
ar
X

iv
:2

30
7.

01
39

4v
1

 [
cs

.D
C

]
 3

 J
ul

 2
02

3

Procedia Computer Science 00 (2023) 1–17

Procedia
Computer
Science

In-depth Analysis On Parallel Processing Patterns for High-Performance
Dataframes

Niranda Pereraa, Arup Kumar Sarkerb,c, Mills Staylorb, Gregor von Laszewskic, Kaiying Shanb,
Supun Kamburugamuvea, Chathura Widanagea, Vibhatha Abeykoona, Thejaka Amila Kanewelaa,

Geoffrey Foxb,c

aIndiana University Alumni, Bloomington, IN 47405, USA
bUniversity of Virginia, Charlottesville, VA 22904, USA

cBiocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904, USA

Abstract

The Data Science domain has expanded monumentally in both research and industry communities during the past decade, predominantly

owing to the Big Data revolution. Artificial Intelligence (AI) and Machine Learning (ML) are bringing more complexities to data engineering

applications, which are now integrated into data processing pipelines to process terabytes of data. Typically, a significant amount of time is spent

on data preprocessing in these pipelines, and hence improving its efficiency directly impacts the overall pipeline performance. The community has

recently embraced the concept of Dataframes as the de-facto data structure for data representation and manipulation. However, the most widely

used serial Dataframes today (R, pandas) experience performance limitations while working on even moderately large data sets. We believe that

there is plenty of room for improvement by taking a look at this problem from a high-performance computing point of view. In a prior publication,

we presented a set of parallel processing patterns for distributed dataframe operators and the reference runtime implementation, Cylon [1]. In

this paper, we are expanding on the initial concept by introducing a cost model for evaluating the said patterns. Furthermore, we evaluate the

performance of Cylon on the ORNL Summit supercomputer.

© 2011 Published by Elsevier Ltd.

Keywords: Dataframes, High-performance computing, Data engineering, Relational algebra, MPI, Distributed Memory Parallel

1. Introduction

Artificial Intelligence (AI), Machine Learning (ML), and

the Big Data revolution have introduced an abundance of com-

plex data engineering applications in the data science domain.

These applications are now required to process terabytes of data

and are orchestrated as an intricate collection of data engineer-

ing pipelines. To achieve this, a significant amount of devel-

oper time is spent on data exploration, preprocessing, and pro-

totyping. Therefore, improving the efficiency of such activities

directly impacts the overall data engineering pipeline perfor-

mance.

Email addresses: niranda@niranda.dev (Niranda Perera),

djy8hg@virginia.edu (Arup Kumar Sarker), qad5gv@virginia.edu

(Mills Staylor), laszewski@gmail.com (Gregor von Laszewski),

shankaiying@gmail.com (Kaiying Shan), supun@apache.org (Supun

Kamburugamuve), chathurawidanage@gmail.com (Chathura Widanage),

vibhatha@gmail.com (Vibhatha Abeykoon), thejaka.amila@gmail.com

(Thejaka Amila Kanewela), vxj6mb@virginia.edu (Geoffrey Fox)

Databases and structured query language (SQL) have been

the de-facto tool for data preprocessing applications. However,

in the early 2000s, the focus shifted significantly towards Big

Data toolkits and frameworks. These systems (eg. Hadoop

[2] and map-reduce [3], Spark [4], Flink [5], etc.) enabled

more capabilities than traditional relational database manage-

ment systems (RDBMS), such as functional programming in-

terface, consuming large structured and unstructured data vol-

umes, deploying in the cloud at scale, etc. Coinciding with

the big data developments, enterprise and research communities

have invested significantly in artificial intelligence and machine

learning (AI/ML) systems. Data analytics frameworks comple-

ment AI/ML by providing a rich ecosystem for preprocessing

data, as these applications require enormous amounts of data to

train their models properly.

In recent times, the data science community has increas-

ingly moved away from established SQL-based abstractions and

adopted Python/R-based approaches, due to their user-friendly

1

http://arxiv.org/abs/2307.01394v1

/ Procedia Computer Science 00 (2023) 1–17 2

programming environment, optimized execution backends, broad

community support, etc. Dataframes play a pivotal role in this

transformation [6] by providing a functional interface and in-

teractive development environment for exploratory data analyt-

ics. Most dataframe systems available today (e.g. R-dataframe,

Pandas) are driven by the open-source community. However,

despite this popularity, many dataframe systems encounter per-

formance limitations even on moderately large data sets. We

believe that dataframe systems have now exhausted the capabil-

ities of a single computer and this paves the way for distributed

and parallel dataframe processing systems.

1.1. Background: High-Performance Dataframes from Paral-

lel Processing Patterns

In the precursor publication, titled ”High-Performance

Dataframes from Parallel Processing Patterns” [1], we pre-

sented a framework that lays the foundation for building high-

performance distributed-memory parallel dataframe systems

based on parallel processing patterns. There, we analyzed the

semantics of common dataframe operators to establish a set of

generic distributed operator patterns. We also discussed sev-

eral significant engineering challenges related to developing

a scalable and high-performance distributed dataframe (DDF)

system. The main goal of this framework is to simplify the

DDF development process substantially by promoting exist-

ing serial/ local operators into distributed operators following

the said patterns. They primarily focus on a distributed mem-

ory and Bulk Synchronous Parallel (BSP) [7, 8] execution en-

vironment. This combination has been widely employed by

the high-performance computing (HPC) community for exas-

cale computing applications with admirable success. Based

on this framework, we developed Cylon, an open-source high-

performance distributed dataframe system [9].

In this paper, we present an in-depth analysis of the afore-

mentioned parallel processing patterns based on a cost model.

We encapsulate the parallel processing patterns concept into

”Cylon Distributed Operator Model” and present ”Cylon Com-

munication Model” which allows plugging-in multiple commu-

nication runtimes into Cylon distributed execution. These two

aspects constitute the ”Cylon Distributed Memory Execution

Model”, which we will discuss in detail in the following sec-

tions. Furthermore, we will introduce a cost model to evaluate

the performance of distributed memory execution. In addition,

we demonstrate the scalability of Cylon on leadership-class su-

percomputing environments, which affirms the significance of

the underlying framework. We have also conducted a scalabil-

ity analysis between Cylon and related state-of-the-art data pro-

cessing systems. This analysis demonstrates the applicability

of the design across the board, on both distributed computing

and supercomputing infrastructure. In the following sections,

we use Cylon to refer to its underlying high-performance DDF

framework interchangeably.

2. Cylon Distributed-Memory Execution Model

Cylon is based on the distributed memory parallel model,

which isolates memory for each parallel process. These pro-

cesses can manage their memory individually while communi-

cating with others using message passing. This isolation makes

distributed operator implementation easier to reason about. While

it leaves room for improvement, especially using multi-threading

execution, the results show that Cylon dataframes show supe-

rior scalability over the state-of-the-art systems. In addition,

it is based on BSP execution in the distributed memory envi-

ronment. Gao et al. [10] recently published a similar concept

for scaling joins over thousands of Nvidia Graphical Processor

Units (GPU). Cylon experiments demonstrate that this approach

can be generalized to all operators and achieves commendable

performance.

Conceptually, we can divide Cylon distributed execution

model into two distinct sub-models, 1. Communication Model,

and 2. Distributed Operator Model. We will discuss the for-

mer in Section 3 and the latter in Section 4.

2.1. Distributed Memory Parallel Dataframe Definition

Figure 1: Distributed Memory Dataframe Abstraction

The primary insight behind Cylon is to present a dataframe

framework that promotes an already available serial (local) op-

erator into a distributed memory parallel execution environ-

ment [11]. For this purpose, we formally defined a Distributed

Memory Parallel Dataframe based on row-based partitioning in

our previous publication [1]. This concept is depicted in Figure

1. The dotted lines represent the virtual collection of Partitions

in the distributed memory parallel environment. Users would

not see a separate distributed API object but instead, continue

to write their program as they would work on a single partition.

The execution environment determines if the operator needs to

be performed locally or in a distributed fashion based on the

operator’s semantics.

For example, Figure 2a shows a Pandas script that reads

data from two directories, joins them, sorts the result, and takes

2

/ Procedia Computer Science 00 (2023) 1–17 3

the top 10 rows. A corresponding Cylon script for distributed-

memory Dataframes is shown in Figure 2b.

2.2. Apache Arrow Columnar Memory Layout

Cylon uses Apache Arrow Columnar format as the physi-

cal data representation. This is an integral component of the

Cylon memory model. It provides several benefits, such as

data adjacency for sequential access (scans), O(1) (constant-

time) random access, SIMD vectorization-friendly data struc-

ture, true zero-copy access in shared memory, etc. It also al-

lows serialization-free data access from many language run-

times. Due to these benefits, many libraries including Pan-

das, PySpark [4], CuDF [12], and Ray [13], are now using the

Apache Arrow format.

3. Cylon Communication Model

In many dataframe applications, communication operations

take up significant time creating critical bottlenecks. This is evi-

dent from our experiments (Section 6), where we evaluate com-

munication and computation time breakdown applied to several

dataframe operator patterns. Moreover, most frameworks (eg.

Spark, Dask, Ray), provide special guidelines to reduce com-

munication overheads (eg. shuffle routine) [14, 15]. Therefore,

careful attention has been given while developing the commu-

nication model for Cylon.

BSP execution allows the program to continue independently

until the next communication boundary is reached. Message

passing libraries such as MPI (OpenMPI, MPICH, IBM Spec-

trum, etc), Gloo, and UCX [16] provide communication rou-

tines for memory buffers, which by extension support homo-

geneously typed arrays. The most primitive routines are point-

to-point (P2P) message passing, i.e., tag-based async send and

async receive. Complex patterns (generally termed collectives)

can be derived on top of these two primitive routines (eg. MPI-

Collectives, UCX-UCC).

Unlike multi-dimensional arrays, heterogeneous data types

in dataframes make communication routines more involved. The

Arrow columnar data format represents a column by a tuple

of buffers (boolean validity bitmap, integer offsets, & byte

data). A dataframe incorporates a collection of such columns.

Therefore, a communication routine would have to be called

on each of these buffers. Cylon communication model outlines

a set of communication collectives required to implement dis-

tributed memory parallel dataframes by inspecting the seman-

tics of core dataframe operators. These are listed in Table 1

together with their frequency of usage for each data structure.

The key features of the Cylon communication model are,

1. Modular architecture: Allows plugging-in multiple com-

munication libraries.

2. Extensibility: The communication model has been eas-

ily extended into Nvidia CUDA GPU hardware, in GCy-

lon project.

Figure 3 depicts the overall Cylon architecture.

3.1. Communicator

The communicator interface manages Cylon communica-

tion routines (Figure 4). At the very top, the user API de-

fines routines based on the data layer data structures, as de-

scribed in Table 1. These are blocking routines for the user

(e.g., shuffle table will wait until completion).

The communicator implements these routines using two ab-

stract constructs, (1). channels (for point-to-point/ send-receive

communications) and (2). collective communications. The for-

mer works only on byte buffers, and the collectives can also

be implemented using these channels. In fact, table shuffle

is implemented using channels due to a mismatch in traditional

MPI Alltoall. The abstract collective communications imple-

ment collective routines for composite data structures (tables,

arrays, and scalars), using collectives on buffers. This abstract

implementation allows Cylon to easily plug in multiple commu-

nication libraries that support BSP semantics, such as OpenMPI

[17], UCX [16], and Gloo [18].

3.2. Abstract Channels

Channels are designed to be used for composite buffer com-

munications in a non-blocking manner. During the initializa-

tion, it registers two callbacks which inform the caller that (1).

the sending has been completed, (2). the data is received for a

particular buffer. It then accepts requests that contain the buffer

address and metadata (such as buffer size, buffer index, etc.) to

be sent. The caller then has to progress through sends and re-

ceives. First, the channel exchanges buffer metadata, which is

used to allocate memory for receiving buffers. Later on, it starts

exchanging data. Both these progressions use non-blocking

send/receive routines. Once each receiving buffer completes,

it will be passed on to the caller using the receive-callback.

Channels give much flexibility to the caller to implement

composite communication routines. However, there are dis-

advantages to this as well. Most importantly, each buffer col-

lective routine must be implemented from scratch using chan-

nels. As listed in Table 3, we need to implement multiple com-

munication algorithms to get the best performance for collec-

tives. Managing such a custom communication library code

base could be a cumbersome exercise. Currently, shuffle rou-

tine is implemented using the channels.

3.3. Abstract Collectives

Abstract collectives are higher-level communication ab-

straction that implements table, array, or scalar collectives us-

ing non-blocking buffer collective routines. For example, an

allgather table can be implemented as a collection of non-

blocking allgather routines. To do this, we create a metadata

structure with the buffer pointers, sizes, data types, etc. of the

input table and call corresponding communication routines on

each buffer. In the end, we recreate the resultant table based on

the output buffers.

3.4. Supported Communication Libraries

Currently, Cylon communicator supports the following com-

munication libraries that support BSP message-passing seman-

tics.

3

/ Procedia Computer Science 00 (2023) 1–17 4

df1 = read_csv(’dir/path/0’) #read

df2 = read_csv(’dir/path/1’)

df_j = df1.merge(df2, ...) #join

df_s = df_j.sort_values(...) #sort

df_s.iloc[:10] # head(10)

(a) Pandas

df1 = read_csv_dist(’dir/path/0’, env=env) #dist read

df2 = read_csv_dist(’dir/path/1’, env=env)

df_j = df1.merge(df2, ..., env=env) #dist join

df_s = df_j.sort_values(..., env=env) #dist sort

df_s.iloc[:10, env] #dist head(10)

(b) Cylon

Figure 2: Example script

Data Structure

Operation Table Array Scalar

Send/ Recv Common Common Common

Shuffle (AllToAll) Common Rare N/A

Scatter Common Rare N/A

Gather/AllGather Common Common Common

Broadcast Common Common Common

Reduce/AllReduce N/A Common Common

Barrier Common (independent of the data structure)

Table 1: Communication semantics in Dataframe Operators

Figure 3: Cylon Architecture

Figure 4: Cylon Communicator Model

4

/ Procedia Computer Science 00 (2023) 1–17 5

3.4.1. OpenMPI

OpenMPI is a widely used open-source implementation of

the MPI specification. It consists of two main components, (1).

process management and (2). communication library. Cur-

rently, Process Management Interface Exascale (PMIx) stan-

dard [19] is used for the former, while various communica-

tion algorithms have been implemented (Table 3) as a part of

the latter. It is a comprehensive communication library with a

rich collection of communication routines for many distributed

computing and HPC applications. Cylon communication model

was also heavily influenced by OpenMPI.

3.4.2. Gloo

Gloo collective communications library is managed by Meta

Inc. incubator [18] predominantly aimed at machine learning

applications. PyTorch uses it for distributed all-reduce opera-

tions. It currently supports TCP, UV, and ibverbs transports.

Gloo communication runtime can be initialized using an MPI

Communicator or an NFS/Redis key-value store (P2P message

passing is not affected). Gloo lacks a comprehensive algorithm

implementation as an incubator project, yet our experiments

confirmed that it scales admirably. We have extended the Gloo

project to suit Cylon communication interface.

3.4.3. UCX/UCC

Unified Communication X (UCX) is a collection of libraries

and interfaces that provides an efficient and convenient way to

construct widely used HPC protocols on high-speed networks,

including MPI tag matching, Remote Memory Access (RMA)

operations, etc. Unlike MPI runtimes, UCX communication

workers are not bound to a process bootstrapping mechanism.

As such, it is being used by many frameworks, including Apache

Spark and RAPIDS (Dask-CuDF). It provides primitive P2P

communication operations. Unified Collective Communications

(UCC) is a collective communication operation API built on

UCX, which is still being developed. Similar to MPI, UCC

implements multiple communication algorithms for collective

communications. Based on our experiments, UCX+UCC per-

formance is on par with or better than OpenMPI.

4. Cylon Distributed Operator Model

Cylon distributed operator model provides the basis for el-

evating a local dataframe operator to a distributed memory par-

allel dataframe operator. This was the primary idea behind our

precursor publication [1]. It comprises two key observations,

1. A distributed operator consists of three major sub-operators:

(a) Core local operator

(b) Auxiliary local operators

(c) Communication operators

For example, the bottom image in Figure 5 shows how

the distributed join is composed of these sub-operators.

2. By examining the composition of these sub-operators,

they can be categorized into several parallel execution

patterns, as depicted in Figure 6. Therefore, rather than

analyzing/ optimizing each operator, we can focus on

these parallel patterns. In addition, some operators can

be implemented using multiple algorithms that show dis-

tinctive parallel patterns (e.g., join can be done by shuf-

fling or by broadcasting). Hence, understanding these

patterns is essential to choose the best runtime strategy.

Figure 5: Distributed DDF Sub-operator Composition [1] (Bottom: Join Oper-

ator Example)

Figure 6: Cylon Operator Patterns & Modin DF Algebra

We believe understanding distributed dataframe operator pat-

terns reduce the burden of parallelizing a massive API, such as

Pandas. To address the same problem, Petersohn et al. [20]

introduced a primitive set of dataframe operators that could be

used as a basis for the rest, termed Dataframe Algebra. Our

dataframe operator patterns are a complementary concept to

dataframe algebra, as shown in Figure 6.

5

/ Procedia Computer Science 00 (2023) 1–17 6

4.1. Core Local Operator

These refer to single-threaded implementations of primitive

operators. There could be one or more libraries that provide

this functionality, such as numpy, pandas, RAPIDS CuDF [12],

Acero (Apache Arrow Compute), etc, or locally developed as a

part of Cylon. The choice of the library depends on the lan-

guage runtime, the underlying memory format, and the hard-

ware architecture. This is to prevent redundant development

efforts for reinventing the existing functionality.

4.2. Auxiliary Sub-operators

Partition operators are essential for distributed memory ap-

plications. Partitioning determines how a local data partition

is split into subsets so they can be sent across the network.

This operator is closely tied with Shuffle communication rou-

tine. Hash partition, range partition, and rebalance are several

key auxiliary operators.

4.3. Parallel Processing Patterns & Operator Implementations

According to our previous publication, dataframe operators

can be broadly separated into three categories [1], as described

in Table 2.

1. Embarrassingly parallel: Operators that require no com-

munication required

2. Loosely synchronous: Operators that require communi-

cation at some stage in its implementation. This is a

broad category; therefore, it is separated into the follow-

ing subcategories.

(a) Shuffle-compute

(b) Sample-shuffle-compute

(c) Combine-shuffle-reduce

(d) Broadcast-compute

(e) Globally reduce

(f) Halo exchange

3. Partitioned I/O: I/O operators in distributed memory par-

allel environments require communication to load bal-

ance data amongst the workers.

5. Cost Model For Evaluation

A cost model can be applied to the Cylon distributed opera-

tor model to estimate the execution time/ cost of each operator

pattern. As observed before, each pattern comprises three sub-

operators. Hence, the total cost estimate (Ttotal) is the sum of

the cost of each sub-operator.

Ttotal = Tcore + Taux + Tcomm

1. Tcore → Core local operator cost

2. Taux → Auxiliary local operator cost

3. Tcomm → Communication operator cost

We analyze the communication and computation cost of

distributed dataframe operators in the subsequent sections, and

the following notation has been used.

• P→ Parallelism

• N → Total number of rows

• n = N/P→ Number of rows per process

• c → Number of columns (constant for row-partitioned

data)

• N = N × c→ Total amount of distributed work/ total data

• n = N/P→Work per process/ rows per process

• C→ Cardinality of data

5.1. Communication Cost (Tcomm)

Based on the literature, Hockney [21], LogP [22], and LogGP

[23] are some of the most commonly used cost models to eval-

uate collective communication operations. Hockney model pro-

vides a simple communication cost estimation, and therefore,

it has been used in many recent publications [24, 25, 26, 27].

The model fails to capture the network congestion. However,

it provides an adequate cost estimation to evaluate Cylon. The

model assumes that the taken to send a message between any

two nodes can be modeled as,

T = α + nβ

1. n → Message size/ number of bytes

transferred

2. α → Latency/ startup time per mes-

sage (independent of n)

3. β→ Transfer time per byte

Let us take Shuffle (AllToAll) for an example. Cylon uses

non-blocking send-receive-based implementation. Each worker

would shuffle n data with others in P iterations. In each itera-

tion, it would send and receive n
P

amount of data (on average,

for uniformly distributed data). Out of the P iterations, one it-

eration is a local data transfer. Therefore,

T shu f f le = (P − 1)(α + n
P
β) = (P − 1)α +

(P−1)n

P
β

Therefore, for row-partitioned data,

T shu f f le = T startup + Ttrans f er = O(P) + O(P−1
P
× n)

Table 3 describes the communication costs of communication

routines used in distributed dataframe operator implementations

for multiple algorithms based on the Hockney model. It uses the

definitions described in the Section 5.

5.2. Computation Cost (Tcore + Taux)

Core local operator cost (Tcore) & auxiliary local operator

cost (Taux) constitutes the computation cost. Since these are

local operations, the cost can be derived from time complexity of

the algorithm. For example, a local sort operation would take

(when using a quick-sort algorithm for uniformly distributed

data),

6

/ Procedia Computer Science 00 (2023) 1–17 7

Pattern Operators
Result

Semantic
Communication

Embarrassingly parallel
Select, Project, Map,

Row-Aggregation
Partitioned -

Loosely Synchronous

• Shuffle Compute
Union, Difference,

Join, Transpose
Partitioned Shuffle

• Combine Shuffle Reduce Unique, GroupBy Partitioned Shuffle

• Broadcast Compute Broadcast-Join∗ Partitioned Bcast

• Globally Reduce Column-Aggregation Replicated AllReduce

• Sample Shuffle Compute Sort Partitioned Gather, Bcast, Shuffle, AllReduce

• Halo Exchange Window Partitioned Send-recv

Partitioned I/O Read/Write Partitioned Send-recv, Scatter, Gather

*Specialized join algorithm

Table 2: Generic Dataframe Operator Patterns

Operation Algorithm

Startup

time

(T startup)

Transfer

Time

(Ttrans f er)

Reduction

Time

(Treduce)

Shuffle/AllToAll

isend-irecieve[24] O(P) O(P−1
P
∗ n) -

Ring[25] O(P) O(P ∗ n) -

Pairwise Exchange[24] O(P) O(n) -

Bruck[26]/Modified Bruck[25] O(log P) O(log P ∗ n
2
) -

AllGather

Ring[24] O(P) O(P−1
P
∗ N) -

Recursive Doubling[24] O(log P) O(P−1
P
∗ N) -

Bruck[24] O(log P) O(P−1
P
∗ N) -

Broadcast
Binomial Tree[24] O(log P) O(log P ∗ n) -

Scatter-AllGather [28] O(log P + P) O(P−1
P
∗ n) -

Reduce
Binomial Tree[24] O(log P) O(log P ∗ n) O(log P ∗ n)

Reduce-Scatter Gather [29] O(log P) O(P−1
P
∗ n) O(P−1

P
∗ n)

AllReduce

Binomial Tree[24] O(log P) O(log P ∗ n) O(log P ∗ n)

Recursive Doubling[24] O(log P) O(log P ∗ n) O(log P ∗ n)

Reduce-Scatter AllGather [29] O(log P) O(P−1
P
∗ n) O(P−1

P
∗ n)

Table 3: Complexity of Communication Operations

7

/ Procedia Computer Science 00 (2023) 1–17 8

T sort = O(n log n)

Table 4 describes the time complexities of commonly used local

dataframe operators (Core local operator cost, Tcore) and their

output size (nnew).

5.3. Total Cost of Dataframe Operator Patterns

We will look at the total cost of each operator pattern in the

following subsections.

5.3.1. Embarrassingly Parallel

This is the most trivial class of operators since they do not

require any communication to parallelize the computation. Se-

lect, Project, Map, and Row-Aggregation fall under this pat-

tern. Arithmetic operations (ex: add, mul, etc.) are also good

examples of this pattern. Embarrassingly parallel distributed

operators can simply call the corresponding local operator, and

therefore the cost estimation of this pattern is,

TEP = O(n)

5.3.2. Shuffle Compute

This common pattern can be used for operators that depend

on Equality/Key Equality of rows. Of the core dataframe oper-

ators, join, union and difference directly fall under this

pattern. In contrast, transpose follows a more nuanced ap-

proach.

Partitioning and shuffling communication routines rearrange

the data so that equal/key-equal rows are on the same partition

at the end of the operation. This guarantees that the correspond-

ing local operation can be called at the end of the shuffling

stage. Join, Union and Difference operators follow this pattern:

Partition → Split → Shuffle → LocalOp

Therefore, the cost estimation of shuffle compute for each worker

is,

T shu f f le compute(hash) = O(n) + O(P) + O(P−1
P
× n) + Tcore

T shu f f le compute(range) = O(log P)+O(n)+O(P)+O(P−1
P
×n)+Tcore

Typically partitioning schemes (hash, range, etc.) are map

operators and, therefore, access memory locations contiguously.

These can be efficiently executed on modern SIMD-enabled

hardware. However, the local operator may need to access

memory randomly (e.g., a join that uses a hash table). There-

fore, allowing the local operator to work on in-cache data im-

proves the efficiency of the computation. This can be achieved

by simply attaching a local partition block at the end of the

shuffle.

Partition → Split → Shuffle → Partition → Split → LocalOp

A more complex scheme would be to partition data into much

smaller sub-partitions from the beginning of the pipeline. Pos-

sible gains on each scheme depend heavily on runtime charac-

teristics such as the data distribution.

5.3.3. Sample Shuffle Compute

This pattern is an extension of the shuffle-compute pattern.

Sampling is commonly used for operators such as distributed

sort. It gives an overview of the data distribution, which needs

to be communicated among the other workers to determine an

ordered (range) partition scheme. This can be achieved trivially

by calling all reduce operation, or by a composite of com-

munication & computation steps (eg. sample sort).

Sample → Communicate insights → Partition → Split →

Shuffle → LocalOp

Cylon uses multiple algorithms for distributed sort implemen-

tation. The data can be range-partitioned for numerical key

columns based on a key-data histogram, and it would have the

following total cost per worker.

Sample → Allreduce range → Binning &Range part. →

Shuffle → Local sort

T sort(range) = O(log P) +O(n) +O(P) +O(P−1
P
× n) +O(n log n)

For the rest, Cylon uses sample sort with regular sampling

[30]. It sorts data locally and sends a sample to a central entity

that determines pivot points for data. Based on these points,

sorted data will be split and shuffled. Finally, all executors

merge the received sub-partitions locally.

Local sort → Sample → Gather @rank0 →

Calc. pivots @rank0 → Bcast pivots → Split → Shuffle →

Local merge

5.3.4. Combine Shuffle Reduce

Another extension of the Shuffle-Compute pattern, Combine-

Shuffle-Reduce, is semantically similar to the map-reduce [3]

paradigm. The operations that reduce the output length, such as

Groupby and Unique, benefit from this pattern. The effective-

ness of combine-shuffle-reduce over shuffle-compute depends

on the Cardinality (C) (i.e., the ratio of unique rows to the total

length). It follows,

LocalOp (interm. results) → Partition → Split →

Shuffle → LocalOp with final res.

The initial local operation reduces data into a set of inter-

mediate results (similar to the Combine step in MapReduce),

which would then be shuffled. Upon their receipt, a local oper-

ation is performed to finalize the results. The author also dis-

cusses this approach for dataframe reductions in a recent publi-

cation [31]. At the end of the initial local operation, the output

dataframe size (in each worker) is O(nC). Therefore, the total

cost per worker would be,

Tcomb shu f red = Tcore(n)+O(nC)+O(P)+O(P−1
P
×nC)+Tcore(nC)

8

/ Procedia Computer Science 00 (2023) 1–17 9

Local Operation Cost (Tcore) Output Size (nnew)

Selection, Map O(n) O(n)

Row-aggregation O(nc) = O(n) O(n)

Projection O(c) O(nc)

Union O(nc) = O(n) (hash-based) O(nC)

Set-difference O(nc) = O(n) (hash-based) O(n)

Hash-Join O(n) + O(n
C

) O(n
C

)

Sort-Join O(n log n) + O(n
C

) O(n
C

)

Transpose O(nc) O(nc)

Unique O(nc) = O(n) (hash-based) O(nC)

GroupBy O(n) (hash-based) O(nC)

Column Aggregation O(nc) = O(n) O(c)

Sort O(n log n) O(n)

Table 4: Core local operator cost (Tcore)

5.3.5. Globally Reduce

This pattern is most commonly seen in dataframe Column-

Aggregation operators. It is similar to the embarrassingly paral-

lel pattern but requires an extra communication step to arrive at

the final result. For example, calculating the column-wise mean

requires a local summation, a global reduction, and a final value

calculation.

LocalOp → Allreduce → Finalize

Some utility methods such as distributed length and equality

also follow this pattern. For large data sets, the complexity of

this operator is usually governed by the computation rather than

the communication.

5.3.6. Halo Exchange

This pattern is observed in window operations. A window

operation performs an aggregation over a sliding partition of

values. Pandas API supports rolling and expanding windows.

For row partitions, the windows at the boundaries would have

to communicate with their neighboring partitions and exchange

partially computed results. The amount of data sent/received is

based on the window type and individual length of partitions.

5.3.7. Broadcast Compute

Broadcast compute is a scaled-down pattern from shuffle-

compute. Rather than shuffling, certain operators like broadcast-

join can use broadcasting. This strategy only becomes useful

when there is a smaller relation so that it can be broadcasted

without shuffling the large relation. It reduces communication

overhead significantly. However, broadcast-joins would per-

form poorly if the relations were of the same order. This ef-

fect was observed in Modin [20], where out-of-memory errors

are reported even for moderately large datasets because it only

employs broadcast joins.

Broadcast → LocalOp

5.3.8. Partitioned I/O

Partitioned Input parallelizes the input data (CSV, JSON,

Parquet) by distributing the files to each executor. It may dis-

tribute a list of input files to each worker evenly. Alternatively,

it receives a custom one-to-many mapping from the worker to

input file(s). It reads the input files according to the custom as-

signment. For Parquet files, Partitioned Input tries to distribute

the number of rows to each partition as evenly as possible when

metadata is present. Suppose an executor does not receive data

from reading. In that case, it constructs an empty dataframe

with the same schema as the other partitions. In Partitioned

Output, each executor writes its partition dataframe to one file.

5.4. Runtime Aspects

5.4.1. Cardinality

Equality of rows governs the Cardinality of a Dataframe

C, which is the number of unique rows relative to the length.

Therefore, C ∈ [1
N
, 1], where C = 1

N
=⇒ rows are identical

and C = 1 =⇒ all rows are unique. In the Combine-Shuffle-

Reduce pattern, the initial local operation has the potential to re-

duce communication order to n′ < n. This gain depends on the

Cardinality (C) of the dataframe C ∈ [1
N
, 1], which is the num-

ber of unique rows relative to the length. C ∼ 1
N
=⇒ n′ ≪ n,

making the combine-shuffle-reduce much more efficient than a

shuffle-compute. Consequently, when C ∼ 1 =⇒ n′ ∼ n

may in fact worsen the combine-shuffle-reduce complexity. In

such cases, the shuffle-compute pattern is more efficient. This

incident is very evident from the cost model.

Tcomb shu f red = Tcore(n)+O(nC)+O(P)+O(P−1
P
×nC)+Tcore(nC)

vs

T shu f comp = O(n) + O(P) + O(P−1
P
× n) + Tcore(n)

When, C→ 1 =⇒ Tcomb shu f red → T shu f comp, and in fact, it is

worse because the core local operation would have to be carried

out twice.

5.4.2. Data Distribution

Data distribution heavily impacts the partitioning operators.

Some executors may be underutilized when unbalanced parti-

9

/ Procedia Computer Science 00 (2023) 1–17 10

tions exist, affecting the overall distributed performance. Work-

stealing scheduling is a possible solution to this problem. In a

BSP environment, pseudo-work-stealing execution can be achieved

by storing partition data in a shared object-store. Furthermore,

some operations could employ different operator patterns based

on the data distribution. For instance, when one relation is

very small by comparison, Join could use a broadcast join

(broadcast-compute) rather than a hash-shuffle join (shuffle-compute)

to achieve better performance.

5.4.3. Out-of-Core Execution

Currently, Cylon is limited by the memory available to the

workers. With the data immutability guarantees, it always al-

locates new memory for the columns that get modified. There-

fore, loosely synchronous patterns may require a workspace of

3 − 4× the size of the table. This could be a challenging re-

quirement for memory-constrained environments and limits the

dataset size we could process. Therefore, the system needs to

be able to execute operators out-of-core.

5.4.4. Logical Plan Optimizations

A typical SQL query may translate to multiple Dataframe

operators, and the application script can include several such

queries. Semantically, these operators construct a DAG (di-

rected acyclic graph) or a logical plan. SQL and data engi-

neering engines generate an optimized logical plan based on

rules (ex: predicate push-down) or cost metrics. While these

optimizations produce significant gains in real-life applications,

this is an orthogonal detail to the individual operator patterns

we focus on in this paper.

6. Experiments

To evaluate the performance of Cylon distributed-memory

execution model, we have conducted the following experiments.

• Communication and computation breakdown of Cylon

operators for strong and weak scaling

• Running Cylon in Oak Ridge National Laboratory Sum-

mit supercomputer

• Comparing Cylon performance against the state-of-the-

art data processing systems

For the following experiments, uniformly random distributed

data was used with two int64 columns in column-major for-

mat (Fortran order). Data uses a cardinality of 90% (i.e. 90%

of rows are unique), which constitutes a worst-case scenario for

key-based operators (eg. join, sort, groupby, etc). The main fo-

cus of these experiments is to micro-benchmark the distributed

operator implementation. Using a generated dataset allows the

input dataset to be uniformly distributed and thereby evaluate

the true performance of the kernels. Barthels et al. followed a

similar approach to evaluate distributed join kernels [32].

6.1. Communication & Computation

These experiments were carried out on a 15-node Intel®

Xeon® Platinum 8160 cluster. Each node comprises 48 hard-

ware cores on two sockets, 255GB RAM, and SSD storage, and

is connected via Infiniband with 40Gbps bandwidth.

Figure 7: Computation and Communication Breakdown - join (Strong Scal-

ing)

Figure 7 shows communication and computation time break-

down for join operation for a strong scaling test (1B rows per

table). Moreover, Figure 8 shows the same for a weak scaling

test (25M per worker per table). Out of many operators, joins

have the most communication overhead, as it is a binary opera-

tor (2 input DFs).

In the strong scaling plot, even at the smallest parallelism

(32), there is a significant communication overhead (Gloo 27%,

MPI 17%, UCX 17%), and as the parallelism increases, it dom-

inates the wall time (Gloo 76%, MPI 86%, UCX 69%). Unfor-

tunately, the author needed more expertise in the Spark, Dask,

or Ray DDF code base to run a similar micro-benchmark. This

experiment shows that communication plays a significant role

in dataframe operator implementation. Despite using libraries

specialized for message passing, Cylon still encounters signifi-

cant communication overhead. Therefore, careful consideration

must be given to communication while developing distributed

dataframe runtimes.

The weak scaling plot can further analyze the impact of

communication performance. The work per process is fixed;

therefore, we should see a flat graph. However, as we see in

Figure 8, the time increases along the parallelism axis, indicat-

ing that the communication overhead increases. The graph on

the right plots each stage (log-log). The local join computation

is relatively flat, while both shuffle stages (left & right) show a

linear increase.

6.1.1. Examining the results using the cost model

By looking at the cost model in Section 5, the cost of join

would be,

10

/ Procedia Computer Science 00 (2023) 1–17 11

Figure 8: Computation and Communication Breakdown - join (Weak Scaling)

T shu f f le = O(P − 1) + O(P−1
P
× n)

T join(sort) = O(P − 1) + O(P−1
P
× n) + O(n) + O(n log n) + O(n

C
)

Substituting n = N/P,

T join(sort) = O(P−1)+O(P−1
P
× N

P
)+O(N

P
)+O(N

P
log N

P
)+O(N

PC
)

For strong scaling, N is constant. Therefore, as P increases,

the components that depend on n (in computation and commu-

nication) reduce. This results in a downward trend in wall time.

However, the O(P − 1) component (coming from the commu-

nication cost) overtakes the gains of reducing n. This explains

the increase in wall time in higher parallelisms.

Similarly, for weak scaling, n is kept constant, which re-

duces the cost to O(P − 1) +O(P−1
P

). For the parallelism values

tested in the experiments (Figure 8), this explains the increas-

ing wall-time values and linear upward trends in shuffle timings.

Even though the amount of data transferred per worker remains

constant (n), the cost model does not account for network con-

gestion. This could explain the increasing gradient at higher

parallelisms.

In the following sections, we will see that Cylon outper-

forms the state-of-the-art data engineering systems available

today. However, the weak scaling indicates that Cylon still

needs to improve on the communication operator performance

(such as shuffle). It would be worthwhile evaluating other al-

gorithms such as Pairwise Exchange[24], Bruck[26]/ Modified

Bruck[25], etc., that have better time complexity as the paral-

lelism increases. Another option would be to completely of-

fload the shuffle implementation to the communication library

(MPI, Gloo, UCX) and let the library decide which algorithm

to choose based on runtime characteristics.

6.2. Cylon on ORNL Summit Supercomputer

Cylon was run on the Summit supercomputer at Oak Ridge

National Laboratory (ORNL) as a part of large-scale testing.

Each node in Summit consists of two IBM POWER9 processors

and six Nvidia Tesla V100 accelerators, and there are 4600 of

these nodes available for computation, reaching a theoretical

Figure 9: ORNL Summit Node Architecture [33]

11

/ Procedia Computer Science 00 (2023) 1–17 12

peak double-precision performance of approximately 200 PF.

Each node consists of 512 GB of RAM and 42 hardware cores.

Figure 9 shows the architecture of a single node in Summit. For

Cylon workloads, only the CPU nodes were used.

6.2.1. Setting up Cylon in Summit

Setting up Cylon environment in Summit proved to be a te-

dious undertaking. Generally, Cylon is installed via a Conda

Python environment [34], which conveniently installs depen-

dencies using the official Anaconda packages. However, due to

the Summit node hardware architecture, some of these default

packages were failing unexpectedly. Most notably, we encoun-

tered memory allocation errors from the Apache Arrow library.

Since this is an essential requirement for Cylon, we had to re-

build Apache Arrow natively on Summit hardware architecture.

This was done by the native Cylon installation script which uses

PyPI (pip) environment [35].

Additionally, Summit supercomputer uses its own MPI im-

plementation based on IBM Spectrum MPI [36]. At the time,

Cylon was tested on OpenMPI and Microsoft MPI only, and

therefore, several minor changes were required to properly link

with Summit MPI modules.

The recommended way of using custom software in Summit

is to create a module and load it (with dependencies) in batch

scripts. However, this requires advanced expertise in Summit

package management. We bypassed this requirement by in-

stalling Cylon and its dependencies into a PyPI environment

using a login node. This PyPI environment resides in the user

space in the file system. When submitting a batch job, we would

activate this environment and run our Cylon script.

Following is an example batch script for a Cylon workload.

#!/bin/bash

#BSUB -P <project name>

#BSUB -W 1:30

#BSUB -nnodes 8

#BSUB -alloc_flags smt1

#BSUB -J cylonrun-s-8

#BSUB -o cylonrun-s-8.%J

#BSUB -e cylonrun-s-8.%J

module load python/3.7.7 gcc/9.3.0

source $HOME/CYLON/bin/activate

BUILD_PATH=$HOME/cylon/build

export LD_LIBRARY_PATH=$BUILD_PATH/arrow/install/lib64:

$BUILD_PATH/glog/install/lib64:$BUILD_PATH/lib64:

$BUILD_PATH/lib:$LD_LIBRARY_PATH

time jsrun -n $((8*42)) -c 1 python $HOME/cylon/summit/

scripts/cylon_scaling.py -n 9999994368 -s s

Both installation and batch scripts are available in the Cylon

GitHub repository [9].

6.2.2. Strong Scaling

A strong scaling experiment was carried out on Cylon join

operation of two 10 billion row tables. The size of each table

is around 160GB. The parallelism was increased from 4 nodes

(4 × 42 = 168 cores) to 25 nodes (256 × 42 = 10, 752 cores).

Figure 10 plots the results on a log-log scale.

Figure 10a shows 10 billion rows per table experiment. As

the parallelism increases from 168 to 2688, the wall time re-

duces almost linearly with fairly consistent timings. However,

from thereon, the timings take a drastic turn and show a higher

variance. From 5,376 onward, the computation component is

less than 2 million rows per table per core. Therefore, commu-

nication would dominate the final wall time.

To further analyze this scenario, another 50 billion rows per

table experiment was carried out (Figure 10b). There, smaller

parallelism experiments were unsuccessful due to memory lim-

itations. However, for higher parallelisms, the wall time re-

duces fairly linearly, as expected. This indicates that, as long

as the computation dominates the communication, performance

gains can be achieved by adding more resources. For 50 bil-

lion cases, the inflection point would occur at higher parallelism

than 10752.

6.2.3. Weak Scaling

A weak scaling experiment was carried out again on Cylon

join operation. The intention was to utilize the memory avail-

able in the node allocation fully. Considering the 512GB RAM

and 42 cores per node, it was decided to use 50 million row ta-

bles per core. The number of cores has been increased from 1

to 10752, where the last experiment joins more than 1 trillion

rows from the two tables. The results are depicted in Figure 11.

As we saw in the previous weak scaling experiments, the

wall time increases with parallelism. This is not ideal for a

weak scaling plot. However, the main culprit for this increase

is the shuffle communication overhead. However, Cylon was

able to successfully process more than 17 terabytes (TB) of

data across 10,752 cores which is a commendable achievement.

When looking at the throughput of the operation, it steadily in-

creases to close to 12 million tuples/second.

Cores
Rows

(Mn)

Size

(GB)

Throughput

(Tuples/s)

1 50 1 3,261

42 2,100 34 110,437

84 4,200 67 186,267

168 8,400 134 384,137

336 16,800 269 729,943

672 33,600 538 1,377,837

1,344 67,200 1,075 2,561,797

2,688 134,400 2,150 4,513,890

5,376 268,800 4,301 7,657,451

10,752 537,600 8,602 11,814,754

Table 5: Summit Weak Scaling Results

6.3. Cylon vs. the State-of-the-art

In order to evaluate the performance of the distributed-memory

execution model discussed in this paper, we performed a strong

scaling analysis on several state-of-the-art distributed dataframe

systems that are described in the related work section (Section

7). Experiments were also carried out on Pandas [37] to get a

serial performance baseline. The following frameworks were

considered. We tried our best to refer to publicly available doc-

umentation, user guides, and forums while carrying out these

tests to get the optimal configurations.

12

/ Procedia Computer Science 00 (2023) 1–17 13

(a) 10B Rows (b) 50B Rows

Figure 10: Cylon Strong Scaling on Summit

Figure 11: Cylon Weak Scaling on Summit

• Dask Distributed Dataframes v2022.8

• Ray Datasets v1.12

• Modin Distributed Dataframe v0.13

• Apache Spark (Pandas-on-Spark) v3.3

We have carried out similar strong scaling analyses in the

precursor publication [1, 38], and several others [39, 40, 11].

In this publication, the results have been updated to the latest

versions of software and their dependencies. The same 15-node

Intel® Xeon® Platinum 8160 cluster described in Section 6.1

was also used for these experiments.

The following dataframe operator patterns were used for the

experiments. When evaluating large-scale data engineering use

cases (eg. TPC benchmarks [41], Deep Learning Recommen-

dation Model (DLRM) preprocessing [42], etc) and based on

our prior experience, these operator patterns [11, 38] consume

the majority of the computation time.

• Shuffle Compute - Join operator

• Combine Shuffle Reduce - GroupBy operator

• Sample Shuffle Compute - Sort operator

Figure 12 depicts two sets of strong-scaling experiments.

Left column represents tests on one billion-row dataset with

all systems, while the Right column represents a smaller 100

million-row dataset with Cylon, Dask, and Spark systems. Cy-

lon was using the UCX/UCC [16] communicator, as it shows

the best distributed performance.

Unfortunately, several challenges were encountered with run-

ning tests on Ray Datasets. It only supports unary operators

(single input) currently. Therefore it has been omitted from Join

experiments. Moreover, Ray groupby did not complete within

3 hours, and sort did not show presentable results. Several is-

sues came up with Modin as well. It only supports broadcast join

implementation, which performs poorly on two similar-sized

dataframe Join. Only the Ray backend worked well with the

data sets. Another observation was that Modin defaults to Pan-

das for Sort (ie. limited distributed scalability).

The one billion-row strong scaling timings show that Cylon

shows better scalability compared to the rest. Dask & Spark

Datasets show commendable scalability for Join and Sort, how-

ever the former displays very limited scalability for GroupBy.

A 100 million row test case (right column of Figure 12) was

performed to investigate Dask & Spark further. This constitutes

a communication-bound operation because the partition sizes

are smaller. This reduces the computation complexity, how-

ever, these smaller partitions need to be communicated across

the same number of workers. Under these circumstances, both

Dask and Spark diverge significantly at higher parallelisms, in-

dicating limitations in their communication implementations.

13

/ Procedia Computer Science 00 (2023) 1–17 14

Figure 12: Strong Scaling of Distributed Dataframe Operators (Log-Log), Left: 1B rows, Right: 100M rows (Only Cylon, Dask, & Spark)

14

/ Procedia Computer Science 00 (2023) 1–17 15

There was a consistent anomaly in Spark timings for 8-32 par-

allelism. We hope to investigate this further with the help of the

Spark community.

We also observe that the serial performance of Cylon out-

performs the rest consistently, which could be directly related

to Cylon’s C++ implementation and the use of Apache Arrow

format. At every parallelism, Cylon distributed performance is

2 − 4× higher than Dask/Spark consistently. These results con-

firm the efficacy of the proposed distributed execution model in

this paper.

7. Related Work

In a previous publication, we proposed a formal framework

for designing and developing high-performance data engineer-

ing frameworks that include data structures, architectures, and

program models [43]. Kamburugamuve et al proposed a sim-

ilar big data toolkit named Twister2 [44], which is based on

Java. There, the authors observed that using a BSP-like envi-

ronment for data processing improves scalability, and they also

introduced a DF-like API in Java named TSets. However, Cy-

lon being developed in C++ enables the native performance of

hardware and provides a more robust integration to Python and

R.

In parallel to Cylon, Totoni et al also suggested a similar

HP-DDF runtime named HiFrames [45]. They primarily at-

tempt to compile native MPI code for DDF operators using

numba. While there are several architectural similarities be-

tween HiFrames and Cylon, the latter is the only open-source

high-performance distributed dataframe system available at the

moment.

Dask [46, 47] is one of the pioneering distributed dataframe

implementations out there. It provides a Pandas-like API and

is built on top of the Dask distributed execution environment.

CuDF [12] extends this implementation in Dask-CuDF to pro-

vide distributed dataframe capabilities in Nvidia GPUs. Modin

[48, 20] is another dataframe implementation built on top of

Dask and Ray. It provides an API identical to Pandas so that

existing applications can be easily ported to a distributed exe-

cution. Apache Spark [4, 49] also provides a Pandas-like DDF

named Pandas on Spark.

In addition to these systems, we would also like to recog-

nize some exciting new projects. Velox is a C++ vectorized

database acceleration library managed by the Meta Inc. incu-

bator [50]. Currently, it does not provide a DF abstraction, but

still offers most of the operators shown in Figure 6. Photon

is another C++-based vectorized query engine developed by

Databricks [51] that enables native performance to the Apache

Spark ecosystem. Unfortunately, it has yet to be released to

the open-source community. Substrait is another interesting

model that attempts to produce an independent description of

data compute operations [52].

8. Limitations and Future Work

Cylon currently covers about 30% of the Pandas API, and

more distributed operators are being added, significantly, Win-

dow operators. Furthermore, the cost model for evaluating

dataframe operator patterns has allowed us to identify areas of

improvement. For example, communication operations could

be improved by introducing algorithms that have lower latency

costs.

Additionally, in Section 6.1 we saw significant time being

spent on communication. These observations can be further an-

alyzed using MPI profiler tools (eg. TAU - Tuning and Analy-

sis Utilities, LLNL mpiP, etc.) and distributed debugging tools

(eg. Arm/Linaro DDT, etc). Some of these tools are available in

the Summit supercomputer, which could give an in-depth look

at the communication bottlenecks. In modern CPU hardware,

we can perform computation while waiting on communication

results. Since an operator consists of sub-operators arranged

in a DAG, we can exploit pipeline parallelism by overlapping

communication and computation. Furthermore, we can also

change the granularity of a computation such that it fits into

CPU caches. We have made some preliminary investigations

on these ideas, and we were able to see significant performance

improvements for Cylon.

Providing fault tolerance in an MPI-like environment is quite

challenging, as it operates under the assumption that the com-

munication channels are alive throughout the application. This

means providing communication-level fault tolerance would be

complicated. However, we are planning to add a checkpointing

mechanism that would allow a much coarser-level fault toler-

ance. Load imbalance (especially with skewed datasets) could

starve some processes and might reduce the overall throughput.

To avoid such scenarios, we are working on a sample-based

repartitioning mechanism.

9. Conclusion

We recognize that today’s data science communication op-

erations could be improved by introducing algorithms that have

lower latency costs. The data science community requires scal-

able solutions to meet its ever-growing data demand. Dataframes

are at the heart of such applications, and in this paper, we dis-

cussed a cost model for evaluating the performance of distributed

dataframe operator patterns introduced in our prior publication

[1]. We also extended the execution model described in the pre-

vious work, by introducing a communication model. With these

additions, we strongly believe we have presented a compre-

hensive execution model for distributed dataframe operators in

distributed memory environments. Additionally, we presented

Cylon, a reference runtime developed based on these concepts.

We use the proposed model to analyze the communication and

computation performance and identify bottlenecks and areas of

improvement. We also showcased the importance of this work

by conducting large-scale experiments on the ORNL Summit

supercomputer where it showed admirable scalability in both

strong and weak scaling experiments. Cylon also showed su-

perior scalability compared to the state-of-the-art distributed

dataframe systems, which further substantiates the effectiveness

of the execution model presented in this paper.

15

/ Procedia Computer Science 00 (2023) 1–17 16

Acknowledgments

We gratefully acknowledge the support of NSF grants 2210266

(CINES) and 1918626 (GPCE).

References

[1] N. Perera, S. Kamburugamuve, C. Widanage, V. Abeykoon, A. Uyar,

K. Shan, H. Maithree, D. Lenadora, T. A. Kanewala, G. Fox, High per-

formance dataframes from parallel processing patterns, arXiv preprint

arXiv:2209.06146.

[2] Apache hadoop, https://hadoop.apache.org/ .

[3] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large

clusters, Communications of the ACM 51 (1) (2008) 107–113.

[4] Apache spark™ - unified engine for large-scale data analytics,

https://spark.apache.org/ .

[5] Apache flink: Stateful computations over data streams,

https://flink.apache.org/ .

[6] W. McKinney, et al., Pandas: a foundational python library for data analy-

sis and statistics, Python for High Performance and Scientific Computing

14 (9) (2011) 1–9.

[7] L. G. Valiant, A bridging model for parallel computation, Communica-

tions of the ACM 33 (8) (1990) 103–111.

[8] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker, R. L.

White, Solving problems on concurrent processors vol. 1: General tech-

niques and regular problems, Computers in Physics 3 (1) (1989) 83–84.

[9] Cylondata, Cylon, https://github.com/cylondata/cylon .

[10] H. Gao, N. Sakharnykh, Scaling joins to a thousand gpus, in: 12th In-

ternational Workshop on Accelerating Analytics and Data Management

Systems Using Modern Processor and Storage Architectures, ADMS@

VLDB, 2021.

[11] C. Widanage, N. Perera, V. Abeykoon, S. Kamburugamuve, T. A.

Kanewala, H. Maithree, P. Wickramasinghe, A. Uyar, G. Gunduz, G. Fox,

High performance data engineering everywhere, in: 2020 IEEE Interna-

tional Conference on Smart Data Services (SMDS), IEEE, 2020, pp. 122–

132.

[12] rapidsai/cudf: cudf - gpu dataframe library,

https://github.com/rapidsai/cudf .

[13] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Eli-

bol, Z. Yang, W. Paul, M. I. Jordan, et al., Ray: A distributed framework

for emerging {AI} applications, in: 13th USENIX Symposium on Operat-

ing Systems Design and Implementation (OSDI 18), 2018, pp. 561–577.

[14] Shuffling for groupby and join — dask documentation,

https://docs.dask.org/en/stable/dataframe-groupby.html .

[15] Performance tips and tuning — ray 2.0.0,

https://docs.ray.io/en/latest/data/performance-tips.html .

[16] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernan-

dez, Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, et al.,

Ucx: an open source framework for hpc network apis and beyond, in:

2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,

IEEE, 2015, pp. 40–43.

[17] Open mpi: Open source high performance computing,

https://www.open-mpi.org/ .

[18] facebookincubator/gloo: Collective communications li-

brary with various primitives for multi-machine training.,

https://github.com/facebookincubator/gloo .

[19] Pmix — process management interface - exascale copyright 2017-2020

pmix community, https://pmix.github.io/ .

[20] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo, J. E. Gonza-

lez, J. M. Hellerstein, A. D. Joseph, A. Parameswaran, Towards scalable

dataframe systems, arXiv preprint arXiv: 2001.00888.

[21] R. W. Hockney, The communication challenge for mpp: Intel paragon

and meiko cs-2, Parallel computing 20 (3) (1994) 389–398.

[22] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, T. Von Eicken, Logp: Towards a realistic model of par-

allel computation, in: Proceedings of the fourth ACM SIGPLAN sympo-

sium on Principles and practice of parallel programming, 1993, pp. 1–12.

[23] A. Alexandrov, M. F. Ionescu, K. E. Schauser, C. Scheiman, Loggp: In-

corporating long messages into the logp model for parallel computation,

Journal of parallel and distributed computing 44 (1) (1997) 71–79.

[24] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective com-

munication operations in mpich, The International Journal of High Per-

formance Computing Applications 19 (1) (2005) 49–66.

[25] J. L. Träff, A. Rougier, S. Hunold, Implementing a classic: Zero-copy

all-to-all communication with mpi datatypes, in: Proceedings of the 28th

ACM international conference on Supercomputing, 2014, pp. 135–144.

[26] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, D. Weathersby, Efficient algo-

rithms for all-to-all communications in multiport message passing sys-

tems, IEEE Transactions on parallel and distributed systems 8 (11) (1997)

1143–1156.

[27] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,

J. J. Dongarra, Performance analysis of mpi collective operations, Cluster

Computing 10 (2) (2007) 127–143.

[28] M. Shroff, R. A. Van De Geijn, Collmark: Mpi collective communication

benchmark, in: International Conference on Supercomputing, Citeseer,

2000, p. 10.

[29] R. Rabenseifner, Optimization of collective reduction operations, in: In-

ternational Conference on Computational Science, Springer, 2004, pp.

1–9.

[30] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, H. Shi, On the versa-

tility of parallel sorting by regular sampling, Parallel Computing 19 (10)

(1993) 1079–1103.

[31] N. Perera, V. Abeykoon, C. Widanage, S. Kamburugamuve, T. A.

Kanewala, P. Wickramasinghe, A. Uyar, H. Maithree, D. Lenadora,

G. Fox, A fast, scalable, universal approach for distributed data reduc-

tions, in: International Workshop on Big Data Reduction, IEEE Big Data,

2020.

[32] C. Barthels, I. Müller, T. Schneider, G. Alonso, T. Hoefler, Distributed

join algorithms on thousands of cores, Proceedings of the VLDB Endow-

ment 10 (5) (2017) 517–528.

[33] Summit user guide - olcf user documentation,

https://docs.olcf.ornl.gov/ .

[34] Conda - conda documentation, https://docs.conda.io/ .

[35] Pypi - the python package index, https://pypi.org/.

[36] IBM, Ibm spectrum mpi - overview,

https://www.ibm.com/products/spectrum-mpi .

[37] pandas - python data analysis library, https://pandas.pydata.org/ .

[38] N. Perera, S. Kamburugamuve, C. Widanage, V. Abeykoon, A. Uyar,

K. Shan, H. Maithree, D. Lenadora, T. A. Kanewala, G. Fox, High per-

formance dataframes from parallel processing patterns, in: Parallel Pro-

cessing and Applied Mathematics: 14th International Conference, PPAM

2022, Gdansk, Poland, September 11–14, 2022, Revised Selected Papers,

Part I, Springer, 2023, pp. 291–304.

[39] D. N. Perera, Towards scalable high performance data engineering sys-

tems, Ph.D. thesis, Indiana University (2023).

[40] N. Perera, K. Shan, S. Kamburugamuwe, T. A. Kanewela, C. Widanage,

A. Sarker, M. Staylor, T. Zhong, V. Abeykoon, G. Fox, Supercharging dis-

tributed computing environments for high performance data engineering,

arXiv preprint arXiv:2301.07896.

[41] Tpc-homepage, https://www.tpc.org/default5.asp .

[42] NVIDIA, Optimizing the deep learn-

ing recommendation model on nvidia gpus,

https://developer.nvidia.com/blog/optimizing-dlrm-on-nvidia-gpus/ .

[43] S. Kamburugamuve, C. Widanage, N. Perera, V. Abeykoon, A. Uyar,

T. A. Kanewala, G. Von Laszewski, G. Fox, Hptmt: Operator-based

architecture for scalable high-performance data-intensive frameworks,

in: 2021 IEEE 14th International Conference on Cloud Computing

(CLOUD), IEEE, 2021, pp. 228–239.

[44] S. Kamburugamuve, K. Govindarajan, P. Wickramasinghe, V. Abeykoon,

G. Fox, Twister2: Design of a big data toolkit, Concurrency and Compu-

tation: Practice and Experience 32 (3) (2020) e5189.

[45] E. Totoni, W. U. Hassan, T. A. Anderson, T. Shpeisman, Hiframes:

High performance data frames in a scripting language, arXiv preprint

arXiv:1704.02341.

[46] Dask — scale the python tools you love, https://www.dask.org/.

[47] M. Rocklin, Dask: Parallel computation with blocked algorithms and task

scheduling, in: Proceedings of the 14th python in science conference, Vol.

130, Citeseer, 2015, p. 136.

[48] Modin, Scale your pandas workflow by changing a

single line of code — modin 0.18.0 documentation,

https://modin.readthedocs.io/en/stable/ .

16

https://hadoop.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://github.com/cylondata/cylon
https://github.com/rapidsai/cudf
https://docs.dask.org/en/stable/dataframe-groupby.html
https://docs.ray.io/en/latest/data/performance-tips.html
https://www.open-mpi.org/
https://github.com/facebookincubator/gloo
https://pmix.github.io/
https://docs.olcf.ornl.gov/
https://docs.conda.io/
https://pypi.org/
https://www.ibm.com/products/spectrum-mpi
https://pandas.pydata.org/
https://www.tpc.org/default5.asp
https://developer.nvidia.com/blog/optimizing-dlrm-on-nvidia-gpus/
https://www.dask.org/
https://modin.readthedocs.io/en/stable/

/ Procedia Computer Science 00 (2023) 1–17 17

[49] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,

M. J. Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A

{Fault-Tolerant} abstraction for {In-Memory} cluster computing, in: 9th

USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 12), 2012, pp. 15–28.

[50] P. Pedreira, O. Erling, M. Basmanova, K. Wilfong, L. Sakka, K. Pai,

W. He, B. Chattopadhyay, Velox: Meta’s unified execution engine.

[51] A. Behm, S. Palkar, U. Agarwal, T. Armstrong, D. Cashman, A. Dave,

T. Greenstein, S. Hovsepian, R. Johnson, A. Sai Krishnan, et al., Photon:

A fast query engine for lakehouse systems, in: Proceedings of the 2022

International Conference on Management of Data, 2022, pp. 2326–2339.

[52] substrait-io/substrait: A cross platform way to express data transfor-

mation, relational algebra, standardized record expression and plans.,

https://github.com/substrait-io/substrait .

17

https://github.com/substrait-io/substrait

	Introduction
	Background: High-Performance Dataframes from Parallel Processing Patterns

	Cylon Distributed-Memory Execution Model
	Distributed Memory Parallel Dataframe Definition
	Apache Arrow Columnar Memory Layout

	Cylon Communication Model
	Communicator
	Abstract Channels
	Abstract Collectives
	Supported Communication Libraries
	OpenMPI
	Gloo
	UCX/UCC

	Cylon Distributed Operator Model
	Core Local Operator
	Auxiliary Sub-operators
	Parallel Processing Patterns & Operator Implementations

	Cost Model For Evaluation
	Communication Cost (Tcomm)
	Computation Cost (Tcore + Taux)
	Total Cost of Dataframe Operator Patterns
	Embarrassingly Parallel
	Shuffle Compute
	Sample Shuffle Compute
	Combine Shuffle Reduce
	Globally Reduce
	Halo Exchange
	Broadcast Compute
	Partitioned I/O

	Runtime Aspects
	Cardinality
	Data Distribution
	Out-of-Core Execution
	Logical Plan Optimizations

	Experiments
	Communication & Computation
	Examining the results using the cost model

	Cylon on ORNL Summit Supercomputer
	Setting up Cylon in Summit
	Strong Scaling
	Weak Scaling

	Cylon vs. the State-of-the-art

	Related Work
	Limitations and Future Work
	Conclusion

