
Improving Robustness of Convolutional Neural Networks Using Element-Wise
Activation Scaling

Abstract
Recent works reveal that re-calibrating the inter-
mediate activation of adversarial examples can im-
prove the adversarial robustness of a CNN model.
The state of the arts [Bai et al., 2021] and [Yan
et al., 2021] explores this feature at the channel
level, i.e. the activation of a channel is uniformly
scaled by a factor. In this paper, we investigate
the intermediate activation manipulation at a more
fine-grained level. Instead of uniformly scaling
the activation, we individually adjust each element
within an activation and thus propose Element-
Wise Activation Scaling, dubbed EWAS, to im-
prove CNNs’ adversarial robustness. Experimen-
tal results on ResNet-18 and WideResNet with CI-
FAR10 and SVHN show that EWAS significantly
improves the robustness accuracy. Especially for
ResNet18 on CIFAR10, EWAS increases the ad-
versarial accuracy by 37.65% to 82.35% against
C&W attack. EWAS is simple yet very effec-
tive in terms of improving robustness. The codes
are anonymously available at https://anonymous.
4open.science/r/EWAS-DD64.

1 Introduction
Convolutional neural networks (CNNs) have demonstrated
its superiority in various applications, especially for com-
puter vision tasks, like classification, object detection and
segmentation [Krizhevsky et al., 2017; Dosovitskiy et al.,
2021]. However, CNNs are found to be vulnerable to ad-
versarial samples that are perturbed by unperceptive noises
[Szegedy et al., 2014]. Adversarial attacks significantly un-
dermine the model’s robustness and threat the applicability
of CNNs to some safety-critical and security-critical con-
texts, e.g. self-driving, person identification, etc. A plenty
of efforts have been made to improve CNNs’ adversarial
robustness and these efforts can be generally divided into
two categories: adversarial attacks and adversarial defence.
Various methods are proposed to generate diverse adver-
sarial samples [Szegedy et al., 2014; Carlini and Wagner,
2017; Madry et al., 2018; Moosavi-Dezfooli et al., 2016;
Su et al., 2019; Xiao et al., 2018; Jandial et al., 2019;
Croce and Hein, 2020].

On the other hand, many works aim to defend the adver-
sarial attacks. A number of defense methods have been pro-
posed, such as defensive distillation [Papernot et al., 2016;
Goldblum et al., 2020], feature denoising [Xie et al., 2019;
Liao et al., 2018], GAN [Liu and Hsieh, 2019], model com-
pression [Madaan et al., 2020; Ye et al., 2019; Gui et al.,
2019], authentication defense [Chen et al., 2019], and ad-
versarial training (AT) and its variants [Madry et al., 2018;
Zhang et al., 2019; Wang et al., 2020; Wong et al., 2020]. Re-
cently, some works investigate the difference between natural
models and AT-trained counterparts in terms of intermediate
activation and propose to adjust intermediate activation for
better adversarial robustness. [Kannan et al., 2018] proposes
to make the logit of natural samples and adversarial samples
similar. The adversarial perturbations of input images are
deemed as noises and hence [Xie et al., 2019] suggests to
denoise the distorted features using non-local means or other
filters to improve robustness. [Liao et al., 2018] proposes to
deploy high-level representations to guide the denoising pro-
cedure. [Bai et al., 2021] observes that adversarial examples
wrongly activate ‘negative’ features which lead to the final
misclassification and thus proposes Channel-wise Activation
Suppressing (CAS) strategy to suppress those ‘negative’ fea-
tures to improve a model’s robustness. In parallel, [Yan et
al., 2021] has similar observations and proposes a channel-
wise activation method, namely CIFS, to enhance the robust-
ness. Besides suppressing the negative activation, they also
promote the positive activation for higher accuracy.

All these methods apply to the channel/activation level, i.e.,
the whole channel or activation will be suppressed or pro-
moted by a uniform scaling. Although such uniform activa-
tion scaling (suppression or promotion) methods do improve
robustness as seen from [Bai et al., 2021; Yan et al., 2021],
scaling uniformly, especially suppression, may lead to the in-
formation loss of the scaled activation. This inspires us to
think about can we robustly scale/calibrate activation without
losing their information which may help the model to further
improve its robustness?

In this paper, we propose a new and fine-grained activation
scaling method to improve the robustness of CNN models,
i.e., instead of scaling each activation using a uniform scal-
ing, we conduct an Element-Wise Activation Scaling, dubbed
EWAS. By means of EWAS, the distorted activation are not
completely suppressed or promoted, but are re-calibrated in a

ar
X

iv
:2

20
2.

11
89

8v
1 

 [
cs

.C
V

] 
 2

4 
Fe

b 
20

22

https://anonymous.4open.science/r/EWAS-DD64
https://anonymous.4open.science/r/EWAS-DD64


fine-grained manner. Our key contributions are summarized
as follows:

• We propose the EWAS module, which can be easily
added to the existing CNN models. EWAS performs
activation adjustment in an element-wise fashion to im-
prove the CNNs’ robustness. The core component of
EWAS is an auxiliary and class-aware classifier which is
used to generate the element scaling factor.

• We conduct extensive experiments to evaluate the ef-
fectiveness of EWAS in terms of adversarial robustness,
where different CNN models, datasets, AT methods and
adversarial attacks are deployed. The experimental re-
sults show that our EWAS-based models can greatly im-
prove the robustness of the evaluated models over SOTA
[Bai et al., 2021][Yan et al., 2021]. In the best case
against C&W attack, EWAS can improve the robustness
by 37.65% to 82.35% and makes its adversarial accuracy
comparable to its nature accuracy, 84.73%.

Remark: [Bai et al., 2021] and [Yan et al., 2021] strive to
minimize the activation difference between nature examples
and adversarial counterparts. However, the activation analy-
sis shows that EWAS does not follow this objective, where
EWAS-modified CNNs demonstrate different activation dis-
tributions for natural and adversarial pairs. This may provide
a new thought in improving the CNNs’ robustness.

2 Related Work
In this section, we briefly review adversarial training methods
and the adversarial defending methods relevant to EWAS.

Adversarial Training: AT [Madry et al., 2018] is the most
widely used method to improve CNNs’ robustness. AT which
is a data augmentation technique for adversarial defence aims
to solve the following min-max optimization problem:

min
θ
E(x,y)∼D[max

δ
(L(y, F (x+ δ,θ)))] (1)

where F represents a CNN model with weight parameters θ
andL is the loss function, e.g., cross-entropy loss. x and y are
a natural example and its corresponding label from datasetD.
x+ δ represents the adversary of x with adversarial perturba-
tion δ which is within lp-norm distance and satisfies ‖δ‖p <
ε. Here, similar to previous methods, [Yan et al., 2021;
Bai et al., 2021] we set p = ∞. The inner maximiza-
tion problem aims to generate the strong adversary, while the
outer minimization problem is the model training procedure
to learn model weights θ with adversarial examples.

Different adversarial attacks can be applied to AT, such as
Projected Gradient Descent (PGD) [Madry et al., 2018] and
fast gradient sign method (FGSM) [Wong et al., 2020]. Since
the emergence of AT, diverse methods have been proposed
to improve the effectiveness and efficiency of AT. [Wong et
al., 2020] combined FGSM [Szegedy et al., 2014] with ran-
dom initialization to make FGSM applicable to AT with lower
cost. [Wang et al., 2020] observed the impact of misclas-
sified samples on models’ robustness and thus proposed a
misclassification-aware AT (MART) to improve the adver-
sarial robustness. Although AT can improve adversarial ro-
bustness, it also sacrifices the accuracy for natural examples.

Two improvements, TRADES [Zhang et al., 2019] and FAT
[Zhang et al., 2020], are proposed to address the accuracy
drop for natural examples.

Robust Activation Manipulation: Some works strive to
understand the difference between adversarial examples and
their nature counterparts from the lens of intermediate activa-
tion. Then, some works propose to diminish such difference
to improve the robustness, e.g., adversarial logit pairing [Kan-
nan et al., 2018]. Two concurrent works, CAS [Bai et al.,
2021] and CIFS [Yan et al., 2021], adopt the robust activation
scaling. [Bai et al., 2021] proposed Channel-wise Activation
Suppressing (CAS) strategy to suppress redundant activation
that are ‘negatively’ activated by adversarial examples. Sim-
ilarly, [Yan et al., 2021] observed that some channels, which
are over-activated by adversarial examples but are not impor-
tant to correct prediction, undermine the adversarial robust-
ness. Thus, they proposed CIFS which identifies those chan-
nels and suppresses them to improve the robustness. The two
above-mentioned methods both feature a channel-level scal-
ing, i.e., the whole activation is uniformly scaled as shown in
Fig. 1(a). We conjecture that these uniformly scaled channels
carry some useful information which can contribute to the ro-
bust prediction, so individually adjusting each element within
an activation would help improve a model’s robustness. The
idea is simple but effective as we can see from our extensive
evaluation in Section 4 which justifies our conjecture.
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Figure 1: Channel-wise scaling vs element-wise scaling. Element-
wise scaling conducts a more fine-grained scaling to the intermediate
activation.

3 Element-Wise Activation Scaling
Fig. 2 demonstrates the overview of EWAS, where EWAS is
a plug-in module being added to the existing CNN models.
The EWAS module is trained with the backbone network by
means of an auxiliary loss function. Each layer of a CNN
can be equipped with an EWAS module, but we empirically
find that for a CNN model, simply adding one EWAS mod-
ule demonstrates the best adversarial robustness. Next, we
proceed to the module and how to train it.

3.1 EWAS Module
Let zl ∈ RC×H×W denote the activation of layer l which has
an EWAS module, where C denotes the number of channels



and H and W are the height and width, respectively. Each
element in zl is expected to have an individual scaling factor
and thus we havem ∈ RC×H×W to denote the scaling factor
vector. As seen in [Bai et al., 2021][Yan et al., 2021], class-
related activation modification is instrumental in improving
the robustness. Hence, we also deploy an auxiliary classifier
to have the class-related feature and determine the element-
wise scaling factorm.

Auxiliary Linear classifier (ALC)
The core of EWAS is the scaling factor m. A good scal-
ing factor m will suppress redundant and negative elements
while retaining or promoting robust and positive elements.
Inspired by CAS [Bai et al., 2021], we add an auxiliary linear
classifier (ALC) to the original model and use ALC to derive
m. The overview of EWAS can be seen in Fig. 2. ALC takes
activation zl as the input and outputs classification scores of
K classes.

Let θALC ∈ RC·H·W×K denote the parameters of ALC.
ALC parameters θALC are deployed to generate the scaling
mask m. ALC is a class-related scaling classifier, i.e., we
have θALC

k ∈ RC·H·W to represent the parameters related to
class k and θALC

k will be converted to the scaling factor m.
In the training stage, the ground truth label y serves as the
class index to select which class’ parameters to update. In the
inference stage, since there is no label information provided,
the maximum value of ŝ predicted by ALC is used as the class
index. The scaling factorm is formulated as follows:

m =

{
reformat(θALC

y ), (training stage)
reformat(θALC

argmax(ŝ)), (inference stage)
(2)

Note that the scaling factor m is reformatted into size
RC×H×W . After obtaining the scaling factorm, we perform
element-wise multiplication on zl to obtain the adjusted acti-
vation ẑl.

z̃l = zl ⊗m (3)

where ⊗ represents the element-wise multiplication. The
modified activation ẑl is forward-propagated to the next layer.

3.2 Model Training
EWAS module should be adversarially trained with the back-
bone network. We can add multiple EWAS modules to a
CNN model, but we empirically find that adding one module
shows the best robustness. We conjecture the rational behind
is that fine-grained modification effectively identifies the er-
ror or negative elements. As soon as the negative elements
are adjusted accordingly, more EWAS modules are not help-
ful. However, the position of EWAS is critical for the ro-
bustness and we evaluate this in Section 4.2. Following the
min-max optimization in Eq. (1), the EWAS-modified opti-
mization problem can be written as:

min
θ
E(x,y)∼D[max

δ
(L(y, F (x+ δ, θ)) + λ · LEWAS(y, ŝ))] (4)

where ŝ = ALC(f l(x+δ), θALC), and f l indicates the output
of layer l. λ is a trade-off coefficient to balance the contribu-
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Figure 2: Three steps of EWAS: 1) Flatten zl and input it into ALC,
and the output score of ALC ŝ calculate EWAS loss. 2) Class Re-
lated Scaling (CRS): m from ALC’s weight element-wise multiply
with zl to scaling the zl to get z̃l. 3) Forward z̃l into the model’s
next layer.

tion of ALC loss. LEWAS here is the same loss function as the
maximization problem in Eq. (1), which for AT is:

LEWAS = LALC
CE (p̂(x+ δ), y) (5)

EWAS can combine with diverse adversarial training meth-
ods such as TRADES [Zhang et al., 2019], MART ([Wang et
al., 2020]), and the EWAS loss function needs to be modified
accordingly. More details of different loss functions can be
seen in Appendix B. The training algorithm is given in Ap-
pendix A.

4 Experiments
In this section, we extensively evaluate the effectiveness of
EWAS in terms of adversarial robustness in comparison with
the state of the arts [Bai et al., 2021][Yan et al., 2021]. We use
WideResNet-32-10 (we call it WideResNet), WideResNet-
28-10 and ResNet-18 as in CAS and CIFS, and train models
using CIFAR10 [Krizhevsky et al., 2009] and SVHN [Netzer
et al., 2011] datasets. We empirically determine the best layer
to add the EWAS module, i.e., the 15th layer for ResNet-
18 , the 19th layer of WideResNet-28-10 and 25th layer for
WideResNet, respectively. AT [Madry et al., 2018] and its
variants MART [Wang et al., 2020] and TRADES [Zhang et
al., 2019] are used to train the models with EWAS-modified
models, and three white-box attack methods are considered,
FGSM [Szegedy et al., 2014], PGD-20 [Madry et al., 2018],
C&W [Carlini and Wagner, 2017]. All attacks are perturbed
by l∞-norm with bound ε = 8/255 and step size ε/4. Note
that to train the model with MART and TRADES, we need
to modify the loss function accordingly. Models are trained
for 120 epochs under AT, and the setting for other AT variants
can be seen in Appendix D. We also visualize how the EWAS
module affects the intermediate activation in Appendix F and
investigate how λ effect attack evaluation results in Appendix
G.

4.1 Robustness Analysis and Evaluation
In this section, we first evaluate EWAS against CAS and
CIFS, which are closest to our work.



Robustness Evaluation
λ in Eq. (4) is a critical parameter for EWAS module training,
and the two datasets have different values, 0.01 for CIFAR10
and 0.05 for SVHN. Later, in the ablation study, we further
evaluate the impact of λ. The adversarial accuracy of the last
epoch is reported for each model.

ResNet-18 Natural FGSM PGD-20 C&W
AT 84.47 61.09 44.33 44.70

AT+CAS 85.89 61.17 50.55 52.56
AT+CIFS 82.70 58.10 49.49 50.24

AT+EWAS 84.73 65.78 64.84 82.35
TRADES 79.57 62.26 52.29 49.18

TRADES+CAS 83.05 63.81 56.63 60.03
TRADES+EWAS 80.35 61.85 61.29 74.92

MART 78.86 61.87 51.61 46.97
MART+CAS 86.40 62.61 54.33 61.49

MART+EWAS 81.80 65.31 64.01 79.67

WideResNet-28-10 Natural FGSM PGD-20 C&W
AT 87.29 58.50 49.17 48.68

AT+CAS 88.05 57.94 49.03 49.97
AT+CIFS 85.56 61.34 53.74 53.20

AT+EWAS 85.29 62.23 55.66 67.07

WideResNet Natural FGSM PGD-20 C&W
AT 86.65 63.71 47.06 45.75

AT+EWAS 87.12 64.05 59.90 73.01
TRADES 84.16 65.34 52.92 51.61

TRADES+EWAS 83.96 64.50 62.39 74.88
MART 84.39 65.10 50.39 48.77

MART+EWAS 80.84 63.19 65.40 76.72

Table 1: Robustness (accuracy (%) on various white-box attacks)
comparison of defense methods on CIFAR10. The best results are
marked with an underline.

ResNet-18 Natural FGSM PGD-20 C&W
AT 93.72 65.87 50.35 47.89

AT+CAS 94.08 65.24 48.47 46.15
AT+CIFS 93.94 66.24 52.02 50.13

AT+EWAS 92.18 71.57 59.01 69.67

Table 2: Experimental results for SVHN.

Table 1 shows the experimental results for CIFAR10. As
see from Table 1, EWAS greatly improves the robustness of
models, especially the robustness against PGD and C&W at-
tacks. The robust accuracy of ResNet-18 against C&W in-
creases by 37.65% under AT, and such huge improvement
makes its robust accuracy comparable to its natural accuracy,
where the difference is only 2.38%. Also for PGD attack,
EWAS significantly improves the adversarial accuracy by up
to 20.51%. Although MART and TRADES can improve the
robustness, the vanilla AT achieves the best robustness for
ResNet-18 under CIFAR10. For WideResNet-28-10, EWAS
outperforms CAS and CIFS in terms of robust accuracy un-
der three attacks, but CAS achieves the best natural accuracy.
For WideResNet, MART and TRADES demonstrate better

performance than the vanilla AT, where we obtain the best
robust accuracy under MART. Table 2 summarizes the results
for SVHN, where EWAS performs superiority over CAS and
CIFS in terms of the adversarial accuracy, and the improve-
ment against C&W is up to 19.54%.

ResNet-18 Vanilla CAS EWAS
Robust Accuracy 39.35 65.31 63.22

Table 3: Robustness accuracy against AutoAttack on CIFAR10.
CIFS does not report this.

We also evaluate the robust accuracy against AutoAttack
[Croce and Hein, 2020] as [Bai et al., 2021], which is a
parameter-free attacks framework consist of both white-box
and black-box attack. We use the AutoAttack including one
white-box attack (APGD-DLR [Croce and Hein, 2020]) and
one black-box attack (Square Attack [Andriushchenko et al.,
2020]). As shown in Table 3, EWAS can improve the robust-
ness of DNN but 2.19% lower than CAS.

Feature Analysis
We visualize the activation of the penultimate layer (the last
convolutional layer) of ResNet-18 w.r.t the activation mag-
nitude and frequency in Fig. 3, and the visualization details
are shown in Appendix C. As observed from the figure, the 4
methods demonstrate significantly different results. AT, CAS
and CIFS aim to make adversarial examples similar to natural
examples, whereas EWAS presents more difference between
natural examples and adversarial examples. EWAS tends to
have different activation distributions for two types of exam-
ples. This may provide a new direction to improve CNNs’
robustness. The visualization of WideResNet activation is
shown in Appendix H.

4.2 Ablation Study
The Impact of λ
In this part, we evaluate the impact of λ in Eq. (4). We
train EWAS-modified ResNet-18 with 6 different values λ =
[0.01, 0.05, 0.1, 0.5, 1, 2] under AT on CIFAR10 and SVHN.
λ serves two roles in the model training: 1) it balances the
contributions of the backbone classifier and the auxiliary clas-
sifier; 2) it controls the strength of element scaling. The re-
sults are reported in Table 4 and Table 5.

For CIFAR10, the natural and robust accuracies decrease
with the increase of λ over different attacks. When λ (i.e.
λ = 2) is large, the model training cannot be converged,
thereby leading to low accuracy for both natural and adversar-
ial accuracy. However, for SVHN, there is no winning λ for
diverse attacks. For PGD and C&W, the best λ is 0.05, where
λ = 2 is the best for FGSM. The best λ for CIFAR10 is the
worst selection for SVHN. Therefore, we choose λ = 0.01
for CIFAR10, and λ = 0.05 for SVHN.

The Impact of EWAS position
In this part, we evaluate the effect of EWAS’ position on mod-
els’ robustness, where we insert the EWAS module to differ-
ent layers. The natural and robust accuracies against PGD-20
at different positions are shown in Fig. 4, and more different
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Figure 3: Comparison of activation magnitude and frequency between adversarial and natural samples on different defense methods. Natural
samples are from CIFAR-10 ”airplane” class.

λ Natural FGSM PGD-20 C&W
0.01 84.73 65.78 64.84 82.35
0.05 84.79 63.54 58.58 72.64
0.1 84.67 62.09 53.77 60.83
0.5 83.96 61.34 48.73 52.59
1 83.61 61.77 47.45 49.3
2 10.00 10.00 10.00 10.00

Table 4: Robust comparison of different λ on CIFAR10 for ResNet-
18. The accuracies(%) for natural and adversarial data are reported.

λ Natural FGSM PGD-20 C&W
0.01 19.58 19.58 19.58 19.58
0.05 92.18 71.57 59.01 69.67
0.1 92.72 72.42 58.38 63.36
0.5 93.20 74.03 57.07 55.37
1 93.02 74.23 57.30 54.57
2 93.34 75.42 58.85 55.23

Table 5: Robust comparison of different λ on SVHN for ResNet-18.

layers robust evaluation shown in Appendix E. The exper-
imental results show that the best position is the first conv
layer of the last block within a model.

We think there are two reasons behind. Since the adversar-
ial perturbation is gradually amplified along its forward prop-
agation [Liao et al., 2018], adding EWAS module to early
layers cannot effectively discern perturbations. In addition,
features in early layers are more class-agnostic, so the auxil-
iary classifier may not take effect in this case. Therefore, we
empirically choose to insert the EWAS module after the 15th
layer of ResNet-18, the 19th layer of WideResNet-28-10 and
the 25th layer of WideResNet.

5 Conclusion
In this paper, we propose a new element-wise activation scal-
ing (EWAS) method to improve CNNs’ adversarial robust-
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Figure 4: The impact of EWAS position on CIFAR10.

ness. EWAS is a form of activation robustification tech-
niques which can conduct a more fine-grained activation scal-
ing. EWAS is a simple but very effective method to improve
CNNs’ robustness. It can be easily added to existing CNN
models and be trained with the backbone network using an
auxiliary loss function. The experimental results demonstrate
that EWAS outperforms other two latest activation robustifi-
ciation techniques in terms of adverserial accuracy.

References
[Andriushchenko et al., 2020] Maksym Andriushchenko,

Francesco Croce, Nicolas Flammarion, and Matthias
Hein. Square attack: A query-efficient black-box adver-
sarial attack via random search. In ECCV, pages 484–501,
2020.

[Bai et al., 2021] Yang Bai, Yuyuan Zeng, Yong Jiang, Shu-
Tao Xia, Xingjun Ma, and Yisen Wang. Improving adver-



sarial robustness via channel-wise activation suppressing.
In ICLR, 2021.

[Carlini and Wagner, 2017] Nicholas Carlini and David A.
Wagner. Towards evaluating the robustness of neural net-
works. In S&P, pages 39–57, 2017.

[Chen et al., 2019] Huili Chen, Cheng Fu, Jishen Zhao, and
Farinaz Koushanfar. Deepinspect: A black-box trojan
detection and mitigation framework for deep neural net-
works. In IJCAI, pages 4658–4664, 2019.

[Croce and Hein, 2020] Francesco Croce and Matthias Hein.
Reliable evaluation of adversarial robustness with an en-
semble of diverse parameter-free attacks. In ICML, vol-
ume 119, pages 2206–2216, 2020.

[Dosovitskiy et al., 2021] Alexey Dosovitskiy, Lucas Beyer,
Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Min-
derer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021.

[Goldblum et al., 2020] Micah Goldblum, Liam Fowl, So-
heil Feizi, and Tom Goldstein. Adversarially robust dis-
tillation. In AAAI, pages 3996–4003, 2020.

[Gui et al., 2019] Shupeng Gui, Haotao Wang, Haichuan
Yang, Chen Yu, Zhangyang Wang, and Ji Liu. Model com-
pression with adversarial robustness: A unified optimiza-
tion framework. In NeurIPS, pages 1283–1294, 2019.

[Jandial et al., 2019] Surgan Jandial, Puneet Mangla, Sakshi
Varshney, and Vineeth Balasubramanian. Advgan++: Har-
nessing latent layers for adversary generation. In ICCV
Workshops, pages 2045–2048, 2019.

[Kannan et al., 2018] Harini Kannan, Alexey Kurakin, and
Ian J. Goodfellow. Adversarial logit pairing. CoRR,
abs/1803.06373, 2018.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny im-
ages. 2009.

[Krizhevsky et al., 2017] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. Commun. ACM, 60(6):84–
90, 2017.

[Liao et al., 2018] Fangzhou Liao, Ming Liang, Yinpeng
Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense
against adversarial attacks using high-level representation
guided denoiser. In CVPR, pages 1778–1787, 2018.

[Liu and Hsieh, 2019] Xuanqing Liu and Cho-Jui Hsieh.
Rob-gan: Generator, discriminator, and adversarial at-
tacker. In CVPR, pages 11234–11243, 2019.

[Madaan et al., 2020] Divyam Madaan, Jinwoo Shin, and
Sung Ju Hwang. Adversarial neural pruning with latent
vulnerability suppression. In ICML, pages 6575–6585,
2020.

[Madry et al., 2018] Aleksander Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

[Moosavi-Dezfooli et al., 2016] Seyed-Mohsen Moosavi-
Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: A simple and accurate method to fool deep neural
networks. In CVPR, 2016.

[Netzer et al., 2011] Yuval Netzer, Tao Wang, Adam Coates,
Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learn-
ing. 2011.

[Papernot et al., 2016] Nicolas Papernot, Patrick D. Mc-
Daniel, Xi Wu, Somesh Jha, and Ananthram Swami. Dis-
tillation as a defense to adversarial perturbations against
deep neural networks. In S&P, pages 582–597, 2016.

[Su et al., 2019] Jiawei Su, Danilo Vasconcellos Vargas, and
Kouichi Sakurai. One pixel attack for fooling deep neural
networks. IEEE TEVC, 23(5):828–841, 2019.

[Szegedy et al., 2014] Christian Szegedy, Wojciech
Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian J. Goodfellow, and Rob Fergus. Intriguing
properties of neural networks. In ICLR, 2014.

[Wang et al., 2020] Yisen Wang, Difan Zou, Jinfeng Yi,
James Bailey, Xingjun Ma, and Quanquan Gu. Improv-
ing adversarial robustness requires revisiting misclassified
examples. In ICLR, 2020.

[Wong et al., 2020] Eric Wong, Leslie Rice, and J. Zico
Kolter. Fast is better than free: Revisiting adversarial train-
ing. In ICLR, 2020.

[Xiao et al., 2018] Chaowei Xiao, Bo Li, Jun-Yan Zhu, War-
ren He, Mingyan Liu, and Dawn Song. Generating ad-
versarial examples with adversarial networks. In IJCAI,
2018.

[Xie et al., 2019] Cihang Xie, Yuxin Wu, Laurens van der
Maaten, Alan L Yuille, and Kaiming He. Feature denois-
ing for improving adversarial robustness. In CVPR, pages
501–509, 2019.

[Yan et al., 2021] Hanshu Yan, Jingfeng Zhang, Gang Niu,
Jiashi Feng, Vincent Y. F. Tan, and Masashi Sugiyama.
CIFS: improving adversarial robustness of cnns via
channel-wise importance-based feature selection. In
ICML, 2021.

[Ye et al., 2019] Shaokai Ye, Xue Lin, Kaidi Xu, Sijia Liu,
Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang, Aojun
Zhou, Kaisheng Ma, and Yanzhi Wang. Adversarial ro-
bustness vs. model compression, or both? In ICCV, pages
111–120, 2019.

[Zhang et al., 2019] Hongyang Zhang, Yaodong Yu, Jiantao
Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jor-
dan. Theoretically principled trade-off between robustness
and accuracy. In ICML, 2019.

[Zhang et al., 2020] Jingfeng Zhang, Xilie Xu, Bo Han,
Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan S.
Kankanhalli. Attacks which do not kill training make ad-
versarial learning stronger. In ICML, 2020.



A Algorithm of EWAS Training

Algorithm 1 Adversarial training with EWAS

Input: Dataset S = (xi, yi)
n
i=1, CNN F (θ) with EWAS

module, training epoch T
Output: A robust CNN F

1: for t = 1, 2, ..., T do
2: for (xi, yi) in S do
3: Generate adversarial example using PGD by solving

inner-max problem in Eq. (4)
4: ŝ = ALC(f l(xi + δ), θALC)
5: Generatem by Eq. (2)
6: z̃l = zl ⊗m
7: Give z̃l to the next convolution, complete the

forward-propagation and compute the overall loss
8: end for
9: Optimize all the parameter of model and EWAS by

solving outer-min problem in Eq. (4) using gradient
descent

10: end for

B Loss function of EWAS-modified Model
Here we show the loss functions of MART and TRADES, the
two AT variants. As shown in Table 6, p denotes the predic-
tion score of network F and p̂ denotes the prediction score of
EWAS module.

C Details on Activation Visualizing
We show the activation frequency and average activation
magnitude.

C.1 Activation Frequency
We respectively performed natural and adversarial training on
ResNet-18 under CIFAR-10 data set for 120 epochs with the
SGD optimizer (momentum 0.9 and weight decay 0.0002).
During adversarial training, We use adversarial data gener-
ated by PGD-10 attack (ε = 8/255, step size ε/4, and random
initialization).

We use the output of the last residual block which also is
the input of the global average pooling operation as the fre-
quency visualization layer. The activation unit is valid if its
activation magnitude is larger than 1% of the maximum of
all activation. For visualization, we select all samples of one
class as the input samples, and the results are shown in de-
scending order of channel frequencies of the natural samples.

C.2 Activation Average Magnitude
The training details follows those in activation frequency vi-
sualizing. We also use the output of the last residual block
which also is the input of the global average pooling oper-
ation as the activation magnitude visualization layer. For a
certain class, we calculate channel’s max activation value for
each samples and average it over all the same class samples.
We also plot it in descending order of average magnitude of
the natural samples.

D Experimental Setting Details
The training setting of CIFS and CAS follows those in [Bai
et al., 2021; Yan et al., 2021], which are βCIFS = 2 and
βCAS = 2.

D.1 Experimental Details on CIFAR10
We train models with 128 batch size using SGD optimizer
(momentum 0.9 and weight decay 0.0002), and initial learn-
ing rate is 0.1. With different training methods, we set differ-
ent training epoch and milestones with multiplicative factor
of learning rate decay 0.1, as shown in Table 7. During AT,
we set ε = 8/255 and step size ε/4 for PGD-10 to generate
adversarial samples. For TRADES and MART, β is 6.

epochs milestones
AT 120 60, 90

TRADE 85 75
MART 90 60

Table 7: Training epochs and learning rate adjust milestones for CI-
FAR10 data set.

D.2 Experimental Details on SVHN
For SVHN dataset, we train model with 128 batch size using
SGD optimizer (momentum 0.9 and weight decay 0.0005),
and initial learning rate is 0.01, with different t raining
method, we set same training epoch 120 and divided by 10 at
75-th and 90-th epoch. For training stage, we set ε = 8/255
and step size ε/4 for PGD-10 to generate adversarial samples.
For TRADES and MART, β is 6.

For SVHN evaluation, adversarial data are generated by
FGSM, PGD-20 (20-steps PGD with random start), and
C&W (L∞ version of C&W optimized by PGD-30) , ε is
8/255 and step size ε/10.

Method Loss function
AT
+EWAS

LCE(p(x+ δ, θ), y)
+λ · LALCCE (p̂(x+ δ), y)

TRADES
+EWAS

LCE(p(x, θ), y) + β · LKL(p(x, θ), p(x+ δ, θ))
+λ · LALCCE (p̂(x), y) + λ · β · LALCKL (p̂(x), p̂(x+ δ))

MART
+EWAS

LBCE(p(x+ δ, θ), y) + β · LKL(p(x, θ), p(x+ δ, θ)) · (1− py(x, θ))
+λ · LALCBCE(p̂(x+ δ), y) + λ · β · LALCKL (p̂(x), p̂(x+ δ)) · (1− p̂y(x))

Table 6: The loss function used for AT, TRADES, MART with EWAS module.
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(c) The penultimate

Figure 5: Comparison of activation average magnitude and frequency between adversarial and natural examples before and after EWAS
scaling and the penultimate layer. Natural samples are from CIFAR-10 ”airplane” class.

E The Impact of EWAS Position
Here, we further show the experimental results of EWAS
position evaluation. The natural and robust accuracies of
ResNet-18 and WideResNet with different EWAS position
against FGSM, PGD-20, C&W (Table 8 and Table 9). We
train the model with λ = 0.01, and the evaluation settings
follow those in Appendix D.

Layer Natural FGSM PGD-20 C&W
11 79.02 58.19 55.71 65.71
13 83.58 62.73 58.77 72.77
15 84.73 65.78 64.84 82.35
17 83.73 62.67 56.63 71.31

Table 8: Robustness comparison of the EWAS module after different
layers of ResNet-18 on CIFAR10. We reported the robust accuracy
(%) at the last epoch. The final selected layer is marked with under-
line.

Layer Natural FGSM PGD-20 C&W
21 85.63 61.71 51.68 58.00
23 85.70 62.46 50.52 55.43
25 87.12 64.05 59.90 73.01
27 86.66 62.74 51.19 60.68
29 86.36 61.68 50.51 58.62
31 85.90 65.06 54.52 62.60

Table 9: Robustness comparison of the EWAS module after differ-
ent layers of WideResNet on CIFAR10. The final selected layer is
marked with underline.

F The Performance of EWAS
To visualize how the EWAS module affects the intermediate
activation, we visualize the average activation magnitude and
frequency of ResNet-18 before and after EWAS scaling on
CIFAR10 under AT. As shown in Fig 5, after EWAS scaling,

both the magnitude and frequency have dropped drastically.
From the figure, we can see that before EWAS, the activation
magnitude is high, and after EWAS the activation magnitude
is suppressed. Along the forward propagation, the activation
of the penultimate layer shows different distributions between
natural examples and adversaries.

G Attack Impact of λ

λ Natural FGSM PGD-20 C&W
0 84.73 86.09 85.33 84.60

0.01 65.78 64.84 82.35
0.1 63.29 56.22 60.91
0.5 62.71 47.55 47.90
1 62.71 46.99 46.95
2 62.71 46.78 46.91
3 62.71 46.72 46.87
5 62.71 46.69 46.87
10 62.71 46.66 46.79

Vanilla 84.47 61.09 44.33 44.70

Table 10: Robustness comparison of the different evaluation λ of
ResNet-18 on CIFAR10. We reported the robust accuracy (%) at the
last epoch. The training λ is marked with underline.

We set different λ = [0, 0.01, 0.1, 0.5, 1, 2, 3, 5, 10] to con-
trol the attack degree on the EWAS, where the larger the
λ, the stronger the attack effect on the EWAS module. In
other words, as the λ increases, the attack will focus on
the EWAS module until the EWAS module is compromised,
which means the model can only rely on its own robustness.

Here, we report the natural and robust accuracies of
EWAS-modified ResNet-18 and WideResNet against FGSM,
PGD-20, C&W (Table 10 and Table 11). When the adversary
only takes the backbone classification loss as the maximiza-
tion goal (λ = 0), it is very likely that the attack will fail.
As the attack focuses on the EWAS loss, the robustness of the
model will gradually decrease, but its robustness is still higher



λ Natural FGSM PGD-20 C&W
0 87.12 83.96 83.61 83.66

0.01 64.05 59.90 73.01
0.1 63.50 48.88 50.42
0.5 63.49 47.27 48.23
1 63.50 47.21 48.08
2 63.50 47.20 48.09
3 63.50 47.19 48.07
5 63.50 47.20 48.06
10 63.50 47.19 48.05

Vanilla 86.65 63.71 47.06 45.75

Table 11: Robustness comparison of the different evaluation λ of
WideResNet on CIFAR10. The training λ is marked with underline.

than the vanilla. We can see that EWAS plays an important
role in the robustness of the model.

H The Visualization of WideResNet
Here we visualize the activation magnitude and frequency of
the penultimate layer of WideResNet, as shown in Fig 6. The
results also show EWAS presents more difference between
natural examples and adversarial examples.
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Figure 6: Comparison of activation magnitude and frequency be-
tween adversarial and natural samples on different defense methods
on WideResNet. Natural samples are from CIFAR-10 ”airplane”
class.
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