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Abstract

Many resource management techniques for task scheduling, energy and carbon efficiency, and cost optimization in workflows rely on
a-priori task runtime knowledge. Building runtime prediction models on historical data is often not feasible in practice as workflows,
their input data, and the cluster infrastructure change. Online methods, on the other hand, which estimate task runtimes on specific
machines while the workflow is running, have to cope with a lack of measurements during start-up. Frequently, scientific workflows
are executed on heterogeneous infrastructures consisting of machines with different CPU, I/O, and memory configurations, further
complicating predicting runtimes due to different task runtimes on different machine types.

This paper presents Lotaru, a method for locally predicting the runtimes of scientific workflow tasks before they are executed
on heterogeneous compute clusters. Crucially, our approach does not rely on historical data and copes with a lack of training data
during the start-up. To this end, we use microbenchmarks, reduce the input data to quickly profile the workflow locally, and predict
a task’s runtime with a Bayesian linear regression based on the gathered data points from the local workflow execution and the
microbenchmarks. Due to its Bayesian approach, Lotaru provides uncertainty estimates that can be used for advanced scheduling
methods on distributed cluster infrastructures.

In our evaluation with five real-world scientific workflows, our method outperforms two state-of-the-art runtime prediction
baselines and decreases the absolute prediction error by more than 12.5%. In a second set of experiments, the prediction performance
of our method, using the predicted runtimes for state-of-the-art scheduling, carbon reduction, and cost prediction, enables results
close to those achieved with perfect prior knowledge of runtimes.
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1. Introduction

Scientists from many domains have to analyze an increasing
amount of data to approach their research goals [1, 2, 3, 4, 5,
6, 7]. In remote sensing, scientists analyze many high resolu-
tions images from long satellite missions [1, 2], in genomics,
scientists analyze many read sets [3, 4, 5], in material science,
scientists analyze many molecules [6, 7]. Scientific workflow
management systems (SWMS) help scientists to compose, exe-
cute, and monitor their analysis workflows over large data sets
on distributed infrastructures [8, 9, 10].

Many SWMS handle a workflow as a directed acyclic graph
(DAG), consisting of a set of tasks T and a set of directed edges
E. A task is a wrapper for an application, executed as an atomic
unit that transforms input data to output data. An edge describes
the data flow, defines a dependency between two tasks, and thus
constrains the execution order. As illustration, Figure 1 depicts
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the execution of an example workflow with a single starting task,
Task A1, that checks the input. Then, four instances of Task B
are executed in parallel, each operating on a single input file and
each resulting in the execution of a Task C instance. Task D1
combines the results from the preceding task executions, while
two instances of Task E operate on the output of Task D1 in
parallel. Task F1 serves as the sink task and merges the results.
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Figure 1: Example execution of a scientific workflow.

Scientific workflows are frequently executed over large
amounts of data, leading to huge workflow graphs and, thus,
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long runtimes that can easily exceed days or weeks [11, 12, 13].
Hence, from a resource management perspective, makespan
minimization [14, 15], carbon emission reduction [16, 17], or
predicting and optimizing the cost of running the workflow are
important optimization objectives [18, 19]. Many state-of-the-
art methods for these objectives rely on accurate predictions of
resource requirements and the runtime of each task [20]. For
instance, the state-of-the-art scheduling heuristic HEFT requires
accurate runtime estimates for each task-node pair [14]. The
carbon reduction approach Let’s Wait Awhile assumes exact
task runtimes to temporally shift the workflow to periods with
lower carbon emissions [16]. The Computational Resource and
Cost Prediction service (CRCPs) reports the cost of workflow
execution based on predicted runtimes [19].

In practice, predicting a task’s runtime for a single machine
is not sufficient since infrastructures available to scientists are
frequently heterogeneous, consisting of machines with different
CPU, I/O, and memory configurations. The reasons include
partially upgraded nodes, hardware replacements over time, or
clusters with different machines from the beginning [21, 22].
In such heterogeneous settings, not only the number of cores,
the amount of memory, or the disk size differs. For instance,
different processors have different clock rates and cache sizes,
memory can differ regarding latency and frequency, and disks
have different read/write capabilities. In cloud environments
such as Amazon AWS, Microsoft Azure, or Google Cloud, cloud
providers offer machine instances from different manufacturers
with various processor types, memory configurations, or storage
solutions [23], leading to an inherent heterogeneous landscape.
Due to the heterogeneity aspect of infrastructures, the same task
will yield different runtimes, consume different amounts of re-
sources, and produce varying amounts of carbon emissions on
different nodes. This opens the problem that resource manage-
ment components need accurate predictions not only per task
but actually per task-node pair. Such information, however, is
very often unavailable [24].

In our paper, we address this problem by locally predicting
task runtimes before the start of a specific workflow execution on
a heterogeneous cluster infrastructure. Lotaru uses microbench-
marks on the target infrastructure, local workflow executions
on downsampled partitions of the entire input, and a Bayesian
regression method to predict task runtimes based on the gathered
data. Our method is designed to predict the runtime of scientific
workflow tasks executed on heterogeneous clusters by profiling
them on a scientist’s personal computer, aiming to avoid the use
of often scarce cluster resources, thereby maximizing system
efficiency. It is intended for workflows for embarrassingly paral-
lel problems where the same (sub-)workflows are executed over
many inputs or intermediate results.

Our method does not depend on any historical information
but performs all measurements and predictions before the start
of a specific workflow execution. Notably, this also allows
for scenarios where the learned models are reused for future
executions of the same workflow over different input data.

The contributions of this paper are:

• We propose Lotaru, a method that predicts the runtime of

scientific workflow tasks on a scientist’s local machine
before the workflow is executed on a heterogeneous clus-
ter infrastructure. To this end, we use microbenchmarks,
reduce the workflow’s input data to quickly execute the
workflow locally, and predict the runtime for target nodes
with a Bayesian linear regression.

• We provide an open-source implementation of our predic-
tion method1 with an extendable interface for use with
other domains and publish traces detailing more than
10,000 task executions on heterogeneous cluster nodes2.

• We evaluate our method with five real-world workflows
using multiple data inputs on a heterogeneous cluster of
six machine types. Our experiments show that our local
task runtime prediction method outperforms the baselines
regarding prediction error. Further, we used the resulting
predictions for several resource management techniques,
showing results close to using accurate runtime predic-
tions.

2. Lotaru Overview

Figure 2 provides an overview of our approach and the ex-
ecution environment. The steps highlighted in dark yellow are
part of our methodology, and the steps highlighted in transparent
yellow refer to the execution environment, that is, using our
predictions to run workflow tasks on the cluster infrastructure.

In the first step, the infrastructure profiler analyzes the per-
formance characteristics of a local computer (e.g., the scientist’s
computer) and the target infrastructure nodes (e.g., a hetero-
geneous commodity cluster). Infrastructure microbenchmarks
are used to quickly measure CPU, memory, and I/O on the lo-
cal computer and the different target nodes. The benchmarks
can be extended by application-specific benchmarks for certain
well-known tasks, e.g., FastQC or BWA in the genomics domain.

Next, input data for the workflow profiling on the local ma-
chine is required. This data can either be automatically generated
by selecting one of the foreseen input files and downsampling or
slicing it into several smaller files or can be provided manually
by the scientist, e.g., a small genome file or a small satellite
image. Then, the workflow is executed on the local machine
with the previously generated small inputs to profile task char-
acteristics. During this execution, monitoring data, such as task
runtimes, input sizes, and read/write I/O, are collected.

Next, we train a Bayesian linear regression model for each
task using the measurements from running the workflow locally.
Our model assumes a relationship between a task’s input size
and its runtime, using the input size as the independent variable.
This model can then be used to predict task runtimes for arbitrary
task input sizes. The Bayesian approach also provides lower
and upper uncertainty bounds at different confidence levels,
expressing that the point estimate is likely to be inaccurate.

1github.com/CRC-FONDA/Lotaru
2github.com/CRC-FONDA/Lotaru-traces
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Figure 2: Lotaru profiles the local and target infrastructure with microbenchmarks, reduces the input data to quickly execute the
workflow locally on a single machine, and predicts the runtime for target cluster nodes with a Bayesian linear regression based on the
gathered data points from the local workflow profiling and the microbenchmarks. The cluster’s resource manager’s scheduling unit
can then use these predictions to execute the workflow tasks on the compute nodes in a distributed manner.

In step four, we extrapolate the predicted runtimes to the
nodes on the target cluster infrastructure. To this end, we lever-
age the nodes’ microbenchmark measurements and set them in
relation to the local microbenchmark measurements. In the case
of application-specific benchmarks, metrics from these specific
task benchmarks serve as the basis for extrapolating the runtime
as they are more characteristic of the respective task.

Lastly, resource managers, such as Kubernetes or Slurm, can
incorporate these predictions to effectively execute workflow
tasks across a distributed infrastructure.

3. Related Work

In this section, we focus on runtime prediction methods in
general, followed by task-runtime prediction approaches for het-
erogeneous infrastructures and resource management methods
where such runtime predictions are required. Lastly, we discuss
the differences from our own previous work.

3.1. Task Runtime Prediction

There has been extensive research on workflow task run-
time prediction methods. Many approaches leverage machine
learning techniques to solve this problem [25, 26, 27, 28].

Nadeem et al. [28] model and predict task execution times
on grid environments with the use of neural networks. Their
learning model considers four types of information; a) the work-
flow structure, e.g., the workflow name or the dependency flow;
b) the application, e.g., executable names or files sizes; c) the
execution environments, e.g., grid sites or the time of submis-
sion, and d) the resource state, e.g., the number of jobs in queue

or the jobs running. Their study shows which features impact
the predicted runtime most and which can be omitted.

Da Silva et al. [26, 27] predict task resource consumption,
such as runtime, disk space, and memory consumption, for tasks
in scientific workflows. Based on monitoring tools and histor-
ical data, they apply a regression tree for resource prediction.
Beforehand, they identify data subsets with a high correlation by
using density-based clustering. Then, they predict the expected
resource usage for correlated data points based on the ratio in
this specific cluster. For uncorrelated data, the authors test a
Normal and a Gamma distribution to generate an estimation
value. As both methods use statistical approaches that do not
rely on sufficient historical data being available, we use them as
competitors for our method and describe them in more detail in
Section 6.2.

Offline predictors are generally not applicable for new work-
flows with new tasks, as for these, no historical traces for model
learning are available. Online predictors have to cope with a
lack of runs during start-up [9, 29].

In contrast, Lotaru is designed as a method that can be ap-
plied out-of-the-box for workflows without any historical traces
or workflows with changed parameters and configurations on
any kind of cluster.

3.2. Task-Runtime Prediction for Heterogeneous Infrastructures

Since real-world infrastructures often consist of nodes with
heterogeneous hardware characteristics, prediction models have
to take into account the challenge of generalizing their models
across different node types.

3



Pham et al. [30] predict task runtimes in cloud environments
using a two-stage approach. Their prediction model distin-
guishes between pre-runtime parameters, e.g., workflow input
data or VM types, and runtime parameters, such as CPU, mem-
ory, I/O operations, and bandwidth. In the first stage, pre-runtime
parameters are considered to derive the runtime parameters for
the execution. In the second stage, the task execution time on a
target VM is predicted with a regression model using the output
data from the first stage, the workflow input data, and the VM
specifications.

Hilman et al. [31] use an online incremental learning ap-
proach with long short-term memory networks (LSTMs) to pre-
dict task runtimes in cloud environments. Again, the authors
define pre-runtime and runtime metrics. The pre-runtime met-
rics consist of task information, VM type, and submission time
features, and the runtime metrics of CPU, memory, and I/O fea-
tures. The runtime metrics are historical time-series data that
are extended during execution and serve as the input for training
and updating the model after the task finishes its execution.

Matsunaga et al. [32] evaluate several machine learning ap-
proaches for their capability to predict the task runtime. The
evaluation includes the impact of single features on the pre-
diction accuracy and argues for including as many features as
possible, letting the respective algorithm decide on the specific
selection. Further, they showed that different algorithms perform
better for different setups, i.e., an algorithm’s efficacy depends
on the task and its training data.

Knowledge of exact task runtime is also important for work-
flow simulation. WRENCH [33] is a workflow simulation tool
that models a task with a fixed number of instructions, a num-
ber of min/max cores, and memory requirements. A machine’s
hardware is described by processor speed, disk read/write ca-
pabilities, and memory. The task’s runtime is then defined by
calculating the number of task operations per second divided
by the processor speed. WRENCH treats all of these values as
known and accurate. Therefore, WRENCH is a special case
because the runtime is not predicted but rather extrapolated.

Most recent prediction approaches use machine learning
methods like neural networks, which are known to require large
training data sets to perform well. In contrast, we use a Bayesian
Linear Regression model that already works with few train-
ing points and provides uncertainty estimates for its predic-
tions [34, 35]. Compared to the related work, we do not include
hardware characteristics as features for the runtime prediction
since this would increase the necessary training data, especially
for the target machines, e.g., traces of running the workflow
on the target infrastructures. Instead, we either apply general
microbenchmarks or, for well-known tasks, application-specific
microbenchmarks to obtain node-specific characteristics implic-
itly.

3.3. Resource Management Relying on Task Runtimes

Several workflow resource management techniques such as
makespan minimization, energy and carbon emission reduction,
or cost optimization and prediction rely on a-priori task runtime
knowledge to work effectively.

Makespan Minimization Scheduling. Despite for their lack of
adoption into real workflow systems, the literature on makespan
minimization scheduling is extensive. Existing methods ap-
proach makespan minimization by either scheduling statically
or dynamically [36, 37]. Static scheduling refers to assigning
tasks to resources in advance, i.e., before workflow execution.
Therefore, these approaches cannot adapt to infrastructure fail-
ures or changes in the workflow execution plan. A prominent
representative is the list heuristic HEFT (Heterogeneous Earliest-
Finish-Time) [14]. Many extensions of this static heuristic ex-
ist, e.g., HCPPEFT [38], P-HEFT [15], AHEFT [39], or DQ-
HEFT [40]. Some of them, e.g., P-HEFT [15] or AHEFT [39]
are dynamic scheduling approaches and assign tasks to resources
during the workflow execution. Consequently, they can also be
applied when the exact physical workflow graph is not known
before execution, e.g., the task graph depends on intermediary
results [41].

Crucially, static and dynamic approaches have in common
that they require comprehensive knowledge about the execution
times of all tasks on all available nodes [24]. However, such
execution times are usually not available in advance but must be
determined either by asking users for estimates [24, 42, 43, 44],
by analyzing historical traces [25, 28, 30, 31, 32], or by using
some form of online learning [9, 27, 29]. Our method aims to
predict the runtime for all task-node pairs in heterogeneous in-
frastructures to enable the makespan minimization of theoretical
scheduling methods in real-world systems.

Energy and Carbon Reduction. Many techniques aim to in-
crease the energy efficiency or to reduce the carbon emissions.

Warade et al. [45] discuss requirements for energy-aware
workflow scheduling and present scheduler optimizations for
energy efficiency. The authors propose several techniques, such
as switching off nodes, provisioning additional nodes, or opti-
mizing the CPU frequency. Such approaches heavily rely on
accurate runtime predictions since the scheduler needs to ensure
that resources are provisioned or revoked at the correct time. In-
accuracies would extend the execution time and increase energy
consumption.

More specific approaches apply sophisticated scheduling
on a workflow level [46, 47]. Fan et al. [47] propose an on-
line two-phase scheduling algorithm that minimizes the energy
consumption of tasks. In the preprocessing phase, the task
starting time which relies on the task runtimes is required to
generate a scheduling queue with priorities. The consecutive
task scheduling phase also relies on task runtimes, applying
sub-deadline-initialization.

Other approaches delay or shift the execution to save energy
or carbon emissions [16, 17, 48]. TaskFlow [48] identifies slack
time in a workflow execution to either use dynamic voltage and
frequency scaling and delay the execution or shift the task to a
slower but more energy-efficient node. CICS [17], Ecovisor [49],
and Let’s Wait Awhile [16] propose a similar idea of shifting
workloads, such as batch data processing, to either datacenters
with a smaller carbon footprint at a certain time or by delaying
the execution to times when the grid’s energy mix is associated
with fewer carbon emissions.
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Cost Prediction and Optimization. Some resource management
methods focus on cost prediction and optimization of workflow
executions.

Rosa et al.[18, 19] propose provisioning services for cloud
federations that are able to report the cost of workflow execution
beforehand. This is achieved by predicting execution times with
a multiple linear regression model based on historical data.

Alkhanak et al. [50] survey scientific workflow scheduling
approaches that focus on cost optimization and give a classi-
fication of cost-based metrics. The authors state that the cost
of executing the tasks and the time it takes are inversely pro-
portional but are contradictorily optimizations. Therefore, the
scheduler needs to balance between cost of execution and the
workflow time while both objectives are influenced by delays
that wrong predictions can cause.

Again, Alkhanak et al. [51] provide challenges and a taxon-
omy for cost-aware workflow scheduling. In their paper, they
list the task estimation process as a challenge for cost-aware
workflow scheduling.

3.4. Comparison with Own Previous Work

We first presented the idea of local task runtime estimation
for scientific workflows at the 34th International Conference
on Scientific and Statistical Database Management (SSDBM
2022) [52].

In this extended journal article, we improve our methodology
by using application-specific benchmarks for more accurate pre-
diction results. We show that workflows from the same domain
frequently share a set of common tasks, opening the space for
such reusable application-specific benchmarks. We add exper-
iments with much larger data sets (from 154GB to 446GB) to
show the robustness of our method. Further, we conducted three
new experiments which provide insight into how Lotaru enables
the use of resource management techniques, specifically schedul-
ing, carbon efficiency, and cost prediction. We extended related
work with various resource management techniques and show
their dependency on accurate runtime predictions. We added
a new motivation for our work, showing the need for accurate
runtime predictions of several resource management techniques
for workflows. Additionally, we extended and improved the
prototype implementation.

4. Approach

Lotaru predicts workflow task runtimes for all nodes in het-
erogeneous clusters in advance of the actual workflow execution
without relying on historical data.

4.1. Overview

In Figure 2, we provide an overview of the phases in our
approach, which are explained in detail in the following sections.
In phase one, our method gathers performance insights about the
target infrastructure and the local scientist’s machine. Therefore,
we either use general or application-specific microbenchmarks.
In the second phase, the input for running the workflow locally
needs to be obtained. We select one of the data inputs and

create several small input partitions. The scientist can omit
this step by providing small input partitions himself. Next, the
workflow is locally executed with the small partitions obtained
from the previous step. In the third phase, we use the collected
data points to build a Bayesian linear regression model that
predicts the runtime for the task with arbitrary input sizes on
the local machine. In the last phase, the prediction results need
to be extrapolated to fit the target infrastructure. Here, the
profiling results are used to extrapolate the predicted runtimes
for each node. Lastly, a resource management unit can use the
predictions.

4.2. Assumptions

We make the following five assumptions that limit the scope
of applicability:

A1: The workflow execution model presented in Section 1 is
used.

A2: The workflow has multiple at least partly independent in-
put files such as genome sequences, satellite images, or
molecule structures that lead to data-parallel task execu-
tions.

A3: The workflow’s input data can be downsampled or sliced
into smaller partitions.

A4: The workflow is still executable on the downsampled data
or sliced partitions.

A5: A task’s runtime increases linearly with increasing input
data size.

Assumption A3 requires specific tools to automatically
downsample the input. These tools vary depending on the data
inputs used and are difficult to generalize due to the potentially
arbitrary workflow inputs.

In cases where A2 is fulfilled but A3 is not, there are two
alternatives to make our method work. First, the scientist man-
ually provides smaller inputs for running the workflow locally,
e.g., smaller genome sequences or satellite images with lower
resolutions. Second, a subset from the multiple input files can
be used at the price of a longer local workflow execution.

When neither A2 nor A3 is fulfilled, the workflow is sequen-
tially executed and consists of data that can not be downsampled.
In such cases, the scientist could still provide smaller inputs
and the workflow could run multiple times with each of these.
However, in such scenarios, it is questionable if the scientist can
provide such inputs and if the effort justifies the outcome since
sequentially executed tasks require less optimization.

A4 addresses the workflow’s executability with the down-
sampled data to enable a quick local workflow execution. For
instance, certain workflow tasks may rely on the completeness
of a data set or necessitate a minimum amount of data, which,
if not met, can result in failed task executions. When A4 is
violated, only a subset of the workflow tasks can be profiled
locally, resulting in a prediction for only the subset of tasks.

In A5, we assume that a task’s runtime scales linearly with
the input data size, allowing us to use a linear task model. This is
a frequently observed pattern for big data tasks [41, 53, 54, 55],
which we also analyzed for the most popular bioinformatics
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Table 1: The table shows the top ten Unix and bioinformatic
tasks by their usage in all nf-core workflow repositories.

Bioinformatic Task Usage Unix Task Usage
multiqc 85% echo 85%
fastqc 74% sed 77%
samtools 58% cat 77%
bedtools 23% mkdir 71%
bwa 22% ln 62%
STAR 20% mv 57%
picard 20% grep 55%
bowtie2 18% touch 54%
fastp 16% cut 47%
gffread 15% gzip 42%

tasks in Figure 3. The figure shows the relationship between
a task’s input, the I/0 read, and a task’s runtime. Four tasks
show a Pearson correlation coefficient of p > 0.9, which can be
interpreted as very strongly correlated [56]. Three tasks show
a p > 0.8, indicating a strong correlation. Two tasks exhibit a
Pearson correlation coefficient of p > 0.6, suggesting a moderate
correlation. Lastly, one task demonstrates a Pearson correlation
of p < 0.2, representing a weak or negligible correlation.

When the scaling behavior of some workflow tasks can not
be modeled linearly, i.e., A5 is violated, these tasks will yield a
high prediction error. However, while showing a high prediction
error, the slope in the linear model can still describe that Task X
might grow faster than Task Y, giving the resource management
methods not accurate estimates but still a relative comparison of
runtimes.

4.3. Local and Target Infrastructure Profiling

Our method is intended to run on the scientist’s local com-
puter but can also be applied on a remote machine. We expect
that the local machine is different from the target infrastructure.
Therefore, we conduct a short profiling phase to gather detailed
infrastructure metrics and to measure machine characteristics
and differences.

For unknown workflow workloads, we use general micro-
benchmarks that analyze the local and all target nodes’ per-
formance characteristics like CPU speeds, memory speed, and
random and sequential I/O. These microbenchmarks can be exe-
cuted in parallel on all machines in the cluster and take a very
short time for each node, typically less than a minute in total.

For workflows (partially) consisting of frequently used
tasks or scientists willing to provide their own benchmarks,
application-specific benchmarks can be executed to achieve
more accurate results.

We analyzed the publicly available nf-core workflow repos-
itory [3] that, at the state of writing this paper, consists of 74
real-world workflows, mainly from the bioinformatic domain, in
different development statuses, from deprecated to newly created.
Table 1 shows the top ten Unix and bioinformatics tasks by their
usage across workflows in the repository, e.g., the task multiqc is
used in 85% of the existing nf-core workflows. The list of Unix
tasks contains well-known applications that either do not depend
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Figure 3: The plots show the relationship between I/O read
(placeholder for data input size [27]) and the task runtime. Seven
tasks show a Pearson correlation coefficient of p > 0.8, two
tasks show a p > 0.6, and the MultiQC task shows a Pearson
correlation of p < 0.2.
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on the data input at all, e.g., mkdir, or yield known patterns, e.g.,
gzip or grep. The results for the most used bioinformatic tools
yield that there are frequently used tools despite many differ-
ent use cases in the bioinformatic domain. Summarizing our
results, many workflow tasks, at least in the same domain, are
recurring, opening the space for application-specific benchmarks
that can show performance differences between machines more
accurately.

The infrastructure profiling will be rerun automatically when-
ever a cluster’s resource manager detects hardware changes.
Beyond the scope of runtime prediction, the microbenchmarks
can be extended with tools that analyze network properties to
consider communication aspects.

4.4. Data Sampling and Local Workflow Execution
Our method works out of the box without any historical

traces However, to train our Bayesian regression model, training
data needs to be generated a-priori. Therefore, we want to run
the workflow locally with small inputs.

To this end, we pick one of the original input files and down-
sample it to obtain diverse yet small (and hence fast) inputs as
input for the learner. For instance, in remote sensing or astro-
nomic workflows, a single image could be split into smaller ones
keeping the resolution or decreasing the resolution while leaving
the image section the same. In genomics, downsampling refers
to splitting one of the many input samples with millions of short
sequence reads into multiple smaller partitions. The scientist
can omit the downsampling step by providing small input data
partitions, e.g., satellite images with smaller resolutions or a
sample with fewer reads.

Next, we take the generated inputs and run the workflow
locally with them. During this execution, monitoring data, e.g.,
task runtimes, input sizes, read/write I/O, are collected, which
serve as the input for the prediction model. While running the
workflow locally with a large set of such partitions covering a
large range of data sizes tends to improve the accuracy of the
prediction model, fewer and smaller partitions can be executed
faster and lead to quicker but mostly more imprecise runtime
predictions. Hence, the sizes of the samples and the number
are obviously important aspects. We studied the impact of both
factors and concluded that at least three partitions with an ac-
cumulated size of at least 10% of the downsampled input file
should be used for accurate results. For instance, if a workflow’s
input consists of 2,000 satellite images, each 1 GB, at least three
partitions should be created with an accumulated size of at least
0.1 GB.

4.5. Local Prediction Model Training
In this step, we train our Bayesian linear regression model

for each task to predict the respective task’s runtime. Therefore,
we use the monitoring data from the local workflow execution
as data points.

According to our assumption A5, we decide to use a lin-
ear model since our experiments and many related works
have shown a linear correlation between input size and run-
time. [41, 53, 54, 55]. Before training our Bayesian linear re-
gression model, we check for such a linear correlation between
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Figure 4: Posterior Prediction for a single task with two Gaussian
prior distributions and the actual runtime.

the task’s input size and the task’s runtime. We argue to use
the uncompressed input data size, specifically since workflows
frequently operate on compressed data. For example, in genomic
workflows, the de facto standard file format for storing biologi-
cal sequences is fastq which is compressed with Gzip. Gzip can
compress larger files more efficiently, especially when dealing
with repetitive data, leading to a non-linear file size increase.
In such scenarios, using the input data size as the independent
variable in the linear correlation test would lead to a distorted
result. We do this linear correlation detection first to ensure
that the input file size actually impacts the task’s runtime, and
the relation is not a constant function. A simple example of a
task with a constant function would be the Unix command head
which is independent of its input size. For the correlation test, we
use the Pearson correlation coefficient which can measure linear
relationships. We define the relationship as strongly correlated if
p is greater than 0.75 [56]. In cases where no strong correlation
can be detected, i.e., p < 0.75, we predict the task’s median
runtime, independent of the concrete input size. Otherwise, we
use a Bayesian linear regression to predict the runtime.

One of the main advantages of using the Bayesian approach
is that we can train it on a small training data set [34, 35],
which is especially useful since the local profiling only delivers
a few training points for each task. Additionally, instead of
predicting a point value, the Bayesian approach also yields an
uncertainty value for this prediction according to a distribution.
Therefore, we also provide a lower and upper uncertainty at
different confidence levels to express that the point estimate
probably is not accurate.

For instance, Figure 4 shows the prediction for a single task.
The mean for both predicted values is 100 seconds, while the
true runtime is 100.7 seconds. For the prediction with the blue
line, which uses a Gaussian prior with σ2 = 1, the predicted
value is in a confidence interval of 26% uncertainty. Selecting
a Gaussian prior with a bigger σ2 would flatten the curve and
could express more uncertainty about the real value. Here, the
actual runtime is in a confidence interval of 14% uncertainty. A
scheduler can consider this uncertainty and plan with it, which
would not be possible for frequentist approaches.
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In contrast to these frequentist approaches, we try to find a
posterior distribution for our model parameters. Specifically, our
model computes a posterior distribution depending on the input
values as shown in equation (1). We assume that ϵi and yi are
normally distributed with ϵi ∼ N(0, σ2) and yi ∼ N(Xβ;σ2)

yi = Xβ + ϵi; (1)

Our Bayesian approach now tries to maximize the posterior

max
β

P(β|yi); (2)

Applying Bayes theorem and a short equation transforma-
tion, we get to

max
β

P(yi|β)P(β); (3)

where the first term, P(yi|β), the likelihood, can be com-
puted with our previous assumption about the distribution of yi.
For the second term, the posterior, P(β), we have to assume a
distribution. We decided to set the prior to a Gaussian distri-
bution, which results in an L2 regularization for our Bayesian
regression.

The gathered metrics from the local execution serve as pos-
sible features for the vector X, e.g., peak memory, read I/O, or
CPU usage. From the set of these features, we have to remove
the features unknown in advance, e.g., the peak memory is only
available after a task execution. Therefore, we decided to use
the uncompressed input data size as a feature. In our prediction
model, xi is a scalar, i.e., the uncompressed input data, and yi is
the runtime.

4.6. Runtime Extrapolation for Target Infrastructure

With the Bayesian Linear regression model created, we can
now predict the tasks’ runtime with arbitrary input sizes for
nodes with the same hardware as the local machine.

However, our aim is to predict task runtimes for all different
kinds of infrastructure nodes. Therefore, we want to extrapolate
the local runtime by calculating ttarget = tlocal · ft, where ttarget

denotes the requested runtime on a single target machine, tlocal

the runtime on the local machine, and ft the runtime factor which
we need to determine.

To this end, we take the gathered data from the local and
target infrastructure profiling. In our method, we introduced
general and application-specific microbenchmarks as profiling
tools. When using general microbenchmarks, tasks are treated
as actual black-boxes. Therefore, the runtime extrapolation
relies on the gathered infrastructure benchmarks. A node’s I/O
capabilities are essential to a task’s runtime since most tasks read
its input file and write some output. Another essential factor is
the CPU speed. Therefore, we include the node’s I/O and CPU
characteristics in the extrapolation process.

We decided to weight CPU and I/O equally. With this weight-
ing, we can now extrapolate the runtime. We define the runtime
factor ft for each task as follows:

ft = 0.5 ·
cpulocal

cputarget
+ 0.5 ·

iolocal

iotarget
(4)

where the subscript local indicates the benchmark value on
the local machine and target the benchmark value on the target
machine.

For instance, the goal is to extrapolate the runtime of task
T1 from the local machine to machine A1. Our Bayesian model
predicts that T1 takes 100 seconds on the local machine. Table 2
shows the CPU events/s, taken as the cpu variable, and the IOPs,
taken as the io variable. Putting the values into equation (4)
would lead to a factor of ft = 1.7. Multiplying this factor with
the local runtime, the task T1 is expected to run 170 seconds on
A1.

Whenever application-specific benchmarks exist, we do not
have to rely on the machine benchmarks. Instead, metrics from
these specific task benchmarks can be incorporated into ex-
trapolating the runtime. Here, the factor can be estimated by
considering the benchmark value and setting them into relation:

ft =
vallocal

valtarget
; (5)

In case application-specific benchmarks exist but not for the
respective task, the runtime factor for the unknown task can be
defined as the median of all existing factors F = { f1, ..., fn}:

fall = med(F). (6)

5. Implementation

We will explain our implementation consisting of the general
and the application-specific profiler, the data sampler, and the
local runtime prediction module. For reproducibility, our local
predictor’s source code is provided as open source code online3.

5.1. General Infrastructure Profiler
The general infrastructure profiler uses sysbench4 as a

microbenchmark to measure different CPU characteristics. Sys-
bench runs a benchmark that verifies prime numbers with a limit
of ten seconds and a maximum verification prime number of
20,000. Additionally, sysbench is used to test the memory, set-
ting the block size buffer to one megabyte and the total memory
size to 100 gigabytes.

Since we run sysbench on computers that differ in the number
of CPU cores, we decided to always set the number of bench-
marked CPU threads to one. This avoids two problems. First,
on machines with different numbers of CPU cores, a node with
a few very powerful cores could score lower than a node with
more but slower cores. Second, tasks allocate a fixed number of
CPU cores. Therefore, a benchmark value that has been obtained
with more than the requested resources would be misleading.

Our profiler tests the I/O performance by using fio5. We
benchmark sequential read-write and avoid measuring random
read-write characteristics since sequential access patterns prevail
in data analysis tasks [57, 58, 59].

3github.com/CRC-FONDA/Lotaru
4github.com/akopytov/sysbench
5github.com/axboe/fio
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Table 2: The results from applying the infrastructure profiling on the six different nodes.

Machine Cores Memory Storage Network CPU events/s RAM score read IOPs write IOPs
∑

Time in s
Local 8 16 GB HDD 1 Gbps 458 18,700 437 415 36

A1 2 x 4 32 GB HDD 1 Gbps 223 11,000 306 301 40
A2 2 x 4 32 GB HDD 1 Gbps 223 11,000 341 336 39
N1 8 16 GB HDD 16 Gbps 369 13,400 481 483 33
N2 8 16 GB HDD 16 Gbps 468 17,000 481 483 30
C2 8 32 GB HDD 16 Gbps 523 18,900 481 483 28

Note, extensive benchmarking is mandatory to examine di-
verse hardware design aspects [60]. However, such extensive
benchmarking is time-consuming, and the additional gathered in-
formation cannot be used to conclude task behavior on different
machines since tasks are treated as black boxes. Further, nowa-
days, hardware is tailored to achieve good results in popular
benchmarks [61, 60]. We neglect that since we want to quickly
derive the relative performance differences between different
nodes for the purpose of adjusting runtime predictions.

5.2. Application-specific Profiler

Using application-specific benchmarks, detailed information
of a task’s behavior on different machines can be collected.

Application-specific benchmarks need to be executable on
different machine types out of the box without installation and
configuration processes. Therefore, we use Docker containers
to run the microbenchmarks isolated on the machines. Thus,
the application-specific benchmarks are portable on different
machine types. Most popular bioinformatics tools already pro-
vide a Docker image. We found a Docker image for all top ten
bioinformatic tools from our nf-core repository analysis, such as
multiqc [62], fastqc, and samtools [63]. Therefore, in practice, a
scientist can reuse the existing containers of their workflow tasks
and run them out-of-the-box as microbenchmarks, especially
since most already feature test profiles with small input data.

Recently, workflow repositories such as WFCommons [64],
nf-core [65], or the Workflow Trace Archive [66] provide tem-
plates and data for workflow executions which can also be used
for generating workflow benchmarks [67]. Further, our reposi-
tory analysis in Section 4.3 showed that many workflows consist
of commonly used tools, further reducing the number of tasks
that need to be benchmarked.

5.3. Data Generation for Local Prediction

The training of our Bayesian regression models relies on
the data points from locally executing the workflow with small
inputs. These inputs are either manually provided by the scientist
or can be generated automatically by our downsampling method.

When generating these inputs automatically, e.g., by down-
sampling or slicing, the actual nature of the data needs to be
considered.

Therefore, an implementation must be provided for a spe-
cific domain where a certain type of data input is used. As all
our evaluation workflows run on genome sequencing data, we
implemented downsampling for genome data in the fastq format

using the open-source software fastqsplitter6 to split the inputs
into partitions. However, our method features an interface to
support downsampling or slicing files in arbitrary domains.

For gathering the task runtime metrics, we choose Next-
flow [10] as a workflow management system. We extended
Nextflow’s monitoring interface to collect additional data, such
as compressed and uncompressed input size of tasks and the
overall workflow input size.

5.4. Prediction Interface

We implemented Lotaru’s predictor as a scientific work-
flow management system (SWMS) independent interface. To
support as many SWMS as possible, the input only requires a
table-structured comma-separated values (CSV) file with task
information. Many workflow systems include monitoring capa-
bilities that are able to generate such structured information by
default. Similarly, Lotaru’s output is a table-structured CSV file
that contains the predicted task runtimes for a workflow. After
the task prediction process, the SWMS can read this file and
assign the expected runtimes to the tasks. Lotaru can be exported
as a platform-independent executable jar. This further increases
the compatibility, allowing it to be used as an SWMS plugin
and as an (online) predictor in such tools. The collected data for
training and Lotaru’s outputs are persisted and can be reused to
extrapolate the runtime for different cluster infrastructures.

6. Experimental Setup

This section describes our experimental setup, including the
used infrastructure, the workflows, and the baselines.

6.1. Infrastructure Setup and Evaluation Workflows

We evaluate our local prediction method for an execution on
a cluster consisting of six different machines: a local machine,
two machines from a heterogeneous commodity cluster, and
three virtual machines in the Google Cloud Platform (GCP).
Table 2 lists the machines’ specifications together with the results
of our microbenchmarks and their cumulative execution times.
The local machine consists of an Intel Xeon E3-1230 V2 CPU
(four cores, eight threads, 3.30 GHz base frequency), 16 GB
memory, an HDD, and is connected via Ethernet with 1 Gbps.
The two machines from the commodity cluster, A1 and A2, have
two Intel Xeon X5355 (four cores and 2.66 GHz base frequency)

6github.com/LUMC/fastqsplitter
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Table 3: The used workflows, the number of input samples, their
accumulated data input sizes, and the number of tasks.

Workflow Input size # Samples # Tasks
Bacass 8 GB 4 5

Atacseq 55 GB 12 14
Chipseq 93 GB 6 14

Eager 106 GB 12 13
Methylseq 184 GB 14 8

each, 32GB of memory each with different hard drives, and are
connected via Ethernet with 1 Gbps.

From the Google Cloud Platform (GCP), we use N1, N2, and
C2 instances as heterogeneous nodes in the cluster. While the
N1 machines are based on Intel Broadwell (8 vCPU cores and
2.00 GHz base frequency), the N2 machines use Intel Cascade
Lake CPUs (8 vCPU cores and 2.80 GHz base frequency). The
C2 machines are compute-optimized and based on Intel Cascade
Lake with a turbo clock of up to 3.90 GHz and 8 vCPU cores7.
The machines are connected via Ethernet and provide up to 16
Gbps.

To evaluate our method, we selected five real-world bioin-
formatics workflows from the nf-core repository [65].

The five workflows specialize in different sequence analysis:
The Eager workflow [3] performs analysis of ancient genomic
data, Chipseq8 analyzes Chromatin Immunoprecipitation se-
quencing (ChIP-seq) data, Methylseq9 is for Bisulfite sequencing
in epigenomics, Atacseq10 for ATAC-sequencing, and Bacass11

for bacterial assembly and annotation.
Table 3 gives an overview of these workflows, their accu-

mulated data input sizes, the number of input sequences, and
the number of tasks. The workflow inputs are retrieved from
the respective nf-core test data set. Note that workflows often
run over much larger inputs, resulting in much longer workflow
runtimes for real inputs, even on large-scale clusters.

For the local workflow execution and the model training, we
pick two input files for each workflow. We downsample them
to approximately 10% of their original single input size. For
instance, the workflow Bacass contains four input files with an
accumulative size of 8 GB. Assuming all files have the same size,
we downsample a single 2 GB input file to several inputs with
a cumulative size of around 200MB. We do this two times to
provide two different training profiles for each workflow which
are tested on the full data set.

Table 4 shows the time the local workflow execution takes
on our local machine. The execution times vary between 4
and 41 minutes. We observed that the differences in execution
time between the workflows are much more considerable than
comparing the execution time of a single workflow with different
training sets, even though one set might have six times the size

7cloud.google.com/compute/docs/machine-types
8github.com/nf-core/chipseq
9github.com/nf-core/methylseq

10github.com/nf-core/atacseq
11github.com/nf-core/bacass

of the other (Eager-0 vs. Eager-1). We assume that this is due
to some tasks that yield a static runtime and do not scale with
the input data size. For workflows with these tasks, further
downsampling would not lead to a significant decrease in local
workflow execution time.

6.2. Baselines

Many recent workflow task prediction methods use machine-
learning methods like neural networks [31]. Such methods re-
quire large training data sets to perform well, while we want to
predict the runtime before the workflow execution and without
extensive prior measurements. Therefore, we compare our ap-
proach to three approaches that do not heavily rely on historical
data to build a model and are also executable in advance, namely
Online-M [26], Online-P [27], and a Naive Approach (NA),.

The Naive Approach estimates the ratio rt =
runq

dq
for each

training data tuple q (input size dq, runtime runq) and takes the
mean r̄t for task t over these ratios. It then uses this mean ratio
to predict the runtime of a task t with the target input size of dt,
using r̄t · dt.

Online-P and Online-M use density-based clustering to iden-
tify high-density areas. Then, a cluster is determined according
to the I/O read value of the task to estimate. Since the clustering
is not possible with the sparse data from the local executions,
we take the data point closest to the point being estimated. Then,
a Pearson correlation between all input and output parameters is
calculated. If the data is correlated, the prediction is made based
on the ratio between the output and input parameters. If the data
are uncorrelated, the Online-M method uses the mean runtime
of previous task executions, while Online-P attempts to sample
from a Normal or Gamma distribution first.

The three baselines use the same task training data for all
experiments as Lotaru. However, since all methods are pure
predictors, they do not use the gathered microbenchmark data to
fit the heterogeneous infrastructure.

We compare the three baselines to our local prediction
method which we explained in detail in Section 4. Our evalu-
ation provides two variations of our method, Lotaru-G, which
uses the general benchmarks, and Lotaru-A, which uses the
application-specific benchmarks. Apart from the difference in
benchmarking and the resulting runtime extrapolation, both vari-
ations use the same data sampling, local workflow execution,
and prediction model steps.

7. Evaluation A: Prediction Accuracy

In Evaluation A, we evaluate the accuracy of Lotaru’s task
runtime predictions by comparing them to two state-of-the-art
methods and a naive approach using a cluster composed of six
different node types. In the first scenario, workflows are intended
to run on a homogeneous cluster consisting of a single node type.
In this setup, the methods must predict the runtime for a single
node type. In the second scenario, the workflows are meant
to execute on a heterogeneous cluster comprising six different
types of nodes, thus demanding predictions for each individual
node type.
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Table 4: The table shows the time the respective local workflow execution takes on the scientist’s machine. For our experiments, the
local machine consists of an Intel Xeon E3-1230 V2 CPU with four cores and eight threads, 16 GB memory, and an HDD.

Workflow Atacseq Bacass Chipseq Eager Methylseq
Training Set 0 1 0 1 0 1 0 1 0 1
Size in GB 0.43 0.35 0.04 0.13 0.36 0.35 0.13 0.78 0.52 0.68
Time in Min 22 21 19 19 22 22 36 41 4 4

7.1. Prediction Performance for a Homogeneous Cluster
With our first experiment, we investigate the prediction per-

formance for a homogeneous infrastructure to get an unbiased
view of the prediction models’ performance. Therefore, we
assume that the target infrastructure is homogeneous and the
scientist’s machine is similar to the target machines.

The median prediction error (MPE) serves as our evalua-
tion metric. It can be calculated for every workflow or every
machine type and aggregates the prediction error of the tasks
inside the category. The prediction error for an individual task t
is calculated as follows:

errt = abs
(

predicted runtime − actual runtime
actual runtime

)
. (7)

Figure 5 shows the cumulative distribution of prediction er-
rors for all five methods over all tasks. Our methods, Lotaru-G
and Lotaru-A, differ in the runtime extrapolation for the target
machines. Since the infrastructure is homogeneous in this exper-
iment, the lines are overlapping. Our local methods achieve the
lowest prediction error and yield a median prediction error of
6.93%. The baselines, Online-M and Online-P, also achieve sim-
ilar results since the main difference between both approaches
is the handling of uncorrelated relationships between input data
size and task runtime. Here, Online-M estimates a runtime ac-
cording to the median, whereas Online-P considers a statistical
distribution. Both methods achieve a median error of 11.11%,
while Online-P shows slightly lower prediction errors for some
tasks compared to Online-M. The Naive predictor method yields
the highest median prediction error of 68.82%.

7.2. Prediction Performance for a Heterogeneous Cluster
In our second prediction experiment, we use our local ma-

chine to predict the runtimes for all target nodes A1, A2, N1,
N2, and C2 for all tasks in all five evaluation workflows.

Figure 6 shows the cumulative distribution of prediction
errors for all task predictions on all five machines. Our method
using the application-specific benchmarks, Lotaru-A, achieves
the lowest prediction errors. The second lowest prediction errors
can be observed with our method applying general benchmarks
only, Lotaru-G. For Lotaru-A 50% of the predictions yield an
error below 15.18% and for Lotaru-G 50% of the predictions
yield an error below 17.33%. The best-performing baseline,
Online-P, shows a median prediction error of 30.86%. Again,
Online-M shows a similar behavior since the main difference
between both approaches is handling uncorrelated relationships
between input data size and task runtime. The Naive baseline
shows the highest prediction errors.
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Figure 5: CDF of the prediction error for all approaches over all
workflow tasks for a homogeneous infrastructure. The green line
(Lotaru-G) and the blue line (Lotaru-A) show exactly the same
results, while the Orange line (Online-M) and the brown line
(Online-P) are similar. For better illustration, the x-axis limit is
set to 1.0, i.e., a prediction error of 100%. The prediction error
can be greater than 100%.

Comparing the prediction error for a homogeneous cluster
from Figure 5 with the prediction error for a heterogeneous
cluster from Figure 5 shows that the cumulative distribution
function (CDF) for the heterogeneous infrastructure has a lower
slope compared to the CDF for the homogeneous infrastructure
for each method. Further, while the cumulative distribution
of 0.5 (median) shows a difference between our local methods
and Online-P of 4,18% for homogeneous cluster, the difference
increases to 13,36% and 15,51% for the heterogeneous cluster.

Table 5 shows the median prediction errors for each tar-
get machine and over all machines. For Lotaru-A, the median
prediction error is in a range between 13.04% and 16.64%, show-
ing nearly no correlation between the type of machine and the
prediction error. Lotaru-G shows a lower prediction error for
hardware characteristics closer to the local machine. I.e., the
prediction error for the machines N2 and C2 is lower than for A1
and A2, see also Table 2. Online-M and Online-P show a similar
behavior, resulting in lower prediction errors for N2 machines.
While the differences regarding the prediction error between our
method and Online-P for N1 and N2 are relatively small, they
increase for A1 and A2.
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Table 5: Median prediction error (MPE) for all methods on all machines over the five experiment workflows.

Naive Online-M Online-P Lotaru-G Lotaru-A
A1 51.29% 40.01% 40.10% 17.98% 16.22%
A2 50.96% 38.17% 38.06% 19.31% 16.64%
N1 60.01% 22.87% 22.87% 19.06% 14.60%
N2 75.12% 19.54% 19.59% 14.60% 13.04%
C2 82.39% 28.01% 28.01% 15.24% 15.78%

Median 63.51% 30.87% 30.69% 17.33% 15.18%
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Figure 6: CDF of the prediction error for all approaches over all
workflow tasks for a heterogeneous infrastructure. The orange
line (Online-M) and the brown line (Online-P) are similar. For
better illustration, the x-axis limit is set to 1.0, i.e., a prediction
error of 100%. The prediction error can be greater than 100%.

8. Evaluation B: Runtime Prediction in Resource Manage-
ment

In Evaluation B, we use the predicted runtimes from Evalua-
tion A to investigate the impact of our achieved prediction accu-
racy for resource management. Specifically, we evaluate multi-
workflow scheduling, carbon-emission efficiency, and cost pre-
diction using the established workflow simulator WorkflowSim.
To this end, we use the measurements from real-world experi-
ments, the methods’ predictions, and the machine characteristics
and load them into WorkflowSim.

8.1. Scheduling Workflows

In the scheduling experiment, we want to evaluate how well
state-of-the-art scheduling algorithms can work with our pre-
dicted values. Therefore, we feed the respective algorithm with
the predicted runtime but use the actual runtime for running the
tasks. Established workflow simulation tools, such as Work-
flowSim [68] or WRENCH [33], assume the presence of accu-
rate task runtimes to execute scheduling approaches. Therefore,
we use our WorkflowSim extension WorkSim-PredError [69],
which allows users to include inaccurate runtimes, e.g., the pre-
dicted runtime. Thus, the scheduling approaches can use the
predicted runtimes.

We use the state-of-the-art heuristic HEFT [14] as the
scheduling algorithm in our experiments. In addition to the

five prediction methods, we feed the HEFT scheduler with accu-
rate runtimes as an optimum baseline. To simulate the workflow
executions on many different infrastructures, we generate 200
clusters. Each cluster consists of 20 nodes, where the nodes are
selected from the pool of previously presented cluster nodes,
A1, A2, N1, N2, and C2. The nodes’ attributes, such as cores,
memory, or network bandwidth, are set according to the nodes’
specifications from Table 2.

As described in Section 6.1, we applied the downsampling
twice for each workflow, leading to two different training profiles
for each workflow and resulting in different predictions. Thus,
we include each workflow twice with the respective predictions
in the pool of possible workflows. We always schedule two
workflows from the pool of possible workflows together to create
more load on the simulated cluster.

Table 6 shows the results for scheduling multiple workflows.
For each cluster configuration, we calculate the deviation from
the minimum makespan achieved by a method. Then, we cal-
culate the mean and other percentile values, e.g., the 90th per-
centile, over these deviations.

The table shows that HEFT with accurate runtimes is able
to achieve the lowest deviation values. Noteworthy, HEFT with
accurate runtimes not always leads to the lowest makespan.
Since HEFT is a heuristic, other approaches can, also randomly,
sometimes find better solutions, leading to a lower makespan.
The second lowest makespan is achieved by Lotaru-G, followed
by Lotaru-A. The median performance of both methods is on
par with the best method, showing a median deviation from
the lowest makespan of 0.00%. The mean values are slightly
higher than accurate runtimes, with 3.35% for Lotaru-G and
4.79% for Lotaru-A. Online-P, the best-performing baseline
regarding the prediction error, shows a mean makespan deviation
of 67.38% and a median makespan deviation of 61.18%. Online-
M performs slightly worse, followed by the Naive approach,
which leads to the highest makespans. All baselines’ deviations
are considerably higher than our local method, translating to
workflow executions taking more than 50% longer on average.

8.2. Carbon Efficiency

In this experiment, we want to examine the impact on car-
bon emissions when using a state-of-the-art temporal workload
shifting method to reduce carbon emissions. In Let’s Wait
Awhile [16], workloads are shifted to times with fewer carbon
emissions, e.g., when the electricity production uses renewable
energy sources. In the simulation provided by the authors, they
consider a 5% forecast error for carbon emissions but assume
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Table 6: The table shows the deviation between the minimum makespan and the makespan achieved by the respective method over
200 different cluster configurations and all workflows. A mean deviation of 10% translates to a 10% longer mean makespan for the
respective method compared to the best method.

Method Mean 25th 50th 90th 95th 99th 99.9th Max
Naive 72.14% 37.24% 61.20% 148.81% 158.54% 175.08% 243.27% 301.04%

Online-M 67.47% 33.05% 61.19% 148.81% 158.54% 158.54% 196.00% 292.26%
Online-P 67.38% 33.05% 61.18% 148.81% 158.54% 158.54% 162.98% 250.90%
Lotaru-G 3.35% 0.00% 0.00% 7.11% 22.48% 61.50% 134.91% 195.49%
Lotaru-A 4.79% 0.00% 0.00% 11.13% 33.21% 78.90% 118.83% 232.93%
Accurate 1.74% 0.00% 0.00% 3.80% 11.52% 30.56% 66.70% 120.59%
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Figure 7: Carbon emission savings for semi-weekday workload
shifting using runtime predictions from different methods.

that runtimes estimates are accurate. First, we extend their sim-
ulation environment and enable using predicted task runtimes.
Second, we export the schedule from all five workflows and load
them into Let’s Wait Awhile’s simulation tool.

In the first setup, we allow shifting of tasks semi-weekly, i.e.,
next Monday or next Thursday at 9 am. Figure 7 shows the emis-
sions saved in percent by consuming energy at times with lower
carbon intensity for four different regions, Germany, California,
Great Britain, and France. We include our method’s predictions
with general benchmarks (Lotaru-G) and application-specific
benchmarks (Lotaru-A), the best-performing baseline Online-P,
and accurate predictions. In three out of four scenarios, most
carbon emissions can be saved with accurate runtimes. Only
in France, Lotaru-A can save more carbon emissions. Such
behavior can occur due to the carbon-emission forecast error
or prediction errors, e.g., the last workflow task yields an over-
prediction, resulting in an extended shifting period with lower
carbon emissions. Over all regions, Lotaru-A is able to save the
second-most carbon emissions, followed by Lotaru-G. Using the
predictions of Online-P leads to the lowest emissions saved.

In a second setup, we allow task shifting to the next Monday.
Using this policy, Figure 8 shows that more emissions can be
saved compared to shifting the workload to semi-weekly. De-
pending on the region, the savings are around 0.5 times higher.
California shows the most considerable relative increase over
all methods and Germany the highest percentage of emissions

Germany California Great Britain France
Country

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Em
is

si
on

s s
av

ed
 in

 p
er

ce
nt

Online-P Lotaru-G Lotaru-A Accurate

Figure 8: Carbon emission savings for next Monday workload
shifting using runtime predictions from different methods.

saved. Contrary, Great Britain shows the smallest relative in-
crease. As in our previous setup, assuming accurate runtime
predictions, most emissions can be saved. Lotaru-A performs
second best in all regions, followed by Lotaru-G in three out of
four regions. Again, using the predictions provided by Online-P
leads to the lowest emissions savings.

8.3. Cost Prediction

Workflows are frequently executed in cloud environ-
ments [18, 19, 30, 31, 36]. Cloud providers offer a variety
of machine configurations and charge the scientist hourly or
minute-wise. Executing long-running large-scale workflows on
cloud machines can therefore be costly. Knowing the execution
cost in advance is essential but, again, requires accurate knowl-
edge about the tasks’ runtimes [18, 19]. Therefore, we want to
address the problem of predicting workflow execution costs in
cloud environments in our last experiment.

In WorkflowSim [68], we simulate a cloud environment by
creating a cluster with an effectively unlimited choice of virtual
machines. We use the heuristic HEFT [14] to recommend a
schedule in the cloud based on the predicted runtimes. Then,
we integrate two setups. In the first setup, we simulate billing
on an hourly basis, e.g., Google Cloud Platform, while the
second setup charges per minute, e.g., Microsoft Azure. An
overprediction in task runtime leads to higher predicted costs
since it is expected that virtual machines need to be rented longer,
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Table 7: Percentage difference between expected cost of running the workflow in the cloud and the actual cost assuming hourly
billing of virtual machines.

Hourly Billed - Difference
Workflow Training Set Naive Online-M Online-P Lotaru-G Lotaru-A
Atacseq 0 38.46 -22.03 -22.03 -2.65 -3.68
Aatacseq 1 52.30 -19.69 -19.69 5.36 4.01
Bacass 0 44.52 9.47 9.47 19.62 17.60
Bacass 1 24.56 -7.50 -7.50 4.35 1.49

Chipseq 0 57.85 7.84 7.84 1.93 -0.43
Chipseq 1 61.10 -9.78 -9.78 -3.09 -4.78
Eager 0 -26.97 -27.68 -27.97 10.79 10.33
Eager 1 -30.18 -22.68 -22.68 11.25 7.95

Methylseq 0 30.95 -12.99 -13.14 2.66 -4.27
Methylseq 1 -1.53 -11.24 -11.24 4.66 -2.14

Median (abs) 34.70 12.19 12.12 4.51 4.14

Table 8: Percentage difference between expected cost of running the workflow in the cloud and the actual cost assuming minute-
based billing of virtual machines.

Minute Billed - Difference
Workflow Training Set Naive Online-M Online-P Lotaru-G Lotaru-A
Atacseq 0 47.53 -25.54 -25.42 5.67 4.25
Atacseq 1 60.59 -25.19 -24.08 8.09 7.21
Bacass 0 46.00 8.87 8.87 21.41 19.79
Bacass 1 25.25 -9.57 -9.52 6.42 4.71

Chipseq 0 61.76 7.96 7.96 6.45 3.03
Chipseq 1 65.01 -10.41 -10.32 -0.42 -4.35
Eager 0 -39.90 -46.38 -46.47 12.47 11.50
Eager 1 -40.05 -32.09 -32.09 12.42 11.67

Methylseq 0 36.04 -18.70 -18.71 2.90 -5.85
Methylseq 1 0.16 -16.77 -16.77 4.98 -3.68

Median (abs) 43.02 17.74 17.73 6.43 5.28

while underpredictions lead to lower expected costs. We expect
such over- and underpredictions to be more crucial for minute-
based billing. For example, a prediction error of 15% for a task
that runs for 30 minutes has no impact on the predicted cost
since the VM is billed hourly and it is not important whether the
task takes 34.5 minutes or 30.

Table 7 and Table 8 show the deviation between the pre-
dicted and the actual cost of executing the workflow in the cloud.
We report the values for each workflow with both training data
sets. Positive numbers indicate an overprediction of cost, while
negative numbers indicate an underprediction. Accordingly,
overpredicting costs would lead to an actual cheaper execution.
In the hourly-billed setup, Table 7, Lotaru-A achieves the lowest
deviation in six out of ten workflow executions and the lowest
median deviation over all Workflows. Lotaru-G shows a slightly
higher median deviation than Lotaru-A and the lowest deviation
in two out of ten workflow profiles. The baselines Online-P
and Online-M show a median deviation of 12.12% and 12.19%.
This is more than 2.5 times the median deviation of Lotaru-G
and nearly three times of Lotaru-A. For minute-based billing,
Table 8, the deviations for all methods, except the Naive one,
are increased. Lotaru-A shows an absolute increase of 1.14%

and Lotaru-G of 1.92%. The Online baselines show a much
more considerable absolute increase. In eight out of ten work-
flow profiles, either Lotaru-G or Lotaru-A achieve the lowest
deviation. Again, the lowest deviation from the actual cost is
achieved using the Lotaru-A predictions, followed by Lotaru-G.

9. Conclusion

In this paper, we presented Lotaru, a method that pre-
dicts the runtime of scientific workflow tasks before executing
the workflow on a heterogeneous infrastructure. To this end,
Lotaru profiles the local and target infrastructure with general
or application-specific microbenchmarks, reduces the input data
to quickly profile the workflow locally, and predicts the runtime
for target cluster nodes with a Bayesian linear regression based
on the gathered data points from the local workflow execution
and the microbenchmarks.

Our runtime estimation method is designed to be predom-
inantly executed locally on the scientist’s personal computer
before a workflow is executed on a heterogeneous cluster, thus
avoiding the usage of often scarce cluster resources and maxi-
mizing system efficiency.
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We provide an open-source implementation of our method
and an extendable interface for use with other domains that rely
on different data inputs, e.g., remote sensing that uses satellite
images.

In our evaluation with five real-world bioinformatics work-
flows on five different heterogeneous machines, we showed that
Lotaru achieves low prediction errors and outperforms state-
of-the-art runtime prediction baselines by a prediction error
decrease of more than 12.5%. We further used the prediction
results for several advanced resource management techniques
from the literature. Using the runtime predictions for the seminal
HEFT scheduling algorithm led to the same median makespan
and a mean makespan increase of less than 5% compared to
perfect a priori knowledge of task runtimes. For carbon effi-
ciency, again, Lotaru outperformed the baselines and showed
savings close to perfect predictions. Lastly, for cost prediction,
we achieved a deviation below 5% for hourly billing and below
6.5% for minute-based billing, less than half of the baseline’s
deviations.

Our method is designed for all workflows that process mul-
tiple input files, which are, at least partly, processed separately,
leading to data-parallel task executions. For a quick local exe-
cution, either downsampling of such data needs to be possible,
or the scientist needs to provide small input data. Alternatively,
different subsets of the input files can be used at the price of a
longer local workflow execution phase. Further, we assume a
linear relationship between input sizes and task runtime which
can be observed for many big data analysis tasks.

In the future, we plan to consider the execution on multiple
distributed sites. Further, we want to test our method with
machines equipped with GPUs. As our method additionally
provides uncertainty estimates, we plan to leverage these by
adjusting existing schedulers.
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