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Abstract

Cloud computing provides scalable and elastic resources to customers as a low-cost, on-demand utility service. Multivariate time
series anomaly detection is crucial to promise the overall performance of cloud computing systems. However, due to the complexity
and high dynamics of cloud environments, anomaly detections caused by irre gular fluctuations in data and the robustness of models
are a challenge. To address these issues, we propose a deep learning-based anomaly detection method for multivariate time series for
real-world operational clouds: Correlative-GNN with Multi-Head Self-Attention and Auto-Regression Ensemble Method (CGNN-
MHSA-AR). Our method utilizes two parallel graph neural networks (GNN) to learn the time and feature inter-dependencies
to achieve fewer false positives. Our approach leverages a multi-head self-attention, GRU, and AR model to capture multiple-
dimensional information, leading to better detection robustness. CGNN-MHSA-AR can also provide an abnormal explanation
based on the prediction error of its constituent univariate series. We compare the detection performance of CGNN-MHSA-AR
with seven baseline methods on seven public datasets. The evaluation shows that the proposed CGNN-MHSA-AR outperforms
its competitors with an F1-Score of 0.871 on average and is 19.9% better than state-of-the-art baseline methods. In addition,
CGNN-MHSA-AR also offers to correctly identify the root cause of detected anomalies with up to 74.1% accuracy.

Keywords: Deep Anomaly Detection, Multivariate Time Series, Graph Neural Networks, Multi-head Self-attention, Cloud
Computing, Anomaly Explanation

1. Introduction

Cloud computing can store, aggregate, and configure re-
sources on demand and provide users with personalized ser-
vices. Therefore, providing reliable performance to users and
ensuring service level agreements (SLAs) is essential for cloud
computing systems[1]. However, because of the complex-
ity and high dynamics of underlying infrastructures in clouds,
anomalies such as physical resource breakdown may occur in
cloud computing systems. With monitoring tools, performance
data such as resource usage of cloud computing systems can
be collected[2]. At the same time, anomaly detection to build
a profile of performance data and detect deviations from the
profile for cloud computing systems can be developed[3]. Con-
sidering it is tedious and time-consuming to label data manu-
ally because various anomalies exist, unsupervised learning in-
volves picking up interesting structures in the data, and learning
features without labels is popular[4]. As a result, unsupervised
anomaly detection to identify abnormal behaviors and predict
anomalies to forestall future incidents is required in cloud com-
puting systems.
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Performance data of cloud computing systems, such as CPU
and memory usage, are usually represented as multivariate time
series. Multivariate time series reflects the health status of a
cloud computing system and can be used to identify abnor-
mal behavior or events in real-time[5]. The main target of
real-time anomaly detection models is to improve detection
accuracy, reduce false positive rate (FPR), and achieve better
performance[6]. However, the rapid increase of resources, sen-
sors, and applications in cloud computing systems will cause
irregular data fluctuations and increase the FPR of anomaly
detection. For example, sudden changes in a specific feature,
e.g., CPU usage, do not necessarily mean anomalies in the sys-
tem. Figure 1 shows the normal fluctuations of a cloud plat-
form server. The red box part may be detected as an anomaly
due to fluctuating CPU and memory usage. Still, the system is
healthy during this period, and disk IO and network traffic fluc-
tuate steadily. To avoid high FPR caused by this situation, it is
vital to consider correlations between variables in multivariate
time series to differentiate normal fluctuations from anomalies.

Furthermore, improving detection robustness is essential to
meet changes in data patterns in multivariate time series and
keep detection performance consistent. Deep learning-based
methods for multivariate time series anomaly detection have
been developed recently. For example, STGCN[7] is a novel
GNN-based model tackling the time series prediction problem
in the traffic domain and improving detection accuracy with
multi-head self-attention. OmniAnomaly[8] utilizes a stochas-
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Figure 1: An example of multivariate time series. The red box
represents normal fluctuations.

tic recurrent neural network to capture long-term temporal in-
formation and a planar normalizing flow to generate reconstruc-
tion probabilities. However, existing deep learning-based de-
tection methods mainly target improving detection accuracy for
specific scenarios, which cannot meet the requirements of com-
plex and dynamic cloud computing systems. Therefore, the
need for an unsupervised deep learning-based method for multi-
variate time series anomaly detection that can detect anomalies
accurately and keep detection robustness becomes urgent.

Deep learning makes it possible to extract information from
unstructured data. The graph neural network (GNN) is good at
processing graph structure data and mining inter-dependencies
between nodes. We can use GNN to mine inter-dependencies
from feature and time dimensions for multivariate time series.
We need to extract as much information as possible from mul-
tivariate time series to improve detection robustness. Multi-
head self-attention has been developed to extract context in-
formation in sequence data, and gate recurrent unit (GRU) is
good at capturing long-term temporal dependencies. In addi-
tion, the autoregressive (AR) model can be used to maintain
linear relations in time series. Based on these ideas, we propose
a Correlative-GNN with Multi-Head Self-Attention and Auto-
Regression Ensemble Method (CGNN-MHSA-AR) for unsu-
pervised multivariate time series anomaly detection in cloud
computing systems, and efficient abnormal explanation results
are achieved on five public datasets.

By using two parallel graph neural networks, we are able
to distinguish normal from abnormal fluctuations and to derive
a correlation between sequences, thereby reducing the likeli-
hood of false positives. In addition, to further extract context
information and enhance the robustness of the anomaly detec-
tion model, we integrated multiple deep learning methods, such
as the multi-head self-attention mechanism and GRU. Finally,
in order to speed up troubleshooting, we have added the func-
tion of abnormal interpretation and quickly find the features that
may cause abnormalities based on the abnormal score.

The contributions of this paper are summarized as follows:

1. We present two parallel GNNs that can analyze
correlations between features and time in a mul-
tivariate time series to avoid fluctuations in nor-
mal data being falsely identified as anomalies.

2. We ensemble different deep learning tech-
niques, such as multi-head self-attention and
GRU, which learn data features from multiple
dimensions to enhance the robustness of detec-
tion.

3. We perform the interpretation task by identify-
ing features that may cause anomalies. We de-
sign the forecast error of our model as a generic
indicator to detect and interpret anomalies in
multivariate time series.

4. We conduct experiments on public datasets to
evaluate the detection performance and inter-
pretation ability of CGNN-MHSA-AR. Results
show that our model outperforms other detec-
tion models in anomaly detection accuracy, ro-
bustness, and interpretation.

The rest of the paper is organized as follows: Section 2 reviews
existing research about multivariate time series anomaly detec-
tion in cloud computing systems. In section 3, we propose the
CGNN-MHSA-AR model and provide a detailed description of
each module. In section 4, we conduct experiments and pro-
vide experimental results and analysis. Finally, we draw our
conclusion in section 5.

2. Related Work

This section explores existing unsupervised deep-learning
methods for multivariate time series anomaly detection and ex-
planation, and then we introduce correlation discovery in mul-
tivariate time series.

2.1. Unsupervised Multivariate Time Series Anomaly Detec-
tion and Explanation

Researchers usually develop unsupervised multivariate time
series anomaly detection methods with deep learning meth-
ods for high-dimensional and unlabeled data. Long short-term
memory (LSTM)-based VAE-GAN[9] uses LSTM as an en-
coder, generator, and discriminator to detect anomalies via re-
construction difference and discrimination results. USAD[10]
uses an autoencoder with two decoders and an adversarial
game-like training framework to classify normal and abnormal
data. LSTM-VAE[11] integrates LSTM into variational au-
toencoder (VAE) to perform multivariate time series anomaly
detection. Ensemble Learning-Based Detection (ELBD)[12]
framework which integrates four existing well-selected detec-
tion methods for performance anomaly detection and prediction
of cloud applications. HTA-GAN[13] model is a novel het-
erogeneous BIGAN-based anomaly detection model that uses
popular GAN-based generative models and one-class classifi-
cation to improve unsupervised anomaly detection. A novel
anomaly score, DR-score, is employed by MAD-GAN[14] to
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detect anomalies by discrimination and reconstruction using
GAN’s generator and discriminator outputs.

[15] proposed a new GAN-based framework for anomaly
detection and localization and a transformation method for
time-series imaging called range images. The technique con-
verts multivariate time series into two-dimensional images
through the structure of an encoder and decoder. It utilizes
residual images and anomaly-scoring functions to detect and
explain anomalies. OmniAnomaly[8] proposed a stochastic
model for multivariate sequence anomaly detection. It cap-
tures the normal patterns of data by learning robust representa-
tions of multivariate time series with random variable connec-
tions and a plane regularization process. OmniAnomaly also
provides anomaly interpretation capabilities based on time se-
ries reconstruction probabilities. TranAD[16] is a deep trans-
former network-based anomaly detection and diagnosis model
that uses an attention-based sequence encoder to infer informa-
tion about temporal trends quickly. CAT-IADEF[17] proposes a
novel convolutional adversarial model, adopting three convolu-
tional neural networks to learn sequence features and adversar-
ial training to amplify “slight” anomalies while enhancing the
robustness of the model. In addition, CAT-IADEF compares
the number of anomalies that may occur on each dimension of
the time series data for the explanation of anomalies.

These detection algorithms enable unsupervised multivari-
ate anomaly detection with advanced deep learning methods
and target improving detection accuracy. However, due to the
high data volatility in cloud computing systems, anomaly detec-
tion by these algorithms may need to be more accurate. There-
fore, combining deep learning-based unsupervised anomaly de-
tection methods with correlation discovery to improve detection
accuracy can be considered.

2.2. Correlation Discovery of Multivariate Time Series
Previous studies have shown that correlation discovery

in data is crucial for time series anomaly detection[18].
MSCRED[19], CCG-EDGAN[20] utilize the inner product be-
tween vectors to generate a signature matrix to extract corre-
lations between different features in time series. The MTAD-
GAT[21] considers each univariate time series as an individual
feature and includes two graph attention layers in parallel to
learn the complex dependencies of multivariate time series in
both temporal and feature dimensions.

To tackle real-time anomaly detection in operational cloud
environments, especially differentiating rare abnormal perfor-
mance issues (anomalies) from frequent normal fluctuations,
we found that the existing methods proposed above could not
adequately extract correlation information, and the linear de-
pendence among the data needs to be extracted properly. More-
over, anomaly explanation is also necessary for further trou-
bleshooting and system auto-healing. Therefore, our method is
proposed to effectively improve the capability of the model to
distinguish normal fluctuations from abnormality. At the same
time, we add a multi-head self-attention mechanism to extract
context information and use the AR model to compensate for
the performance degradation of the neural network when pro-
cessing the linear part of the data regularities. In addition, we

selected some representative datasets to demonstrate that our
method can distinguish normal fluctuations from abnormality
more effectively. Furthermore, our approach adds the function
of anomaly interpretation to speed up cloud computing trou-
bleshooting. In this function, we can find features that cause
anomalies as the root causes.

3. Methodology

In this section, we provide the problem statement of unsu-
pervised multivariate time series anomaly detection and intro-
duce the overall architecture of our model in detail.

3.1. Problem Statement

We define multivariate time series in a cloud computing sys-
tem as X = { x1, x2, · · · xn} , where n is the number of timestamps
in a sliding window. We also define xt =

{
v1

t , v
2
t , · · · v

m
t

}
as a

vector at time t, where m represents the number of features. For
data X ∈ Rn×m, the task of multivariate time series anomaly de-
tection is to learn the characteristics of data X and determine
whether an observation xn+1 is anomalous or not.

For multivariate time series anomaly explanation, our goal
is to find the root cause of the anomaly. Having located the
abnormal time point xt =

{
v1

t , v
2
t , · · · v

m
t

}
in the test set, we have

to determine which feature at that time point is abnormal.
Typical unsupervised deep learning methods usually train

and model normal data of multivariate time series and identify
abnormal points through high reconstruction errors, such as the
LSTM-VAE[11]. LSTM-VAE extracts dependencies between
time series by replacing the feedforward network in VAE with
LSTM and exploits the reconstruction error to detect anomalies.
However, the LSTM-VAE ignores feature inter-dependencies
and contextual information in multivariate time series, which
may increase the false positive rate in anomaly detection.

To improve the detection accuracy and robustness of multi-
variate time series anomaly detection, we first provide two par-
allel GNNs to learn inter-dependencies in both feature and time
dimensions. We then integrate multi-head self-attention to cap-
ture context information, GRU to extract long-term dependency
and AR model to maintain linear relations in multivariate time
series. We will introduce the overall architecture and detailed
modules next.

3.2. Overall Architecture

The overall architecture of CGNN-MHSA-AR is shown in
Figure 2. The graph neural network can mine the relation-
ship between different nodes, so we use correlative GNN. In
addition, the multi-head self-attention mechanism captures the
information of the same sequence in different representation
subspaces by combining multiple parallel self-attention calcu-
lations and then obtains more comprehensive related features
from various angles and levels, so we chose multi-head self-
attention to extract the information’s contextual information
further. Finally, the neural network’s performance will decrease
when processing linear features. To maintain the linear depen-
dence of the data, we integrated the AR model so that the entire
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model can maintain the linear and nonlinear relationship of the
data simultaneously. The specific module structure is as fol-
lows:

Data preprocessing: we perform data preprocessing with
data normalization and denoising for original multivariate
time series.
1D-CNN feature extraction: we use the one-dimensional
convolutional layer to extract local patterns of each feature in
preprocessed data.
Correlation calculation based parallel GNNs: we provide
parallel GNNs to learn inter-dependencies in multivariate time
series from feature and time dimensions, and correlation cal-
culation is used in this module.
Context learning via multi-head self-attention: we use
a multi-head self-attention to extract context information in
multivariate time series.
Time-series forecasting via GRU: we use a GRU to capture
the dependencies between different time series.
Autoregressive model ensembling: we utilize an AR model
to maintain linear relations in original data.
Anomaly Detection and Explanation: we utilize anomaly
scoring functions for anomaly detection and anomaly expla-
nation.

3.3. Modules of CGNN-MHSA-AR

Data preprocessing. We apply min-max data normalization
for original data to ensure that all data has the same scale. In ad-
dition, we adopt the Fourier transform to denoise data as shown
in Figure 2.(1). We treat each row of time series as univariate
time series and use Fast Fourier Transform (FFT) to denoise
and replace detected noise with zero.

1D-CNN feature extraction. The one-dimensional convo-
lution neural network (1D-CNN) is widely used in sequence
processing because it can recognize local patterns of sequences.
For preprocessed multivariate time series, we use the 1D-CNN
with kernel size 7 to extract information along the time dimen-
sion, as shown in Figure 2.(2).

Correlation calculation based parallel GNNs. Generally,
given a graph, we can use GNN to get new representations of
nodes by considering inter-dependencies between nodes. For
multivariate time series, inter-dependencies in data can be ex-
ploited with correlation calculation in both feature and time di-
mensions. However, traditional correlation calculation meth-
ods, such as Pearson correlation, do not work when a cloud
computing platform is stable because multivariate time series
will keep certain values unchanged[22]. In most previous stud-
ies, the inner product between vectors has been used to calculate
the correlation and has achieved good results. Therefore, the
correlation in time series is calculated using the vectors’ inner
product, and we will consider both feature and time correlation
calculations.

For feature correlation calculation, we define a feature as a
vector xi =

{
vi

1, v2
i , · · · , vi

n}, where n is the number of times-
tamps in a sliding window. We utilize the inner product between
different vectors to get correlations of different features. We use

c f eature
i j to represent the correlation between feature i and j, and

the formula is as follows:

c f eature
i j

=

∑n
t=0 vt

iv
t
j

k
(1)

where k represents the rescaling factor, and equal to the length
of a sliding window in this paper. We calculate feature corre-
lations of all features in the multivariate time series and finally
obtain the feature correlation matrix with a shape of m × m. m
represent the number of features in the multivariate time series.

For time correlation calculation, we define the vector at time
i as xi =

{
vi

1, v2
i , · · · , vi

m}, where m is still the number of fea-
tures in the multivariate time series. We can use ctime

i j
to repre-

sent the correlation between time i and j, and the formula is as
follows:

ctime
i j
=

∑m
k=0 vk

i vk
j

λ
(2)

where λ represents the rescaling factor, and equal to the length
of a sliding window. We calculate time correlations between
of all timestamps and finally obtain the time correlation matrix
with a shape of n × n. n represents the length of a sliding win-
dow.

As shown in Figure 2.(3.1), we use feature correlations be-
tween a vector i with others as weights of a GNN and calculate
the output representation of the vector as follows:

hi = σ(
m∑

j=1

c f eature
i j v j

i ) (3)

where σ represents the sigmoid activation function. Similarly,
for Figure 2.(3.2), we use time correlations between a vector i
with others as weights of a GNN and calculate the output rep-
resentation of the vector as follows:

hi = σ(
n∑

j=1

ctime
i j v j

i ) (4)

We obtained the correlation between the time series and the
feature sequence through the parallel graph neural network.
Then, to gather the extracted information, we spliced the two
parts of the data together. Finally, in order to preserve the orig-
inal characteristics of the data, we concatenate the data pro-
cessed by the convolutional neural network with the data pro-
cessed by two graph neural networks, resulting in a shape of
n × 3m, where each row represents a 3m dimensional feature
vector for each timestamp.

Context learning via multi-head self-attention. As shown
in Figure 2.(4), to make the network’s complexity scales with
the input size, we set the multi-head self-attention mechanism
with m heads and 3m embedding dimension to learn different
contextual information from data where m is the number of fea-
tures in the multivariate time series.

Time series forecasting via GRU. After multi-head self-
attention, we use a GRU to extract time dependence in time
series, as shown in Figure 2.(5). We set the neurons of GRU
to 150 and the number of layers to 1. Finally, We use a fully
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Figure 2: Overall architecture of CGNN-MHSA-AR.

connected layer to predict the value of the next timestamp to get
the first predicted value x f orecast

n+1,i . We use x f orecast
n+1,i to represent

the predicted value of the i-th feature at the time n+1.
Autoregressive model ensembling.Due to the nonlinearity

of convolutional, multi-head self-attention, and GRU modules,
the output is not sensitive to the original input[23]. To ad-
dress this drawback, we apply a first-order autoregressive (AR)
model to the preprocessed data to obtain the second predicted
value. We use xAR

n+1,i
to represent the predicted value of the i-th

feature at the time n+1 after the AR model. A final prediction
result is obtained by integrating the results from the first and
second predictions. The formula is as follows:

x̂n+1,i = αx f orecast
n+1,i + (1 − α)xAR

n+1,i
(5)

where α is to adjust the nonlinear and AR prediction results. In
this paper, we set α = 0.5.

Finally, we define the root mean square error (RMSE) as
loss function:

Loss =

√√ m∑
i=1

(xn+1,i − x̂n+1,i)2 (6)

Anomaly detection. After training the model, we get the
predicted value x̂n+1 at time n+1. We follow [24] to use the
error between the actual value xn+1 and the predicted value as
the anomaly score, and the formula is as follows:

S n+1 =
1
m

m∑
i=1

si
n+1 =

1
m

m∑
i=1

√
(xn+1,i − x̂n+1,i)2 (7)

We identify a timestamp as an anomaly if its anomaly score is
larger than a threshold.

Anomaly explanation. Abnormal explanation aims to iden-
tify what features may cause anomalies at a timestamp. Con-
sequently, abnormal explanation in cloud computing systems is

highly significant in practice to speed up troubleshooting. For
a detected anomaly xt, we sort x̂i

t in descending order, where
x̂i

t represents the anomalous score of the i-th dimension in xt.
A smaller ranking indicates a greater likelihood of the feature
causing anomalies. Finally, we select the top k features as ab-
normal root causes.

4. Experiments and Analysis

In this section, we conduct experiments to evaluate the
anomaly detection accuracy and performance of abnormal ex-
planations of CGNN-MHSA-AR. We first compare the detec-
tion performance of CGNN-MHSA-AR with baseline methods
on seven public datasets. Then we provide ablation experiments
to analyze the importance of modules in CGNN-MHSA-AR.
Finally, we utilize five datasets to test the ability of abnormal
explanation of CGNN-MHSA-AR.

4.1. Datasets
We use seven public datasets in this paper. SMD (Server

Machine Dataset) is a five-week-long real-time dataset of 28
cloud platform servers[8], which contain 708405 data points
from the training set and 708420 data points from the testing
set. The anomaly rate of SMD is 4.16%. In this dataset, we
found that the four datasets, machine-1-3 (the training set has
23702 data points and the testing set has 23703 data points),
machine-1-8 (23698 data points in the training and test sets
each), machine-2-6 (28743 data points in the training and test
sets each), and machine-3-5 (the training set has 23690 data
points and the testing set has 23691 data points), did not per-
form well in many detection models because the irregular fluc-
tuations in the data would lead to false positives in abnormal
detection. We analyze that irregular fluctuations in data cause
false positive anomaly detection, as shown in Figure 3. Figure
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3(a) and Figure 3(b) illustrate four-feature segments for ma-
chines 1-3 and 1-8, respectively. It is possible to detect anoma-
lies in the red box in Figure 3(a) because of fluctuations in Fea-
ture 4. While features 1, 2, and 3 fluctuate steadily, the system
operates in a healthy state. When we look at the green box,
each feature has apparent fluctuations, representing abnormal
data segments. Figure 3(b) shows a similar scenario. Due to
fluctuations in features 1 and 2, anomalies may be detected in
the red box, which will lead to lower detection accuracy. There-
fore, we use these four datasets to prove that our model can ef-
fectively resolve the false positive issue and improve detection
accuracy.

(a) A sample segment in SMD machine-1-3 dataset.

(b) A sample segment in SMD machine-1-8 dataset.

Figure 3: Typical segment in datasets that has both normal
fluctuations and anomalies. An anomalous data set is displayed in

green box while a normal data set is displayed in red box.

SMAP (Soil Moisture Activate Passive satellite) and MSL
(Mars Science Laboratory rover) are spacecraft datasets pro-
vided by NASA[8]. The abnormal rate is 13.13% and 10.72%,
respectively. Our method proposed in this paper is intended
to effectively distinguish normal and abnormal fluctuations for

high-dimensional and complex data in the operational cloud en-
vironment. Therefore, in MSL and SMAP, we did not choose
the complete datasets. Instead, we selected a section of the
datasets containing a number of normal and anomalous ones as
experimental datasets to prove that our method can better dis-
tinguish between normal and abnormal fluctuations. For MSL,
we choose 28317 data points from the training set and 20000
from the testing set. And 20000 data points are selected from
the training set and 20000 from the testing set in SMAP.

4.2. Evaluation Metric
4.2.1. Anomaly Detection

We use precision, recall, and F1-score and F1 Average Rank
to validate anomaly detection performance of models.

precision =
T P

T P + FP
(8)

recall =
T P

T P + FN
(9)

F1 = 2 ×
precision × recall
precision + recall

(10)

with T P the True Positives, FP the False Positives, and FN the
False negatives. F1 Average Rank represents the average Rank
of F1-Score of each model in the seven datasets. To get the
best F1-score, we enumerate all possible anomaly thresholds to
search for the best F1-score, denoted as best-f1[8].

4.2.2. Abnormal Explanation
We use two general metrics, HitRate@P% and normalized

discounted cumulative gain (NDCG), to evaluate the model’s
anomaly explanation ability and the correct rate of anomaly ex-
planation.

HitRate@P% =
Hit@ ⌊P% × |GTt |⌋

|GTt |
(11)

CR@k =
number o f correct location in topk

number o f anomalies
(12)

where GTt is the set of ground truth, and |GTt | is the length of
GTt.

We quantify roots causes ranking accuracy using NDCG, a
popular measure for relevance evaluation.

4.3. Experimental Settings
We use Python 3.7 and CPU-only PyTorch 1.11.0. We set

the sliding window size as n = 100, the 1D-CNN with kernel
size 7. We set the neurons of GRU to 150 and the number of lay-
ers to 1, the multi-head self-attention mechanism with m heads
and 3m embedding dimension. To train CGNN-MHSA-AR, we
set epochs as 10, batch size as 256, learning rate as 0.001, and
dropout as 0.4, and we use the Adam optimizer.

4.4. Experimental Results
4.4.1. Performance of Anomaly Detection

We provide comparison results between CGNN-MHSA-AR
with baseline methods on seven public datasets and an analysis
of their detection performance.
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Table 1: Comparison of anomaly detection performance for multiple detection methods on seven datasets. The best F1-Score are highlighted in
bold.

Method
machine-1-3 machine-1-8 machine-2-6 machine-3-5 SMD MSL SMAP

F1 Average Rank
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

LODA 0.348 0.581 0.435 0.476 0.460 0.468 0.996 0.651 0.787 0.725 0.694 0.709 0.555 0.729 0.631 0.931 0.647 0.764 0.509 0.999 0.674 5.85

CBLOF 0.974 0.925 0.949 0.663 0.424 0.517 0.997 0.959 0.978 0.838 0.938 0.885 0.600 0.761 0.671 0.854 0.925 0.888 0.435 0.999 0.607 3.42

HBOS 0.987 0.401 0.571 0.252 0.463 0.326 0.851 0.660 0.743 0.507 0.999 0.340 0.992 0.198 0.330 0.205 0.999 0.341 0.396 0.999 0.568 8.14

IForest 0.947 0.924 0.935 0.472 0.853 0.608 0.911 0.898 0.904 0.614 0.704 0.656 0.601 0.505 0.549 0.669 0.925 0.775 0.302 0.999 0.464 5.00

DeepSVDD 0.468 0.806 0.592 0.709 0.854 0.775 0.702 0.905 0.791 0.832 0.971 0.897 0.788 0.334 0.470 0.981 0.730 0.837 0.462 0.272 0.342 5.42

GDN 0.285 0.558 0.377 0.461 0.250 0.324 0.874 0.294 0.440 0.444 0.617 0.518 0.227 0.151 0.181 0.205 0.942 0.345 0.197 0.917 0.343 9.42

MTAD-GAT 0.449 0.873 0.593 0.599 0.433 0.503 0.885 0.620 0.703 0.725 0.584 0.647 0.642 0.773 0.702 0.974 0.944 0.959 0.427 0.999 0.598 5.00

MAD-GAN 0.303 0.594 0.401 0.594 0.918 0.721 0.679 0.999 0.809 0.790 0.584 0.649 0.791 0.395 0.527 0.935 0.944 0.940 0.608 0.999 0.756 4.85

LSTM-VAE 0.274 0.873 0.418 0.283 0.338 0.308 0.616 0.660 0.637 0.824 0.584 0.684 0.667 0.738 0.701 0.843 0.944 0.891 0.658 0.727 0.691 6.00

CGNN-MHSA-AR 0.837 0.870 0.853 0.712 0.956 0.816 0.777 0.999 0.875 0.918 0.955 0.936 0.839 0.867 0.853 0.906 0.944 0.925 0.727 0.999 0.842 1.85

Comparison results. We selected five statistical models and
four deep learning models as baseline methods in order to
demonstrate that our model outperforms linear and nonlin-
ear models. The specific methods including five statistical
methods(from PYOD[25]): LODA, IForest, CBLOF, HBOS
and DeepSVDD; and four deep learning methods: MTAD-
GAT[21], GDN[26], MAD-GAN[14], LSTM-VAE[11]. We
calculate the best-f1 of each model and present the comparison
results in Table 1.

Table 1 shows that CGNN-MHSA-AR outperforms all other
methods on machine-1-8, machine-3-5, SMD, and SMAP. The
average F1 on these four datasets can reach 86.1%. The F1 of
CGNN-MHSA-AR is slightly lower than the best baselines on
machine-1-3, machine-2-6, and MSL. CGNN-MHSA-AR out-
performs the state-of-the-art method (MTAD-CAT) on all six
datasets except the MSL dataset, and 26%, 31%, 17%, 28%,
15%, 24% relatively increase F1-scores. The robustness of
CGNN-MHSA-AR is much better than all baselines because
the precision of CGNN-MHSA-AR is above 0.7, and the re-
call is above 0.85 on all seven datasets, while no baseline can
achieve this. In terms of the average ranking of the F1-score,
CGNN-MHSA-AR also performs best.

As shown in Figures 4, we can see that the CGNN-MHSA-
AR performs well in the F1-score, and the fluctuations of
CGNN-MHSA-AR on seven datasets are all small, which
proves the excellent robustness of CGNN-MHSA-AR. Further-
more, on average, as shown in Figure 5, CGNN-MHSA-AR
has the best ranking across the three evaluation metrics for all
datasets.

Performance analysis. Baseline methods have different per-
formances on these public datasets. LODA is a lightweight
anomaly detector that is very practical in sensor failure. LODA
consists of multiple one-dimensional histograms, which ap-
proximate the probability density of the input data and project
it into a single vector. A low density indicates an enormous out-
lier in the sample. However, LODA’s insufficient dependency
extraction between time series results in its poorer performance
than CGNN-MHSA-AR.

Based on the characteristics of a sample, HBOS divides it
into multiple intervals, and intervals with fewer samples are
more likely to be outliers. As a result, HBOS performs well in
global anomaly detection but cannot detect local outliers. GDN

analyzes sensor relationships based on a graph and then iden-
tifies deviations from learned patterns. However, GDN ignores
correlations in the time dimension, which makes it hard to pre-
dict various behaviors. CGNN-MHSA-AR extracts correlations
between different times and features in parallel, making it per-
form better than GDN and HBOS.

CBLOF is a cluster-based local outlier detector that uses
clusters to identify dense regions in data and then performs a
density estimate for each cluster. When a data point deviates
significantly from most data, it is considered abnormal. IForest
defines anomalies as sparsely distributed points far away from
groups with high density. Due to the small density of abnormal
points, the tree model can easily detect abnormal points. Con-
sequently, the anomalous data will be closer to the root of the
isolation tree when it is established, while the normal data will
be farther from it. The performance of CBLOF and IForest on
machine-1-3 and machine-2-6 is better than CGNN-MHSA-AR
because of the low density of outliers in these two datasets.

The MAD-GAN uses an LSTM-based GAN model to model
the time-series distribution with generators. As well as us-
ing prediction error, this study uses discriminator loss to cal-
culate anomaly scores. An LSTM-VAE performs multivariate
anomaly detection using LSTM in combination with a varia-
tional autoencoder (VAE). It is significant to note that these
methods do not consider feature interdependencies or contex-
tual information when analyzing multivariate time series. This
may result in a higher rate of false positives.

MTAD-GAT considers each univariate time series as a fea-
ture. It uses two graph attention layers simultaneously to learn
the temporal and feature dimension dependencies of multivari-
ate time series. However, MTAD-GAT ignores the maintenance
of linear relationships for dynamic periodic data, decreasing
prediction accuracy. In contrast, the CGNN-MHSA-AR ad-
dresses this problem by adding the AR model’s prediction re-
sults. For the MSL dataset, MTAD-GAT extracts correlations
between data with a better weight matrix, leading to a slightly
better performance than CGNN-MHSA-AR.

4.4.2. Ablation Experiments
We conduct ablation experiments to analyze the influence of

convolutional layers, correlation calculation of feature and time
dimensions, GRU, and AR model in CGNN-MHSA-AR. Table
2 shows experimental results.
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Figure 4: F1-score of CGNN-MHSA-AR and all baseline models.

Table 2: Ablation Study:F1-Score for CGNN-MHSA-AR and its ablated versions

Method machine-1-3 machine-1-8 machine-2-6 machine-3-5 SMD MSL SMAP
CGNN-MHSA-AR 0.853 0.816 0.875 0.936 0.853 0.925 0.842

w/o conv 0.851 0.794 0.842 0.929 0.849 0.883 0.811
w/o time-correlation 0.778 0.790 0.827 0.929 0.850 0.917 0.701

w/o feature-correlation 0.616 0.758 0.847 0.927 0.852 0.882 0.820
w/o GRU 0.763 0.789 0.801 0.911 0.851 0.923 0.815

w/o ar 0.473 0.487 0.770 0.649 0.681 0.793 0.636

Table 3: Anomaly detection results with various α for seven datasets.

α
machine-1-3 machine-1-8 machine-2-6 machine-3-5 SMD MSL SMAP

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

α = 0.2 0.823 0.870 0.846 0.691 0.956 0.802 0.686 0.999 0.813 0.870 0.964 0.915 0.834 0.855 0.844 0.902 0.944 0.923 0.601 0.999 0.751

α = 0.4 0.781 0.870 0.823 0.669 0.956 0.787 0.707 0.999 0.828 0.922 0.955 0.938 0.835 0.853 0.843 0.903 0.882 0.892 0.761 0.727 0.744

α = 0.6 0.829 0.870 0.849 0.654 0.956 0.777 0.717 0.999 0.835 0.920 0.955 0.937 0.839 0.867 0.853 0.894 0.944 0.918 0.662 0.727 0.693

α = 0.8 0.833 0.870 0.851 0.570 0.956 0.714 0.803 0.999 0.890 0.730 0.962 0.830 0.850 0.868 0.859 0.871 0.736 0.798 0.645 0.999 0.784

The influence of convolutional layers. The impact of convolu-
tional layers on the anomaly detection ability of our proposed
model can be seen in Table 2 w/o conv, and an average of 2%
reduces the best-f1. For machine-2-6, the best-f1 is reduced
most, 3.3%. Therefore, these results show that convolutional
layers can help CGNN-MHSA-AR better extract correlations
between the temporal and feature dimensions via convolution.

The influence of correlation calculation. We verify the effect
of correlation calculation on CGNN-MHSA-AR by removing
the time and feature correlations, denoting w/o time-correlation
and w/o feature-correlation in Table 2. We can discover that
in w/o time-correlation, the best-f1 value is reduced by 4.4%
on average. For SMAP, the correlation calculation of the time

dimension has the most significant impact, and 14.1% reduces
the best-f1. In w/o feature correlation, the best-f1 is reduced
by 5.6% on average. For machine-1-3, the correlation calcula-
tion for the feature dimension has the most significant impact,
and 23.7% reduces the best-f1. From these results, we can see
that feature and time correlation calculations can extract inter-
dependencies between non-adjacent vectors, which plays a cru-
cial role in the final performance of our model.

The influence of GRU. We verify the effect of GRU in our
model by removing GRU, denoting w/o GRU in Table 2. We
can see that the average best-f1 value drops by 3.5% when we
remove the GRU. The GRU has the most significant impact on
machine-2-6, and the best-f1 drops by 7.4% after removing the
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Figure 5: Average Precision, Recall, F1-score ranking of seven data sets across all methods.

Table 4: Comparison of anomaly explanation performance for multiple detection methods on five datasets. The best performance are highlighted in bold.

Metric machine-1-3 machine-1-8 machine-2-6 machine-3-5 SMD
GDN MTAD-GAT CGNN-MHSA-AR GDN MTAD-GAT CGNN-MHSA-AR GDN MTAD-GAT CGNN-MHSA-AR GDN MTAD-GAT CGNN-MHSA-AR GDN MTAD-GAT CGNN-MHSA-AR

NDGC@100% 0.311 0.302 0.501 0.349 0.408 0.413 0.334 0.441 0.551 0.559 0.541 0.593 0.388 0.420 0.512
NDGC@150% 0.350 0.337 0.556 0.381 0.447 0.450 0.394 0.495 0.604 0.644 0.644 0.705 0.458 0.497 0.587
HitRate@100% 0.301 0.299 0.502 0.316 0.356 0.367 0.322 0.450 0.530 0.524 0.493 0.552 0.363 0.400 0.488
HitRate@150% 0.365 0.359 0.592 0.371 0.421 0.429 0.421 0.538 0.618 0.668 0.666 0.741 0.482 0.530 0.613

CR@16 0.458 0.446 0.800 0.425 0.446 0.577 0.583 0.563 0.625 0.611 0.576 0.685 0.513 0.495 0.628
CR@20 0.567 0.560 0.899 0.510 0.501 0.678 0.681 0.677 0.704 0.702 0.688 0.782 0.634 0.595 0.741

GRU. The GRU can extract the time dependency in time series
and output the predicted value considering the hidden status of
previous data. The gated structure ensures that important infor-
mation will not disappear during long-term propagation, which
makes GRU improve the abnormal detection ability of CGNN-
MHSA-AR.

The influence of AR model. We show the effect of an AR model
on the anomaly detection ability of CGNN-MHSA-AR in Ta-
ble 2 w/o ar. We can see that the best-f1 is reduced by 23%
on average, with the most significant impact on machine-1-3,
which has a 38% reduction in the best-f1 value. The AR model
predicts data based on previous data linearly. We add the AR
model because the output after GRU in CGNN-MHSA-AR is

not sensitive to the original data. Experimental results show that
the AR model improves the anomaly detection performance of
our model.

4.4.3. Effect of parameters
We study the role of the sensitivity threshold ( equation 5

). A Large α corresponds to predictors that emphasize non-
linearity in the anomaly score. In comparison, a small α corre-
sponds to predicting results that put more emphasis on linearity.
Table 3 reports the effect of varying α in the number of detected
precision, recall, and the F1 score.

We can observe that the value of α has a more significant
influence on precision. When α is changed, there can be an in-
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crease or decrease in the number of true samples among the
samples that are predicted to be positive. Consequently, by
choosing a reasonable α, the accuracy of the anomaly detec-
tion model can be increased. It is possible to reduce α when the
collected data has more linear characteristics. Conversely, the
anomaly detection accuracy can be improved with a higher α if
the data has more nonlinear characteristics. At the same time,
from the experimental results(Table 1) of the statistical model
in the baseline method, only linear feature prediction cannot
achieve acceptable anomaly detection accuracy for the datasets
we chose. Therefore, the accuracy of anomaly detection and the
robustness of the model can be improved by integrating the pre-
diction of the nonlinear characteristics of the data by the neural
network.

4.4.4. Performance of Abnormal Explanation
We evaluate the abnormal explanation capability of CGNN-

MHSA-AR on four sub-datasets and SMD because they have
the ground truth of abnormal explanation while SMAP and
MSL do not. As shown in Table 4, CGNN-MHSA-AR can
detect anomalous features with an accuracy of 36.7%-74.1%.
Compared to the state-of-the-art baseline methods, CGNN-
MHSA-AR can improve explanation accuracy by up to 23.3%
for machine-1-3, 1.1% for machine-1-8, 11% for machine-2-6,
7.5% for machine-3-5 and 9% for SMD. 9.64% improves the
explanation accuracy on average.

At the same time, we selected the top 16 and 20 result
rankings to evaluate the correct rate of abnormal explanation
of CGNN-MHSA-AR. Table 4 shows that CGNN-MHSA-AR
achieves the highest correct rate of 0.8 at the top 16 features
and 0.89 at the top 20 features. In contrast to state-of-the-art
baseline methods, CGNN-MHSA-AR can increase the correct
rate by an average of 15.7% in the top 16 features and 15.6% in
the top 20 features.

5. Conclusion

Anomaly detection is crucial to ensure the reliability of
cloud computing systems. To detect anomalies in cloud com-
puting systems, we propose an unsupervised anomaly detection
method based on multivariate time series, known as CGNN-
MHSA-AR. In this paper, to effectively distinguish between
normal and abnormal fluctuations, we have proposed several
innovations, and their connections are as follows:

1. In order to effectively distinguish normal and
abnormal fluctuations in time series, we used
two parallel graph neural networks to extract the
correlation between nodes. Then, we fused the
data of these two parts with the data processed
only by the convolutional layer to obtain a ma-
trix. This matrix fuses the relationship between
different time series, the relationship between
different features, as well as the characteristics
of the original data. To further extract the con-
textual information and time dependence, we
choose the multi-head self-attention mechanism

and GRU to learn the features of the matrix so
as to improve the accuracy and robustness of the
model’s anomaly detection.

2. We use a parallel graph neural network com-
bined with a multi-head self-attention mecha-
nism and GRU to learn the nonlinear character-
istics of the data, find out the nonlinear depen-
dency between the data, and predict the value
of the next time step to obtain the first predicted
value. However, the neural network has a robust
nonlinear mapping ability, but its performance
will decline to a certain extent when dealing
with the linear features of the data. So we use
the AR model to learn the linear features of the
data and predict the second predicted value. Fi-
nally, the model’s anomaly detection accuracy
and robustness are improved by integrating the
neural network results and the AR model.

3. From the perspective of anomaly detection and
anomaly interpretation, when an anomaly is de-
tected, it is impossible to quickly determine
which component caused the anomaly in the
multivariate time series, resulting in a slow-
down in troubleshooting. Therefore, we de-
signed the anomaly interpretation module to
determine the characteristics that may cause
abnormalities by calculating and sorting the
anomaly scores of each feature in the multivari-
ate time series and to speed up troubleshooting
in cloud computing systems.

In experiments, we use seven public datasets to evaluate our
model. Regarding the best-f1 score, CGNN-MHSA-AR out-
performs all baseline methods in seven datasets. Compared
with the state-of-the-art baseline method, CGNN-MHSA-AR
increases the best-f1 up to 31.3%. Furthermore, on the seven
datasets, the precision of CGNN-MHSA-AR is above 0.7, and
the recall is above 0.85, reflecting the excellent robustness of
our model. The model has also been shown to correctly deter-
mine the root causes of 74.1% of detected anomalies, a higher
percentage than the state-of-the-art models.

In future work, we consider two more aspects that can be
explored to improve the model CGNN-MHSA-AR. First, the
optimization of neural networks in CGNN-MHSA-AR to re-
duce model training time will be researched in the future. Sec-
ond, we will apply our model to more complex situations in
cloud-edge computing systems, such as multiple anomalies, to
provide effective anomaly detection.
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