
Scaling Survival Analysis in Healthcare with
Federated Survival Forests: A Comparative Study on

Heart Failure and Breast Cancer Genomics
Alberto Archetti

DEIB
Politecnico di Milano

Milan, Italy
alberto.archetti@polito.it

Francesca Ieva
Department of Mathematics

Politecnico di Milano
Milan, Italy

francesca.ieva@polimi.it

Matteo Matteucci
DEIB

Politecnico di Milano
Milan, Italy

matteo.matteucci@polimi.it

Abstract—Survival analysis is a fundamental tool in medicine,
modeling the time until an event of interest occurs in a population.
However, in real-world applications, survival data are often
incomplete, censored, distributed, and confidential, especially in
healthcare settings where privacy is critical. The scarcity of data
can severely limit the scalability of survival models to distributed
applications that rely on large data pools. Federated learning is a
promising technique that enables machine learning models to be
trained on multiple datasets without compromising user privacy,
making it particularly well-suited for addressing the challenges
of survival data and large-scale survival applications. Despite
significant developments in federated learning for classification
and regression, many directions remain unexplored in the context
of survival analysis. In this work, we propose an extension of
the Federated Survival Forest algorithm, called FedSurF++. This
federated ensemble method constructs random survival forests
in heterogeneous federations. Specifically, we investigate several
new tree sampling methods from client forests and compare
the results with state-of-the-art survival models based on neural
networks. The key advantage of FedSurF++ is its ability to achieve
comparable performance to existing methods while requiring
only a single communication round to complete. The extensive
empirical investigation results in a significant improvement from
the algorithmic and privacy preservation perspectives, making the
original FedSurF algorithm more efficient, robust, and private.
We also present results on two real-world datasets – a heart
failure dataset from the Lombardy HFData project and Fed-
TCGA-BRCA from the Falmby suite – demonstrating the success
of FedSurF++ in real-world healthcare studies. Our results
underscore the potential of FedSurF++ to improve the scalability
and effectiveness of survival analysis in distributed settings while
preserving user privacy.

Index Terms—survival analysis, federated learning, random
survival forest, heart failure, breast cancer

I. INTRODUCTION

Survival analysis, or time-to-event analysis, is a branch of
statistical machine learning that models the time until an event
occurs in a population [1]. It is an essential tool for clinical
trials, used to compare the survival rates of different treatments
or groups of patients and to study the factors that influence
disease onset or progression [2]. The goal of a survival model

is to construct a survival function for a given subject in the
population. The survival function

S(t) = P (T > t) (1)

represents the probability that the subject will not experience,
or survive, a given event by time t. Survival models use data
to estimate the survival function, however, most healthcare
applications involve data that are distributed across multiple
devices, scarce, and confidential [3], [4]. Additionally, some
data may have incomplete information about the subjects’
survival time, a phenomenon called censoring. For example,
when studying the survival rates of patients with a certain
disease, some patients may drop out of the trial or be alive at
the end of the trial, making their true survival time unknown.
Censoring is a common challenge in survival analysis because it
can bias results and reduce the statistical power of the analysis.
Increasing the number of data samples for training could help,
but this is often not feasible due to difficulties in data collection
and confidentiality constraints.

To overcome these limitations, Federated Learning (FL) [5],
[6] has emerged as a promising technique to improve the
success of survival applications in large-scale real-world
scenarios. FL allows multiple parties with private data sets to
collaboratively train a machine learning model without sharing
private data information. Private data remain on the storage
device, ensuring confidentiality for agents in the federation.
Federated models have better generalization performance
than local models because they can leverage a large and
representative data pool. FL has great potential in scenarios
with small local privacy-protected datasets, such as clinics and
hospitals, where each data sample is valuable and private.

Federated survival analysis aims to develop techniques for
applying survival models in federated settings. Several survival
studies have used federated learning to analyze clinical data
from different domains, such as cancer genomics [3], [7], [8],
stroke detection [9], and COVID-19 survival [10]. These studies
mostly use either non-parametric methods, such as Kaplan-
Meier estimators [11], or semi-parametric Cox models [3],
[9], [10], [12]–[19]. However, the Cox model is based on
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the proportional hazard assumption, which may not be true
in large federated datasets. In addition, Cox models have
a linear relationship between covariates and survival ratios
across subjects, which facilitates their interpretation but limits
their modeling power. Some recent works have extended
federated survival analysis to non-linear models based on neural
networks [7], [20], [21]. This is an emerging line of research
that enables survival analysis on large distributed datasets.
However, most of the works use survival datasets only for
benchmarking and do not address clinically relevant questions
or conduct clinical trials [22].

This paper presents an extension of the Federated Survival
Forest (FedSurF) algorithm [23], called FedSurF++, that applies
Random Survival Forests (RSFs) [24] in a federated setting.
RSFs are tree-based models that can handle censored data,
missing values, and categorical variables. They also have lower
computational complexity and higher interpretability than neu-
ral networks due to their tree-based nature. FedSurF++ exploits
the advantages of RSFs and adapts them to the federated
environment, where data are distributed across multiple clients
and cannot be shared. The key idea of FedSurF++ is to train
a local random survival forest on each client’s private data
and then build a federated ensemble of trees on the central
server. The server selects the local client trees with a sampling
method proportional to their performance metrics computed
on a local validation split. This way, FedSurF++ can train a
global RSF model from local RSFs with only one round of
communication, reducing communication overhead and latency
compared to iterative federated learning algorithms. As shown
in [23], the final global model consists of the best-performing
trees, increasing the model’s expressiveness in heterogeneous
scenarios.

With this work, our contribution is twofold. First, we extend
and investigate new sampling techniques for tree selection
based on standard survival metrics. The results show how
including a metric evaluation step to select the best trees
is generally more powerful than sampling trees at random.
Also, while metric evaluation increases model performance in
heterogeneous settings, the specific tree-sampling metric does
not affect in a statistically significant way the effectiveness of
the final model. Therefore, the simplest evaluation metric, such
as concordance, is sufficient to obtain the best final model.
Second, we apply FedSurF++ to two real-world cases. The
first is an administrative study concerning hospitalizations of
patients experiencing heart failure [25]. The dataset comes from
the Lombardy HFData research project and is composed of 895
samples with 32 covariates split across 23 medical institutes.
The second comes from the dataset suite called (Flamby) [8]
and collects 38 finary features for each of the 1088 patients
suffering from breast invasive carcinoma. Results on both
datasets show how FedSurF++ remains competitive even in
real-world scenarios from a survival modelization standpoint
while requiring a single communication exchange between
server and clients to terminate.

The rest of the paper is organized as follows. Section II
provides in-depth background on survival analysis and federated

learning. Section III reviews the current literature on federated
survival analysis, highlighting the applied techniques and
healthcare applications. Section IV describes the FedSurF++
algorithm. Section V analyzes the empirical results obtained,
both on simulated federations and on real-world datasets.
Finally, Section VI summarizes the work.

II. BACKGROUND

In this section, we review the basics of survival analysis and
federated learning. First, we define the problem of survival
analysis and how it relates to statistical modeling and machine
learning (Section II-A). We then categorize and explain the
state-of-the-art survival models based on neural networks
(Section II-B) and the most common survival evaluation metrics
(Section II-C). Finally, we introduce federated learning and the
techniques for dealing with data heterogeneity in distributed
federations (Section II-D).

A. Survival Analysis

Survival analysis [1], [2] is a branch of statistical machine
learning concerned with the analysis of time-to-event data,
where the event of interest may be death, disease onset,
hardware failure, or any other event. The goal of survival
analysis is to model the relationship between survival time
and predictors related to a particular subject, called features
or covariates. The output of survival models is the probability
of survival or the risk of experiencing the event over time.
Specifically, the survival function

S(t) = P (T > t) (2)

is the probability that an individual will not experience the
event, i.e. survive, beyond time t. It is a non-increasing function,
ranging from 1 at t = 0 to 0 for t → ∞. The hazard function

h(t) = lim
δt→0

P (t ≤ T < t+ δt|T ≥ t)

δt
(3)

is the instantaneous failure rate at time t, given that the
individual has survived up to t. It is a non-negative function
that can take any value greater than 0. The survival function
and the hazard function are related as

S(t) = exp(−H(t)) (4)

where H(t) =
∫ t

0
h(τ) dτ is the cumulative hazard function.

Each of these functions can be estimated using statistical and
machine learning techniques starting from a survival dataset.
A survival dataset is a set of triplets

D = {(xi, δi, ti)}Ni=1 (5)

such that
• xi ∈ Rd is a d-dimensional real-valued feature vector.
• δi ∈ {0, 1} is an event indicator set to 1 if the i-th subject

experienced the event and set to 0 if the sample is censored
instead.

• ti > 0 is the event time if δi = 1 or the censoring time
if δi = 0.



B. Survival Models

There are different types of survival models, depending
on the assumptions made about the form of the survival or
hazard function. Non-parametric models make no assumptions
about the shape of the survival or hazard function and rely on
empirical data aggregations without considering feature vectors.
These models are easy to calculate and provide unbiased
estimates of the survival function. These models are most useful
for data exploration and visualization purposes. Examples
of non-parametric models include Kaplan-Meier (KM) [26]
and Nelson-Aalen [27], [28]. Specifically, the KM estimator
calculates the cumulative probability of survival based on data
by successively multiplying the probabilities of survival at
each unique event time. In particular, for each unique event
time tj in the set TD = {tj : (xi, δi, tj) ∈ D}, KM counts
the number of observed events dj and the number of samples
rj that are still at risk. Then, the KM estimator calculates
the survival function Ŝ(t) by cumulatively multiplying these
survival probabilities for all time points preceding t, as

Ŝ(t) =
∏

j:tj<t

(
1− dj

rj

)
. (6)

This way, the KM estimator encapsulates the intuition that the
probability of surviving up to a given time is the cumulative
product of the probabilities of surviving each preceding
moment.

Semi-parametric models decompose hazard functions into
a common baseline hazard h0(t) and a subject-related risk
function ϕ(t,x). The resulting hazard function is calculated as

h(t|x) = h0(t) · ϕ(t,x). (7)

One of the most widely used semi-parametric models is the
Cox proportional hazard model [29]. In this model, the risk
function for an individual with a feature vector x is given by

ϕ(x) = exp

 d∑
j=0

βj · xj

 (8)

where β is the vector of regression coefficients measuring
the effect of each element xj of x on the hazard function.
Cox models are based on the proportional hazard assumption.
This assumption states that the hazard ratio between different
subjects is constant over time, i.e., the effect of x on the hazard
does not depend on t. Cox models are trained using the partial
log-likelihood loss function, given by

L(β) =

N∑
i=1

δj

βTxi − log

∑
j∈Ri

exp
(
βTxj

) (9)

where Ri is the set of subjects at risk at time ti. For this
reason, this function is non-separable, i.e., it requires access
to all available samples in the dataset to be evaluated. Cox
models have several advantages. First, they are easy to interpret
and require little computation due to their linear nature. These
models can also incorporate feature vectors without explicitly

modeling the baseline hazard. However, they rely on the
assumption of proportional hazards, which may not hold for
large datasets. The lack of an explicit survival function may
also be a disadvantage in studies where risk ratios are not
relevant.

Non-linear models use flexible functions, such as neural
networks or splines, to capture complex and non-linear rela-
tionships between survival times and feature variables. These
models have the highest modeling power because they can
approximate any survival or hazard function. However, they
require large amounts of data and computational resources
for training and optimization. They also suffer from poor
interpretability and a high risk of overfitting, especially when
data pools are small.

Among the nonlinear models, DeepSurv [30] is an extension
of the Cox proportional hazards model. DeepSurv replaces the
linear risk function, common in traditional survival models,
with a single-output neural network. This allows for a more
flexible representation of complex interactions between covari-
ates, handling nonlinear relationships in high-dimensional data
that are challenging for traditional models. DeepSurv relies on
the same partial log-likelihood loss function as the Cox model,
but the risk scores are predicted by a deep neural network
rather than a linear function.

DeepHit [31], on the other hand, is a neural-based architec-
ture that focuses on the analysis of multiple concurrent events
in survival analysis. It does this through time discretization,
where each interval is modeled as a multi-class classification
problem using sigmoid activations. Each class is tailored to
identify the occurrence of one of the concurrent events. This
enables DeepHit to capture complex patterns in time-to-event
data, particularly when there are multiple concurrent event
types to consider.

Neural Multi-Task Logistic Regression (N-MTLR) [32] is
a non-linear extension of the Multi-Task Logistic Regression
(MTLR) model [33]. The MTLR model is a discrete-time
survival model that calculates the likelihood of an event
happening in each time interval using a separate logistic
regression model for each time interval. Similarly to DeepHit,
the classification task is tailored to identify whether an event
occurred in a specific time interval. N-MTLR extends MTLR
by incorporating a nonlinear predictor for each time bin, based
on neural networks, mapping input covariates to a single output.
These binned outputs are then combined using a softmax
function to obtain survival estimates for each time bin.

Nnet-Survival [34], [35], also known as Logistic Hazard,
is a model that leverages the discrete formulation of survival
problems to model discrete hazard functions. Again, the method
involves breaking down the survival problem into a series
of binary classification tasks, each representing the risk of
event occurrence in a particular time interval. This allows for
flexibility in modeling time-varying effects and interactions.

Piecewise-Constant Hazard (PC-Hazard) [35], [36], as the
name suggests, estimates the hazard function as a piecewise
constant. This model assumes that the hazard, or the risk of an
event happening, remains constant within certain time intervals,



but can change between intervals. This assumption simplifies
the model to a series of regression problems, allowing it to take
advantage of existing machine learning techniques. The neural
component of the model maps covariates to a finite number of
outputs, corresponding to the hazard in each interval. In this
way, while the output of the neural network has a discrete size,
the resulting survival function is still continuous and can be
computed using Equation (4), resulting in a series of piecewise
exponential functions.

Finally, Random Survival Forests (RSFs) [24] are a class
of ensemble-based models that use survival trees to estimate
the cumulative hazard function H(t). They follow the same
principle as random forests for classification and regression [37],
where a large number of binary trees are grown using bootstrap
samples of the data. The main difference lies in the node-
splitting technique, which maximizes the hazard difference
between the child nodes. The resulting hazard function is
obtained by averaging the hazard functions of the terminal
nodes across all trees, which are computed using the Nelson-
Aalen estimators [27], [28] on the leaf samples.

C. Survival Metrics

The Concordance Index (C-Index), the Integrated Brier Score
(IBS), and the Cumulative Area-Under-the-Curve (Cumulative
AUC) are the most used metrics to evaluate survival models.
The C-Index [38] is a measure of the agreement between the
predicted and true survival outcomes for a pair of samples.
The predicted outcome is the estimated survival probability
or risk score for a given time point, and the true outcome
is the actual survival time or event status (1 if the event has
occurred and 0 otherwise). A pair of samples is comparable
if at least one of them has experienced the event of interest.
The C-Index is calculated as the ratio of concordant pairs to
comparable pairs. A pair is concordant if the sample with the
higher predicted outcome survives longer than the sample with
the lower predicted outcome. The C-Index ranges from 0 to 1,
where 0.5 is a random prediction and 1 is a perfect prediction.
The C-index reflects the discriminative power of the model, i.e.,
its ability to rank samples according to their actual survival
times.

The Brier Score [39] (BS) is a measure of the accuracy of the
predicted survival probability for a sample at a given time. The
Brier Score is calculated as the squared difference between the
true survival status (1 if the event has occurred and 0 otherwise)
and the predicted survival probability of the model at that time.
The Brier Score ranges from 0 to 1, where 0 indicates a perfect
prediction and 1 indicates a completely incorrect prediction. A
random guessing model would have a BS of 0.25. Thus, the
lower the BS, the better the model. The Brier score reflects
also the calibration of the model, i.e., its ability to estimate the
correct survival probabilities for each sample. The Integrated
Brier Score (IBS) is a measure of the overall calibration of
the model over time. The IBS is calculated as the average of
the Brier scores over a series of time points. The IBS also
ranges from 0 to 1, where 0 indicates a perfect prediction and
1 indicates a completely wrong prediction.

In survival analysis, the evaluation of the AUC for classi-
fication can be extended to time-varying outcomes [40]. In
particular, the time-dependent AUC defines a time interval and
compares the predicted survival probability at the beginning of
the interval with the observed event status within the interval.
Samples that are censored within or before the interval are
considered negative cases. The Cumulative AUC is a summary
measure that integrates the time-dependent AUC over time.
The Cumulative AUC ranges from 0 to 1, with 1 indicating
perfect prediction.

Survival metrics can account for the censoring distribution
by applying the Inverse Probability of Censoring Weighting
(IPCW) [38], [41]. The IPCW assigns a weight to each sample
based on the inverse probability of being censored at a given
time point. The weight reflects how representative the sample
is of the underlying population at that time point. Samples
with a higher probability of being censored are assigned higher
weights, and vice versa. IPCW weighting can help to reduce the
bias introduced by censored samples in the resulting metrics.

D. Federated Learning

Federated Learning (FL) [5], [6] is a distributed machine
learning paradigm that allows multiple clients to collaboratively
train a model without sharing their private data. In FL, data
remain on the devices where they are generated, and only
model updates are communicated to a central server that
coordinates the learning process. This approach contrasts with
traditional centralized machine learning techniques, where all
local data are uploaded to a single server, as well as more
classical decentralized approaches, which often assume that
local data are identically distributed. Federated learning allows
multiple actors to build a shared machine learning model
without sharing data while addressing security and data access
rights. In addition, a model trained on distributed heterogeneous
data is representative of a large portion of the population. By
processing data mostly at the edge, federated learning can
reduce latency, power consumption, and communication costs
compared to explicitly sharing data with a central server.

In a typical FL setting, there are K clients, each holding a
local dataset Dk. The goal of a FL algorithm is to learn a set
of model parameters w that minimize a global loss function
L. This function is the weighted sum of local loss functions
Lk computed by each client k on their own data Dk. Each
contribution is weighted in proportion to the number of samples
stored in each database Dk. Federated Averaging (FedAvg) [42]
is the first algorithm proposed to optimize L. FedAvg works in
rounds, where each round consists of three steps: a broadcast
step, a training step, and an aggregation step. In the broadcast
step, the server selects a subset of clients and sends them the
current model parameters w. In the training step, each of these
clients trains the model with parameters w on its local data for
a small number of epochs, obtaining a new set of parameters
w′

k. These parameters are then sent back to the server. Finally,
in the aggregation step, the server updates the global parameters
by taking a weighted average of the updates w′

k received from
the clients and repeats the process until convergence.



While FedAvg achieves good performance in simulated
settings, it faces several challenges when applied to real-world
scenarios where heterogeneity is prevalent both in terms of
computational resources and data distribution across clients [5].
For example, some clients may have slower computation time
or connectivity, resulting in missed updates during federated
training. For this purpose, several asynchronous frameworks
have been developed that are reliable for stragglers [43].
In addition, data distributions among clients may not be
independent and identically distributed (IID), leading to biased
or inaccurate updates that can affect the global model quality.
To address this issue, some works propose regularization
techniques that reduce the discrepancy between local and global
models [44]–[48].

As data heterogeneity is one of the key challenges in
federated networks, test and simulation environments are
essential for federated learning research, as they allow to
evaluate and compare different algorithms under different
realistic settings. Several benchmarking methods have been
developed for this purpose. LEAF [49] provides a collection
of heterogeneous datasets for standard machine learning tasks
such as image classification and next character prediction.
SGDE [50] generates synthetic datasets from privacy-preserving
data generators that learn the characteristics of the client’s data.
Other works [51], [52] investigate data splitting techniques,
based on the Dirichlet distribution, that adjust the degree of
heterogeneity in federated classification datasets.

III. RELATED WORK

Machine learning methods have significantly advanced
healthcare applications, revolutionizing disease diagnosis, prog-
nosis, and treatment [53]–[56]. Nevertheless, the application
of these methods often requires the use of extensive datasets,
which necessitates a careful balance between data utilization
and patient privacy preservation. To answer this issue, Federated
Learning (FL) has emerged as a promising approach for large-
scale healthcare applications [4]. Leveraging distributed data
while maintaining data privacy, FL models have outperformed
traditional statistical methods in predicting outcomes based on
medical data [57]–[59].

In this context, federated survival analysis models the time
to event of interest (such as death, disease, or failure) in a
population, where data is distributed across multiple institutions.
This field bridges privacy-preserving federated training with
conventional survival analysis techniques. Federated survival
analysis has proved to be effective, particularly in oncology,
contributing to more robust and privacy-preserving predictive
models [3], [11], [15], [22]. Beyond cancer research, other
studies have also applied federated survival analysis to examine
stroke events [9] and COVID-19 survival rates [10].

Much effort has been devoted to federated Cox models [3],
[9], [10], [12]–[19]. In fact, the Cox proportional hazard model
is one of the most prominent models from classical survival
analysis that is easy to interpret, fast to compute, and does
not require explicit modeling of the baseline hazard function.
However, as explained in Section II, the partial log-likelihood

is not separable. This is a serious problem in federations
where data are confidential, as clients are unable to effectively
compute hazard rates for the entire data. Many alternative
formulations to the standard Cox model have been proposed.
For example, the authors of [3] propose a discrete extension
of the proportional Cox model to formulate survival analysis
as a classification problem with a separable loss function.
The method in [19] is also based on discretization but takes
into account the effects of time-varying covariates. In [9],
patient-level data from one client is combined with aggregated
information from the other clients to construct a surrogate
likelihood function that approximates the Cox partial likelihood
function obtained using all available patient-level data. Cox
models have been adapted for vertically partitioned data, where
data samples from the same patients are stored in different
institutions [14], [16], [18]. In particular, VERTICOX [14] is
an algorithm based on the ADMM framework [60] that obtains
global model parameters in a distributed manner by computing
and exchanging intermediate statistics, achieving an accuracy
similar to that of a centralized Cox model.

Federated implementations of classical survival models are
not limited to Cox. In [11], the authors propose FAMHE,
a federated system that allows privacy-preserving estimation
of Kaplan-Meier models. Regarding nonlinear models, the
authors of [20] propose a method to improve the performance
of nonlinear federated survival models with differential privacy
by adding a post-processing step that adjusts the magnitude
of the average noisy parameter update and facilitates model
convergence. In [7], weakly supervised attention modules are
used to estimate discrete survival rates. FedPseudo [21] uses
pseudo values as surrogate labels for federated deep learning
models. Finally, FedSurF [23] leverages federated ensemble
learning to construct random survival forests from distributed
survival data.

Privacy is a crucial aspect of survival applications, as
patient-level data are often sensitive and confidential. Several
works have used differential privacy [61] to protect survival
models against inference attacks [7], [20]. Alternatively, some
works have relied on secure multi-party computation (SMPC),
which allows computation on distributed data without revealing
individuals’ information. For example, SMPC has been applied
to the Newton-Raphson algorithm to optimize the partial log-
likelihood of distributed Cox models by computing intermediate
statistics [16]. Another SMPC protocol, SecureFedYJ [62], al-
lows the Yeo-Johnson transformation to be applied to vertically-
partitioned data while preserving privacy. FAHME [11] uses
multiparty homomorphic encryption to estimate distributed
Kaplan-Meier models. Finally, in [18], a Cox model is designed
for horizontal and vertical federated learning exploiting a
privacy-preserving subspace projection technique that allows
each local institution to obtain a secure approximation of the
model parameters, survival curves, and statistics such as p-
values.

Federated learning has been applied to genomic analysis for
cancer survival and recurrence studies [3], [7], [8], using data
from The Cancer Genome Atlas (TCGA) project. The TCGA



Project is a large-scale database from the National Cancer
Institute and the National Human Genome Research Institute
that molecularly characterizes 33 types of cancer by collecting
genomic, epigenomic, transcriptomic, and proteomic data that
are publicly available to researchers. Among the works based
on the TCGA project, FLamby (Federated Learning AMple
Benchmark of Your cross-silo strategies) [8] is a collection of
cross-silo federated learning datasets for healthcare applications.
One of the datasets in the Flamby suite, Fed-TCGA-BRCA,
consists of genomic and clinical data of breast cancer patients
from 6 different hospitals. The dataset is naturally partitioned
according to the geographic origin of the patients, with each
patient assigned to the closest center. Finally, to evaluate the
performance and compare the results of federated survival
analysis methods, [63] provides two algorithms to split existing
survival datasets into heterogeneous federations.

IV. METHOD

In this section, we present the proposed extension of the
Federated Survival Forest (FedSurF) algorithm [23], called
FedSurF++. As the original algorithm, FedSurF++ relies on
Random Survival Forests (RSF) [24] to build a tree-based
ensemble model for survival analysis in a federated learning
setting. Our approach builds upon prior works in federated
ensemble learning [64], [65], where the central server merges
base models from local ensembles on each client to create a
global model. Specifically, the FedSurF++ algorithm constructs
a RSF on the central server by aggregating the top-performing
trees from local RSF models on each client, with an emphasis
on the tree sampling strategy.

A. The FedSurF++ Algorithm

The FedSurF++ algorithm consists of three steps: local
training, tree assignment, and tree sampling. The local training
and tree assignment stages remain unchanged from the original
FedSurF algorithm. In particular, during the local training
step, each client k builds a local RSF Mk from the local data
Dk. At this point, each local RSF model Mk is a set of Tk

survival trees. These binary trees are built with a recursive node-
splitting technique inspired by CART [66] that maximizes the
survival difference between samples in child nodes. Tree leaves
contain the Nelson-Aalen estimator [27] of the cumulative
hazard resulting from their samples. Each client may tune
the RSF hyperparameters to best fit their data distribution
and hardware constraints, making local execution feasible
and effective. For example, clients with high computational
power can train forests with high cardinality, while clients with
hardware limitations can lower the number of trees in their
local models.

In the tree assignment stage, the server determines the
number of trees each client is required to send on the server.
To this end, the server iteratively increments a client counter
T ′
k ≤ Tk for a number of times equal to the number of

desired trees T in the final ensemble M . Intuitively, the counter
for client k cannot exceed the number of trees Tk in their
local model Mk. At each iteration, a client counter T ′

k is

incremented with a probability proportional to Nk = |Dk|.
This is to promote the selection of trees coming from clients
that have larger datasets. This way, FedSurF++ promotes
trees trained on larger data samples, which are likely to be
more representative of the entire population. This procedure is
inspired by the weighted updates of FedAvg [42] that assign
a weight proportional to the local dataset cardinality when
aggregating model parameters coming from different clients.

Finally, in the tree sampling stage, each client samples T ′
k

trees to be shared with the server. We introduce three new
sampling strategies that are proportional to the Concordance
Index (C-Index), the Concordance Index with IPCW weighting
(C-Index-IPCW), and the Cumulative Area-Under-the-Curve
(Cumulative AUC). This is an extension with respect to the
original FedSurF, which is limited to sample trees according
to the inverse of the Integrated Brier Score (IBS). Each of
these metrics is discussed in Section II-C. Given one of
these metrics, clients evaluate each local tree, obtaining a
set of estimations {Metricj}Tk

j=1. At this point, each client
selects T ′

k trees with a probability proportional to the chosen
metric. In order to differentiate between sampling strategies,
we adopt different names for our algorithm. Specifically, if
clients choose to use a uniform sampling strategy, the method is
referred to as FedSurF. For each of the metric-based sampling
strategies, instead, we denote the method as FedSurF-Metric,
where Metric represents the chosen performance measure.
Section V collects experiments comparing the uniform sampling
strategy (FedSurF) and the strategies proportional to the C-
Index (FedSurF-C), the C-Index-IPCW (FedSurF-C-IPCW), the
inverse IBS (FedSurF-IBS), and the Cumulative AUC (FedSurF-
AUC).

While FedSurF++ is a relatively straightforward extension of
the original FedSurF algorithm, it allows us to delve deeper into
how tree-sampling methods affect the corresponding metric
in the final model. Our experimental findings suggest that
using the least expensive evaluation metric can still produce a
high-performing model. Consequently, trees can be sampled
using the C-Index without IPCW weighting, as in FedSurF-
C, to achieve the optimal ensemble model. This has several
implications from the algorithmic perspective. First, it allows
each client to evaluate concordance locally, without relying on
the aggregated statistics of other clients. This way, the number
of messages to be shared in a federation is reduced. Second,
this simpler metric protects privacy, as cumulated statistics are
not shared with the server or any other client in the federation.

In summary, FedSurF++ extends FedSurF with a simple
yet natural operation – allowing the selection of the tree-
sampling method – that results in important implications from
the efficiency, communication, and privacy perspectives. The
pseudocode of FedSurF++ is presented in Algorithm 1.

B. Computational Complexity

Deriving an accurate estimate of the computational complex-
ity related to federated algorithms is a complex task, as many
factors that arise in real-world scenarios are difficult to integrate
into the analysis. However, we can derive a rough estimate



Algorithm 1 FedSurF++ Algorithm
function FEDSURF-CLIENT(Dk)

▷ Local training
Tune parameters of local RSF Mk using cross-validation.
Train local RSF Mk on Dk.
Send the number of local trees Tk to the central server.
▷ Tree sampling
for j = 1 to Tk do

Compute Metricj for tree j ∈ Mk.
end for
Receive T ′

k, the number of trees to send back to the
server.

Select T ′
k trees using probabilities proportional to

Metricj .
Send selected trees to the server.

end function

function FEDSURF-SERVER(T )
▷ Tree assignment
Receive Tk from each client k.
Compute T ′

k for each client k according to Tk and T .
Send T ′

k to each client k
▷ Model construction
Receive T ′

k trees from each client k.
Construct the final model M by aggregating T trees.
Return: Random survival forest M .

end function

of the computational complexity of FedSurF++ to assess its
strengths and limitations from a scalability perspective.

The training time complexity of RSFs primarily involves
the number of trees in the forest T , the number of samples
N = |D|, the number of features F , and the depth of the trees
(which can be, at most, log(N) in a balanced tree scenario).
RSFs use log-rank tests [67] to determine the best split at each
node. Log-rank tests compare the survival distributions of two
groups to determine if they are statistically different, which is
an O(N) operation. As this operation is performed at each node,
it multiplies by the number of candidate features for splitting,√
F . If the tree is fully expanded, the number of internal nodes

in a binary tree is, at most, N − 1. Therefore, the overall
complexity related to node splitting is O

(
T ·N2 ·

√
F
)

. At
each leaf node, the Nelson-Aalen estimator accounts for a
cost of O(N). Since there could be at most N leaves in a
fully expanded tree, the overall leaf evaluation complexity is
O
(
T ·N2

)
.

By combining the complexity of node splitting and leaf
computations, the overall training time complexity for RSFs is
O
(
T ·N2 ·

√
F
)

. However, in practice, trees are not usually
fully grown, as they are pruned or have a maximum depth,
and samples are bootstrapped in each tree. The complexity
of FedSurF++ is comparable to a single RSF execution, as it
requires a single communication round, once the forests are
trained in parallel on the clients. To complete the analysis,

TABLE I
SURVIVAL DATASETS FOR SIMULATED FEDERATION STUDIES.

Dataset Samples Censored Covariates

WHAS500 [68] 461 38% 16
GBSG2 [69] 686 44% 8
METABRIC [30], [70] 1904 58% 8
NWTCO [71] 4028 14% 8
FLCHAIN [72] 7874 28% 10

Section V-A4 collects empirical time executions for RSFs and
neural-based models.

V. EXPERIMENTS

This section collects the experiments based on which we
compare the performance of FedSurF++ with other neural-
based models from the state of the art in federated survival
analysis. We present two sets of experiments. The former
focuses on simulated federations, and the latter focuses on
real-world federations. In particular, Section V-A reports the
experiments on federations with splits simulated by the label-
skewed splitting algorithm [63]. Instead, Section V-B collects
the experiments on Lombardy Heart Failure [25] and Fed-
TCGA-BRCA [8], which are based on real-world data splits.

A. Experiments on Simulated Federations

This section covers the experiments related to simulated
uniform and heterogeneous data splits of existing survival
datasets.

1) Datasets: The following survival datasets are commonly
used to evaluate non-federated survival methods. From these,
we conduct experiments on simulated federations. Table I
summarizes the statistics of these datasets.

• The Worcester Heart Attack Study (WHAS500)
dataset [68] contains data on 461 patients who
experienced acute myocardial infarction. The data were
collected during the first hospitalization and included 16
covariates. The outcome of interest is survival time after
the event.

• The German Breast Cancer Study Group (GBSG2) dataset
[69] examines the effects of hormone treatment for breast
cancer in 686 women. The outcome of interest is time
to cancer recurrence. The dataset includes 8 covariates,
such as age, menopausal status, tumor grade and size, and
hormone levels.

• The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset [30], [70] is a Canada-
UK project that provides survival data for 1904 patients
with breast cancer. The dataset comprises clinical at-
tributes, gene expression profiles, copy number variations,
and single nucleotide polymorphisms as covariates.

• The National Wilm’s Tumor Study (NWTCO) dataset [71]
consists of 4028 observations on 8 covariates for patients
with Wilm’s tumor, a rare type of kidney cancer that
primarily affects children. The covariates include histology
status, disease stage, and other factors. The outcome of
interest is time to relapse.



• The FLCHAIN survival dataset [73] contains subjects
from a study concerning mortality rates of serum-free light
chain (FLC). The original data come from the residents
of Olmsted County, Minnesota, with more than 50 years.
The dataset has 7874 samples and 10 features.

2) Simulated Federations: The datasets from Section V-A1
are used to simulate federated datasets by assigning each sample
to a particular client in the federation. First, each dataset is
split into a training set and a test set by randomly selecting
70% of the total samples for training and the remaining 30%
for testing.

Then, each sample in the training set is assigned to one of
the clients in the federation. We assume that there are 5, 10,
or 20 cooperating institutions in each simulated experiment,
i.e., K = 5, 10, or 20 depending on the considered setting.
Sample assignment is performed by the label-skewed splitting
algorithm [63]. This algorithm is based on the Dirichlet
distribution as in [51], [52]. The aim is to create unbalanced
distributions of times and events across clients. In fact, it is
important to test federated algorithms in heterogeneous contexts,
as non-identical data distributions can affect the performance
and convergence speed of federated algorithms. The label-
skewed splitting algorithm has a hyperparameter α that controls
the degree of heterogeneity among clients. Smaller values of α
result in more heterogeneous distributions. We set α → ∞ to
simulate a federation with uniformly split data and α = 5 to
simulate a federation with heterogeneous data distribution. The
label distributions for each client are shown in Figure 1. We
plot the Kaplan-Meier estimator for each client in the federation.
By inspecting the estimators, federations with α → ∞ exhibit
similar label distributions across clients, while for α = 5
distributions differ.

In addition, 30% of the local samples on each client are
reserved for validation and hyperparameter tuning. During our
simulations, clients are assumed to be always available and
communication packets are never lost.

3) Baseline Models: FedSurF++ is compared with the six
state-of-the-art survival models described in Section II-B. The
first is the Cox proportional hazards model (CoxPH) [29], which
uses the Nelson-Aalen estimator [27] to estimate the baseline
hazard. A nonlinear extension of the Cox model, DeepSurv [30],
is also included. The other models are discretized survival
models based on neural networks: DeepHit [31], Neural
Multi-Task Logistic Regression (N-MTLR) [32], and Nnet-
Survival [34]. Finally, we consider Piecewise-Constant Hazard
(PC-Hazard) [35], which is a non-proportional hazard neural-
based model that provides a continuous estimation of the
survival function.

The neural network architectures of DeepSurv, DeepHit, N-
MTLR, Nnet-Survival, and PC-Hazard consist of two fully
connected layers of 32 neurons each with ReLU activation
functions. We also add a dropout layer with a probability of
10% to prevent overfitting. The output of DeepSurv is a scalar
obtained by a linear transformation while the other models have
10 outputs corresponding to different discretization instants.
Specifically, DeepHit, N-MTLR, and Nnet-Survival produce 10

survival probabilities, while PC-Hazard produces 10 discrete
hazard values that are converted to survival probabilities using
Equation 4.

4) Training: Each model is evaluated in three settings:
Global, Local, and Federated. In the Global setting, it is
assumed that the entire survival dataset is centralized in a
single node, and a single model is trained. This setting does
not require federated learning and serves as an empirical upper
bound to assess the performance loss due to data distribution.

The Local setting involves clients training their models only
on their local data without participating in the federation. The
average performance of the local models is reported as an
empirical lower bound, which is targeted for improvement
using federated learning. It is expected that joining a federated
learning algorithm would benefit the clients in terms of model
performance.

In the Federated setting, multiple clients collaborate in a
federated learning procedure. To achieve the most effective
baseline model training, we performed a comparative analysis
between the widely used Federated Averaging algorithm
(FedAvg) [42], and FedProx [46], an alternative algorithm
aimed at enhancing generalization in heterogeneous federations.
Our study employed the five datasets listed in Table I,
examining three distinct client configurations (K = 5, 10, 20).
We ran both FedAvg and FedProx training on each of the six
baseline models (CoxPH, DeepSurv, DeepHit, N-MTLR, Nnet-
Survival, and PC-Hazard), culminating in a total of 90 direct
FedAvg versus FedProx comparisons based on the dataset,
model, and client number. Each of these 90 pairings was
repeated five times, followed by a t-test analysis. Notably,
only a fraction (5.6%) displayed a statistically significant
performance variation in concordance index between FedAvg
and FedProx. Consequently, we chose to utilize the standard
FedAvg algorithm for training each neural model in the
subsequent experiments. Furthermore, we assumed that each
proportional hazard model, i.e., Cox and DeepSurv, has access
to a global Kaplan-Meier estimate of the survival data.

Federated averaging is implemented using the Flower li-
brary [74] for Python and run for 150 rounds, allowing each
client to execute 2 local epochs for each round. The best model
parameters are selected based on the highest concordance index
on the validation set of each client. RSFs are implemented with
scikit-survival [40], and neural-based models are implemented
with PyCox [75]. The Adam optimizer with a learning rate of
0.01 is employed to train the neural-based models.

Figure 2 collects the average execution time of each model
for centralized training. Results show that RSFs have a
comparable execution time to neural-base models.

5) RSF Parameters: We optimized the RSF parameter
configuration for each dataset adopting a cross-validation
approach. The most impactful parameters we discovered were
the number of estimators T and the maximum tree depth d.
Upon conducting a grid search, we determined the optimal
T values within the range of 100 to 4000 for each dataset,
analyzed at intervals of 20. We found a point of diminishing
returns for each dataset beyond which increasing the number
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Fig. 1. Kaplan-Meier estimators Ŝ(t) for datasets of simulated federations. The first row shows KM estimators for the entire dataset, while the second, third,
and fourth rows depict KM curves for 5, 10, and 20 clients, respectively.
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Fig. 2. Execution time for each model on several cuts of the GBSG2 dataset.
For neural models, time refers to 300 epochs. Results are averaged over 100
runs.

of trees did not significantly improve the results. Then, we
fixed the number of trees beyond this identified threshold.

As for d, our investigation considered trees of unrestricted
depth and trees with a fixed depth of 1. Meanwhile, we retained
the default values for other parameters such as the minimum
number of samples needed to split an internal node s and
the minimum number of samples required for a leaf node l.
Specifically, for the scikit-survival implementation we used,
s and l were fixed at 6 and 3, respectively. The maximum

TABLE II
RSF PARAMETERS FOR EACH DATASET.

Dataset T d

WHAS500 [68] 400 1
GBSG2 [69] 700 1
METABRIC [30], [70] 500 ∞
NWTCO [71] 600 1
FLCHAIN [72] 200 ∞
LombardyHF [72] 1000 ∞
Fed-TCGA-BRCA [72] 1000 ∞

number of features retained for each tree was set to the square
root of the total number of features in the dataset. Moreover,
we did not impose any constraints on the maximum number
of leaf nodes per tree. The parameters determined through
this analysis are reported in Table II. These values were then
applied across all clients in our experiments.

6) Evaluation: The Concordance Index (C-Index-IPCW),
the Integrated Brier Score (IBS), and the Cumulative Area-
Under-the-Curve (Cumulative AUC) are the metrics used to
evaluate our survival models on test splits. We account for
the censoring distribution by applying the Inverse Probability
of Censoring Weighting (IPCW) [38], [41], as described in
Section II-C.

7) Simulated Federations Results: Uniformly Split Data
Across 10 Clients. The performance metrics of survival



TABLE III
CONCORDANCE INDEX WITH IPCW WEIGHTING (C-INDEX-IPCW) [38], [41] FOR SURVIVAL MODELS EVALUATED ON SIMULATED FEDERATIONS (K = 10,
α → ∞). EACH C-INDEX-IPCW IS SCALED BY A FACTOR OF 100 FOR BETTER READABILITY. WE REPORT THE MEAN COMPUTED OVER 20 RUNS. THE

BEST RESULTS (↑) ARE HIGHLIGHTED IN BOLD. VALUES MARKED WITH * DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH FEDSURF-C
ACCORDING TO DUNN’S TEST WITH 0.05 SIGNIFICANCE.

WHAS500 GBSG2 METABRIC NWTCO FLCHAIN

Model Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob.

CoxPH 65.0 74.5 77.8 56.9 61.2 63.7 57.8 62.0* 64.6 63.5 65.9 53.4 90.7 91.7 94.2
DeepSurv 67.8 77.4 73.3 58.3 65.9* 65.9 60.3 64.5* 64.8 65.2 69.7* 55.0 93.3 94.2 94.3
DeepHit 66.8 76.8 75.2 56.2 63.5* 64.3 57.4 62.4* 62.0 52.6 69.1* 71.6 92.7 93.7* 94.1
N-MTLR 66.8 76.2 74.4 58.0 65.5* 63.9 59.6 63.8* 64.4 65.2 70.2* 71.6 93.5 94.2 94.1
Nnet-Survival 65.0 74.6 75.9 54.9 60.8 63.5 50.3 58.5 62.7 44.3 66.7 70.2 87.8 93.9* 94.2
PC-Hazard 65.1 74.7 75.5 54.9 60.6 63.6 50.4 58.9 62.9 44.8 66.5 70.2 88.1 93.8* 94.2

FedSurF 73.0 79.2* 78.6 61.8 65.4* 64.2 60.7 63.8* 64.0 67.7 69.1* 68.1 93.6 93.8* 93.9
FedSurF-C – 79.5* – – 65.3* – – 63.9* – – 69.1* – – 93.9* –
FedSurF-C-IPCW – 79.4* – – 65.6* – – 63.8* – – 69.1* – – 93.8* –
FedSurF-IBS – 79.3* – – 65.6* – – 63.9* – – 69.0* – – 93.9* –
FedSurF-AUC – 79.8* – – 65.4* – – 64.0* – – 69.1* – – 93.8* –

TABLE IV
INTEGRATED BRIER SCORE (IBS) [39] FOR SURVIVAL MODELS EVALUATED ON SIMULATED FEDERATIONS (K = 10, α → ∞). EACH IBS IS SCALED BY A

FACTOR OF 100 FOR BETTER READABILITY. WE REPORT THE MEAN COMPUTED OVER 20 RUNS. THE BEST RESULTS (↓) ARE HIGHLIGHTED IN BOLD.
VALUES MARKED WITH * DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH FEDSURF-C ACCORDING TO DUNN’S TEST WITH 0.05

SIGNIFICANCE.

WHAS500 GBSG2 METABRIC NWTCO FLCHAIN

Model Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob.

CoxPH 18.5 16.5* 14.8 19.1 18.0* 16.8 17.3 16.4* 15.8 11.3 11.1* 11.8 8.4 6.7 4.1
DeepSurv 19.4 16.5* 21.5 19.1 16.6* 16.8 17.2 15.8* 16.2 11.3 10.4 11.8 5.7 4.2* 4.2
DeepHit 19.6 17.0* 16.5 20.1 18.2* 17.9 17.7 17.1* 16.3 14.7 10.7* 10.4 6.4 4.5* 4.3
N-MTLR 19.4 17.5* 20.4 19.4 16.8* 17.9 17.2 15.9* 16.1 11.7 10.4 10.2 4.9 4.1* 4.4
Nnet-Survival 22.4 18.6 17.0 21.9 18.7 17.2 22.3 18.8 16.4 16.5 10.8* 10.1 7.7 4.5* 4.2
PC-Hazard 22.1 18.5 17.3 21.6 19.0 17.2 22.3 22.8 16.5 16.2 10.8* 10.1 7.6 4.6 4.2

FedSurF 18.1 17.4* 17.5 18.7 18.0* 18.2 17.3 16.2* 16.2 11.1 11.0* 11.0 4.7 4.5* 4.1
FedSurF-C – 17.0* – – 17.8* – – 16.1* – – 11.0* – – 4.4* –
FedSurF-C-IPCW – 17.0* – – 17.8* – – 16.1* – – 11.0* – – 4.4* –
FedSurF-IBS – 17.0* – – 17.9* – – 16.1* – – 11.0* – – 4.3* –
FedSurF-AUC – 17.0* – – 17.8* – – 16.1* – – 11.0* – – 4.4* –

TABLE V
AUC FOR SURVIVAL MODELS EVALUATED ON SIMULATED FEDERATIONS (K = 10, α → ∞). EACH C-INDEX-IPCW IS SCALED BY A FACTOR OF 100 FOR
BETTER READABILITY. WE REPORT THE MEAN COMPUTED OVER 20 RUNS. THE BEST RESULTS (↑) ARE HIGHLIGHTED IN BOLD. VALUES MARKED WITH *

DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH FEDSURF-C ACCORDING TO DUNN’S TEST WITH 0.05 SIGNIFICANCE.

WHAS500 GBSG2 METABRIC NWTCO FLCHAIN

Model Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob.

CoxPH 66.4 75.0 79.3 61.8 69.5 74.4 60.1 65.8 69.0 65.2 67.2* 54.0 92.3 93.2 95.6
DeepSurv 68.0 77.4* 73.0 63.0 74.8* 73.7 63.2 69.0* 68.9 66.1 70.9* 55.1 94.7 95.6* 95.9
DeepHit 65.7 76.0 74.5 58.9 71.5 70.4 59.8 69.0* 69.8 52.7 73.0 74.6 93.9 95.5* 95.4
N-MTLR 67.4 75.9 73.4 62.3 73.4* 72.1 63.3 70.7* 72.3 67.6 71.9 74.6 94.7 95.8* 95.7
Nnet-Survival 62.2 72.6 75.7 57.4 68.2 72.7 48.9 61.7 69.5 36.7 68.5* 72.1 88.9 95.4* 95.9
PC-Hazard 62.3 72.1 74.5 57.7 67.7 73.0 48.8 60.5 69.5 37.2 67.4* 71.8 88.9 94.9 95.3

FedSurF 73.6 79.7* 80.0 68.4 74.9* 73.7 64.8 69.9* 71.0 68.2 69.8* 68.5 94.9 95.6* 96.1
FedSurF-C – 79.9* – – 74.9* – – 70.1* – – 69.9* – – 95.6* –
FedSurF-C-IPCW – 79.8* – – 75.4* – – 70.2* – – 69.9* – – 95.6* –
FedSurF-IBS – 79.8* – – 75.1* – – 70.3* – – 70.2* – – 95.7* –
FedSurF-AUC – 80.3* – – 75.0* – – 70.5* – – 70.7* – – 95.6* –

models across five datasets – WHAS500, GBSG2, METABRIC,
NWTCO, and FLCHAIN – are illustrated in Tables III, IV, and
V. Label-skewed splitting [63] with α → ∞ was employed
for data assignment to simulate federations with uniform

data distribution. This analysis centers around federations
comprising 10 clients. The metrics presented include the
Concordance Index with IPCW weighting (C-Index-IPCW),
Integrated Brier Score (IBS), and Cumulative AUC. The mean



values across 20 runs are reported. Metrics for the Local,
Federated, and Global settings are given for each dataset. The
Kruskal-Wallis test, followed by a pairwise Dunn’s test at a
significance level of 0.05, was conducted to assess statistical
differences in the results. We focus on FedSurF-C for its
efficient evaluation metric that does not necessitate IPCW
weights. Any results not showing a statistically significant
difference with the FedSurF-C performance are marked with
an asterisk (*).

The results indicate that federated learning, as compared
to local training, is advantageous for all clients on average
from a performance perspective. In fact, all tables demonstrate
superior performance in the Federated setting compared to
the Local setting. Furthermore, the Federated performance
closely resembles the Global performance, signifying that the
performance gap between distributed and centralized learning
is minimal while offering the added advantage of user privacy
preservation in the Federated setting.

Table III, which pertains to the C-Index IPCW, reveals
that DeepSurv consistently performs well across datasets
among the baseline models. FedSurF achieves comparable
performance, particularly in WHAS500, where it surpasses
all baselines. However, no clear winner emerges among the
sampling techniques. In fact, sampling based on any of the
proposed metrics yields better results on average than uniform
sampling, but the difference is not statistically significant.

Regarding Table IV and IBS, survival forests do not
outperform neural baselines. Nevertheless, their performance is
comparable with no statistically significant difference, particu-
larly in datasets with more samples (METABRIC, NWTCO,
and FLCHAIN).

Lastly, Table VIII presents the Cumulative AUC. Here,
survival forests exhibit exceptional performance, where the best
average AUC is achieved by one of the FedSurF variations,
or within a non-statistically significant difference. The only
difference is the NWTCO dataset, where DeepHit and N-MTLR
exhibit better AUC than FedSurF models.

In summary, when data are uniformly split, FedSurF effec-
tively enhances model performance compared to local models.
The FedSurF variations consistently achieve robust performance
across diverse evaluation metrics and datasets. However, any
sampling strategy produces results close to the best.

Label-skewed Data Across 10 Clients. Adopting the same
experimental methodology, Tables VI, VII, and VIII illustrate
performance metrics for survival models assessed in federations
handling heterogeneous data. The data allocation was conducted
utilizing label-skewed splitting [63] with a parameter value of
α = 5. This evaluation focuses on federations consisting of 10
clients.

In reference to Table VI, variations of the FedSurF algorithm
demonstrate similar or superior concordance compared to the
neural models, particularly in the context of smaller datasets
(WHAS500 and GBSG2). The FLCHAIN dataset is the only
exception where FedSurF variants did not perform at par with
the top model, albeit the discrepancy was only by a small

margin of a few percentage points.
Analyzing from the perspective of the IBS as presented

in Table VII, the FedSurF variations tend to rank towards
the lower end of the spectrum. In the case of the NWTCO
and FLCHAIN datasets, the N-MTLR model exhibits better
IBS. However, for the remaining datasets, while FedSurF’s
average IBS is generally higher, the gap between it and the
best-performing model is not statistically significant.

Lastly, Table VIII showcases a promising trend in AUC, with
FedSurF models either outperforming or matching the average
of other models. NWTCO emerges as the sole exception, where
N-MTLR outpaces all other alternatives.

From these results, it is evident that FedSurF variations
perform comparably or even surpass neural baselines. With
heterogeneously distributed data, FedSurF models typically
exhibit better performance than neural models compared to
when the data are uniformly split. This suggests that our
algorithm is more resilient to federations comprising clients
with different data distributions and dataset cardinalities.

Moreover, any FedSurF variation attains roughly the same
performance with a slight disadvantage for FedSurF with
uniform sampling. Consequently, we recommend employing
FedSurF-C, as it is remarkably simple to compute without
necessitating integration or IPCW weighting for evaluation.
FedSurF++ can thus be considered a viable alternative to neural-
based architectures for large-scale survival analysis, as it attains
comparable performance with just a single model exchange
round.

Federations with Varied Numbers of Clients. To conclude
our analysis of simulated federations, we evaluated federations
that consisted of a varying number of clients. Specifically, we
assessed federations with 5, 10, and 20 clients. The results are
summarized in Figure 3. For simplicity, we chose to present
only the C-Index-IPCW metrics and focused on the FedSurF-C
variation among the FedSurF models.

These results highlight the robustness of FedSurF-C across
diverse client configurations. Notably, the performance of
FedSurF-C remains consistent regardless of whether the number
of clients increased or decreased. This consistency is not
matched by neural baselines. For instance, the performance
of Nnet-survival and PCH tends to decline as the number
of clients increases. Conversely, proportional hazard models
(CoxPH and DeepSurv) do not exhibit a performance trend that
is proportional to the number of clients. In fact, their results
do markedly vary when the number of clients is modified,
displaying high variance and thus proving less reliable than
the alternatives.

To summarize, although FedSurF-C may not outperform
neural models in all configurations, it does display the most
consistent concordance when varying the number of clients.

B. Experiments on Real-World Federations

This section covers the experiments related to real-world
heterogeneous datasets, Lombardy Heart Failure [25] (Sec-
tion V-B1) and Fed-TCGA-BRCA [8] (Section V-B2).



TABLE VI
CONCORDANCE INDEX WITH IPCW WEIGHTING (C-INDEX-IPCW) [38], [41] FOR SURVIVAL MODELS EVALUATED ON SIMULATED FEDERATIONS (K = 10,
α = 5). EACH C-INDEX-IPCW IS SCALED BY A FACTOR OF 100 FOR BETTER READABILITY. WE REPORT THE MEAN COMPUTED OVER 20 RUNS. THE BEST

RESULTS (↑) ARE HIGHLIGHTED IN BOLD. VALUES MARKED WITH * DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH FEDSURF-C
ACCORDING TO DUNN’S TEST WITH 0.05 SIGNIFICANCE.

WHAS500 GBSG2 METABRIC NWTCO FLCHAIN

Model Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob.

CoxPH 65.0 74.3 77.8 56.7 61.8 63.9 57.3 61.6 64.5 63.2 62.7 52.7 88.7 89.7 94.2
DeepSurv 68.8 77.3 73.4 58.0 65.1* 65.7 60.6 64.2* 64.8 65.4 67.3* 56.4 93.1 89.6* 94.3
DeepHit 67.4 77.1 75.2 57.4 63.0 64.2 57.2 61.3 62.0 52.1 68.8* 71.6 92.5 93.6 94.1
N-MTLR 68.5 76.6 74.6 58.2 64.8* 63.7 60.0 63.8* 64.5 64.9 70.3* 71.8 93.5 94.2 94.1
Nnet-Survival 65.2 74.6 76.1 55.1 61.4 63.5 50.1 58.6 62.7 45.8 66.1 70.3 87.6 93.7* 94.2
PC-Hazard 66.0 75.1 75.6 55.1 61.1 63.6 50.3 58.4 62.8 45.8 66.1 70.3 86.7 93.8* 94.2

FedSurF 73.0 78.4* 78.5 61.9 65.2* 64.2 60.7 63.8* 64.0 67.7 69.2* 68.0 93.6 93.8* 93.8
FedSurF-C – 79.3* – – 65.1* – – 63.8* – – 69.1* – – 93.8* –
FedSurF-C-IPCW – 79.1* – – 65.4* – – 63.8* – – 69.1* – – 93.8* –
FedSurF-IBS – 79.0* – – 65.4* – – 63.8* – – 69.1* – – 93.8* –
FedSurF-AUC – 79.1* – – 65.4* – – 63.7* – – 69.2* – – 93.8* –

TABLE VII
INTEGRATED BRIER SCORE (IBS) [39] FOR SURVIVAL MODELS EVALUATED ON SIMULATED FEDERATIONS (K = 10, α = 5). EACH IBS IS SCALED BY A

FACTOR OF 100 FOR BETTER READABILITY. WE REPORT THE MEAN COMPUTED OVER 20 RUNS. THE BEST RESULTS (↓) ARE HIGHLIGHTED IN BOLD.
VALUES MARKED WITH * DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH FEDSURF-C ACCORDING TO DUNN’S TEST WITH 0.05

SIGNIFICANCE.

WHAS500 GBSG2 METABRIC NWTCO FLCHAIN

Model Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob.

CoxPH 18.6 16.4* 14.8 19.1 17.8* 16.8 17.4 16.4* 15.8 11.4 12.5 11.9 8.5 7.7 4.1
DeepSurv 19.1 16.5* 21.5 19.1 16.9* 16.8 17.1 16.0* 16.2 11.2 10.6* 11.8 5.7 6.1* 4.2
DeepHit 19.6 16.7* 16.5 20.1 18.3 17.9 17.8 17.4 16.3 14.9 10.9* 10.4 6.5 4.5* 4.3
N-MTLR 19.4 17.4* 20.2 19.4 17.1* 18.0 17.3 16.0* 16.1 11.7 10.3 10.1 4.9 4.2 4.4
Nnet-Survival 22.1 20.6 16.9 21.7 18.7 17.2 22.5 23.3 16.4 16.2 10.9* 10.1 7.9 4.5* 4.2
PC-Hazard 22.1 18.7 17.2 21.5 18.7 17.2 22.4 18.8 16.5 16.0 10.9* 10.1 8.1 4.5* 4.2

FedSurF 18.2 17.5* 17.5 18.7 18.0* 18.2 17.4 16.2* 16.2 11.3 11.1* 11.0 4.8 4.6 4.1
FedSurF-C – 17.0* – – 17.8* – – 16.2* – – 11.0* – – 4.4* –
FedSurF-C-IPCW – 17.1* – – 17.8* – – 16.2* – – 11.0* – – 4.4* –
FedSurF-IBS – 17.1* – – 17.9* – – 16.2* – – 11.0* – – 4.3* –
FedSurF-AUC – 17.1* – – 17.8* – – 16.2* – – 11.0* – – 4.4* –

TABLE VIII
CUMULATIVE AUC [40] FOR SURVIVAL MODELS EVALUATED ON SIMULATED FEDERATIONS (K = 10, α = 5). EACH CUMULATIVE AUC IS SCALED BY A

FACTOR OF 100 FOR BETTER READABILITY. WE REPORT THE MEAN COMPUTED OVER 20 RUNS. THE BEST RESULTS (↑) ARE HIGHLIGHTED IN BOLD.
VALUES MARKED WITH * DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH FEDSURF-C ACCORDING TO DUNN’S TEST WITH 0.05

SIGNIFICANCE.

WHAS500 GBSG2 METABRIC NWTCO FLCHAIN

Model Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob. Loc. Fed. Glob.

CoxPH 65.7 75.8 79.4 61.2 70.3 74.6 59.5 65.4 68.9 64.1 64.4* 53.2 90.3 91.5 95.6
DeepSurv 69.1 77.5* 73.2 62.9 73.9* 73.4 63.8 68.9* 68.9 66.7 67.8* 56.7 94.3 91.3* 95.9
DeepHit 66.6 76.0 74.5 60.7 71.3 70.6 60.3 66.4 69.7 52.3 72.9 74.5 93.7 95.3 95.4
N-MTLR 68.4 76.4 73.8 62.6 72.7* 72.0 64.1 71.0* 72.3 67.8 73.5 74.6 94.6 95.6* 95.8
Nnet-Survival 62.9 72.5 75.9 57.8 68.6 72.7 48.7 60.3 69.4 37.7 67.5* 72.4 88.6 95.2 95.8
PC-Hazard 63.1 72.4 74.7 57.9 68.8 72.9 48.5 61.1 69.3 37.9 67.2* 71.9 87.2 94.8 95.3

FedSurF 73.5 78.8* 79.9 69.0 74.9* 73.6 64.9 70.1* 70.9 68.3 69.9* 68.5 94.8 95.5* 96.1
FedSurF-C – 79.8* – – 74.8* – – 70.2* – – 69.8* – – 95.6* –
FedSurF-C-IPCW – 79.3* – – 75.2* – – 70.2* – – 69.9* – – 95.5* –
FedSurF-IBS – 79.4* – – 75.1* – – 70.2* – – 70.3* – – 95.6* –
FedSurF-AUC – 79.8* – – 75.2* – – 70.3* – – 70.8* – – 95.5* –

Experiments on real federated data follow the same pro-
cedures and hyperparameters as in simulated federations.
Therefore, neural networks have the same structure and training

follows the same number of local epochs and rounds of
federated averaging. 30% of the local data sets are selected for
validation. The same metrics described in Section II-C are used
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Fig. 3. C-Index-IPCW metrics for several federation configurations. Specifically, the number of clients K can be 5, 10, or 20 and the label splitting parameter
α either tends to infinity (federation with uniformly split data) or equals 5 (federation with heterogeneous data distributions). Each row corresponds to a
survival dataset and each bar to a different survival model. Results are averaged over 20 runs.

to evaluate the methods. The only difference is that the data
are already distributed across multiple clients, so label-skewed
splitting [63] is not applied to create federations.

1) The Lombardy Heart Failure Dataset: The Lombardy
Heart Failure administrative dataset [25] was derived from the
HFData research project (RF-2009-1483329), which aimed to
examine heart failure cases in Lombardy between 2000 and
2012. Lombardy, one of Italy’s largest and most populous
regions, has a population of approximately 10 million individu-
als, accounting for 16.5% of the nation’s total population. The
dataset was provided by the Regione Lombardia – Healthcare
Division and pertains to non-pediatric residents who were
hospitalized for heart failure between January 2006 and De-
cember 2012. Hospital discharge charts (HDC) were employed
to gather information about patients’ hospitalization, including
the discharge date, length of stay, and comorbidity conditions.
Additionally, information about pharmaceutical purchases was
obtained from the Anatomical Therapeutic Chemical (ATC)
codes. The dataset offers a detailed view of patients’ clinical
histories of hospitalizations. A description of the preliminary
preprocessing and collection can be found in [25].

The initial dataset includes 339,690 samples with 48 features,
including several hospitalizations and pharmaceutical prescrip-

tions per patient. For our case study, we focused solely on
hospitalizations, reducing the original data to 22,418 samples.
To ensure that each patient had a follow-up of at least 5 years
and to create a comparable cohort for our algorithms, we
eliminated new hospitalizations between 2008 and 2012. This
left us with data from 2006 to 2007, with updated time labels to
match each patient’s actual outcome. Administrative censoring
was employed for patients who survived until the end of 2012.
Additionally, we removed features related to pharmacological
prescriptions, resulting in a dataset with 32 covariates.

Finally, the dataset was split into the federation of medical
structures where hospitalization occurred. We excluded medical
structures with fewer than 10 events or fewer than 20 total
samples in their local data, leaving us with 895 samples
distributed across 23 clients. Figure 4 shows the Kaplan-Meier
estimators of the entire dataset and the ones related to each
client. From these plots, client distributions exhibit significantly
different patterns.

2) The Fed-TCGA-BRCA Dataset: The Fed-TCGA-BRCA
survival dataset [8] is a federated dataset for survival analysis
based on clinical data from The Cancer Genome Atlas
(TCGA) project. TCGA is a large-scale initiative that aims to
characterize the genomic changes in various types of cancer.
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BRCA stands for breast invasive carcinoma, which is one of
the cancer types studied by TCGA. The Fed-TCGA-BRCA
survival dataset contains survival outcomes for 1088 patients
with BRCA and 38 binary features for each patient. The
dataset is distributed among six regions (Northeast, South,
West, Midwest, Europe, and Canada) based on the tissue sort
site (TSS) of each patient. Each of these regions contains 248,
156, 164, 129, 129, and 40 samples respectively. In particular,
among the 40 samples from Canada, only a single entry exhibits
an event. If the Canada dataset would be split into training
and validation, one of the splits would contain no events. For
that split, it would not be possible to evaluate the concordance
index, as there would be no comparable pairs of subjects. For
this reason, we excluded the client corresponding to Canada
for training and retained the other five regions. Figure 4 shows
the Kaplan-Meier estimators of the entire dataset and the ones
related to each client.

3) Results on Lombardy HF and Fed-TCGA-BRCA: Ta-
ble IX, Table X, and Table XI display performance metrics for
neural and ensemble-based survival models evaluated on two
real-world federations: Lombardy Heart Failure and Fed-TCGA-
BRCA. The metrics include Concordance Index with IPCW
weighting (C-Index-IPCW), Integrated Brier Score (IBS), and
Cumulative AUC. The reported results represent the mean and
standard deviation computed over 20 runs. The Kruskal-Wallis
and Dunn’s tests with a significance level of 0.05 are conducted
to assess statistical differences in the results. Any results not
showing a statistically significant difference with FedSurF-C
are marked with an asterisk (*).

Experiments on real-world federations corroborate the trend
that participating in a federation yields superior results com-
pared to training solely on local data. In fact, for most models,
the Federated results surpass the Local results, occasionally
even slightly exceeding the performance of Global models.

Table IX (C-Index-IPCW) indicates that FedSurF-IBS

achieves the best performance for Lombardy HF, while Deep-
Surv exceeds the other models for Fed-TCGA-BRCA. However,
for the latter case, no statistically significant difference exists
between DeepSurv and FedSurF-C. Consequently, FedSurF
variations have a strong discriminative power on real-world
data, accurately identifying patients at risk in most cases. Again,
the specific metric for sampling trees does not significantly
impact the final outcome.

Table X (IBS) identifies DeepSurv as the most calibrated
model for Lombardy HF, demonstrating its exceptional perfor-
mance as a survival model when communication constraints are
not a concern. In contrast, FedSurF-C exhibits better results by
a noticeable margin in the Fed-TCGA-BRCA dataset compared
to all neural alternatives.

Finally, Table XI (Cumulative AUC) showcases the best
model performance in terms of discriminative ability. Con-
cerning Fed-TCGA-BRCA, DeepSurv outperforms any other
model by a fair margin. Instead, for Lombardy HF, the FedSurF
variations outperform neural models, with the only exception of
DeepSurv, where the performance difference is not statistically
significant.

In summary, FedSurF++ proves to be a valuable alternative
to neural-network-based models concerning the most common
survival metrics, C-Index-IPCW, IBS, and Cumulative AUC.
DeepSurv is a robust alternative from a performance standpoint,
but its training procedure needs iterative averaging of model
parameters, resulting in substantial bandwidth usage. FedSurF,
conversely, may occasionally exhibit lower – yet still com-
parable – performance metrics while requiring only a single
tree exchange round to generate the final model. Regarding
the sampling strategy, experiments on real-world data confirm
that the metrics considered during sampling do not affect the
final results to a significant degree. Therefore, FedSurF-C is
the most straightforward choice, relying solely on the local
evaluation of the concordance index.

VI. CONCLUSION

In this paper, we presented an extension of the Federated
Survival Forest (FedSurF++) algorithm, which applies Random
Survival Forests (RSFs) to a federated learning setting. The
FedSurF++ algorithm builds upon the original FedSurF by
introducing new tree sampling strategies, including concordance
index, IPCW concordance index, integrated Brier score, and
cumulative AUC. These strategies enable the selection of the
best-performing trees from local RSF models, consequently
improving the performance of the global RSF model.

Our experimental results on synthetic and real-world clinical
trial datasets, covering heart failure and breast cancer genomics,
demonstrate the effectiveness of FedSurF++ in various federa-
tions. The algorithm outperforms local models and achieves
performance metrics comparable to global models, showcasing
its robustness across diverse evaluation metrics and datasets.
In particular, the FedSurF++ family consistently attains strong
performance across different evaluation metrics and datasets.
Moreover, our findings reveal that any sampling strategy, except
for uniform sampling, yields results close to the best.



TABLE IX
CONCORDANCE INDEX WITH IPCW WEIGHTING (C-INDEX-IPCW) [38], [41] FOR SURVIVAL MODELS EVALUATED ON REAL-WORLD FEDERATIONS. EACH
C-INDEX-IPCW IS SCALED BY A FACTOR OF 100 FOR BETTER READABILITY. WE REPORT THE MEAN AND THE STANDARD DEVIATION COMPUTED OVER 20
RUNS. THE BEST RESULTS (↑) ARE HIGHLIGHTED IN BOLD. VALUES MARKED WITH * DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH

FEDSURF-C ACCORDING TO DUNN’S TEST WITH 0.05 SIGNIFICANCE.

Lombardy Heart Failure Fed-TCGA-BRCA

Model Local Federated Global Local Federated Global

CoxPH 58.4 ± 1.4 69.2 ± 2.4 71.4 ± 0.4 60.3 ± 5.5 75.4 ± 4.6* 77.0 ± 0.9
DeepSurv 59.9 ± 1.9 71.7 ± 0.9 70.6 ± 0.8 61.8 ± 4.4 78.9 ± 2.1* 72.3 ± 2.5
DeepHit 57.6 ± 1.4 69.1 ± 2.0 71.4 ± 0.9 59.3 ± 4.2 76.4 ± 5.7* 79.9 ± 2.1
N-MTLR 57.7 ± 1.9 70.9 ± 1.2 69.6 ± 0.8 60.6 ± 4.5 77.7 ± 3.4* 75.0 ± 3.2
Nnet-Survival 50.9 ± 1.2 69.2 ± 1.6 71.7 ± 0.5 55.9 ± 3.4 71.4 ± 3.0 77.4 ± 2.4
PC-Hazard 50.8 ± 1.2 69.2 ± 1.3 71.4 ± 0.4 56.9 ± 2.8 68.5 ± 7.4 76.3 ± 2.4

FedSurF 61.7 ± 0.9 73.6 ± 0.9* 72.7 ± 0.1 66.7 ± 3.1 76.3 ± 2.3* 72.3 ± 0.7
FedSurF-C – 73.5 ± 0.7* – – 77.2 ± 2.1* –
FedSurF-C-IPCW – 73.6 ± 0.6* – – 76.7 ± 2.1* –
FedSurF-IBS – 73.7 ± 0.8* – – 76.9 ± 1.8* –
FedSurF-AUC – 73.6 ± 0.5* – – 77.1 ± 1.9* –

TABLE X
INTEGRATED BRIER SCORE (IBS) [39] FOR SURVIVAL MODELS EVALUATED ON REAL-WORLD FEDERATIONS. EACH IBS IS SCALED BY A FACTOR OF 100
FOR BETTER READABILITY. WE REPORT THE MEAN AND THE STANDARD DEVIATION COMPUTED OVER 20 RUNS. THE BEST RESULTS (↓) ARE HIGHLIGHTED
IN BOLD. VALUES MARKED WITH * DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH FEDSURF-C ACCORDING TO DUNN’S TEST WITH

0.05 SIGNIFICANCE.

Lombardy Heart Failure Fed-TCGA-BRCA

Model Local Federated Global Local Federated Global

CoxPH 13.6 ± 0.1 13.0 ± 0.3* 12.4 ± 0.1 28.2 ± 1.9 24.8 ± 2.1* 24.7 ± 0.4
DeepSurv 14.0 ± 0.3 12.3 ± 0.3 13.0 ± 0.2 28.8 ± 1.2 25.7 ± 1.6 32.3 ± 4.3
DeepHit 17.5 ± 0.3 14.3 ± 3.6* 12.5 ± 0.1 31.2 ± 0.4 28.2 ± 2.4 27.3 ± 2.2
N-MTLR 15.3 ± 0.3 12.5 ± 0.3 13.2 ± 0.3 29.5 ± 2.1 26.6 ± 4.1 36.2 ± 5.6
Nnet-Survival 20.2 ± 0.4 12.8 ± 0.4* 12.5 ± 0.1 47.3 ± 1.1 37.0 ± 2.8 26.5 ± 1.2
PC-Hazard 20.0 ± 0.5 12.8 ± 0.3* 12.6 ± 0.1 46.7 ± 1.2 43.7 ± 14.9 26.3 ± 0.8

FedSurF 14.2 ± 0.1 13.3 ± 0.1* 12.1 ± 0.0 26.5 ± 0.7 23.2 ± 0.4* 24.2 ± 0.3
FedSurF-C – 13.1 ± 0.1* – – 22.9 ± 0.3* –
FedSurF-C-IPCW – 13.1 ± 0.1* – – 23.1 ± 0.4* –
FedSurF-IBS – 13.2 ± 0.0* – – 23.1 ± 0.3* –
FedSurF-AUC – 13.1 ± 0.0* – – 23.0 ± 0.3* –

TABLE XI
CUMULATIVE AUC [40] FOR SURVIVAL MODELS EVALUATED ON REAL-WORLD FEDERATIONS. EACH CUMULATIVE AUC IS SCALED BY A FACTOR OF 100
FOR BETTER READABILITY. WE REPORT THE MEAN AND THE STANDARD DEVIATION COMPUTED OVER 20 RUNS. THE BEST RESULTS (↑) ARE HIGHLIGHTED
IN BOLD. VALUES MARKED WITH * DO NOT EXHIBIT STATISTICALLY SIGNIFICANT DIFFERENCES WITH FEDSURF-C ACCORDING TO DUNN’S TEST WITH

0.05 SIGNIFICANCE.

Lombardy Heart Failure Fed-TCGA-BRCA

Model Local Federated Global Local Federated Global

CoxPH 58.6 ± 1.4 70.5 ± 2.7 73.6 ± 0.3 62.7 ± 6.1 79.7 ± 3.6 77.6 ± 0.5
DeepSurv 60.5 ± 2.0 73.5 ± 1.1* 74.2 ± 1.1 63.4 ± 4.9 80.7 ± 2.0 71.0 ± 4.3
DeepHit 57.6 ± 1.2 70.4 ± 2.4 72.4 ± 1.1 59.0 ± 5.0 75.0 ± 5.5* 77.2 ± 2.1
N-MTLR 57.4 ± 2.2 71.9 ± 1.1 69.9 ± 1.3 61.3 ± 5.8 77.2 ± 5.0* 72.7 ± 4.0
Nnet-Survival 51.2 ± 1.3 70.3 ± 1.9 73.5 ± 0.8 55.7 ± 3.2 71.1 ± 2.4* 75.7 ± 3.0
PC-Hazard 51.1 ± 1.2 70.2 ± 1.9 72.9 ± 0.7 55.3 ± 2.3 67.0 ± 8.1* 76.0 ± 2.9

FedSurF 60.3 ± 0.9 74.9 ± 1.3* 73.4 ± 0.2 64.5 ± 3.0 72.9 ± 2.1* 72.1 ± 0.5
FedSurF-C – 74.8 ± 1.0* – – 73.8 ± 1.6* –
FedSurF-C-IPCW – 74.9 ± 1.1* – – 73.0 ± 1.9* –
FedSurF-IBS – 74.8 ± 1.2* – – 73.9 ± 1.7* –
FedSurF-AUC – 74.9 ± 1.0* – – 73.7 ± 1.4* –

While DeepSurv exhibits strong performance, its training
procedure requires iterative averaging of model parameters,
leading to heavy bandwidth usage. In contrast, FedSurF++

demands only a single tree exchange round to produce the
final model, minimizing the communication overhead. In
conclusion, the FedSurF++ algorithm proves to be a valuable



alternative to neural-network-based models for large-scale
survival analysis on confidential clinical data as it achieves
comparable performance while preserving data privacy and
offering an efficient solution in terms of communication.
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