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Abstract

Task-based programming models have proven to be a robust and versatile way to approach development of applications for
distributed environments. They provide natural programming patterns with high performance. However, execution on this paradigm
can be very sensitive to granularity –i.e., the quantity and execution length of tasks. Granularity is often linked with the block size
of the data, and finding the optimal block size has several challenges, as it requires inner knowledge of the computing environment.

Our proposal is to supplement the task-based programming model with a new mechanism –our SplIter proposal. At its core,
the SplIter provides a transparent way to split a collection into partitions (logical groups of blocks, obtained without any transfers
nor data rearrangement), which can then be iterated. Tasks are linked to those partitions, which means that SplIter breaks the
dependency between block size and task granularity.

The evaluation shows that the SplIter is able to achieve performance improvements of over one order of magnitude when
compared to the baseline, and it is either competitive or strictly better (depending on application characteristics) to the competitor
alternative. We have chosen different applications covering a wide variety of scenarios; those applications are representatives of
a broader set of applications and domains. The changes required in the source code of a task-based application are minimal,
preserving the high programmability of the programming model. Two different state-of-the-art task-based frameworks have been
evaluated for all the applications: COMPSs and Dask, showing that the SplIter can be effectively used within different frameworks.
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1. Introduction

We have been witnessing a sustained growth on the avail-
able computing capabilities for decades now. Nodes keep be-
coming more powerful (with faster microprocessors and big-
ger memory). Simultaneously, clusters keep increasing in size
(number of nodes, storage). In High Performance Computing
environments, this increase on computation resources has en-
abled new and improved applications. For example, data ana-
lytics algorithms can be executed onto datasets that were un-
manageable years ago and machine learning applications are
now run faster and more accurately.

At a high abstraction level we can say that parallelism is
the main factor that is able to sustain all these improvements.
The implementation of algorithms consists of the iteration on

datasets and the execution of operations unto them. The execu-
tion will then be parallelized within and between nodes. This
division of work goes along the distribution of data –i.e. the
blocking procedure, by which a dataset is divided into blocks.

Being able to perform parallel and distributed execution on
distributed data is complex; two branches of programming mod-
els aim to address that with very different approaches: map-
reduce[1, 2] and task-based[3, 4]. Those two paradigms have
been coexisting for a while, each one with their own strengths.
Both paradigms make use of blocks for achieving a distributed
execution. However, their approach differs: the map-reduce
paradigm abstracts the notion of blocks and iteration into map
and reduce operations, while we can find explicit operations and
blocking directives in task-based programming models. The ab-
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stractions provided by map-reduce allow the framework imple-
mentation to perform blocking implicitly as well as to introduce
transparent iteration optimizations.

The strengths of task-based programming models are their
high programmability and their flexibility[5, 6]. Implementa-
tion of scientific algorithms with a task-based approach causes
much less friction and results in a more agile cycle of design,
implementation, and testing. However, when developing under
these kinds of programming models, there is a parameter one
must be wary about: the block size. Decreasing the block size
implies more potential parallelism but also results in an increase
of the number of blocks –resulting in a higher number of faster
tasks. Consequently, the scheduler stress rises and the runtime
invocation overhead increases. This is a limitation of the pro-
gramming model: the granularity of the computation is linked
to the granularity of the data. The optimal value will depend on
the computing capabilities of the environment as well as on the
application behavior and its iteration and data access patterns.
Having to set up this value is a burden on the developer that also
reduces the performance portability.

Our proposal is to solve the granularity issue by providing a
mechanism that yields partitions of the data: SplIter, which can
be included within the existing iterations of applications. The
main idea is that the partitions encompass multiple blocks (in a
logical way). By using these partitions as inputs for the tasks,
we successfully decouple the task granularity from the block
granularity. SplIter is able to automatically leverage runtime
information; this information includes computation capabilities
of the environment –such as number of nodes and number of
cores– as well as location of the data blocks –information that
can be used to exploit data locality and avoid data transfers.
The application will still use blocks (with a certain block size);
however, by following our proposal, the performance sensitivity
to the block size will be greatly reduced, as we will later show.

2. Related work

One primary programming model that tackles the topic of
iteration on distributed datasets is MapReduce[1]. The abstrac-
tions of the programming model –which effectively hide the
iteration from the developer– are mechanisms that the frame-
work uses to achieve good performance. An application follow-
ing the map-reduce programming model consists of map tasks
(which transform blocks, and are applied to all input blocks of
the input) and reduce operations (which aggregate multiple in-
put blocks into single outputs). This general process is depicted
in Figure 1. The programming model hides the blocking and
iteration, which is managed transparently by the framework, al-
lowing for internal optimizations –even if the iteration is not
present in the application code, the framework implementation
does iterate during runtime. The inherent limitation of this pro-
gramming model is that it cannot be applied to all kind of appli-
cations, as not all algorithms can feasibly be translated into map
and reduce tasks. Our proposal is to maintain the iterations at
the programming model level while simultaneously providing
enhanced iteration code structures.

Figure 1: Different methods for task scheduling, from Dask documentation[9]

Spark[2] is a widely used software stack that aims to be
a unified engine for large-scale data analytics. It draws in-
spiration of the MapReduce programming model but aims to
be more flexible and improve its performance. The distributed
data structure used by this programming model is the Resilient
Distributed Dataset or RDD[7], which carries the burden of
blocking and distributing while leveraging performance opti-
mizations within the framework implementation. However, us-
ing Spark requires to adapt (and rewrite) existing algorithms
into using the explicit primitives and structures provided by the
framework[8]. With its mechanisms, Spark does address the
issues of blocking and data distribution, but restricts the appli-
cation developer to their programming primitives as well as to
the data structures provided by the framework –namely, the Re-
silient Distributed Dataset or its derived abstractions, which re-
quires the application developer to adapt their code to the new
data interface. We will instead focus on addressing the itera-
tions –the explicit iterations at the programming model level–
with a minimal impact on application programmability.

A different software stack, one that follows a task-based full
scheduling paradigm but shares common goals with the previ-
ous one is Dask[3]. It is a “flexible library for parallel com-
puting in Python”. It has a very flat learning curve for Python
developers, as it draws inspiration from commonly used data
structures (such as NumPy Arrays and Pandas DataFrames).
With those data structures in mind, Dask provides their dis-
tributed counterparts (e.g. Dask Array and Dask DataFrame).
Its flexible task scheduling mechanism is shown in Figure 1.
Dask library provides a lot of functionality out-of-the-box (for
instance, Dask arrays support most of the NumPy interface,
which helps flatten the learning curve). It is worth mention-
ing that Dask is able to exploit data locality by leveraging the
Python memory space of its workers.

COMPSs[4] is another a task-based framework, with a ro-
bust and complete scheduler with support for complex inter-
action of data dependencies. The dislib[10] library provides
a distributed data structure along data analytics algorithms im-
plemented on top of COMPSs. The dataClay object store[11] is
integrated with the framework and is able to provide active ob-
jects, providing data locality into the execution by leveraging
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the Python memory space of its backends.
Both COMPSs (& dataClay) and Dask are perfect examples

of task-based programming models that can take advantage of
the SplIter. They both support Python applications and have a
similar set of features (chunked data structures, data locality,
task-based full scheduling). Moreover, Dask offers a rechunk
mechanism that can be considered a competitor to the SplIter.

Up until now we have discussed the state-of-the-art from
the point of view of the programming model and the frame-
work themselves. However, we must look into work related to
the parallelization of loops and the scheduling of work. A foun-
dational article on this field was published by Hummel et al.
with the Factoring[12] method. The work on Factoring has been
extended with a focus on smarter and more complex schedul-
ing mechanisms, e.g. with adaptative weighted factoring[13] or
by adding also dynamic load balancing[14]. All this research
shows the relevance of the granularity of tasks, an issue that we
also aim to address. However, they tackle this issue for complex
applications by discussing the method and its direct application
into the application. Our focus is on a more generic SplIter
that coordinates with the task-based programming model and is
aware of the data placement (for data locality purposes).

If we look at frameworks that expose lower level primitives
we can find Charm++[15], a parallel system based on C++.
This framework offers all the elemental primitives that we could
expect, including iteration structures. However, Charm++ does
not include neither scheduling mechanisms nor dependency man-
agement comparable to the ones available in commonly used
task-based workflows (such as COMPSs or Dask).

3. Environment architecture

We will describe and discuss two different software archi-
tectures: COMPSs & dataClay and Dask. Both are task-based
frameworks, with similar design goals, that support Python and
are suited for blocked data structures. Both frameworks will be
used as baselines for the evaluation, and SplIter is implemented
and evaluated in both.

3.1. COMPSs & dataClay

The COMPSs framework[4] provides a task-based program-
ming model that can be used for the development of distributed
applications. We have chosen it because it has a powerful and
versatile scheduler as well as a runtime that is able to exploit
the parallelism of applications.

Applications developed with COMPSs resemble sequential
applications. This is by design: sequential programming is easy
and a programming model focused on sequential development
has a welcoming learning curve. In this article we will be us-
ing PyCOMPSs[16] (the Python bindings) and the annotation
of code is done as shown in Listing 1.

1 @task()

2 def increment(value):

3 return value + 1

4 ...

5 results = list()

6 for val in inputs:

7 results.append(increment(val))

Listing 1: Use of @task decorator for defining PyCOMPSs tasks

We can see that adding the @task decorator to a user func-
tion converts it to a task. The previous snippet shows a regular
loop and a perfectly valid sequential application. However, by
adding the task decorator and using the COMPSs framework,
the information of the invocation reaches the scheduler. The
framework then triggers an asynchronous operation (from the
point of view of the application) resulting in a parallel loop. In
addition to the asynchronous invocation of tasks, COMPSs will
also manage the dependencies between tasks.

All the experiments that we will be showing in the evalu-
ation make use of the dislib[10] library. It is a distributed
library implemented on top of PyCOMPSs. This library of-
fers the blocked data structure we will use: the dislib array
–representing two-dimensional arrays, which are widely used
in scientific applications and machine learning.

3.1.1. dataClay
We will be combining the COMPSs scheduler with data-

Clay [11, 17], a distributed object store that can be plugged into
COMPSs. It offers additional features that have an impact on
data locality, features that boost and have synergies with the
SplIter. Essentially, the implementation of SplIter that we pro-
pose is implemented on top of dataClay; in the evaluation sec-
tion on 6 we will use the term COMPSs & dataClay to refer to
this framework stack.

Internally, dataClay backends use the language native rep-
resentation of the objects while the object is in memory. That is,
dataClay Python backends will hold dataClay objects as Python
objects within a Python interpreter. This approach ensures that
the critical path of the applications will be able to leverage data
locality, avoiding unnecessary data transfers of the dataset.

3.2. Dask

Dask[9] is a Python framework for parallel computing that
combines a task-based scheduler with a set of data structures
and algorithms for big data, analytics and HPC. The distributed
library[18] offers further primitives appropriate for distributed
computing and cluster-like environments.

There are several data structures provided by Dask (namely,
Dask Array, Dask Bag, Dask DataFrame) but we will be fo-
cusing in the Dask Array (which resembles a numpy.array.
The Dask Array has an application defined Chunk shape value
(which is the size of the blocks, called chunks, and sets the gran-
ularity). Their documentation already warns: “Chunks should
align with the computation that you want to do”, hinting the
issues that an inadequate block size will harm performance.

Aside from the built-in data structures and their methods,
the main primitive for defining and invoking tasks is the delayed.
An example of how a function is defined as a task and how it
can be invoked is shown in Listing 2.

1 @dask.delayed

2 def increment(value):

3 return value + 1

4 ...
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5 results = list()

6 for val in inputs:

7 results.append(increment(val))

Listing 2: Use of @delayed decorator for defining Dask tasks

Calling delayed (directly or through a function that has
been decorated) results in Dask generating nodes in a task graph.
With this, Dask is able to “run” a graph and exploit parallelism
and schedule tasks across the computing resources it has.

The Dask.distributed library provides a more fined-grain
primitive for task-scheduling: the client.submit. This mech-
anism is shown in Listing 3. There are multiple methods similar
to this one (e.g. the client.map). These methods, instead of
working with a Dask graph, generate a future object for the
computation they represent.

1 def increment(value):

2 return value + 1

3 ...

4 results = list()

5 for val in inputs:

6 results.append(client.submit(increment , val ,

workers=w))

Listing 3: Use of client.submit for invoking Dask tasks

In addition to the task-scheduling aspect, Dask includes au-
tomatic mechanisms to leverage the data locality on its work-
ers. The goal is to avoid data transfers and improve perfor-
mance, and that is accomplished by caching Python objects in
the Python memory space of the worker.

3.2.1. rechunk
The different Dask data structures interface offer some mech-

anisms to address the granularity, i.e. the size of its constituting
blocks. One powerful operation is the rechunk method of the
Dask Arrays. This mechanism is a close competitor to the Spl-
Iter: they both increase performance when the starting dataset
is too fragmented, and they achieve that by effectively reducing
the number of tasks.

The rechunk creates a new data structure with a different
chunk size. This can result in a lot of data transfers and in an
increase of the memory footprint. The transfers occur because
data is distributed, and the likelihood of locality between con-
tiguous blocks decreases when the number of nodes increases.
The memory footprint is affected by the duplication of data (re-
quired even in the best peer-to-peer strategy) for in-flight blocks
and during the assembly of the new data structure.

We will compare and discuss the SplIter performance to the
Dask rechunk approach in the evaluation.

4. SplIter

When using a distributed execution environment there is the
need of dividing the dataset into parts (i.e. blocks). This is re-
quired in order to distribute computation across nodes. Figure 2
shows a simplified diagram where we can see the meaning of
the block distribution. The distribution may have additional re-
quirements, or the data structure may carry more nuisances, but
the main idea is the distribution of those blocks.

1

Dataset

2

3

n

...

1 31 3

1 32 ...

Node #1

Node #2

4

...

Figure 2: Diagram of the distribution of a dataset between different nodes

1 31 3

1 32 ...

@task
def process_block(   )

Tasks

3

Figure 3: Diagram of a regular one-to-one execution of tasks to blocks (one
task per block)

This block concept may be called with a variety of terms,
and may be more or less transparent to the developer –for in-
stance, the Resilient Distributed Dataset or RDD[7] is a Spark
data structure that transparently addresses the blocking needs of
a distributed dataset and its distributed execution. The dislib ar-
ray and the Dask array both use blocks and have a configurable
and user-defined chunk size.

In task-based programming models, a usual scenario is to
have a task for each block, as shown in Figure 3. Tasks may be
more complex than that –e.g. by having multiple inputs. But,
at a high level, we want to highlight the fact that the tasks will
be using the blocks directly; this implies that the granularity of
tasks depends on the block size. This is indeed what happens in
both Dask and dislib algorithms.

Thus, applications need to define a block size, which is not
trivially determined performance-wise. The level of fragmen-
tation of the dataset will impact the scheduler overhead as well
as the potential parallelism of the application. The optimal will
depend on the implementation and the capabilities of the com-
puting environment. Having a block per core is a good rule of
thumb, but even that depends on the executing infrastructure
(both on the number of nodes as well as on the CPU model in
said nodes). Those parameters are not necessarily known dur-
ing application development time. And even if everything is
known beforehand, different stages of the application may have
a different optimal block sizes (due to different numerical rou-
tines, elasticity of computing nodes, latency, etc.).

Our proposal consists on maintaining the blocks and en-
hance the iteration with the SplIter, a software runtime mecha-
nism that adapts both to the data placement of such blocks and
to the computing capabilities of the environment. The SplIter
works as follows: gather all the blocks that are located in a
single node and yield partitions. A diagram showing this pro-
cedure is shown in Figure 4. Each partition is located in a single
node, ensuring data locality, and the number of partitions (i.e.
the number of tasks) is related to the computing capabilities of
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1 31 3

1 32 ...

SplIter

Tasks

@task
def process_part(     )

1

3

partition

Figure 4: Diagram of SplIter interactions and task invocation

the environment.
In the COMPSs & dataClay stack, the SplIter cooperates

with dataClay in order to retrieve the location of objects and
generate the partition objects (which will be also dataClay ob-
jects, linked to the same backend as the objects it represents).
For Dask, we have implemented SplIter through the use of the
different client methods. The SplIter implementation queries
data location information to Dask and uses that information to
both build partitions and to schedule the tasks according to the
location of said partitions.

We will discuss the specific usage of SplIter for each appli-
cation in the following Section 5. But before that, we want to
illustrate the fundamental usage of the SplIter and the codebase
changes that it requires. We will be using here the Histogram as
a sample application. The pseudo-code for the original imple-
mentation is shown in Listing 4. That implementation shows an
embarrassingly parallel stage, called partial histogram, an-
notated with the task decorator; it also shows a merge stage –
the sum partials, a direct addition– annotated with the task
as well as the reduction decorators. The pseudo-code used
follows the general syntax of the COMPSs programming model
(as shown in previous subsection 3.1), but the general idea be-
hind this code is applied to Dask code.

1 @task

2 def partial_histogram(block , ...):

3 return np.histogramdd(block , ...)

4

5 @reduction

6 @task

7 def sum_partials(partials):

8 return np.sum(partials , axis =0)

9

10 # Main application

11 partials = list()

12 for block in experiment._blocks:

13 partial = partial_histogram(block , ...)

14 partials.append(partial)

15 result = sum_partials(partials)

Listing 4: Sample of the original code –Histogram application

The next Listing 5 shows the changes required in order to
make use of SplIter. Note that the merge (sum partials func-
tion) remains unmodified; also the partial histogram re-
mains the same –albeit it is not a task now but simply a func-
tion. What has been added is the compute partition, a task
that processes all the blocks in a partition. The code in this in-
ner loop (Listing 5 lines 12-14) is the same as the code in the
original loop (Listing 4 lines 12-14). By design, adding the Spl-
Iter results in an extra loop nesting as there is now an additional
iteration per partitions (lines 19-21). The number of tasks (the

number of compute partition invocations) is equal to the
outer loop size (i.e. number of partitions).

1 def partial_histogram(block , ...):

2 return np.histogramdd(block , ...)

3

4 @reduction

5 @task

6 def sum_partials(partials):

7 return np.sum(partials , axis =0)

8

9 @task

10 def compute_partition(partition):

11 part_results = list()

12 for block in partition:

13 partial = partial_histogram(block , ...)

14 part_results.append(partial)

15 return np.sum(part_results , axis =0)

16

17 # Main application

18 partials = list()

19 for partition in split(experiment):

20 partial = compute_partition(partition)

21 partials.append(partial)

22 result = sum_partials(partials)

Listing 5: Minimal changes on sample code to include the usage of SplIter

As can be seen, using SplIter does introduce some addi-
tional complexity, in the form of an additional loop. However,
this pattern is simple enough and follows a clear semantics of
the underlying abstractions: a loop for the partitions and a loop
for the blocks that form the partition.

4.1. Tracking collection order

Up until this point we have explained the foundation of the
SplIter. However, the mechanism that we have outlined so far
loses the original ordering of the collection.

When the original collection ordering is relevant for the al-
gorithm, we propose two different methods: get indexes and
get item indexes. The first one, get indexes, returns the
block index –so, in the example shown in Figure 4, it would
return [1, 3]. There are scenarios where the application re-
quires the global element indexing; for those scenarios the get -

item indexes returns the individual item indexes.
By embedding index information into the partition, the al-

gorithm can leverage the information of global block position
and global item indexes. Some of the applications presented in
this article will make use of those methods; we will mention
the details for each application discussion –i.e. for the Cascade
SVM (5.3) and for the k-Nearest Neighbors (5.4).

4.2. Comparison with rechunk

There are several differences between the SplIter and the
rechunk –what can be considered a direct competitor. The key
difference is the fact that rechunk generates a new array: once
the rechunk has finished, it has generated a new data structure
with a different block size than the original. This contrasts with
the SplIter, which produces logical groups of blocks (the parti-
tions). Using the rechunk is simpler from the application point
of view, as the result is a “standalone” array –same interface
as the original dataset. But its simplicity comes with a penalty

5



–when compared to the SplIter– in the form of additional trans-
fers and data transformations.

Additionally, the SplIter is able to leverage the data locality
by producing partitions with worker-local blocks. This addi-
tional indirection (the partition) does not preserve the order, but
this is addressed as described in the previous subsection 4.1.

4.3. Implementation

In this subsection we will review the general implementa-
tion steps that are required in order to recreate the SplIter and
we will discuss how these modifications have been introduced
into COMPSs & dataClay and Dask.

First of all, the SplIter requires the data to be divided in
blocks and distributed across nodes. The block subdivision is
something that is already provided by the Dask Array and dislib
Array data structures. The distribution of data across nodes is
provided by Dask on one side and by dataClay in the other.

The SplIter implementation will query the data location of
the blocks and yield the partitions. This procedure depends on
the software stack and we will discuss them separately below.
After the partitions have been assembled, we can proceed to the
distributed execution step. In both frameworks (COMPSs and
Dask) this will be done by invoking a task for each partition.

4.3.1. COMPSs & dataClay
The first step was the dislib and dataClay integration. The

SplIter requires location information for distributed data, which
is a feature provided by dataClay; the data blocks become data-
Clay objects and this requires some modifications in internal
data manipulation functions in the dislib, but it does not affect
the application interface of the array itself. The modifications
in the dislib have been published in a public repository[19].

Given a set of persistent objects –i.e., the blocks–, we can
use dataClay to query the location of said objects. This is the
beginning of the SplIter implementation. With that information,
the SplIter implementation is able to create the partitions. The
partitions are implemented as dataClay objects too –the parti-
tion is created in the same backend as its constituent blocks.
This partition contains, fundamentally, the list of blocks (as
node-local references, just as dataClay object references). Ad-
ditionally, for the features explained in 4.1, the partition con-
tains the list of indexes (index for each block), and the list of
item indexes (index for each element in each block). This infor-
mation is populated during partition creation. The partition data
structure can be found in the public application repository[20].

Finally, a task that accepts the partition will be in charge of
execution –task which will be invoked several times, as many as
total partitions. Each task will iterate all the blocks in the par-
titions. This task is application-specific code. Note that SplIter
requires no modifications in the COMPSs framework.

The partition data model (including logic and index track-
ing) is about 50 lines of source code. The other modification
required for implementing the SplIter is the spliter function
which amounts to less than 100 lines.

4.3.2. Dask
The Dask array is already a blocked data structure distributed

across nodes –something that SplIter requires. Moreover, the
Dask API already provides a who has call which returns the
location for a batch of objects in an efficient manner. As these
features are already present in Dask, the SplIter implementation
has the appropriate data structure and the query mechanism.

With this features available, the SplIter implementation can
use them in order to generate the partitions. The partitions are,
once again, built with the location query information. In this
case, the partition references the blocks by the Dask identifier
string. Each partition will contain the identifier of its objects. If
indexing information is needed (as explained in 4.1) it is gener-
ated along the partition.

When the execution is on the worker –i.e., when the task
that processes a partition is being executed– the actual object
can be retrieved by using the identifier and the worker cache.
More specifically, the worker cache is a dictionary of Python
objects indexed by the Dask Future identifiers –the same iden-
tifiers that the partitions contain. This process (which is Dask
specific) guarantees no data movements and also guarantees lo-
cality among tasks, partitions and blocks.

As this was done as a proof of concept, all required mod-
ifications were embedded into the application code (instead of
modifying the Dask library). The codebase changes are avail-
able along the application code in the same application public
repository[20]. That source code could be further documented
and included into Dask upstream.

This implementation of the SplIter is built with a minimal
partition structure (a 15 lines long class definition) but requires
accommodating certain Dask scheduling aspects, which adds
30-40 lines of source code. The spliter function is only 5
lines long, but once again, 30-40 additional lines of source code
are required for managing the objects within the task.

5. Applications

This section will introduce the four different applications
we will be using in our evaluation: Histogram, k-means, Cas-
cade SVM, and k-Nearest Neighbors. Those specific applica-
tions have been chosen because they are commonly used algo-
rithms and, on top of that, their data access patterns and imple-
mentation idioms can be seen in a whole lot of other different
data analytics, machine learning and scientific applications.

All applications are implemented in Python. The main nu-
merical library used in all of them is the NumPy library, which
will be used either directly on the implementation or indirectly
through higher-level abstractions. The source code for all the
applications (as well as the results analysis) is public domain
and is available on its public repository[20]. The datasets for
all those applications are collections of n-dimensional points.
The data structure that will be used to hold them are either dis-
lib native array objects or Dask native Dask Array structures.

They are both blocked data structures. Each block will rep-
resent a subset of points of the dataset and will, internally, be
represented by a numpy two-dimensional array (with as many
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rows as points in the block and as many columns as dimensions
per point). We will discuss the block size individually for each
application in the evaluation section (Section 6).

5.1. Histogram

We will start with a very iconic and fundamental applica-
tion, an n-dimensional histogram kernel. We have chosen this
application because of its simplicity and because it is a good
representative of embarrassingly parallel applications that are
very memory intensive –the Histogram operation is able to in-
gest huge chunks of data and process them in a short period of
time. Examples of other kernels that share similar characteris-
tics are filtering and aggregation operations.

For this application, we want to showcase the main advan-
tages of the SplIter and its effect on locality –which should be
a key aspect on execution times due to the memory bandwidth
bottleneck of the application.

The input dataset of this application (called experiment

in the following code snippets) is a set of points. The em-
barrassingly parallel stage of the histogram evaluates a partial
histogram for each block (using the histogramdd function of
the NumPy library), and then the reduction stage merges those
partial results into the final histogram result (with summation
operations).

This application is memory intensive so data transfers play
a key role on execution performance. We will discuss now the
different implementations that we will be later evaluating in
Subsection 6.2. First of all, the baseline code has been shown
and discussed as the sample application in previous Section 4
Listing 4. The code there shows: a) The main iteration across
all the blocks –the main loop. b) The embarrassingly parallel
task –the function partial histogram which processes a sin-
gle block. c) The reduction task –called sum partials, which
processes the partial results.

With this, we can move onto the SplIter implementation,
shown as the sample application in the previous Section (List-
ing 5). The summation operation done inside this compute -

partition (line 15) is the same operation done in sum partials;
doing it within the compute partition task is done locally
(guaranteeing that there are no data transfers for this first merge
operation).

5.2. k-means

The next application is k-means. It is a widely used cluster-
ing algorithm, sometimes used as a kernel within a bigger and
more complex application. It is a good representative of ma-
chine learning algorithms, both in its semantic usage (cluster-
ing) as well as in its iterative implementation. We have chosen
this application because it is based on a simple memory inten-
sive microkernel at its core but it has certain complexity due
to its reduction steps and overall iterative nature. This results
in this application being a step above –in terms of complexity–
when compared to the previous Histogram, which shares certain
memory-intensive aspects but it is much more fundamental.

For this application, we want to follow-up on the advantages
of the SplIter on memory intensive applications. The added

complexity on the numerical procedures (the iterative nature of
the algorithms, paired with a more costly reduction stage, com-
pared to the previous application) will affect the execution times
and the SplIter contribution.

The input dataset of this application is a set of points. For
each iteration, new centroids are evaluated by using the previ-
ous ones. This evaluation is done by calculating pairwise dis-
tances and aggregating points (which can be done in an em-
barrassingly parallel fashion) and evaluating the mean per each
centroid (the merge stage).

This algorithm is called Lloyd’s algorithm (sometimes re-
ferred as standard algorithm). Given its ubiquity and for the
sake of brevity, we will refer to either the method, the algo-
rithm, and the implementation, as simply k-means. The refer-
ence implementation that we will be using is the one present in
the dislib library.

We will now look into the implementation details and the
required changes. First let’s start with the original implementa-
tion, shown in Listing 6. The main embarrassingly parallel task
is the partial sum function. The reduction stage is encapsu-
lated in the recompute centers call.

1 @task

2 def _partial_sum(row , old_centers):

3 ...

4

5 class KMeans(BaseEstimator):

6 def fit(self , x, y=None):

7 ...

8 while iterate:

9 partials = list()

10 for row_block in x:

11 p = _partial_sum(row_block , old_centers)

12 partials.append(p)

13 self._recompute_centers(partials)

Listing 6: Relevant lines of the original k-means implementation (dislib
codebase)

The modifications required for using the SplIter are shown
in Listing 7. As discussed in Section 4, and similarly to the pre-
vious application, we can see the addition of a nested loop. In
the outer loop we see, once again, a partial merge call ( merge
invocation). This function was already used by recompute-

centers, and now we can see its explicit invocation within the
outer loop –an invocation with guaranteed locality.

1 @task

2 def _partial_sum_partition(partition , centers):

3 subresults = list()

4 for block in partition:

5 p = block.partial_sum(centers)

6 subresults.append(p)

7 return _merge (* subresults)

8

9 class KMeans(BaseEstimator):

10 def fit(self , x, y=None):

11 ...

12 self.spl = spliter(x)

13 while iterate:

14 partials = list()

15 for partition in self.spl:

16 p = _partial_sum_partition(

17 partition , old_centers)

18 partials.append(p)

7



19 self._recompute_centers(partials)

Listing 7: Relevant lines for using SplIter in the k-means

5.3. Cascade SVM
The next application that we will consider is a distributed

SVM, or more precisely, the distributed training procedure of
a support vector machine following the Cascade SVM algo-
rithm. We have chosen this application because of its relevance
as a data analytics algorithm as well as its importance in the
machine learning ecosystem. The distributed implementation
takes advantage of fundamental kernels (SVC) and globally it is
a compute-bound algorithm. The evaluation and discussion for
this application can be extrapolated to other applications with
high computation requirements that start with an embarrass-
ingly parallel stage and then have non trivial reduction proce-
dures (e.g. mesh refinements algorithms, iterative optimization
strategies, etc.).

For this application, we want to showcase the main advan-
tages of the SplIter when applied to a compute-bound appli-
cation at its root. This is also an application where the item
ordering is relevant for the result. The implementation that we
will be using (the one in the dislib library) is based on the
algorithm described by Graf et al.[21].

The input dataset data structure is a set of points (called x

later on in the code snippets). Along this array there is another
one (called y in the pseudo-code), with the same cardinality,
containing the labels (or categories) of those points –the SVM
is a supervised classifier. The Cascade SVM is an iterative algo-
rithm, with each iteration starting by an embarrassingly parallel
stage where a SVM is run in each block. The merge also con-
sists on an SVM.

The actual implementation uses the sklearn[22] C-Support
Vector Classification (SVC). This can be considered the main
microkernel of the application. As a result, the methods in this
application have a high computation cost (with a low memory
footprint).

Let us discuss the original source code of the CascadeSVM
shown on Listing 8. In that snippet we can see the two arrays,
one with points (parameter x) and the other with labels (param-
eter y).

1 @task

2 def _train (...)

3 ...

4

5 class CascadeSVM(BaseEstimator):

6 def _do_iteration(self , x, y, ...):

7 for blockset in zip (...):

8 x_data = blockset [0]. _blocks

9 y_data = blockset [1]. _blocks

10 _tmp = _train(x_data , y_data , ...)

Listing 8: Relevant lines of the original CascadeSVM implementation (dislib
codebase)

The modifications introduced in the SplIter implementation
are shown Listing 9. The ordering within the collection matters,
because the labels (parameter y) are linked to the points (param-
eter x). This is handled by using the get indexes mechanism,
explained in subsection 4.1. The main task train is unmodi-
fied.

1 @task

2 def _train (...)

3 ...

4

5 class CascadeSVM(BaseEstimator):

6 def _do_iteration(self , x, y, ...):

7 for partition in spliter(x._blocks):

8 spliter_indexes = partition.get_indexes ()

9 x_data = partition._chunks

10 y_data = [y[idx]. _blocks [0]

11 for idx in spliter_indexes]

12 _tmp = _train(x_data , y_data , ...)

Listing 9: Relevant modifications for the SplIter implementation on the
CascadeSVM application

5.4. k-Nearest Neighbors

The last application is the k-Nearest Neighbors, an imple-
mentation of the non-parametric supervised learning method[23].
The core of the algorithm is based on finding the k elements
that are nearest a certain point p. The implementation has two
distinct parts, named fit and kneighbors respectively, each with
its own data. For each point of the kneighbors dataset, its k-
Nearest Neighbors from the fit dataset is returned –hence the
algorithm name. Typical implementations (e.g. the one we are
using from the dislib, which is directly using the sklearn im-
plementation) will generate tree lookup data structures during
the fit stage and those tree lookup data structures will be used to
efficiently find neighbors during the second kneighbors stage.

It is an application where the result depends on the item or-
dering of the input, something that the SplIter has to take into
account. The support comes through the get item indexes

primitive offered by our SplIter proposal and discussed in sub-
section 4.1.

For this application, we want to show the full potential of
the SplIter when applied to more complex data structures and
algorithms. There will be more changes in the application –at
least compared to the minimal ones shown in previous applica-
tions. However this will also unlock certain opportunities –as
we will explain here and later on discuss during the evaluation,
in subsection 6.5.

As stated before, there are two input datasets for this appli-
cation: fit and kneighbors. The fit procedure takes the fit dataset
and generates the tree lookup data structures (one per block).
This general procedure is illustrated in Figure 5.

The latter kneighbors stage performs the lookup (for each
input point on the kneighbors dataset) against all the lookup
trees. Figure 6 shows how a single block of the kneighbors
dataset is processed. The resulting number of tasks in this stage
equals to the number of blocks in the kneighbors dataset times
the number of tree lookup structures we have.

A final merge operation combines the partial results of the
lookups into the result of the application.

Given the complexity increase for this application, we will
look with more detail into the implementation and the distri-
bution of tasks. Let’s start with the original implementation,
shown in Listing 10.

1 class NearestNeighbors(BaseEstimator):

2 def fit(self , x):

8



fit

fit dataset

......

Figure 5: fit stage of the k-Nearest Neighbors application

...
...

...

...

kneighbors 
dataset

kneighbors

Figure 6: kneighbors stage of the k-Nearest Neighbors application (without
depicting the final merge operation)

3 for row_block in x:

4 sknnstruct = _compute_fit(row_block)

5 self._fit_data.append(sknnstruct)

6

7 def kneighbors(self , y):

8 indices = list()

9 for q_row_b in y:

10 queries = list()

11 for sknnstruct in self._fit_data:

12 q = _get_kneighbors(sknnstruct , q_row_b)

13 queries.append(q)

14 ind = _merge_kqueries (* queries)

15 indices.append(ind)

16 return indices

Listing 10: Abridged relevant code of the original NearestNeighbors
implementation (dislib codebase)

We have three distinct relevant tasks:

1. compute fit, i.e. the tree generation. Internally, this op-
eration is performed by calling NearestNeighbors.-

fit from the sklearn library[22].
2. get kneighbors, which evaluates a partial k-nearest

neighbors through the previous lookup trees.
3. merge kqueries, which does the final merge stage by

joining (sorting and picking) partial results.

We show the SplIter implementation in Listing 11. The gen-
eral flow of the application is the same, with a difference in the
compute fit partition, which now applies to a whole par-
tition.

1 class NearestNeighbors(BaseEstimator):

2 def fit(self , x):

3 for partition in spliter(x):

4 nn = _compute_fit_partition(partition)

5 self._fit_data.append(nn)

1 31 3

1 32 ...

@task
def fit(   )

Tasks

3

Figure 7: Diagram of the tree generation on the fit (original implementation)

6

7 def kneighbors(self , y):

8 indices = list()

9 for q_row_b in y:

10 queries = list()

11 for persistent_nn in self._fit_data:

12 q = persistent_nn.get_kneighbors(q_row_b)

13 queries.append(q)

14 ind = _merge_kqueries (* queries)

15 return indices

Listing 11: Implementation of NearestNeighbors with SplIter

In the original compute fit, that task receives a block (con-
ceptually, a set of points); on the other hand, compute fit -

partition processes a whole partition (which is a set of blocks,
each block being a set of points, so at the end, a partition is
also a set of points). This change seems minimal in the source
code, but has an interesting implication: instead of generating
a tree lookup data structure per input block (see Figure 7), we
are generating a single tree lookup data structure per partition
–decoupling the number of intermediate data structures from
the number of blocks in the input dataset. Figure 8 shows the
data structures resulting in the SplIter version of the applica-
tion. Using SplIter in this fashion is done for two main rea-
sons. First, it allows the implementation to exploit locality, as
each tree is generated without requiring any serialization nor
data transfer between nodes. Secondly, it generates more effi-
cient lookup data structures, as having a single but bigger tree
is more efficient on look-ups than having several smaller trees.
Our evaluation in 6.5 will explore the impact of the tree sizes
on number of tasks and total execution time. This efficiency
increase due to different intermediate data structures shows an
advantage that the SplIter can bring us: by using partitions, the
intermediate data structures can be combined and generated in
a more sensible way.

Using SplIter is not the only way to achieve bigger trees and
the evaluation will consider the rechunk approach as an alter-
native. The application developer could manage it with either
hard-coding an optimal block size (which requires knowledge
of the computing resources and lots of ugly hard-coding and
platform-dependent code) or they could query manually the ob-
ject store for the placement of objects and perform the partitions
manually. The first option is an anti-pattern, and loses a lot of
portability –negating the advantages of a task-based program-
ming model. The second option is effectively reimplementing
the SplIter ad-hoc for each application, which is less efficient
and yields no advantages over having it tightly integrated into
the programming model –which is exactly what we propose.
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1 31 3

1 32 ...

SplIter

Tasks

@task
def fit(    )

1

3

partition

Figure 8: Diagram of the tree generation on the fit (implementation with Spl-
Iter)

5.4.1. Parallel tree traversal
Generally, Python numerical libraries manage the Global

Interpreter Lock (GIL) in a smart way. This means that, even
while Python is not able truly multithread the interpreter (be-
cause of this GIL) the numerical implementations can release
the GIL and are typically multithreaded.

However, reading in parallel from a single data structure is
more difficult. This happens in the kneighbors stage of the ap-
plication, during tree lookup operations. While technically it
could be possible to implement the sklearn’s KDTree imple-
mentation to be reentrant, this is not the current state.

To address that and be able to exploit parallelism, both im-
plementations will include the snippet shown in Listing 12 in-
side the get kneighbors task (during the kneighbors stage).
The solution consists of duplicating the iteration data structure
(not the full tree) and that is achieved by performing a shallow
copy of the NearestNeighbors data structure followed by a
copy of its tree attribute (which is a KDTree instance).

1 # nn is sklearn.neighbors.NearestNeighbors

2 original = nn

3 nn = copy(original)

4 # nn._tree is a KDTree object

5 nn._tree = copy(original._tree)

Listing 12: Shallow copy of sklearn data structure to allow parallel execution

6. Evaluation

In this section we will be evaluating SplIter performance
for the different proposed applications. There will be two base-
line executions, one per each framework; we will call the first
one “COMPSs & dataClay” and the other one is called “Dask”.
These executions will be done without any mechanism to tackle
granularity issues on the data –neither SplIter nor rechunk.

Besides these baselines, we will include both SplIter execu-
tions (one on top of COMPSs & dataClay and the other one on
top of Dask). An extra additional execution “Dask + rechunk”
is included in the evaluation; this configuration will issue a re-
chunk operation (see subsection 3.2.1). This configuration is
used as the main competitor of the SplIter.

Applications have been executed several times (in the order
of dozens to a hundred) in order to obtain meaningful measure-
ments regarding their execution times. A winsorizing transfor-
mation is applied as to clean up outliers. The bar plots in this
evaluation section will all include error bars that represent the
percentile error showing the inter-quartile range. The percentile
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Figure 9: Histogram weak scaling from 1 node to 16 nodes, with 2304 blocks
per node (48 per core)

error is a nonparametric spread estimator that gives information
regarding the spread or “noisiness” of execution times.

6.1. Hardware
All the experiments are executed in the MareNostrum 4

HPC cluster [24]. The nodes in this cluster have the follow-
ing technical specs:

• 2×Intel® Xeon® Platinum 8160L CPU @ 2.10GHz

• 96GB of DRAM (12×8GB 2667MHz DIMM)

• 100 Gb/s Intel Omni-Path (between computing nodes)

• 10 Gb Ethernet (storage and management)

Each node contains a total of 48 (2 × 24) cores. The exper-
iments in this article will be run in multiple nodes. The largest
experiments will be done on a total of 16 computing nodes.

6.2. Histogram
The first experiments that we will discuss are performed

with the Histogram application, the most fundamental appli-
cation that we will be discussing. It is a memory intensive ap-
plication (lots of data and very fast execution). Because of this
characteristics, a big dataset is used –but small enough to fit in
RAM. To the memory footprint we have to also add the applica-
tion execution itself as well as the framework. A size that could
accommodate all our executions in all their different configu-
rations was 880 million points (5 dimensions) per node. This
results in a raw size of 33GB per node.

6.2.1. Scalability for highly fragmented datasets
We will start with a dataset divided into a large number of

blocks. Our goal is to showcase the benefits of the SplIter in
an environment where locality and data transfers are critical –
i.e. during a memory intensive application execution, such as
the Histogram. The block size is chosen in order to attain 48
blocks per core.

The execution times are shown in Figure 9. The figure
shows the good behavior of the SplIter and its satisfactory scal-
ability. Both SplIter executions show similar execution times
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(meaning that the “quantity of work” done is similar, which
means that both algorithm implementations are equivalent and
the SplIter approach is equally effective regardless the execu-
tion framework). These executions outperform their respective
baselines for any number of nodes (and the difference grows
with the number of nodes). This shows us that SplIter is suc-
cessfully reducing the scheduler and execution overhead, and
the improvement increases with the number of blocks.

If we look into the scalability of the two baseline execu-
tions, we can observe that COMPSs & dataClay presents a good
but not ideal scalability (i.e., the performance difference with
SplIter grows when the number of nodes and thus tasks grows).
The performance degradation is due to the scheduling and in-
vocation costs. The scalability of the Dask baseline is much
worse. This suggests that the COMPSs scheduler is able to be-
have better under heavy pressure.

The competitor approach, Dask + rechunk, is a mechanism
that reduces the number of tasks and improves the inadequate
granularity issues. However, we can see in the figure that the
execution times when using rechunk are the worst. This hap-
pens in this kind of application due to the steep cost in terms
of data transfers –a cost that shadows any improvement. The
data transfers constitute a high expense in this application be-
cause the dataset size is large and the execution time is very low,
meaning that data transfers become the main bottleneck instead
of the computation or the scheduler overhead.

6.2.2. Overhead for perfectly balanced datasets
Now we move the evaluation to the scenario were the data-

set is perfectly balanced; this means that there will be a sin-
gle task per core. The total dataset size remains constant (880
millions points per node) so the change from the previous ex-
periment is the number of blocks and the block size. Now the
blocks are 18432 thousand points (48 times more than the pre-
vious experiment).

This experiment presents a worst-case scenario for the Spl-
Iter, as a perfectly balanced dataset means that there is no room
for improvement. Moreover, given that we are evaluating an
application that has small absolute execution times, any penalty
or additional noise will be conspicuous.

The execution times for this experiment are shown in Fig-
ure 10 where we can see a weak scaling from 1 to 16 nodes.

Excluding the COMPSs & dataClay + SplIter execution, we
see that all the other ones have close execution times between
them. Both the baseline and the SplIter are effectively perform-
ing the same Histogram operation unto the same data, and data
is perfectly balanced.

In this specific scenario, the SplIter implementation on Dask
is able to exploit data locality a bit better; the SplIter execution
is able to exploit data locality during its kernel (just as its base-
line) but the partitions are arranged divided in workers, which
are able to exploit locality during the first reduction step (when
partial results are merged together). Given that executions are
so fast, being able to exploit this extra of data locality is able to
give some additional benefit –a surprising result, given that this
is designed to be a worst case scenario for SplIter.
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Figure 10: Histogram weak scaling from 1 node to 16 nodes, with 48 blocks
per node (one per core)

There is a slight difference among the two SplIter, as we can
see that the SplIter implemented on top of Dask behaves much
more consistently than the COMPSs & dataClay + SplIter one.
Of course, we have to take into account that this execution is
very fast (just a few seconds long) but still, the overhead of the
SplIter on dataClay adds a fair amount of noise and an addi-
tional couple of seconds on average. Assembling the partition
requires to retrieve location of blocks, and the overhead of that
query will be different between dataClay and Dask. These re-
sults suggest that dataClay could be improved to have a faster
query operation, and that would reduce the SplIter overhead.
Dask already offered a single operation to query the location
of multiple objects, which –seeing the results– is more efficient
and consistent than the one we implemented on top of dataClay.

This worst-case scenario shows us that the overhead of the
SplIter –an overhead that depends on the number of blocks– can
be low. A higher number of blocks should result in a more la-
borious partition preparation, but the overhead can be minimal
as demonstrated by the Dask execution.

6.2.3. Sensitivity to fragmentation
After discussing a favorable scenario for SplIter and an un-

favorable one, we want to discuss what happens across this
spectrum. This experiment will sweep the number of blocks
from 1 per core (worst SplIter scenario, which matches the pre-
vious experiment) to 48 blocks per core (best scenario, which
matches the first experiment on this application). The experi-
ment is evaluated in 8 nodes and the dataset size is constant and
the same as in previous scenarios: 7 billion points in total. The
execution times are shown in Figure 11.

The SplIter behavior is quite flat, showing that it is a tool
that desensitizes application execution performance from task
granularity –the positive outcome that we expected. As we dis-
cussed for the worst-case scenario, the SplIter implementation
on top of dataClay has some room for improvement (the left-
most second bar, which stands out a little bit), but it shows good
and steady performance everywhere else.

Once again we see that the baseline executions degrade a
little bit (starting on the left being as fast as SplIter and de-
grading progressively when the number of tasks increases. The
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Figure 11: Histogram on 8 computing nodes. The X axis show variation on
the total number of blocks per core. Block size changes in order for the total
dataset size to remain constant.

COMPSs scheduler is much more robust against bad granular-
ity scenarios (increasing from 5s to 10s) while the Dask sched-
uler suffers much more and increases its execution time from 5s
to more than one hundred.

The rechunk is still a very expensive operation. When there
is a single block per core, the rechunk operation is a no-op.
However, as soon as the rechunk operation performs its duties
(which happens at 4 blocks per core, when the rechunk is ex-
pected to redistribute data between workers) the huge amount
of data that must be transferred between nodes results in hun-
dreds of seconds of execution overhead.

We can see some slight inconsistencies between 1 and 4
blocks per core (the COMPSs & dataClay + SplIter implemen-
tation improves, while baseline executions are sitting very still).
There is a performance variation that contributes to this: the
special behavior of the microkernel (the numpy.histogramdd
implementation that we are using in all scenarios) on big block
sizes. The numerical implementation of the numpy histogramdd
benefits from having smaller blocks: for instance, it is 20%
faster to perform 16 histograms of block sizes equal to 1152
thousand points instead of doing a single histogram of 18432
thousand points. This is taking into account reduction and inde-
pendently of parallelism, just saturating all the cores and mem-
ory of a single socket. Discussing this application in this level
of detail is outside the scope of this article, as it is related to the
actual implementation on the numpy library and is also related
to the intra-node architecture.

6.2.4. Insights
In this kind of memory intensive application, the SplIter

shows a good behavior, with big improvements on favorable
scenarios and low-to-no overhead for unfavorable ones. This
kind of application also renders the rechunk approach imprac-
tical –using it results in an excess of data transfers. Also, the
single-pass (as opposed to an iterative algorithm) negates the
reuse potential of both rechunk and SplIter operations.

The SplIter has shown that it is able to address the task gran-
ularity of the data while maintaining the data locality benefits;
this is not achieved by the rechunk for this kind of applications.
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Figure 12: k-means weak scaling from 1 node to 16 nodes, with 2304 blocks
per node (48 per core)

6.3. k-means
The next application is k-means, a memory bound iterative

application. The dataset, when compared to the previous appli-
cation, is a little smaller: 11GB of raw data per node (74 million
points of 20-dimensional points per node). The pairwise -

distances function of the sklearn library –the main numeri-
cal function used in this application implementation– is a mem-
ory hungry implementation which caused issues at bigger data-
set sizes (specially for big blocks). We settled for this dataset
sizes which ensures that all executions are consistent.

6.3.1. Scalability for highly fragmented datasets
Our goal for this experiment is to showcase the benefits of

the SplIter for another quite memory intensive application. This
application has an iterative approach and more complex numer-
ical procedures (when compared to the previous one). This first
experiment is done with a highly fragmented dataset in which
each block contains 64 thousand points and it is divided into
2304 blocks per node (which equals to 48 blocks per core).

The iterative approach should reduce the overall impact of
both the rechunk and the SplIter approaches: the burden of
those mechanisms are “shared” amongst all iterations, reduc-
ing its relative penalty. Moreover, the longer execution times
will make the overheads less visible. The more complex reduc-
tion will have additional data locality benefits that the SplIter
can leverage during the reduction step.

We will be evaluating this scenario by performing a weak
scaling, starting from 1 node up to 16. The experiment scales
up to 36864 blocks for the 16-node execution.

The execution times are shown in Figure 12. Once again we
can observe that SplIter executions have good scalability, show-
ing very flat results and resulting in a very stable weak scaling
behavior. Both implementations (COMPSs & dataClay + Spl-
Iter and Dask + SplIter) have results that are very close between
them, showing that the amount of computation that they do is
the same and the implementations are equivalent.

The baseline executions have a much worse scalability than
the SplIter counterparts. We already saw in the previous ap-
plication (Histogram) that the scalability for highly fragmented
datasets results in a degradation of performance due to the big
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Figure 13: k-means weak scaling from 1 node to 16 nodes, with 48 blocks per
node (one per core)

amount of tasks. Given that we are evaluating an iterative appli-
cation (10 loops in this evaluation), the overhead is amplified 10
times. The execution times of Dask end up being one order of
magnitude slower, which shows that the COMPSs scheduler is
more robust to being stressed with lots of tasks; however, even
in that case the COMPSs & dataClay ends up being one order
of magnitude slower than the SplIter configuration.

An alternative to the SplIter would be to use the rechunk.
This can be seen in the Dask + rechunk execution, which shows
good results. Its scalability is not as good as the SplIter and we
can see a clear uptrend in the execution times when the num-
ber of nodes (and thus, the number of blocks) increases. This
overhead is due to the rechunk cost, which requires to move
data between workers (a cost that increases when the number
of nodes increases). However, this cost is only payed once, not
for every iteration (just as the SplIter cost that is payed once).

6.3.2. Overhead for perfectly balanced datasets
The second experiment for this application will show what

happens if the dataset is already perfectly balanced. Balanced
means the same as in the previous experiment: the dataset is
divided in such a way that there is one block per core. Once
again, we want to focus on the overhead and general behaviour
of the SplIter on a worst-case scenario, one where there is no
room for improvement for any enhanced iteration mechanism.

This scenario will also be conducted through a weak scal-
ing. The dataset size will be identical to the previous scenario,
but each block will be bigger: 3 million points per block (48×
bigger than the previous scenario). Figure 13 shows the execu-
tion times for this scenario.

We expected to see the pure overhead on the SplIter exe-
cutions. That is the case for COMPSs & dataClay + SplIter
execution; the execution time grows with the number of nodes
(i.e. blocks). However we see a much better behavior for the
Dask + SplIter execution. As seen in the Histogram application,
the overhead of SplIter is lower in Dask. Moreover, the data lo-
cality achieved by the Dask workers during the reduction steps
is higher than the one warranted by COMPSs.

In fact, the data locality achieved by the Dask + SplIter
combination goes one step further. Because how the partitions
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Figure 14: k-means on 8 computing nodes. The X axis show variation on the
total number of blocks per core. Block size changes in order for the total dataset
size to remain constant.

are being generated (as detailed in Section 4), the first step of
the reduction is able to exploit data locality too. This is not
achieved by the baseline, and thus the Dask performance is
slightly worse than the SplIter one –specially for a high number
of nodes as the reduction cost increases.

The rechunk has no impact on execution times, as it is ef-
fectively a no-operation.

6.3.3. Sensitivity to fragmentation
We will follow with an experiment that should highlight the

sensitivity of dataset fragmentation. The previous two experi-
ments for this application have showcased a good case scenario
and a worst case scenario for the SplIter. Now we will explore
this spectrum and find the tipping point where the benefits of
the SplIter are greater than its overhead.

In order to do so we will once again fix the number of nodes
to 8 and change the number of blocks per core. The number
of blocks per core will go from 1 (worst case scenario for the
SplIter, as done in the previous experiment) up to 48 (which is
the highly fragmented dataset discussed in the first experiment
for this application). The results can be seen in Figure 14.

We have already discussed the leftmost and rightmost con-
figurations (see the two previous experiments).

The SplIter executions are very stable, almost flat, showing
that this mechanism reduces sensitivity to fragmentation.

The baseline executions are sensitive to fragmentation and
their execution performance decreases when the number of tasks
increases –i.e. when the scheduler is under pressure and there
are a lot of invocations of small tasks. COMPSs scheduler is
able to “resist” a bit longer (it starts degrading significantly be-
tween 16 and 48 blocks per core) while Dask starts to increase
at 4 blocks per core and quickly becomes orders of magnitude
slower than any other execution.

The rechunk shows an overall good behavior. It does reduce
sensitivity to the dataset fragmentation, but not as effectively as
SplIter. Its performance can be orders of magnitude better than
the baseline but is still slower than the SplIter execution.
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Figure 15: Cascade SVM weak scaling from 1 node to 16 nodes, with 384
blocks per node (8 per core)

6.3.4. Insights
When handling an iterative application such as the k-means,

including any mechanism to address the dataset fragmentation
will result in substantial performance benefits. The overhead
of SplIter or rechunk are diluted among the iterations and their
benefits can be extremely large. Still, SplIter outperforms the
rechunk because it is able to avoid data transfers (a cost that can
grow for data intensive applications such as k-means) as well as
to maximize data locality.

6.4. Cascade SVM

The next application is the Cascade SVM, a compute bound
algorithm. The sizing of the dataset has been set in order to ob-
tain reasonable execution times. Having a big dataset proved
impractical for computation exploration as it required too many
computing resources (i.e. for a statistically significant discus-
sion). We have chosen a dataset size of 300 thousand points
per computing node, which yields a good variety of execution
times across all scenarios.

6.4.1. Scalability for highly fragmented datasets
As with previous applications, we will start with a highly

fragmented dataset. Our goal is to showcase the benefits of the
SplIter for a compute-bound application. This means that the
improvements due to locality will be lessened in comparison to
previous applications. However, we do expect improvements
due to the decrease in the number of tasks. By having less tasks
we expect to increase responsiveness on the scheduler (it has
less work to do) and a lower invocation overhead (due to the
lower number of tasks). This is an ideal scenario for rechunk,
as the quantity of data that needs to be moved for a rechunking
operation is small, while the improvements should be substan-
tial due to the computation being the bottleneck.

The dataset is 300 thousand points per node. The evaluation
will be performed by a weak scaling up to 16 nodes. The execu-
tion is performed with a block size of 128 points. This results in
8 blocks per core, or 384 blocks per node. The execution times
for this scenario are shown in Figure 15.
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Figure 16: Cascade SVM weak scaling from 1 node to 16 nodes, with 48 blocks
per node (one per core)

Before analyzing the behavior of the SplIter against the base-
line and the rechunk, we should mention that there is a consid-
erable difference between COMPSs and Dask. This difference
is related to the baseline implementations and not to the SplIter
or to the data granularity. The current execution (highly frag-
mented dataset) has several factors that make this comparison
complex, so we will discuss this in the next configuration with
a perfectly balanced dataset.

The SplIter executions outperform their respective baselines
substantially. The improvement introduced by the SplIter is ap-
parent, once again, for a highly fragmented dataset.

For this application, we see how the rechunk outperforms
the SplIter. As discussed in 3.2.1, the rechunk materializes a
new array, while the SplIter does not. In previous applications,
the data transfer was bigger and resulted in faster execution
times for SplIter. In this application, however, the data transfers
are small enough to be almost invisible, while having the array
materialized results in faster execution times.

6.4.2. Overhead for perfectly balanced datasets
We will now show an evaluation for a perfectly balanced

dataset –with as many blocks as there are cores. In that sce-
nario, once again, there should be no improvement for the Spl-
Iter or the rechunk –there is already a one-to-one relationship
between computing resources (cores) and tasks (blocks), so there
is nothing to improve in that regard. This evaluation will help us
evaluate and characterize the overhead in extreme cases where
no potential benefit exists from the point of view of the en-
hanced iteration mechanism.

This experiment will maintain the same dataset size (300
thousand points). When comparing to the previous scenario, the
block size is increased from from 128 to 1024, and the number
of blocks per core is reduced from 8 (the previous ratio) to 1
(i.e. perfectly balanced).

Figure 16 shows the execution times for this scenario.
Before discussing the SplIter, we can clearly see the differ-

ent performance between COMPSs and Dask. Up until now,
prior application performances have been very close between
COMPSs and Dask, as we have made an effort to compare
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equivalent implementations. In this case, however, some de-
tails of the implementation have resulted in a disparity of per-
formance; both algorithms are effectively doing the same op-
erations (we used the dislib implementation as the reference,
and implemented that in Dask) but the general data manage-
ment of intermediate results and the internal serializations are
causing this difference. To address that we could try to improve
the dislib implementation –which may prove difficult and is
outside the scope of this article. Even if the current results hin-
der simultaneous comparisons across COMPSs and Dask, we
can discuss the SplIter impact separately for both frameworks.

Both SplIter executions follow closely their respective base-
lines. The Dask + rechunk is almost exactly the same as Dask.
The overhead on the COMPSs & dataClay executions is more
visible, and we can observe how the overhead depends on the
number of blocks –i.e. the difference between the baseline and
the SplIter increases when the number of nodes increases. This
overhead is smaller in Dask (a phenomenon that we have al-
ready seen in previous applications) which suggests that the
mechanism to query location and build partitions is more ef-
ficient in Dask than in dataClay.

The rechunk is effectively a no-operation and its perfor-
mance is identical to the regular Dask.

6.4.3. Sensitivity to fragmentation
We have shown a relatively beneficial scenario as well as a

worst-case scenario from the point of view of the SplIter and re-
chunk mechanisms. In the following experiment we will show-
case what happens across this spectrum, and specifically we
will discuss how sensitive are the enhanced iteration techniques
to the quantity of blocks and fragmentation of the dataset.

This experiment will fix the dataset size, fix the number of
computation nodes, and vary the number of blocks. More tasks
results in a more saturated scheduler and more runtime over-
heads –which translates to more opportunities for mechanisms
that addresses granularity such as the SplIter or the rechunk.

The execution is spread across 8 computing nodes. The ex-
ecution times can be seen in Figure 17. The leftmost group of
bars show the execution times when the dataset is perfectly bal-
anced (i.e., previous experiment); the rightmost group of bars
show the other end of the spectrum (i.e., the second to last ex-
periment, which corresponds to 8 blocks per core).

The SplIter executions are almost flat, showing that the Spl-
Iter is reducing the sensitivity to the task granularity. The exe-
cution times for 1 block per core (the worst case for the SplIter)
is almost the same as the execution time for 8 blocks per core.

On the other hand, we see that both COMPSs & dataClay
and Dask are quite sensitive to fragmented datasets. Their exe-
cution times are equal to SplIter for 1 block per core and grow to
more than double when the fragmentation increases to 8 blocks
per core. All this overhead is due to the stress on the sched-
uler and the high number of task invocation, which become the
bottleneck of execution.

This application is perfect for rechunk. As soon as there
is more than one block per core, rechunk becomes the fastest
configuration. The relatively small dataset results in a fast re-
chunk operation –meaning that the overhead of performing a
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Figure 17: Cascade SVM on 8 computing nodes. The X axis show variation on
the total number of blocks per core. Block size changes in order for the total
dataset size to remain constant.

rechunk is almost irrelevant– while having a materialized col-
lection results in faster execution times when compared to the
unmaterialized collection –the partitions yielded by the SplIter.

6.4.4. Insights
This is the first compute bound application that we have

discussed and, once again, we have seen that there is the need
to address dataset fragmentation. In this application, rechunk
yields better performance than SplIter. The two previous ap-
plications where memory intensive and SplIter outperformed
rechunk; this application, a CPU intensive one, shows that re-
chunk can beat the SplIter in certain scenarios. Even in these
scenarios much more favorable to the rechunk, the difference
between the two mechanisms is small.

6.5. k-Nearest Neighbors

This application has two different datasets, both used as in-
puts: the fit dataset and the kneighbors dataset. In our exe-
cutions, each block contains 500 thousand three-dimensional
points –a manageable size, but big enough to result in over one
second long single tasks. Using three-dimensional points is a
natural choice for point clouds, but the implementation and our
conclusions are generic and applicable also for higher dimen-
sional points (that may be used in classification or regression).

Given that this application presents a more convoluted al-
gorithm consisting of two distinct parts, we will start by dis-
cussing the behavior of the two main microkernels that are used
in the application: the fit procedure and the kneighbors proce-
dure. After this first experiment, we will discuss the full soft-
ware stack with two more experiments; the first one will be a
scalability with a fixed ratio between the two datasets; the latter
will perform an analysis when the fit dataset is scaled.

6.5.1. Kernel characterization
When discussing this application in 5.4 we discussed the

impact that the size of the tree data structures will have onto the
algorithm. There are a lot of nuisances, but the general intuition
is that using big trees will result in less tasks, more efficiency
and less overall execution times. In this first experiment we
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Figure 18: Kernel processing time for the fit procedure of the k-Nearest Neigh-
bors application while increasing the fit block size

500k 1000k 1500k 2000k 2500k 3000k
fit block size (n points)

0

1

2

3

4

5

6

kn
ei

gh
bo

rs
 k

er
ne

l t
im

e 
(s

)

Figure 19: Kernel processing time for the kneighbors procedure of the k-
Nearest Neighbors application while increasing the fit block size

will show the impact that the tree size (which is directly related
to the fit dataset block size) has onto the two main kernels of
the application (i.e. the fit stage and the kneighbors stage. Each
stage purpose and characteristics have been discussed in 5.4 and
more specifically outlined in Figure 5 and Figure 6.

The times that we will be evaluating correspond to the nu-
merical execution time for the payload of a single task (sin-
gle block). In our scenario, this means executing the code on
sklearn library without parallelism, data transfers nor frame-
work overhead. As both stages are sensitive to the block size
of the fit dataset, we will show the execution times when vary-
ing the fit block size. Figure 18 shows the execution times of
the fit kernel and Figure 19 shows the execution times for the
kneighbors kernel.

For the fit kernel (Figure 18) we can see how, when the
input block increases, so does the processing time –in an almost
linearly fashion. We are seeing here the cost of building the tree
data structures and the cost is as expected.

The behavior of the kneighbors kernel (Figure 19) is much
flatter. We already expected this (as previously discussed in 5.4)
because tree lookup operations do not increase linearly.

Table 1 explores microkernel execution time for four dif-
ferent block sizes. The first column shows the block size of
the fit dataset (ranging from 3000k points for the biggest one
down to 500k for the smallest). The second column shows the
number of blocks in the fit dataset (equivalent to the number of
tasks). This is a parametric value, which will depend on the size
of the fit dataset. Decreasing the block size results in a bigger
number of blocks; e.g. given a starting dataset of n blocks with
a block size of 3000k points, that same dataset will yield 3n

Fit #fit tasks fit kneighbors
block size (= #blocks) total time time per block

3000k n n· 5.38s n· 6.28s
1500k 2n n· 4.44s n· 11.42s
1000k 3n n· 4.17s n· 15.35s

500k 6n n· 3.66s n· 26.83s

Table 1: Combined execution times for k-Nearest Neighbors microkernels.

blocks when the block size equals 1000k points. The fit total
time (meaning the sum of all kernel execution times, sequen-
tially) also depends on n and varies depending on the block size.
The kneighbors stage has its own dataset, which is why the last
column on the table shows the execution time per block; the
time shown in the table is the sum of all the kneighbors kernel
executions (sequentially) for a single kneighbors dataset block.
To get the kneighbors total time we would need to multiply that
value per the number of blocks in the kneighbors dataset.

The table shows how the kneighbors is the longest stage
and also the most sensitive to the block size (i.e. tree size). It
is natural to consider beneficial configurations for it, and those
are found when the fit block size are big –i.e. when the tree data
structures are big. Moreover, the tree data structures generated
during the fit may be used by a lot of kneighbors blocks, and
those trees may be used repeatedly during execution (e.g. for
iterative algorithms); these characteristics dilute the cost of the
fit stage when compared to the kneighbors stage.

With that in mind we will set up both SplIter and rechunk to
build a single tree lookup data structure per location. This prior
analysis corroborates the intuition that bigger fit block sizes in-
crease the performance of the microkernel execution time. The
last experiment for this application (see 6.5.3) will revisit this
same discussion on the kneighbors execution time, evaluated in
the complete stack environment (with COMPSs, with multiple
nodes, with parallelism, and with full datasets).

6.5.2. Scalability
In this experiment we will include the software stack and

evaluate the scalability and parallelism of the SplIter and re-
chunk mechanisms for a high quantity of blocks and tasks. Our
goal is to evaluate our proposal in the context of a complex ap-
plication, application which also contains non-trivial data reuse.
We already explained certain implementation details required in
order to change the tree lookup structures size.

The general scalability scenario will be evaluated by using
the fit dataset at 6 blocks per node, and 24 blocks per node
for the kneighbors dataset. Consequently, the kneighbors stage
will consist of a total of 6 × 24 × nnodes tasks for baseline ex-
ecutions. Regarding the other executions, we will follow the
conclusions reached in the previous experiment and use a sin-
gle tree per location, i.e. per backend/worker. In our NUMA
architecture computing environment this means to have a sin-
gle tree per socket. This results in a total of 2×24×nnodes tasks
for both SplIter and rechunk executions. The result of this first
experiment are shown in Figure 20.

The SplIter executions are very close among them, showing
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Figure 20: k-Nearest Neighbors scaling from from 1 node to 16 nodes

that they perform the same computations and the SplIter perfor-
mance is similar in both frameworks. The k-Nearest Neighbor
cost increases when the problem size increases (i.e. when the
number of nodes increases), which results in an increase in ex-
ecution times in the SplIter executions.

The baseline executions increase faster, showing a quicker
degradation of performance. In previous applications we have
seen that the COMPSs framework is more robust against sched-
uler pressure. However, the number of tasks is not as big in this
application, and the data locality is more relevant –a feature that
Dask is able to leverage more efficiently than COMPSs, due
how Dask manages in-memory Python objects. This explains
why the COMPSs & dataClay baseline is slower than Dask.

The rechunk execution is virtually identical to the SplIter;
this was expected given that the final tree data structures should
be equivalent (meaning equally large) in both scenarios.

6.5.3. Speedup for fit dataset scaling
In this experiment we will be scaling the training dataset

(the first one, the one that is fed to the fit stage). The number
of nodes is fixed to 8 and the size of the second dataset is also
fixed to 24 blocks per worker, which is a total of 192 blocks.

Our goal is to observe the impact of both the SplIter and
the rechunk, and how well they scale when the data structures
generated in the fit stage grow. In these experiments, the non-
baseline executions will generate a tree lookup data structure
per location (i.e. one per backend/worker, or one per socket,
which equals to a total of 16).

Figure 21 shows the ratio of number of blocks divided by
the execution time. The plot starts at two blocks per core (the
point where the baseline execution, the rechunk and the SplIter
executions are all equivalent among them) and scales up to 12×
which is a total of 96 blocks for the training dataset.

We see how the Dask baseline is flat, meaning that the speed
at which blocks are processed depends proportionally on the
training dataset size. When the training dataset size is doubled,
so is the execution time. We can see that the ratio is quite flat
across all the execution meaning that this trend is present from 2
blocks per node up to 12 blocks per node (in that last execution
the execution is 6 times bigger than the first one, and thus the

2x 4x 6x 8x 10x 12x
blocks per node

0.2

0.4

0.6

0.8

1.0

ra
tio

 (n
um

be
r o

f b
lo

ck
s /

 e
xe

cu
tio

n 
tim

e)

COMPSs&dataClay
COMPSs&dataClay+SplIter
Dask
Dask+rechunk
Dask+SplIter

Figure 21: Evolution of the ratio number of blocks by execution time when
increasing the number of blocks per node (higher is better).

execution is also 6 times longer). COMPSs & dataClay execu-
tion shows a bit more degradation, but follows the same general
trend. This means that there is some additional overhead (as we
have already discussed, due to leveragin in-memory intermedi-
ate data structures) but the execution times is proportional to
the training dataset size too.

On the other hand, the ratio for all other executions in-
creases linearly. The speed at which the SplIter execution pro-
cesses blocks is not proportional on the training dataset size,
but better. When the training dataset size is doubled, the execu-
tion time is much less than twice. The root cause is the internal
lookup trees. The kneighbors stage is using the lookup trees
generated during training; lookup operations on those trees are
not O(n) (linear) but O(log n). The complexity of lookup trees
explain the good behavior of SplIter and rechunk: duplicating
the size of the tree does not duplicate the lookup time.

To summarize this comparison: generating trees directly
from the block data results in a linear behavior while consol-
idating blocks (either with SplIter or rechunk) results in execu-
tions that are able to perform closer to the theoretical logarith-
mic complexity.

6.5.4. Insights
This application shows how addressing the fragmentation

and granularity issues of the data can give benefits that go be-
yond serialization and scheduler overhead. For this specific ap-
plication, we started from a O(log n) theoretical complexity (the
tree lookup stage) but observed it degrading into a O(n) due to
blocking (the baselines). Thanks to the use of either SplIter or
rechunk we were able to greatly improve the performance –the
execution time approaches once again the O(log n).

This improvement requires an understanding of the algo-
rithm. At this moment, rechunk has no direct semantic to re-
late the size to the computing resources or number of nodes,
so using it requires knowledge on the runtime computing re-
sources. The SplIter has the semantics related to data locality
and computing resources, which results in a simpler program-
ming model interface which is able to reach the same perfor-
mance benefits as the rechunk while avoiding data transfers.
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6.6. rechunk vs SplIter: discussion

The rechunk is an existing powerful tool for addressing in-
adequate granularity. SplIter is our proposal, which is an alter-
native that addresses inadequate granularity without data trans-
fers nor data transformations.

In all the scenarios where data transfers and/or data transfor-
mations are expensive, our proposal yields better performance
than using a rechunk mechanism. Huge datasets and memory-
bound executions are examples of such scenarios. On the other
hand, materializing the structures –i.e., doing a rechunk or alter-
natively materializing the SplIter partitions– is favorable when
the execution is compute-bound (due to small data structures
and/or a relevant level of data reuse).

Another relevant aspect is the memory implications of the
chunk size –an aspect that Dask documentation[9] highlights
when advising how to “select a good chunk size”. The chunks
should be small enough so many of them fit in memory and the
tasks do not run out of memory; the SplIter breaks the depen-
dency between task length and block size and solves this issue.

The overhead of using SplIter in non-optimal scenarios is
low (as shown in the Cascade SVM application), while the per-
formance degradation of the rechunk can be enormous (as in
the Histogram application). Using the SplIter is a more or less
safe insurance in situations where knowing the optimal chunk
size is impractical or flat out impossible.

7. Conclusions

In this article we have discussed and shown the SplIter pro-
posal, our contribution to improve iteration on distributed data-
sets in task-based programming models. At its core, the SplIter
is able to leverage iteration optimizations and data locality with
minimal impact on programmability.

The evaluation has shown the behavior of the SplIter across
a variety of scientific applications, from several science do-
mains (iterative or non-iterative applications, memory inten-
sive applications, CPU intensive applications, machine learn-
ing, data analytics, etc.). The SplIter is able to reduce the per-
formance sensitivity to the block size. Given that the applica-
tion developer may not know the computing environment, de-
coupling the application performance from the block size is a
huge benefit in terms of programmability[5] and performance
portability[6, 25] from the programming model perspective.

The SplIter has been evaluated upon two different frame-
works: COMPSs & dataClay and Dask. In general, the main
idea behind the SplIter could be applied to any task-based pro-
gramming model (more generally: to any programming model
with direct access to the blocks and the iteration code struc-
tures). The evaluation has shown that the SplIter is able to
compete and (in most situations) outperform the Dask rechunk.

We observed an application where rechunk outperformed
the SplIter due to its very compute-intensive nature; this sug-
gests that a new extension of the SplIter may consist on provid-
ing materialized partitions. A materialized partition would be a
new data structure, generated with memory copies but without
inter-node transfers. For iterative algorithms that have a high

computation to data ratio a materialized partition should be able
to achieve same execution speeds as the rechunk while avoid-
ing all the inter-worker data transfers. Still, the performance
difference between rechunk and SplIter was minor.

Complex applications can have multiple stages and itera-
tions. In certain scenarios, the benefit of using SplIter can also
be observed at an algorithmic level: the quantity and shape
of intermediate results may depend on the block size and that
shape may have an important performance impact –we have
seen this behavior in the k-Nearest Neighbors, but having some
kind of intermediate data structures is not an exclusive trait of
this application. Using the SplIter allows the application de-
veloper to exert their (domain-specific) expertise and greatly
improve the performance in a portable way, without requiring
prior knowledge from distribution techniques nor any insight of
the hardware infrastructure topology.
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