
Graphical Abstract

BalCon – resource balancing algorithm for VM consolidation

Andrei Gudkov , Pavel Popov , Stepan Romanov

VM1

VM4
VM4

VM3
VM2

Host 1 Host 2

VM1

VM3
VM2

Host 1 Host 2

Force step
on VM4

Does
VM fit into free space

of any host?

Are
hosts balanced?

Place VM
with BestFit

Place VM with
ForceFitBalanced

Place VM with
ForceFitLopsided

Yes

Yes No

No

Classes:
Ample
Balanced
Lopsided

https://orcid.org/0000-0001-6661-808X
https://orcid.org/0000-0003-3310-3025
https://orcid.org/0000-0002-5672-0694

Highlights

BalCon – resource balancing algorithm for VM consolidation

Andrei Gudkov , Pavel Popov , Stepan Romanov

• We introduce the BalCon algorithm for solving the migration-
aware consolidation problem. Force Fit is a key part
of BalCon that allows for solving instances with Force
Steps.

• Huawei and synthetic datasets are used to validate Bal-
Con.

• Integer linear programming flavor flow model is proposed
to produce optimal solutions and lower bounds.

• A Sercon heuristic is modified for comparison with Bal-
Con.

• The balance factor is proposed as a measure of free space
distribution in a datacenter.

https://orcid.org/0000-0001-6661-808X
https://orcid.org/0000-0003-3310-3025
https://orcid.org/0000-0002-5672-0694

BalCon – resource balancing algorithm for VM consolidation

Andrei Gudkov a, Pavel Popov a, Stepan Romanov a

aHuawei Technologies Company Ltd, Russian Research Institute, Moscow, 121099, Russian Federation

Abstract

Cloud providers handle substantial number of requests to create and delete virtual machines (VMs) on a daily basis, where the
unknown sequence of requests eventually leads to resource fragmentation. To mitigate this issue, periodic consolidation of VMs
into fewer number of physical hosts is an important cost-saving procedure, closely related to the vector bin-packing problem. In
this paper, we propose the BalCon algorithm for consolidation that steadily reduces the number of active hosts and keeps migration
costs low. BalCon classifies the cluster’s state and selects one of three heuristics to balance resources for superior consolidation.
To evaluate BalCon’s performance with respect to optimality, we introduce integer programming models. BalCon finds 99.7% of
the optimal solutions for over 750 problem instances. This outstanding result was achieved due to the Force Step of our algorithm,
which is the key improvement detail for common heuristics. We compare BalCon with a modified Sercon heuristic using Huawei
and synthetic datasets with two resources for allocation.

Keywords: Consolidation, Bin packing, High-multiplicity, Cloud computing, Resource scheduling, Heuristic algorithms

1. Introduction

Virtualization technology allows the sharing of a physi-
cal machine (host) between multiple isolated virtual machines
(VMs) [1, 2]. Resources for virtualization include the central
processing unit (CPU), random access memory (RAM), net-
work, drives, etc. Several users can run VMs with different
operating system (OS) on the same host simultaneously. The
resource sharing prospect of virtualization opens up variety of
opportunities for business.

Cloud providers operate datacenters with thousands of hosts
and exploit virtualization to lease VMs to clients [3, 4]. Re-
sources combinations for the VMs are usually predefined and
known as flavors. For instance, two dimensional flavors (CPU,
RAM) can be (2 cores, 4 GiB), (8 cores, 24 GiB), (64 cores,
560 GiB), etc. Clients choose a flavor and an OS image for the
VM and remotely use the VM on a ”pay-as-you-go” basis. The
guarantees from providers to clients regarding VMs availability
and reliability are specified in a service level agreement (SLA)
[5, 6], where violation leads to the providers being penalised.
Therefore, during datacenters operation the providers strive to
minimize SLA violations and operational costs.

Hosts in an idle state consume about 70% of maximal power
consumption[7]. To minimize operational costs, providers seek
to allocate VMs into the fewest number of hosts and power off
the unused ones. The scope for optimization arises from the
uncertainty of requests during cloud operation, which leads to
fragmentation of resources.

DOI: https://doi.org/10.1016/j.future.2023.05.001
Email addresses: gudkov.andrei@huawei.com (Andrei Gudkov),

lightmor@gmail.com (Pavel Popov),
stepan.romanov@skolkovotech.ru (Stepan Romanov)

Host 2Host 1Host 2Host 1

Host Flavors
VM2

VM2

VM3
VM1

Host 2Host 1

Host 2 Host 3Host 1 Host 2 Host 3Host 1 Host 2 Host 3Host 1

VM3

VM1

VM1

VM3
VM1

Delete
VM3

Migrate

VM1
VM2

Migrate
Create

b)

InitialCapacity

Initial

VM2
VM4

VM1

Fragmented

VM2

VM3 VM4

VM1

Optimal

Fragmented Optimala)

VM4

VM3

VM2

3

VM3

2

1

Po
w

er
 o

ff

Po
w

er
 o

ff

Po
w

er
 o

ff

Po
w

er
 o

ff

Figure 1: An example of resource fragmentation caused by delete and cre-
ate operations followed by optimisation via the migration operation. Panel a)
demonstrates how a delete operation of VM2 led to resource fragmentation,
which was optimized by migration of VM3. Panel b) shows how a sequence
of create operation for the trace of VMs (VM2, VM3, VM4) by the First Fit
heuristic caused resource fragmentation, which was optimized by the migration
of VM1 and VM2.

The VMs in datacenters are managed through three essen-
tial operations: 1) create VM on host, 2) delete VM from host,
and 3) migrate VM from one host to another. The periodic dele-
tion of VMs (see Figure 1a) along with unpredictable requests
to create VMs (see Figure 1b) leads to resource fragmentation
on the hosts and non-optimal VM placement.

Live migration is an important technique for the optimiza-
tion of datacenters, as it allows running VMs to be migrated
between hosts without interruption or client notice [8]. How-
ever, frequent live migration is undesirable due to the increased
load on the management side of the cloud, where the load de-
pends on various factors, such as the state of the VMs (pro-
cesses, memory, network, etc.). Therefore, it is preferable to
migrate less active VMs with less RAM.

Accepted to Future Generation Computer Systems May 5, 2023

https://orcid.org/0000-0001-6661-808X
https://orcid.org/0000-0003-3310-3025
https://orcid.org/0000-0002-5672-0694
https://doi.org/10.1016/j.future.2023.05.001
https://orcid.org/0000-0001-6661-808X
https://orcid.org/0000-0003-3310-3025
https://orcid.org/0000-0002-5672-0694

1.1. Consolidation
Consolidation of virtual machines [9] is a procedure that

searches for a better assignment of VMs to hosts. The improved
assignment benefits one or more of the following metrics:
power consumption [10, 7], number of active hosts [11, 12], mi-
gration cost [13, 11, 14, 15], resource fragmentation [12, 16],
number of SLA violations [11], etc. Typically, minimization of
the number of active hosts is a primary goal of consolidation,
however taking migration cost into account is also crucial. In-
deed, large number of migrations introduce undesirable loads
on the management side of a datacenter. To avoid overloads, a
balance between migration cost and the number of active hosts
must be preserved.

Consolidation relies on two major approaches: static and
dynamic [9]. Static consolidation reserves resources for a VM
based on its maximal consumption, which is specified in the fla-
vor. Dynamic consolidation assigns VMs to hosts using either
their current or predicted, by statistical model, resource require-
ments of VMs. These requirements are usually lower than the
flavor size. In other words, static consolidation guarantees the
availability of the resources on the host for the clients, whereas
dynamic consolidation provides denser packing at the cost of
possible SLA violations – if demand of VMs on a host rises to
a higher level.

Furthermore, algorithms for consolidation are divided into
centralized [9, 10] and decentralized [17, 18, 19] depending on
the cloud architecture. In centralized algorithms, any host pos-
sesses full information about the entire cluster. In decentralized
algorithms, all hosts pursue the same goal, however each host
has information only about its neighborhood. Consolidation for
centralized architectures works faster and provides better re-
sults, whereas decentralized architectures are free from a single
point of failure and have better scalability.

1.2. d-dimensional vector bin packing
Consolidation of VMs is closely related to the well-known

d-dimensional vector bin packing (d-VBP) problem. In the d-
VBP problem, items are represented as d-dimensional vectors
which are packed into the fewest number of d-dimensional bins
such that: 1) all items are placed 2) the sum of items in each
bin is less than or equal to the bin capacity in all dimensions.
The d-VBP problem is known to be an NP-hard problem which
is exponentially hard to solve [20]. However, if d = 1, there
are two types of restrictions of the d-VBP problem that are of-
ten applicable to consolidation and lead to optimal solutions in
polynomial time: 1) divisible items – in a list of sorted items
each item is a divisor of next items – can be optimally packed
with the First Fit Decreasing heuristic [21], 2) high-multiplicity
VBP problem – items form a few groups and the items in each
group are identical – can be solved in polynomial time [22]. To
the best of our knowledge, the d-VBP problem for d , 1 is still
exponentially complex even with the above restrictions.

The hardness of the d-VBP problem requires the use of
heuristics to obtain a solution in reasonable time [23, 24, 25].
Unfortunately, the d-VBP misses objective of minimizing of
migration cost, which restricts its application to migration-
aware consolidation [14]. Application of d-VBP heuristics to

the consolidation problem is equivalent to removing all the
VMs from the hosts and placing them again. Such actions re-
quire unacceptably large amounts of memory for migration.

1.3. Methods for solving the consolidation problem and pro-
posed approach

To solve the multidimensional consolidation problems re-
searchers mainly utilize three methods: 1) integer linear pro-
gramming (ILP), 2) metaheuristics, and 3) heuristics. ILP
formulations obtain the optimal solution only for the small
problem instances because of the exponential time complex-
ity of solvers [26, 27, 28]. Metaheuristics work faster than
ILP solvers and provide approximate solutions for larger in-
stances. Such metaheuristics algorithms include: genetic
algorithms[29, 30], ant colony optimization [16, 31], particle
swarm optimization [32], artificial bee colony [33], etc. Typ-
ically, the performance of metaheuristics is worse than that of
the heuristics in terms of the solvable instance size, parameters
dependence, and time complexity[34].

Heuristics for the consolidation problem practically used
due to time efficiency, small number of parameters, and imple-
mentation simplicity. The majority of migration-aware heuris-
tics rely on this common approach: sort hosts, sort VMs, and try
to place largest VM into the most loaded host [14, 11, 35, 12].
If the VM does not fit into a host because of a lack of free space,
then the heuristic skips the host and try the next one. We call
such skipping heuristics that exploit only available free space –
”Sercon-like”. The heuristics differ in the criteria for sorting of
d-dimensional objects, additional classifications, and algorithm
parameters. Murtazaev and Oh performed sorting using ”surro-
gate weight” and introduced parameters for the maximum num-
ber of migrations and minimum migration efficiency [14]. Fer-
reto et al. used lexicographic order for sorting and held steady
VMs[11]. Rao and Thilagam proposed hosts classification into
receivers and donors based on the theoretical minimum of re-
quired hosts and introduced a defragmentation procedure to re-
duce resource fragmentation after consolidation [12].

The main disadvantage of Sercon-like heuristics becomes
evident in consolidation problems with 2 resources. The heuris-
tics are poorly adapted to solving instances with imbalanced
hosts lacking free space for one of the resources (see Figure 2a,
RAM limits Host 2, whereas CPU limits Host 3). Sercon-like
heuristics are unable to free any of the hosts from the assign-
ment demonstrated in Figure 2a. However, migrations of yel-
low and green VMs between Host 2 and Host 3 increase free
space and release Host 1 (see Figure 2b).

In this paper, we propose the BalCon algorithm for solving
2D centralized consolidation problems with a controlled trade-
off between the number of released hosts and the amount of
migrated memory. The key component of BalCon is the Force
Step, which places a VM into the host with a lack of free space
using induced migrations. For instance, Figure 2c illustrates
two Force Steps that are required to consolidate the initial as-
signment (Figure 2a) into the optimal assignment (Figure 2b).
To efficiently place 2D VMs, we introduce the balance factor to
classify the cluster state and choose one of three heuristic for
VM placement. To evaluate BalCon we use two datasets: real

2

VM assignments from Huawei Cloud datacenters and synthet-
ically generated hard instances for the purpose of stress test-
ing. Also we introduce ILP models and a modified the Ser-
con heuristic for comparison. The results indicate the supe-
rior performance of the BalCon towards solving consolidation
problems under resource imbalance. The code with the imple-
mentation of BalCon and the synthetic datasets are presented in
https://github.com/andreigudkov/BalCon.

This paper is organized as follows. In Section 2, we for-
mulate the cloud consolidation problem. In Section 3, we in-
troduce integer programming models that were used to obtain
optimal solutions and lower bounds for performance evaluation.
In Section 4, we provide a description of the BalCon algorithm,
including the basic ideas (as shown in the diagram in Section
4.1) and the formal pseudo code (as presented in Section 4.3).
In Section 5, we describe the datasets and compare BalCon with
Sercon and optimal solutions. In Section 6, we conclude the pa-
per and propose possible directions for future work.

Induced
migration
to Host 2

CPU RAMCPU RAM CPU RAM

ForceFit
of Host 1

CPU RAM CPU RAMCPU RAM
Host 3Host 2Host 1

Host 1

Host 3Host 2Host 1

Induced
migration
to Host 3

0

1

2

3

4

5

6

0

1

2

3

4

5

6
a) b)

c)

Host 2 Host 3 Host 1 Host 2 Host 3 Host 1 Host 2 Host 3 Host 1 Host 2 Host 3

1 2 3
Force step
to host 2

Force step
to host 3

To
host 1

To
host 1

To
host 2

Initial Optimal

Pow
er

of
f

Figure 2: A consolidation problem instance with two resources (CPU, RAM)
which is solvable by BalCon and unsolvable by Sercon-like heuristics. The
problem involves four color-coded VMs that need to be assigned to three hosts,
each with a capacity of (6, 6) a.u. Panel a) shows the initial assignment of VMs
to hosts. Panel b) shows the optimal assignment of VMs to hosts. Panel c)
shows the sequence of actions taken by the BalCon algorithm to optimize the
initial assignment panel a) to the final assignment panel b).

2. Problem statement

In our scenario, we operate a cluster with sets of physical
hosts h ∈ H, VMs v ∈ V , and flavors f ∈ F. Every host h pro-
vides a pair of integer resources for scheduling: CPU (cores)
and RAM (tebibytes). We denote the capacity of host h as
(h.cpu, h.mem), and the capacity of other resources is denoted
in the same way. The demand for resources of a VM v is de-
fined in a flavor f , that is, (v.cpu, v.mem) = (f .cpu, f .mem).
Each host h reserves resources for the allocated VM v.

Definition 1. A mapping µ is the assignment of VMs to hosts,
where some VMs can be unassigned. The mapping µ is feasible
if:

1. every VM is assigned to exactly one host.

2. capacity of all hosts is satisfied in both (CPU and RAM)
dimensions:
∀h ∈ H,

∑
v∈h

v.cpu ≤ h.cpu ∧
∑
v∈h

v.mem ≤ h.mem

Our goal is to consolidate the VMs of the cluster. Given
an initial feasible mapping µ0 of the VMs to the hosts, we try
to compute a different feasible mapping µb that minimizes the
number of active hosts and the amount of migrated memory.

Definition 2. For a given mapping µ, host h is called active if
it contains at least one VM v. ∃v : µ(v) = h

Definition 3. For a given mapping µ, a VM v is called migrated
if it changes host: µ(v) , µ0(v)

To control our preference between the number of active
hosts A(µb) and the amount of migrated RAM M(µb, µ0), we
minimize the following linear objective function:

Ob j(µb, µ0) = wa · A(µb) + wm · M(µb, µ0) (1)

where wa,wm are non-negative weights. It is important to note
that the resulting mapping of the minimization problem de-
pends on the ratio of the weights instead of their absolute val-
ues. To investigate the algorithms performance under different
objective functions, we introduce the maximal memory for mi-
gration per host

MPH =
wa

wm
TiB. (2)

The parameter is used for evaluation (as described in Section
5.2). Additionally, in our algorithm, if the migration cost to re-
lease any host exceeds MPH, then releasing the host decreases
the objective function. In the case of the classical VBP prob-
lem, MPH = ∞ TiB.

3. Integer programming solutions

3.1. Allocation model
Bartók and Mann [26] presented a straightforward Integer

Linear Programming (ILP) formulation of the similar consol-
idation problem. However, our problem statement differs in
the calculation of migration cost. Their formulation counts
the number of migrated VMs, whereas we compute the total
amount of migrated memory. The updated ILP allocation model
is expressed in our terms as follows.

The binary variables are:

Allocv,h = 1 if v is allocated on h and 0 otherwise
Activeh = 1 if h is active and 0 otherwise

Migrv = 1 if v is migrated and 0 otherwise

With these variables the objective is to

minimize wa

∑
h∈H

Activeh + wm

∑
v∈V

v.mem ·Migrv. (3)

In other words, our objective is to minimize the number of
active hosts and the amount of migrated memory, subject to the
following constraints:

3

https://github.com/andreigudkov/BalCon

∑
h∈H

Allocv,h = 1 ∀v ∈ V (4)∑
v∈V

v.cpu · Allocv,h ≤ h.cpu ∀h ∈ H (5)∑
v∈V

v.mem · Allocv,h ≤ h.mem ∀h ∈ H (6)

Allocv,h ≤ Activeh ∀(v, h) ∈ V × H (7)
Migrv = 1 − Allocv,µ0(v) ∀v ∈ V (8)

Constraint 4 requires that every VM is scheduled on exactly
one host (Definition 1.1). Resource Constraints 5 and 6 en-
sure that the CPU and RAM capacities of the hosts are satisfied
(Definition 1.2). Constraint 7 guarantees that hosts with VMs
are active (Definition 2). According to Constraint 8, a VM is
migrated if it changes its host (Definition 3).

3.2. Flavor flow model
We introduce the flavor flow model that takes advantage

of the fewer number of flavors than VMs. The allocation
model uses |H| variables for each VM, however many of the
VMs are of the same flavor and have equal resource demands
(f .cpu, f .mem). Permutation of these similar VMs leads to the
same values of objective function and an undesirable symme-
try. Instead of defining the exact location for every VM, we
keep track on the flow of the VMs of the same flavor between
hosts. Such a flavor flow model breaks the symmetry of the
allocation model because all VMs of the same flavor are equal.

Formal definition of the flavor flow model requires defining
the following variables:

In f ,h ∈ Z is the number of VMs of flavor f migrated into
host h

Out f ,h ∈ Z is the number of VMs of flavor f migrated out
from host h

Activeh = 1 if h is active and 0 otherwise

With these variables the objective is to

minimize wa

∑
h∈H

Activeh + wm

∑
f∈F,h∈H

f .mem · Out f ,h. (9)

Let n f ,h be the number of VMs of flavor f initially located
on host h, according to the mapping µ0. Then the constraints of
the flavor flow model are:∑

h∈H

Out f ,h =
∑
h∈H

In f ,h ∀ f ∈ F (10)

Out f ,h ≤ n f ,h ∀(f , h) ∈ F × H (11)
n f ,h · (1 − Activeh) ≤ Out f ,h ∀(f , h) ∈ F × H (12)∑

f∈F

f .cpu·(n f ,h+In f ,h−Out f ,h) ⩽ h.cpu·Activeh ∀h∈H (13)∑
f∈F

f .mem·(n f ,h+In f ,h−Out f ,h) ⩽ h.mem·Activeh ∀h∈H (14)

Table 1: Comparison of the models by domain of variables and number of
constraints.

Model Domain of variables Number of constraints

Allocation B|V ||H|+|V |+|H| |V ||H| + 2|H| + 2|V |

Flavor flow B|H| × Z2|F||H| 2|F||H| + 2|H| + |F|

Relaxed Flavor flow
(Lower Bound) B|H| × R2|F||H| 2|F||H| + 2|H| + |F|

Constraint 10 ensures that the net flow of VMs is zero for
each flavor f . In other words, the number of VMs migrated out
from all hosts must be equal to the number of VMs migrated
onto all hosts for each flavor f . Constraint 11 forbids mov-
ing out of a host more VMs of a flavor f than were initially
present on the host. For inactive hosts, all VMs must be moved
out according to Constraint 12. Resource Constraints 13 and
14 ensure that the CPU and RAM capacities of each host are
satisfied.

The flavor flow model has asymptotically |V |/|F| fewer vari-
ables than the allocation model, which allows for solving much
larger problem instances when |F| ≪ |V | – a typical real cloud
situation.

3.3. Lower bounds

Relaxed
Flavor flow

Allocation

Figure 3: Comparison of the ILP models on progressively larger instance sizes.
The problem instances of different sizes were solved by the CBC solver for 10
minutes each. The mean number of flavors per problem instance was 27.

We detected that the running time of ILP solvers is sensitive
to the value of MPH. When MPH is close to 0 or infinity,
solvers manage to find the optimal solutions µopt in a reasonable
time. Unfortunately, for intermediate values of MPH, solvers
are unable to provide the optimal solutions even in a few days.
Nevertheless, relaxation of the flavor flow model allows one
to obtain a lower bound (LB) µLB on the optimal solution for
the intermediate MPH values. To perform the relaxation, we
kept the |H| variables Activeh as binary and relaxed the domain
of the 2|F||H| variables In f ,h and Out f ,h to R. This relaxation
significantly simplifies the flow model for the solver and sets
the lower bound on the optimal solution

Ob j(µLB, µ0) ≤ Ob j(µopt, µ0). (15)

The comparison of the allocation, flavor flow, and relaxed
flavor flow models in terms of variable domain and number of
constraints is presented in Table 1. To compare the performance
of the models, we searched for the optimal solution of problem
instances with different sizes using the CBC solver [36] for 10
minutes (see Figure 3). As expected, the flavor flow models
provided the optimal solutions for much larger instances than
the allocation model.

4

4. Algorithms

4.1. Basic description of BalCon
The BalCon algorithm was created to cope with imbalanced

situations in a datacenter. The need for such an algorithms
arises from the poor performance of Sercon-like heuristics in
terms of host balancing. For example, Sercon-like heuristics
are unable to consolidate the imbalanced mapping from Figure
2a because of insufficient amount of free space in the host for
one of the resources (RAM limits Host 2, whereas CPU limits
Host 3). However, the consolidation is possible by shuffling the
yellow and green VMs between Host 2 and Host 3 (see Figure
2b). The shuffling in the BalCon is implemented with Force
Steps, which free space in a host by ejecting VMs from the host
into a temporary buffer (stash S). The VMs from the stash are
later moved into other hosts, which leads to induced migrations.
To perform the consolidation in the example, BalCon uses two
Force Steps. The sequence of actions for the consolidation is
presented in Figure 2c, where Host 1 illustrates the role of the
stash. In the first step, to place the red VM to Host 2 we eject the
green VM from Host 2. In the second step, to place the green
VM to Host 3 we eject the yellow VM from Host 3. Finally, we
place the yellow VM into the free space of Host 2. As a result,
we released Host 1 and induced two migrations: 1) the yellow
VM was migrated from Host 3 to Host 2 and 2) the green VM
was migrated from Host 2 to Host 3.

In general, BalCon is a greedy heuristic that attempts to re-
lease one active host in each step. The basic ideas of the algo-
rithm are presented in Figure 4a, whereas a formal definition
will be given in Section 4.3. In each iteration, BalCon chooses
the smallest host according to migration cost and places a VM
from the host into the stash S .

Definition 4. The migration cost of VM v is v.mem, and the
migration cost of host h is

∑
w∈h

w.mem, where w are unmigrated

VMs: µ0(w) = h.

Definition 5. The stash S is a temporary buffer for VMs v with
a resource vector s =

(∑
v∈S v.cpu,

∑
v∈S v.mem

)
For the success of a host release, S must be emptied. The

BalCon takes the largest VM from the stash and uses the Best
Fit heuristic until it encounters a problem with free space on
all the hosts. The largest VM v is defined using the following
formula:

|v| =
v.cpu∑

w∈V
w.cpu

+
v.mem∑

w∈V
w.mem

. (16)

The free space of a host h is defined by the mean of its load and
allocated VMs v ∈ h

load(h) =

∑
v∈h

v.cpu,
∑
v∈h

v.mem

 (17)

free(h) = (h.cpu − load(h).cpu, h.mem − load(h).mem) (18)

In the case of a lack of free space on the hosts, BalCon clas-
sifies the situation using the balance factor (defined formally in

Section 4.2) and chooses one of two heuristics with Force Steps:
ForceFitBalanced or ForceFitLopsided. These heuristics pick a
destination host h and free space for a given VM v by ejecting
VMs from h into the stash. This procedure repeats and VMs
from the stash are assigned to new or their original hosts. The
emptying of the stash indicates the generation of a new feasible
mapping. In the new mapping some of the ejected VMs could
migrate between active hosts.

Definition 6. A migration of a VM is called induced if it takes
place between active hosts.

Using induced migrations BalCon solves the problem of de-
ficiency of free space in a datacenter. Induced migrations allow
one to shuffle VMs and release the host, at the cost of an in-
crease in the amount of migrated memory.

Choose smallest host
by migration cost (Def. 4)

Place VMs from host
into a stash S

In the S choose the largest
VM based on Eq. 16

Does
VM fit into free space

of any host?

Are
hosts balanced?

Place VM
with BestFit

Place VM with
ForceFitBalanced

Place VM with
ForceFitLopsided

Place ejected VMs into S

Yes

Yes

Yes

Yes No

No

No

No

Classes:
Ample
Balanced
Lopsided

Is
S empty?

0.25s 0.24s 0.50s

Stash

CPU RAM

CPU RAM

CPU RAM CPU RAM
CPU RAM

h1 h2 h3
Stacked

hosts

cap(s,H) = 0.99s

pcap(s,H)
= 1.36s

1.00s 1.36sa) b)StartStop

Are
all hosts

tried?

Figure 4: a) A diagram illustrates the workflow of the BalCon algorithm b)
An illustration of the calculation of cap (Eq. 20) and pcap (Eq. 21) for the
balance factor. The stash resource vector s (red color) represents a unit vector
to measure the amount of the free space. The green color corresponds to the
occupied space in the hosts by VMs.

4.2. Balance factor

We introduce the balance factor as a measure of the distri-
bution of free space in a datacenter. The factor allows us to es-
timate the potential for VM shuffling operation to increase VM
placements. In each step, BalCon attempts to fit the stash S into
the hosts. Therefore, the distribution of free space between the
hosts is improved if more stashes can be accommodated by the
hosts. The balance factor is defined as the ratio of the current
amount of stashes in the free space of the hosts cap(s,H) to the
potential amount of stashes in the combined free space of all
hosts pcap(s,H)

BF(s,H) =
cap(s,H)
pcap(s,H)

, (19)

where

cap(s,H) =
∑
h∈H

min
(
free(h).cpu

s.cpu
,

free(h).mem
s.mem

)
(20)

pcap(s,H) = min

∑
h∈H

free(h).cpu
s.cpu

,
∑
h∈H

free(h).mem
s.mem

 . (21)

5

The domain of BF(s,H) is [0, 1], where the value of 1 cor-
responds to a purely balanced situation without potential for
improvement, whereas a value of 0 corresponds to a purely lop-
sided situation that can be improved. In the balanced case most
hosts reach their limit by the same resource, unlike in the lop-
sided case where some hosts are limited by cpu and some by
mem.

Note that both pcap(s,H) and cap(s,H) provide relaxed
values that ignore the actual sizes of separate VMs in the stash.
Thus, pcap(s,H) and cap(s,H) set upper bounds on the amount
of stashes in any mapping and current mapping respectively.
For instance, if cap(s,H) < 1 the allocation of all VMs from
the stash is impossible without induced migrations. Similarly,
if pcap(s,H) < 1 the stash is implacable into the hosts by any
mapping. To distinguish between Balanced and Lopsided sit-
uations, we introduce the parameter α. If BF(s,H) < α or
cap(s,H) < 1 the situation is Lopsided and Balanced other-
wise. In practice we use α = 0.95.

An example of capacities calculation is presented in Fig-
ure 4b. The stash with a resource capacity of s = (8.0, 4.0)
is used as a unit vector of free space. Additionally, there are
three partially filled hosts with equal capacities of (6.0, 6.0)
and free spaces free(h1) = (5.0, 1.0), free(h2) = (1.9, 5.0), and
free(h3) = (4.0, 2.0). In total, the hosts can allocate at most

cap(s,H) = min
(

5.0
8.0
,

1.0
4.0

)
+min

(
1.9
8.0
,

5.0
4.0

)
+

+min
(

4.0
8.0
,

2.0
4.0

)
= 0.25 + 0.24 + 0.50 = 0.99

(22)

of the stashes without induced migrations. Potential capacity is
computed by combining the three hosts together that results in

pcap(s,H) = min
(

5.0 + 1.9 + 40
8.0

,
1.0 + 5.0 + 2.0

4.0

)
=

= 1.36
(23)

of the stashes sizes. Finally, we compute the balance factor
BF(s,H) = cap(H)/pcap(H) = 0.73. The fact that the BF is
lower than α = 0.95 indicates a resource imbalance and poten-
tial for improvement by induced migrations.

4.3. The BalCon algorithm

The core structure of our algorithm is presented in the List-
ing 1. There are three global parameters in the algorithm:

• α is used as a threshold to classify imbalanced
(BF(s,H) < α) and balanced (BF(s,H) ≥ α) situations
using Eq. 19.

• b is the maximal number of Force Steps to try during host
release.

• γ is the maximal number of tries of the same destination
host in a row.

Listing 1: High-level BalCon algorithm structure
Input : H is the list of hosts

V is the list of VMs
µ0 is the initial feasible mapping

Global Parameters: α = 0.95
b = 4000
γ = 3

Output : At the end, µb is a feasible
mapping of VMs to hosts

1 Procedure BalCon(H, V, µ0)

2 µb := copy µ0
3 H := sort H by migration cost
4 for h in H do
5 µtmp := copy µb

6 S := get VMs from h according to µtmp

7 µtmp := Unassign all VMs in S from µtmp

8 A := get active hosts from µtmp

9 µtmp := ForceFit(S , A, µtmp)

10 if µtmp is f easible and
Ob j(µtmp, µ0) ≤ Ob j(µb, µ0)

11 µb :=µtmp

12 return µb

The BalCon sorts hosts by migration cost (see Definition 4) and
attempts to release the hosts one by one (rows 3-4). To release
host h, the procedure searches for a better feasible mapping µtmp

in rows 5-9. In the better mapping, h has to be turned off, and
VMs from h are reassigned to active hosts A. The VMs from
h are placed into the stash S and unassigned from the mapping
µtmp in rows 6-7. In rows 9-11 ForceFit procedure tries to fit
VMs from the stash S into active hosts A. If a new mapping
µtmp is feasible and leads to an improvement of the objective
function, then host h is successfully released (rows 10-11).

The ForceFit heuristic is presented in Listing 2. In rows 2-3,
we define two variables for the procedure: ForceS teps and p.
The integer variable ForceS teps is used to control the number
of iterations in the while loop (rows 4-19). To avoid coming
back to previously-visited solutions, we prohibit a host from
being selected more than γ times in a row during Force Steps.
The state information is maintained in the object instance p.

The ForceFit heuristic works until the stash is empty or the
Force Steps limit is reached. In each step, ForceFit tries to in-
sert the largest VM v (Eq. 16) from the stash into the destina-
tion host h. The choice of the destination host depends on the
cluster state, which is determined by the Classify procedure
(rows 22-29). The procedure implements ideas from Section
4.2 and classifies the state into three classes: Ample (Section
4.4), Balanced (Section 4.5), and Lopsided (Section 4.6). The
last two classes use Force Steps and differ in their approach to
choose the destination host h and VMs Ve to eject from h.

The choice of VMs Ve influences the number of induced
migrations and the amount of migrated memory at the end of
ForceFit. To reduce the amount of migrated memory, we pre-
fer to eject VMs Ve that were migrated to the destination host
h during previous steps of the algorithm. The shuffling of these

6

Listing 2: ForceFit heuristic

1 Procedure ForceFit(S , A, µ)
2 ForceS teps := 0
3 p := RepeatsProhibitor(A, γ)
4 while S is not empty and ForceS teps < b do
5 v := peek largest v in S
6 class := Classify(S , A, µ, v)
7 S := remove v from S
8 if class is ”Ample”
9 µ := BestFit(v, A, µ)

10 if class is ”Balanced”
11 ForceS teps +=1
12 h, p := ChooseHostBalanced(v, A, µ, p)
13 µ,Ve := ForceFitBalanced(v, h, µ)
14 S := add all VMs from Ve to stash S
15 if class is ”Lopsided”
16 ForceS teps +=1
17 h, p := ChooseHostLopsided(v, A, µ, p)
18 µ,Ve := ForceFitLopsided(v, h, µ)
19 S := add all VMs from Ve to stash S
20 return µ
21

22 Procedure Classify(S , A, µ, v)
23 if ∃h ∈ A : v fits h
24 return ”Ample”
25 cap := Capacity(S , A, µ)
26 pcap := PotentialCapacity(S , A, µ)
27 if cap < 1 or cap < α · pcap
28 return ”Lopsided”
29 return ”Balanced”

migrated VMs in ForceFit is unable to increase the objective
function. In other words, only new migrations in ForceFit in-
crease the objective function compared to the best step of Bal-
Con µb. In terms of memory, improving the objective func-
tion (row 10 of Listing 1) requires the amount of new mem-
ory for migration during ForceFit to be no more than MPH
(M(µtmp, µ0) − M(µb, µ0) ≤ MPH).

4.4. Ample class

In the Ample class one or more hosts have enough free
space to accommodate a VM. We employ a Best Fit heuristic
to allocate VM v. The destination host h is chosen based on
surrogate load

|h| =
load(h).cpu

h.cpu
+

load(h).mem
h.mem

. (24)

Among all hosts with enough free space, we assign a VM
to the host with the highest load.

4.5. Balanced class

To place a VM v in the Balanced class (Listing 2 rows
11-14), some other VMs must be ejected and placed into the
stash. The balanced situation is special because the majority

of hosts are low in the same resource. Such scenarios makes
the situation closer to a one-dimensional problem, where a
smaller VM is easier to place than a larger one. Therefore,
ChooseHostBalanced (row 12) chooses the destination host
h with the greatest number of VMs smaller than v using Eq. 16.

Afterwards, ForceFitBalanced (row 13) sorts the VMs in
h according to lexicographical order:

1. Prefer VMs previously migrated to h.

2. In case of a tie, prefer VMs with smaller migration cost.

Next, ForceFitBalanced iterates over the sorted list of VMs
and excludes them from h one by one until there is enough free
space in h for v. After placing v into h, the procedure tries to
return the excluded VMs which fit into h in reverse order. The
remaining VMs are returned as Ve (rows 15).

4.6. Lopsided class
In the Lopsided class (Listing 2 rows 16-19) we also need

to eject some VMs from the destination host h into the stash
to place a given VM v. However, unlike the balanced case,
both resources limit VMs placement. The Lopsided class is a
key tool of the BalCon from a balancing point of view. The
balance of the whole datacenter improves by the choices of the
destination host and VMs to eject for future induced migrations.

h1 h2
h3

h4

h5

100

100

50

50

25

25
0

0

75

75

C
P

U
 (

%
)

MEM(%)

v1

v3

h1 h2
h3

h4

h5

100

100

50

50

25

25
0

0

75

75

C
P

U
 (

%
)

MEM(%)

v2

h1
100

100

50

50

25

25
0

0

75

75

C
P

U
 (

%
)

MEM(%)

v2h5

100

100

50

50

25

25
0

0

75

75

C
P

U
 (

%
)

MEM(%)

v2

Choice of destination host:

Choice of VMs for ejection (prefer VMs in red zone):

prefered
prefered

a) b)

d)c)

Figure 5: Illustration of choices of destination host and VMs for ejection in
the Lopsided class. a-b) Illustrate the choice of the destination host (h1, h5)
depending on the VM (v1, v2, v3) to place. In a) the choice is explicit, and the
destination host has the opposite load angle (for v1 is h5 and for v3 is h1),
whereas in b) the choice is ambiguous and depends on the previous steps (v2
can be allocated on h1 and h5). c-d) Illustrates choices of VMs for ejection.
The preferable VMs are in the red areas that are located on the same side from
the VM as the destination host (h1 or h5).

Figure 5 presents an example of the resource requirements
of the VMs and the loads of the hosts. Some hosts lack CPU but

7

have plenty of memory (h1), some hosts lack memory but have
plenty of CPU (h4, h5), and some are low on both resources. To
reduce imbalance, we prefer to place a given VM into the host
with minimal or maximal load angles (in example h1 or h5).

Definition 7. The load angle of a VM is arctan v.cpu
v.mem , and the

load angle of a host is arctan load(h).cpu
load(h).mem .

To choose the destination host h, the procedure
ChooseHostLopsided (row 17) uses the global variable
r ∈ {”mem”, ”cpu”} and follows rules:

1. If the load angle of v is the largest or smallest among the
load angles of all the hosts, choose the destination host
with the most opposite load angle and set r to the host’s
largest resource.
For instance, in Figure 5a, v1 has the largest angle and
is moved to host h5, which has the smallest angle (r set
to ”mem”). Similarly, v3 has the smallest angle and is
moved to h1, which has the largest angle (r set to ”cpu”).

2. Else, switch r and choose the host with the largest load
by the resource in r.
For instance, with v2 from Figure 5b, if r was ”cpu”, it
switches to ”mem”, and v2 is moved to h5 (host with the
largest ”mem” load). Otherwise, it switches to ”cpu” and
is moved to h1 (host with the largest ”cpu” load).

The implementation of the ForceFitLopsided procedure
(row 18) is similar to that of the Balanced class, except it has an
additional requirements on the load angle of the VMs for ejec-
tion. To fix the destination hosts lopsidedness, the load angle
of the VMs for ejection has to be close to the load angle of the
host. The procedure follows lexicographical sorting of the VMs
in h:

1. Prefer VMs with a direction to the same side of v as h.
For instance, if h has a lower angle than v, we prefer VMs
with angles less than v (red zone Figure 5c). Otherwise,
we prefer VMs with angle larger than v (red zone Figure
5d).

2. In case of a tie, prefer VMs which were previously mi-
grated to h.

3. In case of a second tie, prefer VMs with a smaller migra-
tion cost.

After sorting, the ForceFitLopsided procedure frees
space in h for v exactly like in ForceFitBalanced and returns
the VMs for ejection Ve in row 18.

4.7. Modified Sercon heuristics and time complexity

To compare BalCon with well-known approaches, we mod-
ified the Sercon heuristic to fit our objectives. The SerconMod-
ified heuristic derives from BalCon if we forbid using Force
Steps. The differences between the original Sercon heuristic
and the SerconModified heuristic include:

1. In Sercon, the authors limited the total number of allowed
migrations over all hosts. The SerconModified heuristic
limits the amount of migrated memory in each algorithm
step. A step is accepted if the new amount of migrated
memory in the step is no more than MPH (Listing 1 row
10).

2. Unlike Sercon, we try to release each host once.

3. The destination host for a VM in the original version is
chosen with First Fit, whereas we use Best Fit. Also, we
choose the destination host among all active hosts.

4. We omitted the migration efficiency parameter.

The second modification leads to |H| times less complexity
of SerconModified compared to SerconOriginal (see Table 2),
where Vmax is the maximum number of VMs in a host. The
complexity of BalCon is only b times worse than that of Ser-
conModified. The upper bounds on Vmax can be |V |.

Table 2: Comparison of time complexity of the algorithms.
Algorithm Time complexity

SerconOriginal O(|H|2 ·
(
Vmax · log(Vmax) + Vmax · |H|)

)
SerconModified O(|H| ·

(
Vmax · log(Vmax) + Vmax · |H|)

)
BalCon O(b · |H| ·

(
Vmax · log(Vmax) + Vmax · |H|)

)

5. Evaluation

5.1. Datasets

Algorithm evaluation was performed using Huawei and
synthetic datasets. Synthetic datasets was generated to test the
algorithms under complex inputs, whereas the Huawei datasets
validate algorithm performance on real data. The comparison
of the main characteristics of the datasets is presented in Table 3
and Firgure 6. In general, synthetic problem instances are less
balanced, have more VMs and more flavors than the Huawei
datasets.

Table 3: Statistics of Huawei and synthetic datasets, where mean values are
given per instance.

Dataset
Instances

Total
Hosts
Mean

VMs
Mean

Flavors
Mean/Total

Balance factor
Mean

Huawei 555 96 1.0k 8 / 69 0.99
Synthetic 200 50 2.7k 28 / 30 0.07

The Huawei dataset contains 555 cluster snapshots from an
operational Huawei Cloud. The snapshots were gathered from
clusters of various sizes and roles. The flavor distribution over
all snapshots is given in Figure 6a, whereas the distribution of
hosts within a range of the number of VMs is presented in Fig-
ure 6c.

To generate a complex synthetic dateset, we created in-
stances with severe lopsidedness of resources. Briefly, the VMs
were generated from 30 flavors with decreasing probabilities
by CPU size (see Figure 6b). Then, the VMs were sorted by

8

Range of number of VMs Range of number of VMs

H
os

ts
 in

 r
an

ge
 1

03

H
os

ts
 in

 r
an

ge
 1

03

CPU (cores) CPU (cores)

Synthetic dataset

R
A

M
 (

G
iB

)

R
A

M
 (

G
iB

)

C
ou

nt
s

a) b)

c) d)

Huawei dataset

Figure 6: The comparison between the Huawei (a,c) and synthetic (b,d)
datasets. Panels a-b present the flavor distribution over all problem instances,
whereas panels c-d) demonstrate the number of hosts with VMs in the given
range.

the load angle (Def. 7) and packed into hosts using the First
Fit heuristic. Such packing method complicates the ability of
Sercon-like heuristic because of the lack of free space in hosts.
Also, the packing produces an imbalance that requires many
Force Steps in BalCon to place VMs with ForceFit. To vali-
date the lopsidedness of resources in our synthetic datasets we
calculated the mean balance factor. The balance factor of an
instance from the datasets was calculated with Eq. 19, where
s = 1

|H|
∑

h∈H(h.cpu, h.mem) is the mean hosts capacity in the in-
stance. The mean balance factor (Table 3) of the initial feasible
mappings in the Huawei instances is 0.99, which corresponds
to a balanced situation. In contrast, for the synthetic data, the
mean balance factor is 0.07 (Table 3), indicating a highly lop-
sided situation.

5.2. BalCon performance
We begin evaluation of algorithm performance with the ex-

treme case of the classical VBP problem, where the maximal
memory for migration per host (Eq. 2) is infinite MPH = ∞
TiB. To compare BalCon with SerconModified (Section 4.7),
we measured the gap between the values of the objective func-
tion of the algorithm solution µalg and the optimal solution µopt

Gap(µalg, µopt) =
Ob j(µalg, µ0) − Ob j(µopt, µ0)
Ob j(µ0, µ0) − Ob j(µopt, µ0)

, (25)

where µopt were obtained with the Flavor flow model (Section
3.2). The performance profile [37] indicates the advantage of
BalCon over SerconModified, which optimally solved 535 and
345 instances respectively on Huawei dataset (see Figure 7a).
Also, the original version of Sercon (see Section 4.7) optimally
solved 245 instances. On the synthetic datasets BalCon op-
timally solved all the problem instances, whereas Sercon was

Table 4: The comparison of execution time between methods in the case of the
VBP problem and Huawei dataset.

Method ILP Flow Model
Relaxed ILP

Flow model (LB) BalCon
Sercon

Original
Sercon

Modified
Mean

execution time 4h 0.3s 9.5s 0.3s 0.1s

unable to solve any because of lack of free space of one of the
resources (see Figure 7b and Section 5.1). The iterative nature
of the algorithms allows for easy implementation of a running
time limit. The time limit for all algorithms was set to 60 sec-
onds on one physical core of Intel Xeon E5-2690. However, on
average, BalCon solved instances in less time (see Table 4). Ad-
ditionally, the measured execution time is well-correlated with
the algorithms time complexity from Table 2.

Huawei dataset Synthetic dataset

Gap(μalg, μopt) (%) Gap(μalg, μopt) (%)

a) b)

BalCon

BalCon

BalCon
BalCon

MPH = ∞ (TiB)

MPH = ∞ (TiB)

MPH = 0.4(TiB)
MPH = 0.2(TiB)
MPH = ∞ (TiB)

SerconModified

SerconModified

SerconOriginalN
um

be
r

of
 in

st
an

ce
s

N
um

be
r

of
 in

st
an

ce
s

Figure 7: The performance profiles of BalCon, SerconModified, and SerconO-
riginal are compared to the optimal solution µopt of the Flavor flow model for
the VBP problem when MPH = ∞ (TiB). The Gap is calculated using Eq. 25.
Panels a) and b) show the comparison for the Huawei and Synthetic datasets,
respectively.

To investigate the algorithms performance towards
migration-aware consolidation, we chose a few values of
MPH. Solvers with the Flavor flow model were unable to
obtain optimal solutions for all MPH values in a reasonable
time. Therefore, we use the LB obtained with the relaxed
flavor flow model instead of the true optimum (Section 3.3).
In the example of the VBP problem the execution time for the
LB is significantly lower (see Table 4). The mean values of
Gap(µalg, µLB) over non-trivial solutions – at least one host
is released – are presented in Figure 8. As expected from
the VBP results, BalCon outperforms SerconModified on
the Huawei dataset and dominates on the Synthetic dataset,
where SerconModified is unable to solve any instance. The
Force Steps of BalCon allow to provide closer solutions to
the LB than SerconModified on the Huawei dataset (Figure
8a) at large values of MPH from 1 TiB to 10 TiB. However,
when MPH reaches the capacities of the hosts ∼ 0.7TiB, the
number of non-trivial instances decreases, and performance of
both algorithms equalizes, due to the insufficient memory for
induced migrations. Even at MPH = 0.2 TiB, Force Steps lead
to a little bit worse performance of BalCon. Qualitatively Bal-
con demonstrates similar operation in the Synthetic datasets,
however the Gap to LB is larger and the number of non-trivial
solutions is more sensitive to MPH. The last facts are because
of the high imbalance of the Synthetic datasets, which require
additional amounts of memory for migration.

In general, BalCon’s high performance is determined by

9

M
ea

n
G

ap
(μ

al
g,

 μ
L

B
)

(%
)

M
ea

n
G

ap
(μ

al
g,

 μ
L

B
)

(%
)

Huawei dataset Synthetic dataseta) b)

323

197

BalCon BalCon
Sercon

Modified

438 519 554 555 555 555

200200

200

200

107

57
17

8

Number of
non-trivial
solutions

SerconModified
solves none

Number of
non-trivial
solutions

Maximal memory for
migration per host (MPH) (TiB)

Maximal memory for
migration per host (MPH) (TiB)

Figure 8: Comparison of BalCon and SerconModified with lower bound (LB) at
different values of MPH. The mean Gap is calculated over non-trivial solutions
using Eq. 25. Panels a) and b) show the results on the Huawei dataset and
Synthetic dataset, respectively.

the Ample, Balanced, and Lopsided classes and their respec-
tive heuristics (see Sections 4.4 - 4.6). Other factors – such
as cost functions for VMs ordering – are details of minor im-
portance. For instance, a random ordering of VMs in the stash
leads to less than 1% of Gap increase compared to ordering
with Eq. 16. To demonstrate the influence of MPH on Bal-
Con’s performance and areas for further improvement of the
algorithm, we selected one representative instance from each
dataset (see Figure 9). The number of active hosts and total
migrated memory of SerconModified and BalCon coincide at
low MPH (Figure 9a). Then, at larger MPH, SerconModified
reaches constant values, whereas BalCon releases more hosts at
the cost of a larger amount of migrated memory and improved
objective function.

Maximal memory for
migration per host (MPH) (TiB)

Maximal memory for
migration per host (MPH) (TiB)

N
um

be
r

of
 a

ct
iv

e
ho

st
s

N
um

be
r

of
 a

ct
iv

e
ho

st
s

To
ta

l m
ig

ra
te

d
m

em
or

y
(T

iB
)

To
ta

l m
ig

ra
te

d
m

em
or

y
(T

iB
)

M
ea

n
nu

m
be

r
of

 F
or

ce
 s

te
ps

 Huawei dataset Synthetic dataseta) b)

BalCon

Sercon
Modified

BalCon
130

Figure 9: Examples of BalCon and SerconModified performance at different
MPH values. The evaluation is demonstrated in terms of the number of active
hosts, the amount of migrated memory, and the number of Force Steps. The
problem instances are from a) Huawei dataset and b) Synthetic dataset.

Because of the greedy nature, BalCon sometimes performs
non-optimal steps by increasing the amount of migrated mem-
ory, the number of active hosts, or the number of Force Steps.
For instance, the number of active hosts is increased by one in
the range of [3.4,3.8] TiB, which could be avoided using the
solution at 3 TiB (see Figure 9a). Also, at the same number
of active hosts, the algorithm uses larger memory than it could
in the range [5.0, 6.0] TiB because the better solution is at 4
TiB. The mean number of Force Steps changes, although the
number of active hosts remains the same for the range [2.8, 3.6]
TiB (see Figure 9b). We would like to emphasize that those are
only examples of non-optimal BalCon operations, which might

be considered for further algorithm improvement. In general,
the number of Force Steps and total migrated memory increase
along with MPH. Also, on average BalCon demonstrates out-
standing performance, especially in the case of large MPH and
imbalanced situations (Figure 8).

6. Conclusions

We proposed the BalCon algorithm which efficiently solves
the migration-aware consolidation problems. The algorithm
was compared with a modified Sercon heuristic and ILP mod-
els. The advantages of BalCon over Sercon-like heuristics were
achieved due to Force Steps. The Force Steps allow BalCon to
optimally solve imbalanced problem instances that Sercon-like
heuristics are unable to optimize. The performance of BalCon
is very close to optimal at large values of MPH. Time complex-
ity of BalCon is only b times larger than that of modified Ser-
con heuristic, where b is the maximum number of Force Steps.
Note that the BalCon implementation is independent of flavor
set F and therefore directly applicable to dynamic consolida-
tion. Also, we used the amount of RAM as a migration cost,
however one can replace it with other metrics such as number
of VM migrations, predicted time for migration of VM, proba-
bility of SLA violation, etc.

7. Data availability

The data and code used in this article are available by the
link https://github.com/andreigudkov/BalCon.

8. Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

9. Acknowledgments

Authors are gratefull to Mr. Oliver Slumbers for helping
with language polishing of this article. Dr. Stepan Romanov
thanks Dr. Mafuda for fruitfull discussions and organizational
help.

10. CRediT authorship contribution statement

The authors equally contributed to this work.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, A. Warfield, Xen and the art of virtualization, ACM
SIGOPS operating systems review 37 (2003) 164–177.

[2] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. An-
derson, S. M. Bennett, A. Kagi, F. H. Leung, L. Smith, Intel virtualization
technology, Computer 38 (2005) 48–56.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., A view of cloud
computing, Communications of the ACM 53 (2010) 50–58.

10

https://github.com/andreigudkov/BalCon

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud com-
puting and emerging it platforms: Vision, hype, and reality for delivering
computing as the 5th utility, Future Generation computer systems 25
(2009) 599–616.

[5] P. Patel, A. H. Ranabahu, A. P. Sheth, Service level agreement in cloud
computing (2009).

[6] G. J. Mirobi, L. Arockiam, Service level agreement in cloud comput-
ing: An overview, in: 2015 International Conference on Control, In-
strumentation, Communication and Computational Technologies (ICCI-
CCT), IEEE, 2015, pp. 753–758.

[7] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing,
Future generation computer systems 28 (2012) 755–768.

[8] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs,
M. Baker-Harvey, T. Sanderson, Vm live migration at scale, ACM SIG-
PLAN Notices 53 (2018) 45–56.

[9] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, F. Xia,
A survey on virtual machine migration and server consolidation frame-
works for cloud data centers, Journal of network and computer applica-
tions 52 (2015) 11–25.

[10] A. Verma, P. Ahuja, A. Neogi, pmapper: power and migration cost aware
application placement in virtualized systems, in: ACM/IFIP/USENIX
international conference on distributed systems platforms and open dis-
tributed processing, Springer, 2008, pp. 243–264.

[11] T. C. Ferreto, M. A. Netto, R. N. Calheiros, C. A. De Rose, Server con-
solidation with migration control for virtualized data centers, Future Gen-
eration Computer Systems 27 (2011) 1027–1034.

[12] K. S. Rao, P. S. Thilagam, Heuristics based server consolidation with
residual resource defragmentation in cloud data centers, Future Genera-
tion Computer Systems 50 (2015) 87–98.

[13] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, J. Lawall, Entropy:
a consolidation manager for clusters, in: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments, 2009, pp. 41–50.

[14] A. Murtazaev, S. Oh, Sercon: Server consolidation algorithm using live
migration of virtual machines for green computing, IETE Technical Re-
view 28 (2011) 212–231.

[15] Q. Wu, F. Ishikawa, Q. Zhu, Y. Xia, Energy and migration cost-aware dy-
namic virtual machine consolidation in heterogeneous cloud datacenters,
IEEE transactions on Services Computing 12 (2016) 550–563.

[16] Y. Gao, H. Guan, Z. Qi, Y. Hou, L. Liu, A multi-objective ant colony sys-
tem algorithm for virtual machine placement in cloud computing, Journal
of computer and system sciences 79 (2013) 1230–1242.

[17] M. Marzolla, O. Babaoglu, F. Panzieri, Server consolidation in clouds
through gossiping, in: 2011 IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks, IEEE, 2011, pp. 1–6.

[18] E. Feller, C. Morin, A. Esnault, A case for fully decentralized dynamic
vm consolidation in clouds, in: 4th IEEE International Conference on
Cloud Computing Technology and Science Proceedings, IEEE, 2012, pp.
26–33.

[19] A. Ashraf, B. Byholm, I. Porres, Distributed virtual machine consolida-
tion: A systematic mapping study, Computer Science Review 28 (2018)
118–130.

[20] M. R. Garey, D. S. Johnson, Computers and intractability, A Guide to the
(1979).

[21] E. G. Coffman Jr, M. R. Garey, D. S. Johnson, Bin packing with divisible
item sizes, Journal of Complexity 3 (1987) 406–428.

[22] M. X. Goemans, T. Rothvoss, Polynomiality for bin packing with a con-
stant number of item types, Journal of the ACM (JACM) 67 (2020) 1–21.

[23] H. I. Christensen, A. Khan, S. Pokutta, P. Tetali, Approximation and
online algorithms for multidimensional bin packing: A survey, Computer
Science Review 24 (2017) 63–79.

[24] R. Aringhieri, D. Duma, A. Grosso, P. Hosteins, Simple but effective
heuristics for the 2-constraint bin packing problem, Journal of Heuristics
24 (2018) 345–357.

[25] R. Panigrahy, K. Talwar, L. Uyeda, U. Wieder, Heuristics for vector bin
packing, research. microsoft. com (2011).

[26] D. Bartók, Z. Á. Mann, A branch-and-bound approach to virtual machine
placement, in: Proceedings of the 3rd HPI cloud symposium “operating
the cloud, 2015, pp. 49–63.

[27] B. Speitkamp, M. Bichler, A mathematical programming approach for

server consolidation problems in virtualized data centers, IEEE Transac-
tions on services computing 3 (2010) 266–278.

[28] C. Ghribi, M. Hadji, D. Zeghlache, Energy efficient vm scheduling for
cloud data centers: Exact allocation and migration algorithms, in: 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, IEEE, 2013, pp. 671–678.

[29] J. Xu, J. A. Fortes, Multi-objective virtual machine placement in virtu-
alized data center environments, in: 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications & Int’l Conference on Cyber,
Physical and Social Computing, IEEE, 2010, pp. 179–188.

[30] H. Hallawi, J. Mehnen, H. He, Multi-capacity combinatorial ordering ga
in application to cloud resources allocation and efficient virtual machines
consolidation, Future Generation Computer Systems 69 (2017) 1–10.

[31] A. Ashraf, I. Porres, Multi-objective dynamic virtual machine consol-
idation in the cloud using ant colony system, International Journal of
Parallel, Emergent and Distributed Systems 33 (2018) 103–120.

[32] H. Li, G. Zhu, C. Cui, H. Tang, Y. Dou, C. He, Energy-efficient migration
and consolidation algorithm of virtual machines in data centers for cloud
computing, Computing 98 (2016) 303–317.

[33] J. Jiang, Y. Feng, J. Zhao, K. Li, Dataabc: A fast abc based energy-
efficient live vm consolidation policy with data-intensive energy evalua-
tion model, Future generation computer systems 74 (2017) 132–141.

[34] R. Ponto, G. Kecskeméti, Z. Á. Mann, Comparison of workload consoli-
dation algorithms for cloud data centers, Concurrency and Computation:
Practice and Experience 33 (2021) e6138.

[35] Y. Ho, P. Liu, J.-J. Wu, Server consolidation algorithms with bounded
migration cost and performance guarantees in cloud computing, in: 2011
Fourth IEEE International Conference on Utility and Cloud Computing,
IEEE, 2011, pp. 154–161.

[36] J. Forrest, T. Ralphs, H. Santos, et al., coin-or/cbc: Release releases/2.10.
8, 2022.

[37] E. D. Dolan, J. J. Moré, Benchmarking optimization software with per-
formance profiles, Mathematical programming 91 (2002) 201–213.

11

	Introduction
	Consolidation
	d-dimensional vector bin packing
	Methods for solving the consolidation problem and proposed approach

	Problem statement
	Integer programming solutions
	Allocation model
	Flavor flow model
	Lower bounds

	Algorithms
	Basic description of BalCon
	Balance factor
	The BalCon algorithm
	Ample class
	Balanced class
	Lopsided class
	Modified Sercon heuristics and time complexity

	Evaluation
	Datasets
	BalCon performance

	Conclusions
	Data availability
	Declaration of competing interest
	Acknowledgments
	CRediT authorship contribution statement

