approximately
10-20% [7, 8, 12], thus reducing effective resource utilization.

3.2.2. Transient QoS Violations
Prior work has generally focused on HP workloads with

latency-based QoS goals that define the maximum latency for
99% of requests, while allowing arbitrary performance degra-
dation for the remaining 1% of requests. Given this relatively
loose constraint, it is generally practical to estimate worst-case
QoS by averaging over brief intervals (e.g., 1-5 seconds) with
stable workload demand [15]. Alternative HP workloads, such
as vBNG, require much stricter QoS targets. In fact, industry
applications for vBNG commonly target packet drop rates of
0.0001%. As a result, even brief performance degradations can
cause QoS to fall below the target, which we refer to as tran-
sient QoS violations. Specifically, as shown in Figure 2(b), we
observe that the distribution of QoS measurements can exhibit
a long upper tail, often over an order of magnitude higher than
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Figure 3: PROMPT framework for dynamic resource allocation.

the average reading. Short measurement intervals can easily
miss these critical points with high drop rate, thus providing
limited information about worst-case QoS that can result from
a particular resource allocation. The presence of these tran-
sient behaviors reflects a fundamental limitation in prior studies
on QoS prediction, which assumed that QoS can be accurately
predicted based solely on workload demand and resource allo-
cation [9, 51]. Consequently, a new methodology is needed to
enable general application.

3.2.3. Generalization to Unseen Behaviors
The dynamic nature of cloud environments introduces a va-

riety of unknown variables that further complicate resource al-
location. In particular, we cannot assume full knowledge of all
workloads that may be co-scheduled, so it is impossible to theo-
retically guarantee whether a particular resource allocation will
prevent all QoS violations. Furthermore, there exists significant
heterogeneity in platforms (e.g., processors, memory) for vari-
ous service providers, so any theoretical analysis conducted for
a particular system architecture may be invalid for another. Ad-
dressing these unknown variables necessitates policies that can,
ideally, accommodate a wide range of operating conditions.

Search-based methods typically use QoS measurements as
their sole information source to guide resource allocation pol-
icy learning. Policies derived from this single, high-level in-
formation source cannot be directly related to current workload
behaviors, so are expected to become invalid as workload de-
mands change over time. This limitation necessitates repeated
online searches, which can be dangerous due to QoS cliffs and
may incur significant penalties due to long sampling periods
(e.g., 100 seconds) required to accommodate transient behav-
iors.

Reinforcement-learning-based methods can, instead, use

additional information to learn control policies that may remain
applicable when workload demands change. Regardless, prior
work using reinforcement learning has focused on operating en-
vironments with static workloads (i.e., the set of co-scheduled
workloads does not change) and none have addressed the chal-
lenges created by transient QoS violations.

4. PROMPT

In this work, we propose PROMPT, a deep reinforcement
learning framework for dynamic resource allocation guided by
proactive QoS predictions. PROMPT is a resource-contention-
aware solution for the challenges highlighted in Section 3, of-
fering: 1) fine-grained optimization near QoS cliffs, 2) more
consistent feedback in the presence of transient QoS fluctu-
ations, and 3) robust generalization when co-scheduling new
BE workloads not encountered during policy training. As such,
PROMPT enables practical application of dynamic resource al-
location in more stringent operating environments.

High-level design for PROMPT is illustrated in Figure 3.
First, a QoS predictor is trained in an offline environment with
synthetic workload demand in order to accurately model tran-
sient behaviors over an extended period. Second, the pretrained
QoS predictor is used to guide resource controller training by
providing estimates of worst-case QoS (e.g., packet drop rate)
for each HP workload. Finally, both pretrained models are de-
ployed in the service provider network to provide robust QoS
guarantees and improve resource utilization even with previ-
ously unseen BE workloads. This framework supports resource
allocation between any number of HP and BE workloads, pro-
vided that there are sufficient resources to meet QoS goals for
all HP workloads.

PROMPT applies several key innovations to address the
aforementioned resource allocation challenges. First, resource
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Table 1: Selected performance counters (features).

Feature Description [53]

Fixed
Counters

inst retired.any Counts retired instructions
cpu clk unhalted.thread Counts cycles when the core is not halted

General
Counters

frontend retired.latency ge 2
Counts retired instructions following a period of ≥ 2

cycles with no uops delivered by the frontend
l2 rqsts.all code rd Counts all code requests at the level-two cache

offcore requests.all requests Counts off-core memory transactions
offcore requests buffer.sq full Counts cases when the off-core requests buffer was full

contention indicators are selected using a hierarchical process
that leverages one-time offline profiling of HP workloads (i.e.,
no BE knowledge required) in order to avoid classes of in-
formation sources that generalize poorly. Second, PROMPT
accommodates generalization in the specification of state, ac-
tion, and reward for the resource controller by avoiding prob-
lematic assumptions in prior works regarding the number of
co-scheduled workloads. Third, QoS predictions made using
these low-level resource contention indicators act as the pri-
mary feedback source to determine rewards for the reinforce-
ment learning agent. Consequently, consistent control policies
can be learned even when co-scheduling workloads with severe
transient behaviors. Fourth, PROMPT implements a two-level
QoS predictor architecture with multiple regressors, thus allow-
ing each regressor to focus on particular resource contention
behaviors and improve the resolution of predictions when oper-
ating near the QoS cliff.

4.1. Assessing Resource Contention

Modern CPUs implement dedicated counters for architec-
tural events such as cache misses, memory requests, etc. This
information can be used to identify deviations from ideal ex-
ecution behaviors and thereby predict transient QoS behaviors
to guide resource allocations. Unfortunately, due to hardware
limitations, it is only possible to measure a small subset of these
counters without increasing overhead and degrading accuracy,
so feature selection is required.

Prior works often selected features manually based on do-
main knowledge [54]. Naturally, this approach introduces sub-
stantial human effort while potentially missing useful coun-
ters. PROMPT instead applies a highly-automated hierarchical
method that progressively trims the counter list and requires
minimal domain knowledge and workload information. Our
steps are:

1. We sample each performance counter for one second while
running an arbitrary co-scheduling setup. Counters of rare
events and counters with low variance are eliminated.

2. The reduced list of performance counters is sampled for a
longer period across a large range of co-scheduling config-
urations. We then apply BoostARoota [55] to eliminate all
counters that are less informative than randomly permuted
readings.

3. We drop performance counters that exhibit orders-of-
magnitude shifts in values when co-scheduling different
workloads. Including these counters would likely lead to
poor performance when we consider generalization to BE
workloads not observed during policy training.

4. We use domain knowledge to eliminate counters that mea-
sure exceptionally specific scenarios or counters that are
not easily understood by human experts.

5. Finally, we apply step-wise selection methods [56] to ob-
tain the desired number of counters.

The final list of performance counters selected via this process
is listed in Table 1. Features listed as “Fixed Counters” use sep-
arate, dedicated counters, so can be included without overhead.

Note that domain knowledge introduced in step four is not
strictly needed for other platforms. In practice, there exist sev-
eral common classes of potentially problematic counters that
can be simply excluded from selection entirely. Specifically,
counters relating to memory coherency (e.g., read for owner-
ship requests and snooping) are eliminated since not all work-
loads involve significant inter-thread dependency. Counters re-
lated to specialized instructions sets (e.g., AVX-512) are elim-
inated as they may not be used by all workloads. Finally, we
eliminate counters relating to non-standard architecture com-
ponents (e.g., loop stream detector), which are only used when
specific conditions are met.

4.2. Predicting Worst-Case QoS
As discussed in Section 3.2.2, accurate estimates for QoS

may require observations over a period of 100 seconds or more
when using direct QoS measurements. PROMPT instead lever-
ages QoS prediction in order to shift this extended observa-
tion period offline, prior to policy training, and provide reli-
able QoS estimates even in highly dynamic online operating
environments. Specifically, PROMPT trains a QoS predictor to
predict the worst HP workload performance min(Pmeas(WHP

w,t ))
observed over each 100 seconds of offline workload profiling.
Online predictions are made based on system state at time t,
represented as a vector of counter values cHP

w,t for each HP work-
load w, such that Ppred(cHP

w,t ) = min(Pmeas(WHP
w,t )). Training

data is gathered across a variety of co-scheduling configurations
(i.e., HP workload demands, BE workloads, and resource allo-
cations) in order to improve prediction accuracy under diverse
resource contention behaviors.
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Transient QoS behaviors are rare and often extreme events,
so directly fitting a regression model on these behaviors can
lead to poor QoS predictions. We mitigate these issues using
a two-level prediction setup as depicted in Figure 4. Perfor-
mance counters are first passed to a binary classifier that pre-
dicts whether the worst-case QoS is above or below a specified
threshold. This prediction is then used to select between two
regressors. The fine-grained regressor is trained on the critical
range of QoS values in which the system will ideally operate
(e.g., zero up to the threshold value). In contrast, the coarse-
grained regressor is trained on the full range of QoS values. By
separating these regressors, each can be optimized for particular
behaviors that may be encountered during framework execution
and improve prediction accuracy.

4.3. Learning Optimal Resource Allocation

We design a resource controller based on deep reinforce-
ment learning that learns a policy π : S → A mapping system
states to resource allocation actions. Our controller specifica-
tion (i.e., state, action, and reward) accommodates generalized
operating environments in which BE workloads may change at
any time, thus avoiding frequent and impractical re-training.
This generalization introduces various consideration that are
not addressed by prior work.

4.3.1. Model Architecture
The resource controller in PROMPT is implemented based

on the action-branching architecture of Takavoli et al. and their
variant of Dueling Double DQN, referred to as Branching Du-
eling Q-Network (BDQ) [57]. Our controller architecture, de-
picted in Figure 5, features a shared representation layer, fol-
lowed by distinct action branches, one for each resource con-
trol knob. Splitting these action dimensions allows the number
of network outputs to grow linearly, rather than combinatori-
ally, with respect to the action space, thus simplifying control
complexity when allocating multiple resources.

4.3.2. State Specification
State specification in PROMPT (Equation 3) consists of two

elements. First, since our reinforcement learning agent inher-
ently requires similar information as the QoS predictor, we re-
use HP workload performance counters discussed in Section
4.2. This re-use is made possible by eliminating performance

QoS 
Predic�on

Performance 
Counters No

Yes

Fine-
grained 

regressor
Binary 

Classifier
Above

threshold?

Coarse-
grained 

regressor

Figure 4: QoS predictor architecture.

counters with high distributional shift (as described in Sec-
tion 4.1). Second, we augment these counters with the predicted
QoS. The performance counters act as low-level indicators for
any deviations in workload execution that may negatively im-
pact QoS. Conversely, the predicted QoS offers a high-level per-
spective and informs the controller about the margin from the
QoS target.

S = { cHP
w,t , Ppred(cHP

w,t ) } (3)

4.3.3. Action Specification
Prior work assumed a fixed operating environment in which

workloads do not change, so directly selected the resource al-
location for all workloads [15]. In practice, assuming a fixed
set of BE workloads is unduly restrictive and causes the con-
troller to become dependent upon the particular BE workloads
used during training. PROMPT addresses these issues by indi-
rectly specifying BE resource allocation based on HP resource
allocation.

In this paper, we consider resource allocations defined by
four resources R = {RLLC ,RMBW ,RCF ,RUCF}, including last-
level cache (CF), memory bandwidth (MBW), core frequency
(CF), and uncore frequency (UCF). Given that the number of
BE workloads may change dynamically, we predict allocations
only for the HP workload, then determine BE allocations based
on HP allocations. We illustrate an example configuration in
Figure 6. Specifically,

• LLC can be strictly divided such that no contention is possi-
ble, thus all LLC resources not selected for HP workload(s)
are given to BE workload(s). We specify a minimum of two
LLC units per workload and are free to allocate the remain-
ing units.

• MBW is not strictly divided but is, instead, allocated on a
per-workload basis. As such, contention can be reduced,
but not eliminated. Regardless, when co-scheduling, we
typically want to prioritize either the HP workload (at high
HP demand) or the BE workload (at low HP demand). This
effect can be achieved by overlapping the allocation knobs.
Values at the upper end of the range prioritize HP MBW
while values at the lower end of the range prioritize BE
MBW.

Ac�on 
Dim 1

Ac�on 
Dim n

Shared
RepState

64

State 
value

64

64

64

Figure 5: Dynamic resource allocation controller architecture.
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LLC MBW

CF UCF

HP 60%
HP 80%

HP 80%
HP = BE = 60%

40% BE

BE 40%

20% BE

Figure 6: Resource allocation action example.

• CF is similar to MBW in that a different setting is possible
for all HP cores and BE cores, but CF also introduces power
considerations; it may be possible to reduce core frequency
for both the HP and BE workload(s) in order to improve
power efficiency. We therefore separate these dimensions
and select a separate value for HP core frequency (HPCF)
and BE core frequency (BECF).

• UCF must take the same value for all CPU cores, so we
apply the HP workload setting to all HP/BE cores.

Allocation options for each resource depend on the target
system. In our case, we have 8 possible LLC, 10 MBW, 7
HPCF, 7 BECF, and 5 UCF settings (see Appendix A), so re-
source allocation actions are given as:

At ∈ {0, ..., 7} × {0, ..., 9} × {0, ..., 6} × {0, ..., 6} × {0, ..., 4} (4)

We then split these actions across separate prediction heads,
such that At = {ALLC ,AMBW ,AHPCF ,ABECF ,AUCF}, thus pre-
venting combinatorial explosion.

We have, thus far, discussed a single HP workload for sim-
plicity. Nevertheless, PROMPT is readily extensible to multi-
ple HP workloads by replicating the action space for each HP
workload and adding constraints. Specifically, each HP work-
load could select a number of LLC units, leaving remaining
units for the BE workloads. HP MBW would also be separately
selected by all HP workloads, while BE MBW would use the
lowest setting chosen by HP workloads, essentially restricting
the BE to the lowest contention level specified by any HP work-
loads. The same strategy applies for HPCF and BECF. Finally,
UCF would be set to the maximum selected by any HP work-
load.

4.3.4. Reward Specification
Learning appropriate resource allocation policies necessi-

tates consistent feedback via rewards which, as shown in Sec-
tion 3.2.2, is not always possible with QoS measurements
alone. PROMPT therefore uses the predicted QoS in addi-
tion to the measured QoS to determine rewards. Specifically,
as shown in Equation 5, negative rewards are given for unde-
sirable actions that cause QoS (either predicted or measured)
to degrade beyond the target QoS. Making use of predicted
QoS as an additional constraint allows PROMPT to guarantee
fewer QoS violations, given sufficient training time, since we

can guarantee fewer inappropriate rewards for resource alloca-
tions that could lead to QoS violations. In practice, predicted
QoS is also a more consistent feedback source since an identical
prediction will be made given a fixed workload state. We log
transform the QoS ratio since a poor action selection can lead
to predicted/measured QoS being several orders-of-magnitude
greater than the target QoS, which could increase difficulty in
policy learning across various co-scheduling scenarios, similar
to a multi-game environment [58]. Finally, we clip this value
at β, acting as an upper threshold at which it is expected to be
beneficial to differentiate violation severity. We empirically de-
termined β = 3 to be appropriate for workloads in evaluation,
given that violations more severe than this threshold (i.e., qos ≥
1000x the target) likely all require maximal throttling to quickly
re-establish an appropriate QoS, so would only introduce noise
in Q-value estimates.

r−w = −min
[
log

max( Ppred(cHP
w,t ) , Pmeas(WHP

w,t ) )
QHP

w

 , β ]
(5)

Positive rewards are given when the predicted QoS is less than
the target QoS. In this case, we consider our secondary goals
of optimizing BE performance while reducing power consump-
tion. These goals are specified in Equation 6. BE perfor-
mance Pmeas(WBE

w,t ) can be increased by increasing LLC, MBW,
BE core frequency, or uncore frequency. Overall power con-
sumption, denoted as Cmeas(Wt), can be reduced by decreasing
HP core frequency, BE core frequency, or uncore frequency.
We balance these goals with the parameter α, which we set to
be 0.8, thus favoring BE performance. Both performance and
power consumption are normalized [0,1].

r+
w = α ∗ Pmeas(WBE

w,t ) + (1 − α) ∗Cmeas(Wt) (6)

5. Evaluation

5.1. Methodology

5.1.1. Prior Works for Comparison
Prior works, as originally proposed, made various prob-

lematic assumptions that preclude meaningful comparison with
PROMPT. The state-of-the-art search-based method, CLITE
[10], assumed relatively static workload demands and did not
define conditions under which re-sampling should be initi-
ated. Similarly, the state-of-the-art reinforcement-learning-
based methods assumed either a static set of workloads [14] or
did not support BE workloads [15]. In contrast, only PROMPT
accommodates more generalized operating environments with
highly-dynamic resource demands and varying mixes of previ-
ously unseen BE workloads. For comparison, we therefore im-
plement enhanced versions of the closest prior works, CLITE
and Twig, that support: 1) both HP and BE workloads with
varying demand, 2) allocation for all resources supported by
PROMPT, 3) packet-based QoS, and 4) power goals. We refer
to these versions as CLITE+ and Twig+. These modifications
and model parameters are detailed in Appendix A.
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5.1.2. Platform
Experiments were conducted on an Intel® Xeon® Platinum

8280. All cores used in testing were isolated using the isolcpus
kernel option to avoid interference from any other tasks. Work-
loads were pinned to distinct subsets of these isolated cores. As
with most prior work, we used these distinct subsets (no over-
lapping) to prevent any contention in the private cache for each
core. Turbo boost technology was disabled.

5.1.3. Workloads
Evaluation focuses on the HP vBNG workload given its

prominent role in networking applications [52]. We also
demonstrate PROMPT’s general applicability to other HP
workloads (e.g., 5G UPF [59, 60, 61, 62]). Both the vBNG
and the 5G UPF workload implement multi-stage packet pro-
cessing pipelines for traffic to and from service provider net-
works. Pipeline stages include packet integrity verification, ac-
cess restriction checks, packet classification, usage metering,
and routing determination [52, 63]. Load for HP networking
workloads is generated on an external server running TRex traf-
fic generator [64] and follows a diurnal load cycle measured in a
real-world network gateway. BE workloads were selected from
industry-standard benchmark suites, including SPEC CPU2006
[65], SPEC CPU2017 [66], PARSEC [67], and several machine
learning workloads [68]. Selection criteria for BE workloads
was based on sensitivity to resource allocation while maintain-
ing a diverse set of workloads from many domains, represent-
ing data compression (bzip2), code compilation (gcc), fluid dy-
namics (lbm), computational electromagnetics (fotonik3d), and
more.

5.1.4. Train/Test Setup
QoS predictor training data comprises roughly 500 exam-

ples for each of nine co-scheduled workload mixes (HP + BE),
with the worst-case QoS measured over a 100-second period.
Predictor accuracy is tested using k-fold cross validation in
which each fold comprises the 500 examples from a partic-
ular co-scheduled workload mix. Similarly, for control eval-
uation, we use a QoS predictor model that is trained without
any data from the currently co-scheduled BE workload(s). The
reinforcement learning model in both Twig+ and PROMPT is
trained with STREAM [69] and SPEC JBB20051 as the only
BE workloads; neither model has any prior knowledge of the
22 BE workloads used in evaluation.

5.2. Results

5.2.1. QoS Prediction Accuracy
We evaluated our QoS predictor against several baselines,

as shown in Table 2. These baselines use either instructions-
per-cycle (IPC) only, one-level QoS prediction (i.e., a single re-
gressor), or both. Config 2 and 4 use a binary classifier thresh-
old of 250 dropped packets per second (dpps) while config 5

1STREAM serves as a “worst-case” co-scheduled workload due to its high-
intensity memory bandwidth usage. JBB2005 is a representative workload
specified by service providers.

Table 2: QoS Prediction Comparison. “Select” refers to features from Section
4.1. “Loose” refers to a looser classifier threshold.

Configuration Classifier Regressor (MAE)

F1 score Critical range Full range

(1) 1-level, IPC N/A 75.15 302.36
(2) 2-level, IPC 0.853 42.97 302.43
(3) 1-level, Select N/A 26.52 162.95
(4) 2-level, Select 0.908 17.01 161.19
(5) 2-level, Select, Loose 0.866 20.07 162.42

uses a threshold of 2500 dpps. The simplest setup (config 1)
achieves a mean-average-error (MAE) of 75.15 dpps in the crit-
ical range (0 to QoS Target), which provides limited improve-
ment over individual QoS measurements given a scenario sim-
ilar to that in Figure 2(b). Adding two-level prediction (config
2) significantly reduces regression error in the critical range,
even when using IPC only; resource contention behaviors tend
to be similar in this critical range, thus simplifying the task of
the fine-grained regressor. Alternatively, adding the selected
features (from Section 4.1) to a one-level predictor (config 3)
further reduces regression error to 26.52 dpps, indicating that
IPC alone is not sufficient to accurately predict QoS. Finally,
adding the selected features to the two-level setup (config 4)
provides the best result in all metrics. The benefit of two-level
prediction can also be quantified by the number of large mis-
predictions, where regression error exceeds 50 dpps. Moving
from a one-level predictor (config 3) to a two-level predictor
(config 4) eliminates 46.5% of large mispredictions (from 254
to 136). Finally, we examine the impact of the classifier thresh-
old. Loosening this threshold (config 5) degrades classifier F1
as it is more difficult to differentiate severe contention behav-
iors. Critical range regression error also degrades as the total
number of large mispredictions increases by 34.5%. Conse-
quently, we use config 4 (threshold approximately equal to the
QoS target) for all further experiments.

5.2.2. Practical Control Capabilities
We first tested whether CLITE+, which represents the

state-of-the-art in search-based methods, is suitable for highly-
dynamic operating environments with strict QoS guarantees.
For this test, we co-scheduled the HP vBNG workload along-
side a machine learning training workload which is known
to cause modest resource contention. HP load follows a de-
tailed traffic trace gathered from a real-world operating envi-
ronment. The total test duration (four hours) was chosen such
that CLITE+ could always successfully finish sampling (i.e.,
no significant changes in workload demand during sampling).
Even with this simplified operating environment, we observed
dramatic differences in QoS violations between CLITE+ and
PROMPT. As shown in Table 3, the online search performed
by CLITE+ caused 14 occurrences (roughly 42 seconds) dur-
ing which over one million packets were dropped per second,
roughly 10% of the total injected traffic. These periods could
cause substantial interruptions in real-time services so are un-
acceptable in many operating environments. In contrast, the
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Table 3: QoS comparison. PROMPT has fewer intervals (count) with high drop
rate and lower average drop rate.

Dpps
range 0-1K 1K-10K 10K-1M >1M

Count CLITE+ 4806 50 112 14
PROMPT 4935 40 7 0

Avg
dpps

CLITE+ 34 4,241 228,136 1.83M
PROMPT 17 2,464 18,330 0

worst-case QoS violations incurred by PROMPT corresponded
to roughly 0.1% of the total traffic per second. These violations
were caused by temporary reductions in HP resource alloca-
tion during a period of high HP demand. These problematic
actions were, however, extreme outliers; practically all nearby
resource allocation actions were appropriate and nearly iden-
tical. These violations can therefore be eliminated by a time-
window average over recent actions, as demonstrated in later
subsections. Conversely, CLITE+ cannot apply windowed av-
eraging to address systematic violations during sampling. Fur-
thermore, these issues would be exacerbated in more dynamic
operating environments that require CLITE+ to re-sample more
often. Given these limitations, we did not include CLITE+ in
further tests.

5.2.3. Resource Allocation Behaviors
Policy learning guided by QoS predictions (PROMPT),

rather than QoS measurements only (Twig+), improves the con-
sistency of resource allocation decisions in real-world evalua-
tion. As shown in Figure 7, PROMPT correctly identifies peri-

ods of low HP load (phase 1), during which few resources are
allocated to the HP. As the HP load rises (phase 2), PROMPT
briefly fluctuates between several LLC/MBW options and then
settles on a relatively stable configuration. PROMPT continues
to make minor BE core frequency adjustments, when neces-
sary, to mitigate transient QoS fluctuations. Finally, when HP
load decreases (phase 3), resources are again taken from the HP
and given to the BE. In contrast, Twig+ exhibits relatively in-
consistent behavior during phase 2 as it cycles between overly
aggressive actions (causing a violation) and more conservative
actions (recovering from a violation). Most violations incurred
by Twig+ followed a series of complex actions in which Twig+

simultaneously adjusted every resource. These behaviors are
difficult to mitigate, even with a time-window average over pol-
icy decisions, since Twig+ has less knowledge about transient
behaviors.

5.2.4. Resource Allocation Efficacy
We evaluated the policies learned by PROMPT and Twig+

when co-scheduling the vBNG workload with each of 22 BE
workloads not seen during policy training. Results are shown
in Table 4. First, we compare the number of QoS violations
incurred by each method. Only 0.147% of actions made by
PROMPT result in QoS violations, compared with 0.614% for
Twig+ (a 4.2x increase). These percentages may seem small,
but are crucial in industry applications with strict service level
agreements. In practice, the higher proportion of QoS viola-
tions incurred by Twig+ could lead to substantial penalties, po-
tentially millions of dollars, and higher operational costs for
customer support and maintenance. Next, we compare the QoS
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Figure 7: Behavior comparison when co-scheduling vBNG and cactuBSSN (SPEC) workloads. The top two rows illustrate the policy actions while the bottom row
illustrates HP workload demand and QoS (target and measured).
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Table 4: Co-scheduling results across 22 BE workloads. We report arithmetic mean for QoS violation % and geometric mean for other metrics. Workload
abbreviations: bwa = bwaves; bzi = bzip2; caa = cactusADM; cab = cactuBSSN; fac = facesim; flu = fluidanimate; gcc = gcc; gem = gemsFDTD; ima = image
classifier training (ResNet); lbm = lbm; les = leslie3d; mcf = mcf; mil = milc; omn = omnetpp; par = parest; rom = roms; sig = signal classifier training (boosted
trees); sop = soplex; sph = sphinx3; wrf = wrf; zeu = zeusmp.

bzi caa cab fac flu gcc gem ima lbm les mcf mil omn par rom sig sop sph str wrf

PROMPT 0.00 0.00 0.00 0.00 0.27 0.00 0.54 0.00 0.00 1.08 0.00 0.00 0.00 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.147
Twig+ 0.00 0.00 2.70 0.00 1.35 0.81 0.54 0.00 0.27 0.00 1.62 0.00 0.54 0.00 1.35 1.89 1.35 0.00 0.00 0.54 0.614
PROMPT 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.80 1.00 1.00 1.00 1.00 2.55 1.00 1.00 1.00 1.00 1.00 1.07
Twig+ 1.00 1.00 2.11 1.00 1.31 3.11 167 1.00 1.74 1.00 2.40 1.00 1.30 1.00 1.73 1.64 4.72 1.00 1.00 2.19 1.89
PROMPT 1.05 1.07 1.10 1.06 1.09 1.06 1.05 1.11 1.02 1.01 1.08 1.03 1.09 1.04 1.05 1.14 1.03 1.05 1.01 1.08 1.06
Twig+ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 8: Behavior comparison when co-scheduling 5G UPF and lbm (SPEC) workloads. The top two rows illustrate the policy actions while the bottom row
illustrates HP workload demand and QoS (target and measured).

tardiness,2 which quantifies the severity of QoS violations. On
average, the QoS violations incurred by Twig+ were 1.89x the
target whereas the QoS violations incurred by PROMPT were
just 1.07x the target. In other words, the QoS violations in-
curred by Twig+ were 12.7x more severe. Although improv-
ing HP QoS usually requires more restrictive BE resource allo-
cation, thus reducing BE performance, PROMPT actually im-
proved BE performance. Specifically, PROMPT improved av-
erage BE performance (measured as instructions-per-second)
by an average of 6% (and up to 14%) compared with Twig+,
since Twig+ incurs significant penalties when recovering from
QoS violations. Finally, PROMPT improved average power
efficiency by 5% compared with Twig+. PROMPT therefore
offers better results in all metrics by incurring fewer and less
severe QoS violations while still improving BE performance.

5.2.5. Application to Other HP Workloads
Transient QoS behaviors (Section 3) are not limited to the

vBNG workload. In fact, we observed similar behaviors across

2The ratio of measured to target when measured exceeds target.

multiple networking workloads, including the 5G UPF — a crit-
ical workload that connects mobile users to a service provider
network. When co-scheduling this workload, we observed sce-
narios with severe transient behaviors in which QoS measure-
ments fluctuated between 0 dpps and 10K+ dpps, even with
constant resource allocation and HP load. We further verified
that these transient behaviors can be predicted and, therefore,
mitigated by PROMPT. As shown in Figure 8, we again see
that PROMPT tends to learn more consistent resource alloca-
tion policies with stable QoS while the overly aggressive poli-
cies learned by Twig+ result in periods with significant QoS
degradation. Overall, across all 22 BE workload combinations,
Twig caused QoS violations on 0.70% of actions and these vio-
lations were 4.64x the target, on average. In contrast, PROMPT
caused QoS violations on just 0.024% of actions and these vi-
olations were 1.13x the target. In other words, PROMPT in-
curred 29x fewer QoS violations and reduced the severity of
these violations by 28x. Finally, PROMPT improved BE per-
formance (0.3%).
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5.2.6. Controller Overhead
Twig+ and PROMPT use an identical reinforcement learn-

ing model, thus execution time is identical except for overhead
due to QoS prediction. Without QoS prediction, each con-
trol interval requires approximately 12ms when running on one
core. QoS prediction incurs an additional 1ms overhead. This
additional overhead is easily outweighed by the gains in BE per-
formance. Note that both Twig+ and PROMPT are executed ev-
ery three seconds during evaluation, thus total execution over-
head is around 0.5% on a single core.

6. Conclusion

Co-scheduling of high-priority and best-effort workloads,
enabled by dynamic resource allocation, can greatly improve
server utilization and reduce total cost of ownership. Practi-
cal application, however, requires strict mitigation of diverse
resource contention behaviors, several of which are not ade-
quately handled by prior work. PROMPT addresses these is-
sues with a generalized framework based on proactive QoS
prediction, thereby enabling more precise resource optimiza-
tion, more consistent handling of transient performance fluctu-
ations, and more robust generalization when co-scheduling new
BE workloads not encountered during policy training. Evalua-
tion shows that the proposed framework incurs 4.2x fewer QoS
violations, reduces the severity of QoS violations by 12.7x, im-
proves BE performance, and improves power efficiency com-
pared with prior work.
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Appendix A. Detailed Test Setup

Appendix A.1. QoS Predictors

All QoS predictors (classifiers and regressors) were imple-
mented as boosted decision trees, with varying depth and num-
ber of trees. The classifier used 20 estimators with a depth of 2.
The coarse-grained regressor used 20 estimators with a depth
of 3 while the fine-grained regressor used 30 estimators with a
depth of 3. We used a learning rate of 0.2 for all models, which
helped to reduce the number of estimators and thereby lower
inference overhead.

Appendix A.2. Reinforcement Learning Models (Twig+ and
PROMPT)

The original Twig framework was designed for a very spe-
cific operating environment, so significant modifications were
required for meaningful comparison. Briefly, Twig supported
only HP workloads, latency-based QoS, and only allocated
cores and uncore frequency. Our generalized framework (ex-
cluding QoS prediction) described in Section 4 is therefore used

for both Twig+ and PROMPT. We also log transform and nor-
malize the input state based on the distribution for QoS predic-
tion data.

The deep Q-network in both Twig+ and PROMPT is based
on an action-branching architecture (described in Section 4.3)
with additional branches to accommodate separate state and ac-
tion dimensions for each HP workload (similar to Twig [15]).
All network layers have 64 nodes, which we found to achieve
a good balance between overhead and learning capacity. Mod-
els are trained for a maximum of 25,000 steps using a three-
second interval. Training uses dueling networks with target
network updates every 100 steps, prioritized experience replay
(α=0.6, β=0.4, ε=1e-6, batch size = 256), and an Adam opti-
mizer (initial learning rate = 0.002). Weights are saved every
500 steps. Weights used for evaluation were selected to mini-
mize the running-average number of QoS violations. Epsilon-
greedy exploration was used during training (decaying from
100% to 2%) and then disabled for evaluation. Both Twig+

and PROMPT are implemented with Tensorflow. All testing
assumes that Twig+ and PROMPT can be trained offline. If
the target operating environment cannot be adapted for offline
training, it may be necessary to consider further improvements
(e.g., transfer learning from an operating environment that can
be adapted for offline training).

Appendix A.3. Bayesian Optimization Configuration (CLITE)

CLITE [10] was originally designed as a one-off search that
simply returned the most optimal resource allocation found dur-
ing exploration. We therefore made several changes to accom-
modate continuous operation (in addition to those described in
Section 5). First, CLITE+ continuously measures the QoS for
each HP workload and re-samples whenever more than 3 QoS
violations are recorded in the past 10 measurement intervals.
This mainly affects operation when HP workload demand is in-
creasing. Second, CLITE+ continuously measures the work-
load demand for each HP workload and re-samples whenever
the observed workload demand has dropped by more than 5%
since the end of the previous sampling period. These constraints
cause CLITE+ to perform a full search roughly ten times per
day if we only consider changes in HP workload demand (with
a diurnal load profile).

Appendix A.4. Detailed Action Specification

As mentioned in Section 4.3, action specification is largely
guided by platform resources. Here, we explicitly detail the
action steps used in our testing. LLC is allocated in steps
of 1 way; with a maximum of 7 ways, we can give the HP
x ∈ {0, ..., 7} ways and all remaining ways are given to the
BE, resulting in 8 possible actions. MBW actions are spec-
ified by the maximum allowed allocation. This allocation is
specified with 10% granularity from 10% to 100%, resulting
in 10 possible actions. Granularity for core frequency and un-
core frequency steps is highly platform dependent and only
certain frequency steps may be supported. In order to re-
duce action space complexity, we select a relatively coarse-
grained subset of steps from those supported by our platform.
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This subset includes CF ∈ {1.0, 1.4, 1.8, 2.0, 2.2, 2.5, 2.7} and
UCF ∈ {1.6, 1.8, 2.0, 2.2, 2.4}, which correspond to 7 possible
HPCF/BECF actions and 5 possible UCF actions.
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