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Abstract

Comprehending the performance bottlenecks at the core of the intricate hardware-software interactions exhibited by highly parallel
programs on HPC clusters is crucial. This paper sheds light on the issue of automatically asynchronous MPI communication in
memory-bound parallel programs on multicore clusters and how it can be facilitated. For instance, slowing down MPI processes by
deliberate injection of delays can improve performance if certain conditions are met. This leads to the counter-intuitive conclusion
that noise, independent of its source, is not always detrimental but can be leveraged for performance improvements. We employ
phase-space graphs as a new tool to visualize parallel program dynamics. They are useful in spotting certain patterns in parallel
execution that will easily go unnoticed with traditional tracing tools. We investigate five different microbenchmarks and applica-
tions on different supercomputer platforms: an MPI-augmented STREAM Triad, two implementations of Lattice-Boltzmann fluid
solvers, and the LULESH and HPCG proxy applications.

Keywords: parallel distributed computing, data analytic techniques, MPI collectives, asynchronous MPI execution, resource
scalability and bottleneck.

1. Introduction and related work

Motivation. On contemporary HPC clusters, which are typi-
cally hybrid shared distributed-memory systems, numerous fac-
tors affect the performance of highly parallel applications, mak-
ing it challenging to predict analytically. Especially when there
are resource bottlenecks, such as memory bandwidth or net-
work bandwidth, simply adding the analytically predicted com-
munication and computation runtimes does not always produce
an accurate estimate of the parallel runtime; typically, system or
application noise is to blame for this. However, the dynamics
of large-scale parallel programs on modern hardware and the
true role of disturbances are not well understood despite exten-
sive research on the characterization of noise, the identification
of its sources, and the pinpointing of its influence on collective
operations.

Better resource utilization via asynchronicity. This paper in-
vestigates the favorable consequences of noise, the implementa-
tion of MPI collectives, and generally a spectrum of code prop-
erties and parameters as an enabling factor to achieve higher
hardware efficiency of various memory-bound benchmarks and
applications on modern clusters. We investigate their role as
potential triggers for the effects of bottleneck evasion and auto-
matic asynchronicity. The former means that a resource bottle-
neck is used concurrently by fewer processes than the possible

Email addresses: ayesha.afzal@fau.de (Ayesha Afzal),
georg.hager@fau.de (Georg Hager), markidis@kth.se (Stefano
Markidis), gerhard.wellein@fau.de (Gerhard Wellein)

maximum; the latter describes how processes gradually move
out of their initial bulk-synchronous mode, allowing for com-
munication to overlap with computation. A boost in asymptotic
performance occurs most prominently in applications that are
limited by computation and communication bottlenecks, such
as memory-bound programs with relevant communication over-
head. This paper investigates the interplay of desynchroniza-
tion and noise and how it can influence parallel program perfor-
mance in a positive way. Using microbenchmarks and different
implementations of a Lattice-Boltzmann (LBM) flow solver, we
demonstrate how noise can actually be advantageous and used
on purpose to speed up the transition of a parallel program to a
state where communication is at least partially hidden by com-
putation. The phase space plot is introduced as a useful tool to
identify typical patterns of desynchronization. It can substitute
more data-heavy visualizations like, e.g., timeline traces in the
context covered here. Using the LULESH and HPCG proxy
apps, we also show that the implementation of collective com-
munication primitives in MPI and a spectrum of code properties
can ease or hinder communication overlap.

Related work. The interaction of point-to-point communica-
tion with noise, which is frequent in distributed-memory par-
allel codes, is not covered in a significant portion of the litera-
ture [22, 21, 13], which focuses only on the sources of noise
and how it affects collective operations. Idle waves emerge
when a disturbance (such as a delay or transient extra work)
on an individual MPI process ripples through the other pro-
cesses during each iteration at a speed that depends on the pro-
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gram’s computational and communication characteristics [2, 1,
19]. Gamell et al. [14] observed the formation of idle waves
in the context of local recovery and failure masking of stencil
codes, while Böhme et al. [11] proposed a tool-based method
to pinpoint the root causes of propagating wait states in MPI
applications. Afzal et al. [4] explored how these idle waves in-
teract nonlinearly with each other and gradually decay as a re-
sult of communication inhomogeneities, application noise, and
system noise. The strong positive correlation between a low
propagation speed of idle waves and automatic communication-
computation overlap was described in [3]. Using sparse matrix-
vector multiplication (SpMVM) and Chebyshev filter diagonal-
ization (ChebFD) benchmarks, Afzal et al. [6] could show that
the smaller the minimum number of processes per memory do-
main required to saturate the memory bandwidth, the stronger
the tendency towards asynchronicity. The actual speedup that
can be observed in such a scenario depends on a spectrum of
code properties, such as decomposition strategies, sparse matrix
structures, block vector sizes, communication concurrency, and
the performance characteristics of back-to-back loops, which
can all influence resource utilization [5, 8]. These prior studies
show that bottleneck evasion via asynchronicity can be regarded
as a performance optimization technique, complementing tradi-
tional techniques such as explicitly asynchronous communica-
tion, noise mitigation, MPI process placement, dynamic load
balancing, synchronization of operating kernel (OS) influence,
lightweight OS kernels, etc. [22, 9, 18, 27].

2. Prior contributions in [7]

Research techniques and metrics. This paper is a follow-up of
[7], where we investigated techniques and metrics for quanti-
fying asynchronicity by observing the behavior of MPI waiting
times. Five data analytics techniques (timelines, histograms,
compact timelines, correlation coefficients [26], and phase-space
plots) and two machine learning techniques (Principal Compo-
nent analysis [16] and K-means clustering1) were covered. For
the asynchronous execution of large-scale applications, these
metrics and techniques were assessed based on their capacity to
explore the difference in behavior between compute-bound and
weak or strong memory-bound scenarios.

One crucial trait which influences the desynchronization be-
havior is the memory boundedness of an application, which
can be quantified by its saturation behavior across the cores
of a ccNUMA domain. Figure 1 illustrates the performance
scaling behavior of MPI-parallel mmicrobenchmark codes with
different characteristics across the cores of a multicore chip
(a ccNUMA domain). The “Slow Schönauer Triad” A(:) =
B(:) + cos(C(:)/D(:)) is memory bound but weakly sat-
urating because of the computation-heavy cosine and floating-
point divide, and the STREAM Triad A(:)=B(:)+s*C(:)) is

1The cluster center initialization was performed using the k-means++ algo-
rithm [25], which heavily depends on the chosen distance metric type (squared
Euclidean, city-block, cosine and correlation), while the quality of the cluster-
ing was quantified using a Silhouette analysis [17].
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Figure 1: Saturation behavior across the cores of a CPU socket of different
MPI-parallel microbenchmarks (weakly or strongly memory bound).

strongly saturating because of its very low computational inten-
sity. In [7]) we also employed PISOLVER, which numerically
evaluates

∫ 1
0 4/(1 + x2) dx using the midpoint rule. This is a

purely compute-bound workload dominated by floating-point
divides and scales perfectly across cores. In all these micro-
benchmarks, we added MPI communication to introduce inter-
process dependencies, but no global MPI operations were done.

Research objective. Our objective of our prior work was to
identify, classify, and characterize aspects of the dynamics of
large-scale MPI parallel programs using a compact data rep-
resentation extracted from tracing data without conducting a
comprehensive analysis of the applications. We focused on the
particular issue of desynchronized execution and how it may or
may not influence the performance.

Research method. In order to bridge the gap between detailed
timeline analysis and high-level performance analysis, we ex-
plored suitable techniques and metrics that serve as a halfway
point. The time that MPI processes spend within the library
(MPI waiting time) was chosen as a suitable metric that corre-
lates with MPI asynchronicity.

Proposed future work. The investigation of the behavior of real-
world complex parallel programs using an appropriate technique
was acknowledged as a necessary future task. By tracking the
optimization potential, one can adjust performance modeling
and optimization tactics to the dynamics of MPI parallel pro-
grams.

3. Contributions

Research analyses. The applications that were taken into con-
sideration for this work, along with the corresponding analy-
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Table 1: Benchmark programs and applied analyses, parameter spaces, and communication properties; CER == communication-execution-ratio, P2P == point-to-
point, CB == compute-bound, MB == memory-bound.

Case Parallel codes Research analyses Parameter spaces Communications

1 MST faster code with sparingly injected extra workload noise P2P
2a LBM (D3Q19) better measured performance than predicted synchronized performance collectives occurrence and CER P2P/collective
2b LBM (SPEC D2Q37) comparing asynchronicity-performance-interaction in CB and MB codes MB vs. CB implementation P2P/collective
3 LULESH slower code with significant imbalanced load load imbalance P2P/collective
4 HPCG overall faster with comparatively slow collective-only performance collective algorithms and CER P2P+collective

ses, parameter spaces, and communication properties, are listed
in Table 1. The selection aims to shed light on how perfor-
mance across a wide range of program properties is impacted
by MPI asynchronicity. The existence of MPI collective rou-
tines is a crucial component. The MPI-augmented STREAM
Triad (MST) is a microbenchmark with point-to-point com-
munication that is flexible enough to study diverse scenarios.
Collectives are absolutely necessary for the High Performance
Conjugate Gradient (HPCG) proxy app. The other codes have
avoidable collectives that can be adjusted in frequency and are
only necessary to enforce time constraints (Livermore Unstruc-
tured Lagrangian Explicit Shock Hydrodynamics (LULESH))
or check for correctness (Lattice Boltzmann Menthod (LBM)).
Furthermore, both MST and LBM are two-phase programs that
exhibit consecutive, identical compute-communicate cycles. On
the other hand, LULESH and HPCG are multi-phase applica-
tions whose various kernels exhibit different traits in terms of
computational and communication resources. Each program
will be covered in greater detail in Sections 5, 6, 7, and 8. We
only use pure MPI programs in this work; in [3] we covered
the fundamentals of hybrid MPI+OpenMP codes in terms of
asynchronicity.

Research techniques and metrics. For the MST and LBM cases
we concentrate on timelines and phase-space plots, which can
be regarded as more explorative data analysis techniques. The
phase-space plot was introduced by us in [7]. Furthermore, two
metrics are examined: performance per process and MPI time
per process. The MPI time is the amount of time spent in the
MPI library, i.e., when no computations are being done. For the
LULESH and HPCG analyses we mainly look at their native
performance metrics to study the influence of load imbalance
(LULESH) and implementation variants of collectives (HPCG).

Research method. We present two different approaches to per-
formance assessment of desynchronized applications. First, a
side-by-side comparison of performance (memory bandwidth
utilization) and MPI times is presented for analysis. Second, the
composite or synchronized performance is compared with the
measured performance. The composite or synchronized perfor-
mance is the performance resulting from the summation of the
individual times for communication and computation, assum-
ing that all processes are in lock-step.

Research contributions. The focus of our previous publication [7]
was on the exploration of various data analysis techniques; here
we concentrate on the analysis of applications, particularly em-
ploying the new technique of phase-space analysis for temporal

evolution. The impact of MPI asynchronous execution on per-
formance is explored, particularly to distinguish between par-
allel codes that are compute bound and those that are memory
bandwidth limited. Experiments were performed on more sys-
tems than in [7]. While two of the applications (i.e., MST and
3DQ19 LBM) were expanded from our prior contribution, three
new ones (LULESH, HPCG, and a 2DQ37 LBM code from
SPEChpc 2021) were investigated. The following significant
contributions are made by this paper:

1. In MPI-augmented STREAM Triad (MST), a deliberate
injection of noise (extra workload) can accelerate sponta-
neous asynchronous execution, leading to better asymp-
totic performance if communication overhead is relevant.

2. In Lattice Boltzmann Menthod (LBM), we compare two
variants: a memory-bound D3Q19 implementation and a
compute-bound D2Q37 implementation from the SPEChpc
2021 suite. Only the D3Q19 case exhibits a performance
improvement with asynchronous execution. In order to
leverage this advantage, it is also advisable to keep the
frequency of required collectives low, not because of re-
duced overhead but because of relaxed resynchronization
that allows processes to stay out of sync longer and thus
benefit from better bottleneck utilization.

3. In Livermore Unstructured Lagrangian Explicit Shock Hy-
drodynamics (LULESH), any potential benefit of auto-
matic asynchronicity is swamped by the significant arti-
ficial load imbalance even though the application fits the
bill in terms of memory boundedness.

4. In High Performance Conjugate Gradient (HPCG), we
compare the performance of the overall application with
that of the collective-only in an isolated benchmark. The
actual implementation of MPI_Allreduce is instrumen-
tal for enabling asynchronous execution and communi-
cation overlap. For certain problem sizes, the synchro-
nizing quality of the collective is more important than its
bare overhead. The collectives that support asynchronous
execution allow for better application performance, even
though they are not the fastest according to the micro-
benchmark.

5. In the presence of frequent synchronizing collectives, any
noise between two successive collectives causes signifi-
cant loss because all other processes must wait for a de-
layed process. Petrini et al. resolved this in 2003 [22]
by synchronizing the system noise, which concentrated
the noise on all nodes in one time step and made subse-
quent time steps noise-free. In contrast to this synchro-

3



Table 2: Key hardware and software characteristics of systems.

Systems Meggie (M) SuperMUC-NG (S) Fritz (F)
Processor Intel Xeon Broadwell EP Intel Xeon Skylake SP Intel Xeon Ice Lake
Processor Model E5-2630 v4 Platinum 8174 Platinum 8360Y
Base clock speed 2.2 GHz 3.10 GHz (2.3 GHz used under power cap) 2.4 GHz
Physical cores per node 20 48 72
Numa domains per node 2 2 4
Last-level cache (LLC) size 25 MiB (L3) 24 MiB (L2) + 33 MiB (L3) 1.25 MiB (L2) + 54 MiB (L3)
Memory per node (type) 64 GiB (DDR4) 96 GiB (DDR4) 256 GiB (DDR4)M
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Theor. socket memory bandwidth 68.3 GB/s 128 GB/s 2 × 102.4 GB/s
Node interconnect Omni-Path Omni-Path HDR100 Infiniband
Interconnect topology Fat-tree Fat-tree Fat-tree

N
et

w
or

k

Raw bandwidth p. lnk n. dir 100 Gbit/s 100 Gbit/s 100 Gbit/s
Compiler Intel C++ v2019.5.281 Intel C++ v2019.4.243 Intel C++ v2022.1
Optimization flags -O3 -xHost -O3 -qopt-zmm-usage=high -O3 -qopt-zmm-usage=high
SIMD -xAVX -xCORE-AVX512 -xCORE-AVX512
Message passing library Intel MPI v2019u5 Intel MPI v2019u4 Intel MPI v2021u7So

ft
w

ar
e

Operating system CentOS AlmaLinux v8.7 SUSE Linux ENT. Server 12 SP3 CentOS AlmaLinux v8.7
ITAC v2019u5 v2019 v2021u6
ClusterCockpit 2023 n/a 2023To

ol
s

LIKWID 5.2.1 5.2.1 5.2.2

nized noise effect, where bottleneck structure was irrele-
vant [22], we clearly make a point that any performance
benefit of noise is dependent on the presence of a bottle-
neck.

Overview. The organization of this paper is as follows: We first
go into detail about our experimental setup and methodology in
Sect. 4. We then discuss the performance implications of asyn-
chronicity, specifically focusing on MST in Sect. 5, LBM in
Sect. 6, LULESH in Sect. 7, and HPCG Sect. 8. Finally, Sec-
tion 9 concludes the paper and provides an outlook for future
directions.

4. Hardware-software setup and experimental methodology

Table 2 shows the hardware and software environments we
used for all experiments. We chose the following distinct clus-
ters, each with a different interconnect, core count, and memory
bandwidth, to ensure the wide applicability of our findings:

1. Omni-Path Meggie2 cluster comprising two Intel Xeon
Broadwell CPUs per node with 10 cores each

2. Omni-Path SuperMUC-NG3 cluster comprising two Intel
Xeon Skylake SP CPUs per node with 24 cores each

3. Infiniband Fritz4 cluster comprising two Intel Xeon Ice
Lake CPUs per node with 36 cores each

Although hyper-threading is active on the SuperMUC-NG sys-
tem, in this work we ignore it and only use the consecutive
physical cores on a node that are mapped to consecutive MPI
processes using the I_MPI_PIN_PROCESSOR_LIST environment
variable (with mpirun) or –cpu-bind=rank (with srun) in the
MPI implementation. Sub-NUMA Clustering (SNC) is acti-
vated on Fritz, which means that the basic scaling unit (i.e.,
one ccNUMA domain) is half a socket (18 cores). The clock

2https://hpc.fau.de/systems-services/
documentation-instructions/clusters/meggie-cluster

3https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
4https://hpc.fau.de/systems-services/

documentation-instructions/clusters/fritz-cluster

frequency of all Meggie and Fritz nodes was consistently fixed
to the base values of their respective CPUs via the SLURM
batch scheduler. The CPUs on SuperMUC-NG operate by de-
fault at an effective clock speed of 2.3 GHz, which is lower than
their maximum base clock speed of 3.10 GHz. The likwid-
perfctr tool was employed to make sure the expected clock
frequency was actually set. We instrumented all programs to
collect the timestamps of entering and leaving MPI calls at
each iteration of each MPI process over the course of the whole
run in order to measure MPI waiting times. Time stamps were
taken using the C++ high-resolution chrono clock (with the “-
std=c++11” compiler option) for C++ codes, while for C codes
we employed getwalltime(). ClusterCockpit [12] was
used for the job monitoring on Meggie and Fritz. The traces
of MPI processes at any point during a run were visualized us-
ing the graphical user interface of the Intel Trace Analyzer and
Collector (ITAC) tool (with “-trace” compiler option)5. The
working set for memory-bound programs was chosen to be at
least ten times the size of all last-level cache to prevent it from
fitting into the available cache.6 The ratio of data volume to
wall-clock time was used to calculate memory bandwidths. At
least two warm-up time steps, including global synchroniza-
tion, were run before the actual measurements to give the MPI
runtime a chance to settle and get rid of first-call overhead. To
account for variations in runtime, we repeated code executions
several times and only significant statistical fluctuations were
reported.

In evaluating the analysis results for four applications, auto-
matic overlap of communication and computation non-lockstep
execution of MPI processes is highlighted. The aim is to pro-
vide a thorough analysis of the impact of asynchronous ex-

5The instrumentation-based ITAC tool has a single tick of 1 ns
clock resolution and ensures that clocks across MPI processes
are synchronized: https://intel.com/content/www/us/en/
develop/documentation/itac-user-and-reference-guide/
top/intel-trace-collector-reference/time-stamping/
clock-synchronization.html

6The last-level cache is made up of the non-inclusive victim L3 plus the
L2 caches in the Skylake and Ice lake processors of SuperMUC-NG and Fritz,
while it is only the L3 caches in the Broadwell processors of Meggie.
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(b) Extra compute-bound workload on a random
MPI process every {∞, 100th, 10th, 5th} iteration
for the subsequent {2 K, 2 K, 3 K, 3 K} iterations
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(c) Extra compute-bound workload on a random
MPI process every fourth iteration

Figure 2: Per-process MST benchmark performance on 360 processes (5 nodes) of Fritz and 10 K iterations. (a) top: mean (P̄) and standard deviation (σ) of
performance versus iteration number; bottom: mean and standard deviation of performance versus process rank. (b) Experiment with successively more frequent
injections of extra workload on a random process. (c) Experiment with constant-frequency delay injection across the whole runtime. The composite performance
for synchronized execution is 0.08 iter

s per process.

ecution, rather than a comprehensive analysis of each appli-
cation. Any performance improvement caused by MPI asyn-
chronicity must be carefully distinguished from other positive
performance effects such as reductions in communication vol-
ume. For example, when attributing performance changes to
asynchronicity, the natural collective cost measured in a fully
synchronized environment is always subtracted from the ob-
served runtime. This ensures that the trivial positive effect of
eliminating the collective is not visible in the data; observed
performance effects must come from other sources.

5. MPI-augmented STREAM Triad (MST)

The McCalpin STREAM Triad “A(:)=B(:)+s*C(:)” [20]
is often used to measure the attainable memory bandwidth of a
processor. The MST code adds communication after each full
run of the loop (which we call iteration in the following) of the
loop to mimic a real MPI-parallel, strongly memory-bound pro-
gram. It is thus a clean setup that can be used to demonstrate
the effects of complicated memory-bound applications. The ex-
periments in this section were conducted on the Fritz cluster.

5.1. Implementation

The fundamental organization of the MST benchmark is
shown in Listing. 1.

An overall working set of 48 GB (2 × 109 array elements,
much larger than the aggregate LLC of the CPUs) is distributed

1 for (int iter =0; iter <numIters; iter ++) {
for (int i=0; i<arrayElements; i++) {

3 A[i] = B[i]+s*C[i];
}

5 for ( int j = 0; j < 2; j++ ) {
MPI_Isend (.., &req[j*2]);

7 MPI_Irecv (.., &req [1+j*2]);
}

9 MPI_Waitall( 4, &req[0], &stt [0] );
}

Listing 1: Pseudo-code implementation of the MPI-augmented STREAM

evenly among 360 MPI processes on 10 nodes of Fritz. Each
process sends and receives a message of 1 MB, which is way
beyond the eager limit of the MPI implementation, to each of
its two direct neighbors after a full iteration. All processes form
a closed chain (periodic boundary conditions). The use of non-
blocking point-to-point calls and a final MPI_Waitall ensures
that the communication is bidirectional. The compiler option
“-qopt-streaming-stores” compiler option was used to en-
able the generation of streaming stores, leading to a code bal-
ance of 12 byte/flop due to the lack of write-allocate transfers.

Noise was generated by extending the STREAM Triad com-
putational phases on random processes by burdening them with
extra work. For this extra work, we use the compute-bound loop
shown in Listing 2, which is dominated by double-precision
floating-point divides. How often this injection takes place is

5



(a) Snippet 100 iterations view of MPI times [s] (b) Snippet 100 iterations view of performance [iter/s]

(c) Entire 10K iterations view of MPI times [s] (d) Entire 10K iterations view of performance [iter/s]

Figure 3: Phase-space analysis of the run in Fig 2(b) for MPI process rank 36 (on second socket), using MPI times (in seconds, left) and performance (in iterations
per second, right). Top row: snippet views of 100 time steps each. Bottom row: entire run.

configurable.

for (std:: size_t j = 0; j < 10000000; j++){
2 sum = sum + 4.0 / ( 1.0 + j * j);

}

Listing 2: Extra workload injection to slow down processes.

5.2. Asynchronicity through noise

Figure 2(a) (top) shows a timeline of measured per-process
performance vs. iterations on 360 processes (5 Fritz nodes)
without deliberate noise injection. The thick line is the av-
erage across processes, while the light area shows the stan-
dard deviation. The observed average performance of 0.08 iter

s
translates into an effective memory bandwidth of 139 GB/s per
socket. As the upper limit for the STREAM Triad loop with
streaming stores is 162 GB/s, 14% of the overall time goes into
communication overhead. If this overhead could be overlapped
by desynchronization, about 0.094 iter

s could be attained. Fig-
ure 2(a) (bottom) shows the performance of each individual

process over the entire program runtime as average and stan-
dard deviation.

In the experiments shown in Fig. 2(b), a random process
was picked every k iterations and subjected to the aforemen-
tioned extra workload injection. The number k was decreased
from k = ∞ to k = 5 in three steps. In addition, Fig. 2(c) shows
a full run with k = 4 throughout. It can be seen that more fre-
quent injections lead to better performance; if they are not fre-
quent enough (as seen in the k = 100 phase in Fig. 2(b) (top)),
the system goes back to a synchronized state. With k = 4,
the average performance across processes comes close to the
theoretical limit of 0.094 iter

s . These findings give an expla-
nation of why a slightly imbalanced workload is preferable to
bulk-synchronous execution in bandwidth-limited parallel pro-
grams. Slowing down processes causes asynchronicity (see the
bottom plots of each case in Figure 2(a-c)) which allows fewer
concurrent processes to better utilize available, limited memory
bandwidth through communication overlap. These experiments
show that asynchronous execution can be initiated by noise in-
jection, leading to better overall performance. A general theory
about how much noise exactly is needed to achieve a certain
speedup does not exist yet, however.
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1

Pseudo implementation of parallel LBM
1: while iter  nIters do
2: stream_collide_update (lattice, u_lid, omega);
3: set_boundary_condition (u_lid);
4: MPI_Isend ; ?

5: MPI_Irecv ; ?

6: MPI_Wait ;
7: ghost_cells_update ();
8: if ((iter % collective_step) == 0) then
9: MPI_Allreduce ;

10: end if
11: swap (local_src_lattice, local_dst_lattice) ;
12: end while

(a) LBM D3Q19 pseudo code
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(b) Increasing CER
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(c) Constant CER

Figure 4: (a) In the D3Q19 LBM implementation, boundary layers are exchanged using non-blocking MPI routines, including (un)packing in between. (b+c)
Influence of the frequency of collectives (specifically MPI_Allreduce()) on LBM performance (executing 106 iterations on 64 Meggie nodes, i.e., 1280 MPI
processes). Graphs are linear on the y-axis, and a base-10 log scale is used for the x-axis. Performance in MLUP/s is normalized to the case of one collective per 20
iterations. (b) Normalized performance (speedup vs. smallest collective stepsize) vs. collective step size for constant overall problem size (8.37 GB) but di↵erent
domain shapes, which causes di↵erent communication overhead. (c) Normalized performance for constant communication-to-execution ratio (CER) but di↵erent
shapes of the cross section nx · ny at constant overall problem size. Finally, the black crosses show the calculated speedup when subtracting the MPI_Allreduce
time from the runtime for the problem size with the best desynchronization speedup in each diagram. This speedup is so close to 1 it cannot be visualized properly.

Domain shape nx.ny.nz at a constant overall problem size
Program phase 152.152.1280 108.108.2560 88.88.3840 52.52.11520
Computation [ms] 5.9 4.82 2.86 2.49
Communication [ms] 6.34 2.28 0.79 0.19
Comm. aggregate sum [GB] 9.74 1.65 1.07 0.28
CER 1.08 0.47 0.28 0.08

Table 3: In a single LBM iteration, domain shapes and their associated compu-
tation and communication run times on the Meggie system. The red-to-yellow
scale serves only to guide the viewer’s attention along the rows and is not ap-
plicable to di↵erent phases. As the cross-section of the domain nx ⇥ ny grows,
the communication becomes more relevant leaving plenty of room for overlap.
The messages on each process are communicated via the rendezvous protocol
at a large cross-section of the domain until the domain becomes small enough
to reach the eager limit.

Phase-space analysis. In order to depict the long-term evolu-
tion of a metric such as performance or MPI waiting time, the
phase-space plot turned out to be useful [7]. It is a scatter plot
with data points at coordinates (mi,mi+1), where mi is the value
of some metric at time step i. Hence, a data point shows how
this metric has evolved from time step i to time step i + 1. By
color coding the data points, one can visualize the long-term
evolution of a metric. It turns out that certain behaviors regard-
ing (de)synchronized execution show up as distinctive patterns
in the phase space plot. In order to limit clutter, we show data
for a single MPI process only, unless noted otherwise. Some-
times it is advantageous to restrict one plot to a certain part (a
“snippet”) of the timeline and show the long-term evolution us-
ing multiple plots.

Figure 3 shows a phase-space analysis of the scenario de-
picted in Fig. 2(b). In (a) and (c) we use MPI time (in seconds)
as a principal metric, while in (b) and (d) we use performance
in iter/s. Measurements were taken on process 36 (first process
on second socket). In Fig. 3(a), each plot shows a snippet of
100 iterations at regular intervals along the iteration space. Up
to iteration 4000, execution is mostly synchronous and the MPI
waiting time is small. After iteration 4000, the delay injections

cause more frequent outliers along the axes; a point near an axis
means that this MPI delay is short-lived and disappears in the
next step. In addition, as the delays get more frequent, the point
cloud near the origin gets diluted, indicating a persistent in-
crease in MPI waiting time. Figure 3(c) is less revealing in this
scenario since the whole timeline is mapped to the color scale.
In Fig. 3(b) and (d), performance is used as a metric. The snip-
pet views indicate that performance increases with time (in line
with the more frequent delay injections), as can be seen from
the dot cloud moving along the diagonal towards higher perfor-
mance. A point on the diagonal means that a performance level
at step i can also be observed in step i+1, indicating persistence.
One should also add that, even though the average performance
across processes increases with injection frequency, so does the
performance variation. In Fig. 3(d), the whole run is shown
again, visualizing this e↵ect more prominently.
Upshot: Not all noise is detrimental; in fact, noise can en-
hance asymptotic performance by pushing the system out of
the bulk-synchronous lock-step and thus facilitating sponta-
neous asynchronous execution and communication overlap.
Though this is valid only in the absence of high-frequency
synchronizing collectives and under the condition that the bot-
tleneck(s) and relevant communication overhead are present.

6. Lattice Boltzmann Method (LBM)

The Lattice Boltzmann Menthod (LBM) algorithm is widely
used in computational fluid dynamics due to its ease of imple-
mentation and parallelization. Here employ two LBM imple-
mentations that allow us to easily tune problem size, domain
decomposition, and the communication-to-execution ratio.

6.1. D3Q19 implementation
We use a D3Q19 discretization scheme [23] and Bhatna-

gar–Gross–Krook (BGK) collision operator [10] in a two-array
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on second socket). In Fig. 3(a), each plot shows a snippet of
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The Lattice Boltzmann Menthod (LBM) algorithm is widely
used in computational fluid dynamics due to its ease of imple-
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(a) Entire 100 K iterations run (b) Snippet for 60 iterations

Figure 5: Mean performance (green) with standard deviation (light green) of LBM D3Q19 program run for 100K iterations on 1440 MPI processes of 20 Fritz
nodes. The composite performance is being compared with the measured performance of the program run using MPI_Allreduce in every 20th iteration.

implementation with fused stream and collide steps, without
streaming stores, and with a stream-optimized “structure of ar-
rays (SoA)” memory layout [28, 30] on a lattice of (nx + 2) ×
(ny +2)× (nz +2) sites. The total number of fluid cells in each x,
y, and z dimension, nx, ny, and nz, is increased by one boundary
wall or lid cell. The code is MPI parallel with halo exchange
and uses double precision. The domain is cut along the outer
(z) dimension only so that the communication volume of each
process is 2× 5× nx × ny × 8 B per neighbor; ghost elements are
exchanged in the z direction via next-neighbor communication
using a MPI_Isend, MPI_Irecv, MPI_Wait sequence.

Figure 4 (left) shows the basic structure of the code. We
chose a lid-driven cavity as the application use case. The work-
ing data set in bytes, including a boundary layer in each direc-
tion, is calculated as 19 × 2 × 8 × (nx + 2) × (ny + 2) × (nz +

2). For a memory-bandwidth-bound data set, the single sweep
traffic on the memory bus with write-allocate (also known as
read-for-ownership) is 1.5 times the size of the working data
set. Wittmann et al. [29] thoroughly analyzed and modeled
socket-level performance. The code balance of the fused col-
lide/stream sweep is thus 456 byte/LUP (bytes per lattice site
update), which makes the kernel memory bound if implemented
efficiently; see Figure 6(a).

6.1.1. Frequency of collectives
Our implementation includes an optional correctness check

for mass conservation, which employs an MPI_Allreduce call
(with MPI_SUM) after a configurable number of iterations. The
latter is called collective step size. We tune it as 2 × 10n, where
n ranges from 1 to 6. For instance, on the Meggie cluster, the
minimum cost for MPI_Allreduce is 57 µs on 1280 processes
(64 nodes), and it grows with the number of processes involved.
Note also that the time that each individual process spends in
the routine may significantly deviate from the minimum, de-
pending on desynchronization and load imbalance. In all cases,
the minimum time for MPI_Allreduce is negligible compared
to the duration of the minimum collective step size (20 LBM
sweeps). Note that a direct measurement of the cost of a col-
lective for large step sizes would be problematic because, in
asynchronous execution, the time spent within the MPI call
fluctuates significantly across processes. In our experiments,

we always compare the measured average performance for 106

LBM iterations at a given collective step size with the run at the
minimum collective step size, i.e., with a MPI_Allreduce after
every 20th sweep.

6.1.2. Asynchronicity through fewer collectives and CER→ 1
In Fig. 4(b+c), we show relative performance Pn versus col-

lective step size with respect to the minimum collective step
size baseline (20 iterations) on the Meggie system, running the
DqQ19 code on 1280 processes. The value Pn measures the rel-
ative speedup brought on by asynchronous execution and bot-
tleneck avoidance; a value of 1 denotes no performance im-
provement. A greater Pn value suggests a more effective com-
munication overlap and better scalability, and a value of 2 signi-
fies a doubling of the performance. Unless specified otherwise,
we choose a working set of approximately 29.5×106 lattice sites
(8.97 GB) arranged in various cuboid geometries. In the first se-
ries of experiments, we modified the computation-to-execution
ratio by changing the overall geometry from 152×152×1280 to
52 × 52 × 11520, i.e., from strongly communication dominated
to execution dominated (as shown by the CER row in Table 3).
Note that even with automatic overlap, the impact of commu-
nication overhead is still significant. The maximum perfor-
mance of the Meggie system according to the Roofline model
is 14 GLUP/s. The best observed performance of 8.5 GLUP/s
is significantly lower, which shows that there is considerable
residual communication overhead.

On 64 Meggie nodes, the data for different domain shapes
in Fig. 4(b) shows how, depending on the communication-to-
execution ratio (CER), maximum speedups between 7 % and
13 % can be achieved. The highest speedup can be observed at
152× 152× 1280 (red circles), which has a CER that is close to
1. This is to be expected because the performance potential for
overlapping communication with computation is highest at this
point. Deviating from this optimum CER in either direction re-
duces the speedup. For instance, lowering the CER by reducing
both nx and ny from 152 to 108, 88, and 52 caused the perfor-
mance boost to decrease from 10.8 % to 9.3 %, 9.2 % or 8 %,
respectively. We also include the calculated speedup when sub-
tracting the minimum MPI_Allreduce time from the runtime
for the best-performing case (black crosses). It shows that the
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(b) Compute-bound D2Q37 SPEChpc 2021 implementation

Figure 6: Hardware monitoring data (left, middle) and communication message profile (right) of the LBM benchmarks on 3 nodes (216 cores) of Fritz for (a) D3Q19
and (b) D2Q37. The Roofline plots show a color-coded timeline (blue to red) of the job’s nodes across the entire run, where each data point is a measurement for a
node at a specific point in time. The message profile view is zoomed in on the first 26 processes. Each message is (a) 20.9 MB (red) and (b) 194 kB (red) or 125 kB
(blue) in size.

10 20 30 40 50 60 70

100

200

300

MPI processes per socket

M
em

or
y

ba
nd

w
id

th
[G

B
/s

]

D3Q19

D2Q37

Figure 7: Single-node bandwidth scaling of the LBM D3Q19 (7203 domain)
and D2Q37 (108002 domain) implementations over 300 iterations on the Fritz
system. The four shaded layers represent four ccNUMA domains of a single
Fritz node. The linear scaling beyond the first ccNUMA domain is caused by
the compact pinning strategy (filling the node from left to right).

actual time for the call is insignificant. In the experiment shown
in Fig. 4(c), decreasing nx from 252 to 52, increasing ny from
362 to 1802, and keeping nz = 1280 led to a nearly constant
overall problem size. We kept the CER constant and modified
the shape of the nx × ny cross-section to check if it affected the
speedup, which was not the case as expected.

Figure 5 illustrates the impact of collectives using a time-
line view and a run with 1440 processes (20 nodes) on the Fritz
system. The problem size was chosen to be 720 × 720 × 5760
(907 GB), with a reduction occurring in every 20th iteration.
The performance (as measured by taking the mean and stan-
dard deviation across processes) drops sharply right after the
collectives and then quickly settles to a steady state. This shows

clearly that gradual desynchronization is the cause for perfor-
mance getting better with fewer collectives.

Upshot: For memory-bound LBM, if collectives are unavoid-
able but their frequency can be adapted, it is advantageous
to make them less frequent to spend more time in an asyn-
chronous execution even if the absolute overhead of the col-
lective is negligible. The highest performance boost can be
expected if the communication to computation ratio is close
to 1.

6.2. D2Q37 implementation
The double-precision vectorized D2Q37 LBM code from

SPEChpc 20217 uses LBM to simulate the evolution of the
Rayleigh-Taylor instability using 37 velocity components. The
Standard Performance Evaluation Corporation (SPEC) bench-
marks concentrate on compute-intensive parallel performance
and call for minimum main memory requirements of {0.06, 0.48,
4, 14.5} TB for the workloads that fall under the categories of
{tiny, small, medium, large}, respectively. Here, we employ the
tiny workload for the 505.lbm_t benchmark, which can use a
maximum of 60 GB of memory and 256 processes. The code
supports 1D and 2D domain decomposition; we use 2D here
in a 12 × 18 process grid (three Fritz nodes). To communicate
with its four neighbors, each MPI process uses non-blocking
point-to-point MPI_Isend and MPI_Irecv calls. By default,
an MPI_Barrier is used at the end of each iteration to main-
tain their synchronization, which we removed for the bench-
marking.

7Version 1.1, https://spec.org/hpc2021
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(a) Snippet 100 iterations view of MPI times [s] (b) Snippet 100 iterations view of performance [iter/s]

(c) Entire 10K iterations view of MPI times [s] (d) Entire 10K iterations view of performance [iter/s]

Figure 8: Phase-space analysis of SPEC D2Q37 implementation with displaying MPI times (in seconds) and performance (in iterations per seconds) in parallel for
(a, b) 37th MPI process on second Fritz socket (c, d) first process on each Fritz socket.

The code has an arithmetic intensity of about 11 flop/byte
for the stream-collide sweep, which makes the code compute
bound; the monitoring data supports this assumption (see Fig-
ure 6(b)).

6.3. Asynchronicity through resource bottleneck
Figure 7 displays the socket-level performance in terms of

memory bandwidth for both LBM variants. In the D2Q37 im-
plementation (108002 domain), each message is 194 kB when
communicating with a direct neighbor and 125 kB when com-
municating with a distant process, as opposed to 20.9 MB when
communicating in the D3Q19 implementation (7203 domain);
see Figure 6. The D2Q37 implementation, in contrast to the
D3Q19 implementation, has a low CER ratio, additional long-
distance bidirectional communication with the eighteenth pro-
cess, and no bandwidth bottleneck. Hence, it is not expected
that performance can be gained by automatic communication
overlap and avoiding bottlenecks. D3Q19 implementation, on
the other hand, should fit the bill. These differences should
show up in their corresponding phase-space plots.

Figure 8 shows phase-space plots of MPI waiting times (in
seconds) and performance (in iter/s) for D2Q37 as snippet views
on one process (top) and as full end-to-end views on one pro-
cess per socket (bottom). Because of the absence of any con-
tention on the memory interface or on the network, all MPI
processes are self synchronizing. This is reflected by the low
MPI times clustered around zero; the very few outliers on the
axes are random noise that has no permanent effect, else these
would move towards the diagonal (see Figure 8(a)). Conse-
quently, the code performance is temporarily affected by the
random noise but there is no permanent positive effect as can
be seen from the performance snippet view (Fig. 8(b)), where
most points are clustered in a “lump” on the diagonal, with out-
liers in parallel to the axes. As expected, the processes across
sockets are correlated in absence of contention [7], as illustrated
by the socket-wise view in 8(c).

In contrast, for the D3Q19 implementation with contention
on the memory interface, the MPI times grow over time already
at the beginning of the run as illustrated in Fig. 9(a, c). Since
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(a) Snippet 100 iterations view of MPI times [s] (b) Snippet 100 iterations view of performance [iter/s]

(c) Entire 10K iterations view of MPI times [s] (d) Entire 10K iterations view of performance [iter/s]

Figure 9: Phase-space analysis of D3Q19 with displaying MPI times (in seconds) and performance (in iterations per seconds) in parallel for (a, b) 37th MPI process
on second Fritz socket (c, d) first process on each Fritz socket.

the progress is steady, there are no dot clouds along either axis.
Given that the initial state was synchronized, noise does gener-
ally not result in performance slowdown. The entire view on the
MPI time and performance phase spaces (Figures 9(c,d)) shows
that the observed process on two out of the six sockets (socket 0
and 5) has very little performance variation and almost constant
MPI time, which indicates that these sockets are still (almost)
in sync. Deliberate, random noise injections might thus boost
the overall performance further.

Upshot: If the memory bandwidth cannot be saturated, LBM
is not a candidate for performance improvement through spon-
taneous communication overlap.

7. Livermore Unstructured Lagrangian Explicit Shock Hy-
drodynamics (LULESH)

LULESH8 is a MPI-parallel proxy application for shock hy-
drodynamic simulation. Although it uses a Cartesian mesh, it
employs an unstructured data layout and indirection arrays to
mimic the unstructured complex hexahedral mesh geometry in
the full application code. LULESH approximates the hydrody-
namic equations discretely by partitioning the spatial problem
domain into a collection of volumetric elements of the mesh.
Routines are performed on a region-by-region basis to make
the memory access patterns non-unit stride and to easily intro-
duce artificial load imbalances. The mapping between materials
and regions is important, since the hydrodynamics codes typi-
cally simulate problems containing multiple materials, which
are then mapped onto regions (subsets of the mesh). LULESH
solves the single-material Sedov blast wave problem; to mimic

8LULESH application, version 2.0: http://asc.llnl.gov/codes/
proxy-apps/lulesh
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Figure 10: Algorithm in a single LULESH time step: communication (red), nodal updates (green) and element updates (blue). Most of the algorithm’s time is spent
in the initial stages of updating elemental and nodal quantities, i.e., updating the calculations for the elemental kinematics (compute-bound kernel), nodal stress
integration (memory-bound kernel), and nodal hourglass corrections (memory-bound kernel).

0 500 999

0

200

400

600

800

999

Receiver rank

Se
nd

er
ra

nk

(a) Message profile

50 100 150

6.8

7

7.2

7.4

7.6
·105

Cubic domain size per process

E
le

m
en

ts
so

lv
ed

[z
/s

] no reduction
reduction

(b) Performance (load balanced)

·106

Imbalance -b

E
le

m
en

ts
so

lv
ed

[z
/s

]

(c) Performance (trigger load imbalance)

c = 0 c = 1 c = 2 c = 3 c = 4
0 4 0 4 0 4 0 4 0 4

0.4

0.6

0.8

1 403, reduction 403, no reduction
603, reduction 603, no reduction
903, reduction 903, no reduction

Figure 11: (a) LULESH communication topology matrix. Maximum message sizes are {144 kB, 630 kB, 1.44 MB, 1.26 MB} with domain sizes of {40, 60, 90, 120}3
per process. (b) Performance in elements solved per second versus domain size without load imbalance, comparing runs with reductions (squares) with runs without
(circles) on 50 Meggie nodes (1000 processes). (c) Impact of load imbalance on performance for 103 MPI processes on 50 Meggie nodes. The imbalance is triggered
among domains via the -b flag and among regions within a domain via the -c flag.

·106

Imbalance -b

E
le

m
en

ts
so

lv
ed

[z
/s

]

c = 0 c = 1 c = 2 c = 3 c = 4
0 4 0 4 0 4 0 4 0 4

0.4

0.6

0.8

1 403, reduction 403, no reduction
603, reduction 603, no reduction
903, reduction 903, no reduction

Figure 12: Load imbalance impact (trigging cost -c and imbalance -b flag,
varying between zero to four) on performance for 103 MPI processes on 21
SuperMUC-NG nodes.

multiple materials, it uses multiple regions with varying sizes,
each modeling the same ideal gas material. Materials’ relative
motion as a result of forces is described by hydrodynamic mod-
eling. Load imbalance can be introduced by differently-sized
regions as well as the amount of computation per grid point.
The code intensity (in flop/byte) becomes low for large domain
sizes using few process counts. The execution and data transfer
characteristics make the code memory bound on modern archi-
tectures and thus, in principle, a candidate for desynchroniza-

tion dynamics.

7.1. Implementation

The algorithm is represented visually in Fig. 10. The up-
dates in physical quantities are done in two steps: at the corners
of the hexahedra (more specifically, cubes) (node) and at the
center of each hexahedron (element). Nodes store kinematic
values (positions and velocities). The steps involve the most
compute-intensive calculation of the nodal forces from the ele-
mental contribution of stresses and volume force. After a diag-
nostic check for negative volumes, the hourglass contribution is
applied element-wise to each nodal force. Then it computes the
accelerations via F = ma with appropriate symmetry bound-
ary conditions to calculate new nodal velocities and positions.
Elements store thermodynamic variables (energy and pressure).
The steps involve the calculation of elemental kinematic val-
ues and new elemental and regional artificial viscosities. Then,
material properties are applied to each element and the Equa-
tion of State (EOS) is evaluated. The implementation uses an
outer loop over the regions and an inner loop over the elements
in a region. The communication of ghost fields happens twice:
First, the exchange of positions ensures the same nodal values
of the neighboring elements. Second, after their computation,
viscosity gradients are exchanged.
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Table 4: (Left) Parallel HPCG algorithm. (Right) Domain sizes and corresponding runtime breakdown for execution and communication in one iteration of
HPCG (including three reductions) and an undisturbed fully synchronized state (first iteration after an MPI_Barrier) on (a) 1280 processes on Meggie and (b)
1296 processes on SuperMUC-NG. Communication plays less role for large problems (small CER) and gets higher for small problems. All runs used the default
MPI_Allreduce implementation.

1

1: while (iter ≤ nIters) AND (rNorm ≤ tol) do
2: z = MG_SWEEP (A, rOld) ;
3: α = DDOT2 (rOld, z) ;
4: MPI_Allreduce ;
5: p= DAXPY ( α

αOld , pOld, z) ;
6: Ap = SPMVM (A, p) ;
7: MPI_Irecv ;
8: MPI_Send ;
9: MPI_Wait ;

10: pAp = DDOT2 (p, Ap) ;
11: MPI_Allreduce ;
12: xNew = DAXPY (x, α

pAP , p ) ;
13: r = DAXPY (rOld, α

pAP , Ap) ;
14: rNorm = DDOT1 (r, r) ;
15: MPI_Allreduce ;
16: rNorm = sqrt (rNorm) ;
17: end while

(a) M: Subdomain (full domain) Exec [ms] Comm [ms] Comm [GB] Allreduce min [us] Allreduce mean [ms] CER

323 (256x512x320) 18.77 2.626 0.303 690 2.913 0.14
483 (384x768x480) 53.27 1.335 0.665 202 0.639 0.025
643 (512x1024x640) 135.3 2.27 1.17 2,988 7.3 0.017
963 (768x1536x960) 493 17.766 2.6 116 37.36 0.036
1283 (1024x2048x1280) 1,102.1 20.852 4.59 119 102.93 0.019
1443 (1152x2304x1440) 1,573.19 6.348 5.8 116 153 0.004

(b) S: Subdomain (full domain) Exec [ms] Comm [ms] Comm [GB] Allreduce min [us] Allreduce mean [ms] CER

323 (384x384x288) 16.578 2.686 0.308 1,200 4.03 0.162
483 (576x576x432) 61.722 1.546 0.758 400 1.122 0.025
643 (768x768x576) 147.708 5.483 1.27 169 3.768 0.037
963 (1152x1152x864) 516.171 7.487 2.64 1,500 4.094 0.015

7.2. Load imbalance, problem sizes, and cost

We use the latest code version v2.0, which by default cal-
culates time constraints (Courant and hydro) and then deter-
mines the minimum required time step across domains. This
dynamic time step calculation incurs additional (niter−1) reduc-
tions (MPI_Allreduce) using the MPI_MIN operation. Inde-
pendent of time step size, we used a fixed number of steps niter =

5000, and 103 MPI processes on the Meggie system. The results
are shown in the default setting.The message profile (Fig. 11(a))
lets us expect fast-traveling idle waves due to long-distance
point-to-point communication (MPI_Isend, MPI_Irecv, MPI_-
Wait, MPI_Waitall sequence).

Initially (see Fig. 11(b)), we switched off the load imbal-
ance by setting the cost -c and balance -b command line op-
tions to be equal to zero. Performance in the number of el-
ements solved per second is shown with and without reduc-
tion operations. To avoid reductions, we run with a fixed time
step by defining a sufficiently small step size of 8 × 10−10 s
(dtfixed) in the setup code (lulesh-init.cc). In this case,
the steps to solution differ, since the initial time step previously
with reduction scales to an arbitrary size based on an analytical
equation.

In Fig. 11(c) and Fig. 12, we scan different degrees of load
imbalance to explore its performance impact on Meggie and
SuperMUC-NG, the rationale being that load imbalance serves
as a natural source of idle waves and thus as a trigger for auto-
matic communication overlap. Both the number of regions and
their load imbalance are very problem-dependent. The mini-
mum number of regions must equal the number of distinct ma-
terials. Hence, we used 11 distinct regions, as defined by de-
fault. Load imbalance is caused by adding the additional com-
putation cost to some regions in evaluating material properties
for the various Equations of State (EOS). The cost (-c #) value
sets the relative imbalance between regions within a domain.
It increases the cost of about 45% of the regions by the indi-
cated value times the time spent in EvalEOSForElems() and
the cost of 5% of the regions by ten times the indicated value.
Consequently, half the regions have no extra cost. The load bal-
ance (-b #) value can artificially add imbalance between do-
mains (due to a different mix of regions in each domain). It

changes the relative weight of regions within a domain. This
weight imbalance has a limit in that the time spent in EvalE-
OSForElems() remains less than half of the overall runtime.
The imbalance imposed via the -b # and -c # flags is repre-
sentative of the varying cost of evaluating material properties
of various equations of state or strength models. Comparing
no imbalance (-c 0 -b 0) with maximum (-c 4 -b 4), the
performance gain when eliminating the reduction reduced from
4.8% to 4%. Speedup by desynchronization is only relevant
at a very slight inter-domain load imbalance (-c 1 -b 0 on
Meggie; on SuperMUC-NG, imbalance has no positive effect.
However, the impact becomes better when using vectorization
flags for strong bandwidth saturation. Since LULESH has a
low CER, long-distance communication, and workloads are not
balanced even when no load imbalance (-c 0 -b 0) setting
is used, therefore, increasing asynchronicity by an algorithm
variant of reduction or injecting load imbalance will result in
performance loss rather than any benefit.

Upshot: Speedup with asynchronicity is only relevant with a
slight load imbalance for LULESH, if at all. In strong load
imbalance scenarios, the overlap effect is swamped by domi-
nating laggers.

8. High Performance Conjugate Gradient (HPCG)

HPCG9 complements the LINPACK benchmark when rank-
ing supercomputer systems; both together provide a better mea-
sure for real-world application performance. In HPCG, a linear
system of equations is solved whose coefficient matrix emerges
from a 27-point stencil at each grid point in a 3-D domain. On
many systems, its performance is determined by memory band-
width at large problem sizes because of its low operational in-
tensity. Hence, it shows the typical saturating performance pat-
tern when scaling across the cores of a contention domain.

8.1. Implementation
The MPI-parallel reference implementation of HPCG com-

prises a multigrid (MG) preconditioner and seven compute ker-
nels (see Table 4(left)); six of the kernels are of BLAS-1 type,

9HPCG benchmark, version 3.1: http://hpcg-benchmark.org
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Figure 13: Average, minimum, and maximum aggregated time spent in MPI_Allreduce versus implementation variants and local domain size for (top) 1280
processes distributed on 64 Meggie nodes and (bottom) 1296 processes distributed on 27 SuperMUC-NG nodes. The total runtime was about 1800 s in all cases.
Note the different y axis scaling in the left and right parts of these plots (separated by a solid line).

i.e., one DDOT1 (4 byte/flop), two DDOT2 (8 byte/flop) and three
DAXPY (16 byte/flop without write-allocate), and one is a sparse
matrix-vector multiplication SPMV (optimal 6 byte/flop). The
MG preconditioner (optimal 6 byte/flop) comprises five kernels:
RESTRICTION, PROLONGATION, SPMV, and two symmetric Gauss-
Seidel (SYMGS) kernels serving as pre- and post-smoothers (each
with forward and backward sweeps) for coarsening and refine-
ment, respectively. MPI parallelization is performed on a grid
of npxnpynpz = np processes, where npx is the inner dimen-
sion. Domain sizes are always given per process (weak scal-
ing). There are two types of MPI communication: Three MPI_-
Allreduce collectives are required for the dot products. Within
SpMV and SymGS, point-to-point communication is used to
handle halo exchanges for each subdomain with MPI_Irecv/MPI_-
Send/MPI_Wait sequences. Communication is symmetric through-
out, excluding boundaries, and the number of communication
partners per process can vary between 7 (corners) and 26 (inte-
rior).

In all our HPCG experiments, desynchronization across MPI
processes occurs automatically, i.e., it is not provoked [5]. The
propagation speed of idle waves within back-to-back SpMVM
operations using the HPCG matrix was modeled and analyzed
in [4].

8.2. Reduction algorithms

We chose HPCG to analyze design alternatives for the MPI_-
Allreduce collective, especially with regard to desynchroniza-
tion. In HPCG, the collectives have a different effect than in
LBM (perfectly balanced load, gradual desync with natural noise)
and in LULESH (heavily load imbalanced). The MPI_Allre-
duce is a significant and widely used collective that aggre-
gates the elements to compute their minimum, maximum, sum,
or other values in numerous distributed applications. The im-

plementation details of MPI_Allreduce have a decisive in-
fluence on the desynchronization and overlapping behavior of
the algorithm. Less-synchronizing implementations allow for
better overlapping with preceding (here DDOT) and subsequent
memory-bound kernels (here DAXPY) and will generally also
lead to more overlap within the SPMV/SYMGS operations. All
reductions in HPCG occur on single 8-byte double values per
process. In each iteration, since MPI_Allreduce occurs three
times, each process transfers an aggregated 61.44 kB and 62.16 kB
in both directions for 1280 and 1295 processes, respectively.

Even under the necessary condition that no process can leave
MPI_Allreduce before all processes have entered it, there are
considerable variations in the interaction details of this col-
lective routine with idle waves and asynchronous execution.10

In fact, a less-optimal but also less-synchronizing implementa-
tion can lead to better performance for HPCG. Still, an asyn-
chronous execution is more affected by the details of the re-
duction algorithm than by the idle wave velocity. Ideally, the
asynchronous performance boost would be unchanged by the
collective.

In Table 4(right) we show a breakdown of computation and
communication times, communication volumes, MPI_Allre-
duce timings (default implementation with the Intel MPI ver-
sion used), and the CER for 1280-process runs at different sub-
domain sizes, from small (communication heavy) to large (com-
putation dominant). These measurements, although care was
taken to maintain an undisturbed, fully synchronized execution,
already exhibit considerable variation in the MPI_Allreduce
timings across processes.

10In [4], we studied these variations using MPI_Reduce in the Intel MPI
library. Naturally, MPI_Reduce is more permeable and thus allows for higher
desynchronization, which is influenced by both the specifics of the reduction
algorithm and the idle wave velocity.
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Figure 14: Average runtime per HPCG iteration at fixed run time of 1800 s for MPI-parallelized (top) 1280 processes distributed on 64 Meggie nodes and (bottom)
1296 processes distributed on 27 SuperMUC-NG nodes. The x-axis denotes local (global) domain dimensions in x, y, and z directions. The legend represents diverse
MPI_Allreduce algorithms. Note the different y axis scalings left and right of the solid line.

To study the effects of MPI_Allreduce implementations
on asynchronous execution, we explore the configuration space
provided by Intel MPI’s I_MPI_ADJUST_<opname> variable.11

We label the twelve available implementations with A0 to A11
(default, recursive doubling, Rabenseifner’s, reduce-plus-broadcast,
topology-aware reduce-plus-broadcast, binomial gather-plus-
scatter, topology-aware binominal gather-plus-scatter, Shumilin’s
ring, ring, Knomial, topology-aware SHM-based flat and topology-
aware SHM-based Knomial). The A12 label denotes the setting
I_MPI_COLL_INTRANODE=pt2pt, which specifies that intran-
ode collectives should use point-to-point calls instead of shared-
memory transfers. It was used in combination with the default
MPI_Allreduce variant.

8.3. Asynchronicity through slower reduction algorithms

Figure 13 shows average, minimum, and maximum MPI_-
Allreduce times across 1280 processes for all variants. The
“best” or “worst” algorithm in terms of pure MPI_Allreduce
overhead is heavily dependent on the message sizes and the
number of processes per node [24]. However, this overhead
is not always the most relevant metric when desynchronization
is present.

Runtime in seconds per iteration for the full HPCG algo-
rithm is shown in Fig. 14 (Tables A.5, A.6 and A.7 in Appendix
A show the corresponding higher-is-better metrics like Gflop/s
and total number of iterations in 1800 s; note that Gflop/s num-
bers are as printed by the benchmark, so the ranking is not the

11Implementation details of MPI_Allreduce algorithmic variants can
be found at https://software.intel.com/content/www/us/en/
develop/documentation/mpi-developer-reference-windows/
top/environment-variable-reference/
i-mpi-adjust-family-environment-variables.html.

same on both scales). As expected, smaller problem sizes show
a larger impact from changes in MPI_Allreduce because com-
munication is more relevant (higher CER). The ring algorithm
A8 (and then Shumilin’s ring A7) is the most synchronizing im-
plementation, while recursive doubling A1 is the least synchro-
nizing one (maximum desync but not the most efficient design,
however).

The largest differences in runtime per iteration across MPI_-
Allreduce implementations can be observed with small do-
mains per process because the CER is larger while the point-
to-point communication overhead is not dominant. In these
scenarios, desynchronization can lead to performance improve-
ments and will survive collective operations, implementations
permitting. Our results show that the ring algorithms are gener-
ally the worst choice for HPCG performance, not only based on
their efficiency but also due to their strongly synchronizing im-
plementation. The global synchronizations happen twice in the
ring algorithm, i.e., at the end of both scatter-reduce and all-
gather phases [15]. Recursive doubling (A1) or Rabenseifner’s
(A2) are often among the best alternatives.

Naively, one assumes that the fastest MPI_Allreduce should
give you the best overall performance, but this is not always the
case. This can be easily visualized by comparing the time spent
in MPI_Allreduce (Fig. 13) with the overall performance of
HPCG (Fig. 14). For instance, A2/A11 for the 323 domain
and A3/A4 for the 483 domain show the least time spent in
the reduction, but the overall HPCG performance is on the low
end across all variants. Therefore, in the presence of signifi-
cant communication overhead, a large amount of time spent in
the MPI library is not necessarily harmful if the processes are
desynchronized, thereby overlapping useful work with waiting
times.
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Upshot: Faster collectives are not always the best; in fact,
there is a trade-off between collective overhead and overlap
benefit, depending on how often collectives occur. For bet-
ter HPCG performance, we recommend employing a less-
synchronizing MPI_Allreduce variant that is permeable to
asynchronous execution, even if it has higher overhead than
the most efficient implementation.

9. Outlook and future work

Parallel programs on HPC systems exhibit intriguing dy-
namics. We demonstrated using the MPI-augmented STREAM
Triad (MST) microbenchmark that deliberately injected noise
can accelerate the onset of an asynchronous state from an ini-
tial bulk-synchronous state and thereby mitigate some of the
communication overhead by hiding it behind useful computa-
tion. Using a D3Q19 Lattice-Boltzmann (LBM) implementa-
tion, we showed why it is advisable to keep the frequency of
collectives as low as possible, not only to reduce the commu-
nication overhead but mainly to avoid resynchronization and
thus allow asynchronous execution across processes. Compar-
ing this memory-bound code with a scalable D2Q37 imple-
mentation from SPEChpc 2021, we also demonstrated that lack
of contention on bottlenecks (memory bandwidth in our case)
and low communication-to-computation ratio do not yield posi-
tive performance effects from desynchronization. For MST and
LBM we employed the phase space plot as a new option for
visualizing the temporal behavior of parallel programs in terms
of MPI waiting time and performance; synchronized and desyn-
chronized programs exhibit distinctly different patterns in this
visualization.

The LULESH proxy application, although it does fulfill the
condition of memory boundedness, cannot profit from auto-
matic communication overlap, because its load imbalance (once
configured) is too strong and nullifies any positive effect from
desynchronization.

Using the HPCG benchmark we demonstrated that, for cer-
tain problem sizes, the collective’s synchronizing quality is more
significant than its bare overhead: “slower” collectives seem to
be more transparent to idle waves and allow for at least part of
the desynchronization to survive.

One general conclusion from this work is that the pres-
ence of a relevant communication overhead and (groups of)
processes being subject to a common hardware bottleneck are
prerequisites for automatic overlap. Future research will aim to
provide an analytical description of the effects of asynchronous
execution of MPI processes on performance, including overlap
effects not only between computation and communication but
also between parts of an application with different behavior to-
wards bottlenecks. In order to achieve this, we will employ
a parallel simulator that is currently under development. The
simulator can model the dynamics of large-scale applications
in a controlled setting, allowing for more in-depth investigation
while taking the contention into account and without running
programs on actual systems.
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Appendix A. HPCG performance metrics

Additional performance metrics resulting from the HPCG
program are addressed in Tables A.5, A.6 and A.7.
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Table A.5: Number of HPCG iteration at fixed run time of 1800 s for MPI-parallelized 1280 (1296) processes distributed on 64 Meggie (27 SuperMUC-NG) nodes.
First column donates local (global) domain dimensions in all three x, y and z directions. First row represents diverse MPI_Allreduce algorithms.

Domain vs. allreduce A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
323 (256x512x320) (M) 82,450 1.05 · 105 92,750 1.15 · 105 1.11 · 105 93,950 1.03 · 105 85,150 58,350 1.08 · 105 98,550 67,350 1.23 · 105

483 (384x768x480) (M) 24,350 28,200 33,350 20,800 27,850 33,150 32,950 23,600 19,100 24,450 27,100 22,350 27,600
643 (512x1024x640) (M) 12,050 14,000 12,550 10,600 12,050 12,750 12,150 10,950 9,550 11,650 12,500 12,500 11,050
963 (768x1536x960) (M) 3,750 3,700 4,000 3,850 3,850 3,800 3,550 3,500 3,450 3,800 3,650 3,750 3,700
1283 (1024x2048x1280) (M) 1,550 1,600 1,600 1,600 1,600 1,550 1,550 1,550 1,500 1,600 1,650 1,600 1,550
1443 (1152x2304x1440) (M) 1,150 1,100 1,200 1,100 1,100 1,100 1,100 1,100 1,050 1,150 1,100 1,100 1,100
323 (384x384x288) (S) 79,600 80,850 79,950 80,600 80,600 79,350 78,800 73,000 61,550 81,150 79,650 80,500 79,900
483 (576x576x432) (S) 27,900 28,250 28,050 27,950 28,100 27,950 27,750 25,150 24,700 27,800 28,100 28,050 28,150
643 (768x768x576) (S) 11,750 11,700 11,650 11,700 11,700 11,650 11,700 11,300 11,150 11,700 11,650 11,700 11,700
963 (1152x1152x864) (S) 3,400 3,400 3,400 3,350 3,400 3,350 3,400 3,350 3,300 3,400 3,400 3,350 3,400

Table A.6: HPCG performance in Gflop/s (convergence and optimization phase overhead included) at fixed run time of 1800 s for MPI-parallelized 1280 processes
distributed on 64 Meggie nodes. First column donates local (global) domain dimensions in all three x, y and z directions. First row represents diverse MPI_-
Allreduce algorithms.

Domain vs. allreduce A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

323 (256x512x320) (M) 765 765 845 761 758 764 761 612 506 796 782 749 786
483 (384x768x480) (M) 782 782 847 846 845 847 844 736 669 798 781 782 796
643 (512x1024x640) (M) 800 852 849 805 803 804 789 757 723 790 795 791 804
963 (768x1536x960) (M) 827 806 856 819 820 818 817 805 782 818 817 807 820
1283 (1024x2048x1280) (M) 822 860 859 830 834 818 821 815 787 840 842 843 809
1443 (1152x2304x1440) (M) 843 822 865 822 822 822 823 819 809 838 837 835 813
323 (384x384x288) (S) 690 688 689 689 696 687 686 622 537 688 690 695 689
483 (576x576x432) (S) 815 815 813 814 815 812 813 737 718 816 815 815 815
643 (768x768x576) (S) 810 806 806 808 808 806 807 780 761 807 807 810 808
963 (1152x1152x864) (S) 788 787 786 786 785 785 787 776 757 787 786 787 787

Table A.7: HPCG B/W in GB/s at fixed run time of 1800 s for MPI-parallelized 1280 processes distributed on 64 Meggie nodes. First column donates local (global)
domain dimensions in all three x, y and z directions. First row represents diverse MPI_Allreduce algorithms.

Domain vs. allreduce A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

323 (256x512x320) (M) 6,013 5,996 6,680 5,971 5,980 5,998 5,966 4,786 4,008 6,238 6,214 5,984 6,172
483 (384x768x480) (M) 6,196 6,149 6,719 6,674 6,663 6,679 6,694 5,785 5,260 6,284 6,167 6,160 6,264
643 (512x1024x640) (M) 6,328 6,767 6,755 6,384 6,385 6,369 6,263 5,996 5,723 6,275 6,303 6,273 6,383
963 (768x1536x960) (M) 6,538 6,379 6,790 6,484 6,493 6,480 6,467 6,379 6,179 6,479 6,471 6,383 6,491
1283 (1024x2048x1280) (M) 6,518 6,836 6,836 6,590 6,623 6,498 6,516 6,466 6,238 6,675 6,690 6,701 6,432
1443 (1152x2304x1440) (M) 6,695 6,534 6,882 6,527 6,529 6,522 6,531 6,502 6,424 6,656 6,655 6,633 6,474
323 (384x384x288) (S) 5,233 5,221 5,228 5,224 5,280 5,211 5,202 4,716 4,075 5,216 5,230 5,272 5,225
483 (576x576x432) (S) 6,182 6,183 6,166 6,169 6,179 6,155 6,166 5,590 5,442 6,185 6,180 6,177 6,179
643 (768x768x576) (S) 6,139 6,113 6,114 6,124 6,126 6,113 6,122 5,912 5,770 6,121 6,122 6,139 6,126
963 (1152x1152x864) (S) 5,974 5,966 5,959 5,958 5,954 5,955 5,966 5,886 5,886 5,967 5,963 5,966 5,965
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