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1 Introduction

There is a wide range of economic contexts in which “aggregate costs" have to be

allocated amongst individual agents or components who derive the bene…ts from

a common project. A …rm has to allocate overhead costs amongst its di¤erent

divisions. Regulatory authorities have to set taxes or fees on individual users for

a variety of services. Partners in a joint venture must share costs (and bene…ts) of

the joint venture. In many of these examples, there is no external force such as the

market, which determines the allocation of costs. Thus, the …nal allocation of costs

is decided either by mutual agreement or by an “arbitrator" on the basis of some

notion of fairness.

A central problem of cooperative game theory is how to divide the bene…ts of

cooperation amongst individual players or agents. Since there is an obvious analogy

between the division of costs and that of bene…ts, the tools of cooperative game

theory have proved very useful in the analysis of cost allocation problems.1 Much of

this literature has focused on “general" cost allocation problems, so that the ensuing

cost game is identical to that of a typical game in characteristic function form. This

has facilitated the search for “appropriate" cost allocation rules considerably given

the corresponding results in cooperative game theory.

The purpose of this paper is the analysis of allocation rules in a special class of

cost allocation problems. The common feature of these problems is that a group of

users have to be connected to a single supplier of some service. For instance, several

towns may draw power from a common power plant, and hence have to share the

cost of the distribution network. There is a non-negative cost of connecting each

pair of users (towns) as well as a cost of connecting each user (town) to the common

supplier (power plant). A cost game arises because cooperation reduces aggregate

costs - it may be cheaper for town A to construct a link to town B which is “nearer"

to the power plant, rather than build a separate link to the plant. Clearly, an e¢cient

network must be a tree, which connects all users to the common supplier. That is
1 Moulin[10] and Young [15] are excellent surveys of this literature.
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why these games have been labelled minimum cost spanning tree games.

Notice that in the example mentioned above, it makes sense for town B to demand

some compensation from A in order to let A use its own link to the power plant.

But, how much should A agree to pay? This is where both strategic issues as well as

considerations of fairness come into play. Of course, these issues are present in any

surplus-sharing or cost allocation problem. What is special in our context is that

the structure of the problem implies that the domain of the allocation rule will be

smaller than that in a more general cost problem. This smaller domain raises the

possibility of constructing allocation rules satisfying “nice" properties which cannot

always be done in general problems. For instance, it is known that the core of a

minimum cost spanning tree game is always non-empty.2

Much of the literature on minimum cost spanning tree games has focused on

algorithmic issues.3 In contrast, the derivation of attractive cost allocation rules or

the analysis of axiomatic properties of di¤erent rules has received correspondingly

little attention.4 This provides the main motivation for this paper. We show that the

allocation rule proposed by Bird [1], which always selects an allocation in the core

of the game, does not satisfy cost monotonicity. Cost monotonicity is an extremely

attractive property, and requires that the cost allocated to agent i does not increase

if the cost of a link involving i goes down, nothing else changing. Notice that if

a rule does not satisfy cost monotonicity, then it may not provide agents with the

appropriate incentives to reduce the costs of constructing links.

The cost allocation rule, which coincides with the Shapley value of the cost game,

satis…es cost monotonicity. However, the Shapley value is unlikely to be used in these

contexts because it is not in the core. This implies that some group of agents may

well …nd it bene…cial to construct their own network if the Shapley value is used

to allocate costs. We show that cost monotonicity and the core are not mutually

exclusive5 by constructing a new rule, which satis…es cost monotonicity and also
2 See, for instance, Bird[1], Granot and Huberman [7].
3 See for instance Granot and Granot [5], Granot and Huberman [6], Graham and Hell [4].
4 Exceptions are Feltkampf [3], Kar [9]. See Sharkey [13] for a survey of this literature.
5 This is where the small domain comes in useful. Young [15] shows that in the context of
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selects an allocation in the core of the game.

We then go on to provide axiomatic characterizations of the Bird rule as well

as the new rule constructed by us. An important type of axiom used by us is

closely linked to the reduced game properties which have been extensively used in

the axiomatic characterization of solutions in cooperative game theory.6 These are

consistency conditions, which place restrictions on how solutions of di¤erent but

related games de…ned on di¤erent player sets behave. We show that Bird rule and

the new allocation rule satisfy di¤erent consistency conditions.

The plan of this paper is the following. In section 2, we de…ne the basic struc-

ture of minimum cost spanning tree games. The main purpose of Section 3 is the

construction of the new rule as well as the proof that it satis…es cost monotonic-

ity and also selects an allocation in the core of the game. Section 4 contains the

characterization results.

2 The Framework

Let N = f1; 2; : : :g be the set of all possible agents. We are interested in graphs or

networks where the nodes are elements of a set N [ f0g, where N ½ N , and 0 is a

distinguished node which we will refer to as the source or root .

Henceforth, for any set N ½ N , we will use N+ to denote the set N [ f0g.
A typical graph over N+ will be represented by gN = f(ij)ji; j 2 N+g. Two

nodes i and j 2 N+ are said to be connected in gN if 9(i1i2); (i2i3); : : : ; (in¡1in) such

that (ikik+1) 2 g; 1 · k · n ¡ 1; and i1 = i; in = j: A graph gN is called connected

over N+ if i; j are connected in gN for all i; j 2 N+: The set of connected graphs

over N+ is denoted by ¡N :

Consider any N ½ N , where #N = n. A cost matrix C = (cij) represents the

cost of direct connection beween any pair of nodes. That is, cij is the cost of directly

transferable utility games, there is no solution concept which picks an allocation in the core of

the game when the latter is nonempty and also satis…es a property which is analogous to cost

monotonicity.
6 See Peleg[11], Thomson [14].
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connecting any pair i; j 2 N+. We assume that each cij > 0 whenever i 6= j. We

also adopt the convention that for each i 2 N+, cii = 0. So, each cost matrix is

nonnegative, symmetric and of order n + 1. The set of all cost matrices for N is

denoted by CN . However, we will typically drop the subscript N whenever there is

no cause for confusion about the set of nodes.

Consider any C 2 CN . A minimum cost spanning tree (m.c.s.t.) over N+ satis…es

gN = argming2¡N
X

(ij)2g
cij : Note that an m.c.s.t. need not be unique. Clearly a

minimum cost spanning network must be a tree. Otherwise, we can delete an extra

edge and still obtain a connected graph at a lower cost.

An m.c.s.t. corresponding to C 2 CN will typically be denoted by gN(C).

Example 1: Consider a set of three rural communities fA;B;Cg, which have to

decide whether to build a system of irrigation channels to an existing dam, which is

the source or root. Each community has to be connected to the dam in order to draw

water from the dam. However, some connection(s) could be indirect. For instance,

community A could be connected directly to the dam, while B and C are connected

to A, and hence indirectly to the source.

There is a cost of building a channel connecting each pair of communities, as well

as a channel connecting each community directly to the dam. Suppose, these costs

are represented by a cost matrix C.

C =

0
BBBBBB@

0 2 4 1

2 0 1 3

4 1 0 2

1 3 2 0

1
CCCCCCA

The minimum cost of building the system of irrigation channels will be 4 units.

Our object of interest in this paper is to see how the total cost of 4 units is to be

distributed amongst A; B and C.

This provides the motivation for the next de…nition.

De…nition 1: A cost allocation rule is a family of functions fÃNgN½N with N ½ N ,

ÃN : CN ! <N+ satisfying
X

i2N
ÃNi (C) ¸

X

(ij)2gN(C)
cij for all C 2 CN.
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We will drop the superscript N for the rest of the paper.

So, given any set of nodes N and any cost matrix C of order (jN j + 1), a cost

allocation rule speci…es the costs attributed to agents in N. Note that the source 0

is not an active player, and hence does not bear any part of the cost.

A cost allocation rule can be generated by any single-valued game-theoretic so-

lution of a transferable utility game. Thus, consider the transferable utility game

generated by considering the aggregate cost of a minimum cost spanning tree for

each coalition S µ N. Given C and S µ N, let CS be the cost matrix restricted to

S. Then, consider a m.c.s.t. gS(CS) over S+, and the corresponding minimum cost

of connecting S to the source. Let this cost be denoted cS. For each N ½ N , this

de…nes a cost game (N;c) where for each S µ N , c(S) = cS. That is, c is the cost

function, and is analogous to a TU game. Then, if © is a single-valued solution,

©(N; c) can be viewed as the cost allocation rule corresponding to the cost matrix

which generates the cost function c.7

One particularly important game-theoretic property, which will be used subse-

quently is that of the core. If a cost allocation rule does not always pick an element

in the core of the game, then some subset of N will …nd it pro…table to break up N

and construct its own minimum cost tree. This motivates the following de…nition.

De…nition 2: A cost allocation rule Á is a core selection if for all N µ N and for

all C 2 CN ,
X

i2S
Ái(C) · c(S), where c(S) is the cost of the m.c.s.t. for S, 8S µ N .

However, cost allocation rules can also be de…ned without appealing to the un-

derlying cost game. For instance, this was the procedure followed by Bird [1]. In

order to describe his procedure, we need some more notations.

The (unique) path from i to j in tree g, is a set U(i; j; g) = fi1; i2; : : : ; iKg, where

each pair (ik¡1ik) 2 g, and i1; i2; : : : ; iK are all distinct agents with i1 = i; iK =

j. The predecessor set of an agent i in g is de…ned as P(i; g) = fkjk 6= i; k 2
U(0; i; g)g: The immediate predecessor of agent i, denoted by ®(i), is the agent who

comes immediately before i, that is, ®(i) 2 P(i; g) and k 2 P (i; g) implies either
7 See Kar [9] for an axiomatic characterization of the Shapley value in m.c.s.t. games.
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k = ®(i) or k 2 P(®(i); g).8 The followers of agent i, are those agents who come

immediately after i; F(i) = fjj®(j) = ig.
Bird’s method is de…ned with respect to a speci…c tree. Let gN be some m.c.s.t.

corresponding to the cost matrix C . Then,

Bi(C) = ci®(i) 8i 2 N:

So, in the Bird allocation, each node pays the cost of connecting to its immediate

predecessor in the appropriate m.c.s.t.

Notice that this does not de…ne an allocation rule if C gives rise to more than one

m.c.s.t. However, when C does not induce a unique m.c.s.t., one can still use Bird’s

method on each m.c.s.t. derived from C and then take some convex combination of

the allocations corresponding to each m.c.s.t. as the cost allocation rule. In general,

the properties of the resulting cost allocation rule will not be identical to those of the

cost allocation rule given by Bird’s method on cost matrices, which induce unique

m.c.s.t. s.

In section 4, we will use two domain restrictions on the set of permissible cost

matrices. These are de…ned below.

De…nition 3: C1 = fC 2 CjC induces a unique m.c.s.t.8N ½ N g:
De…nition 4: C2 = fC 2 C1j no two edges of the unique m.c.s.t. have the same cost g:

Notice if C is not in C2, then even a “small" perturbation of C produces a cost

matrix which is in C2. So, even the stronger domain restriction is relatively mild,

and the permissible sets of cost matrices are large.

3 Cost Monotonicity

The Bird allocation is an attractive rule because it is a core selection. In addition,

it is easy to compute. However, it fails to satisfy cost monotonicity.

De…nition 5: Fix N ½ N . Let i; j 2 N+, and C;C 0 2 CN be such that ckl = c0kl for

all (kl) 6= (ij) and cij > c0ij . Then, the allocation rule Ã satis…es Cost Monotonicity

8 Note that since g is a tree, the immediate predecessor must be unique.

7



if for all m 2 N \fi; jg, Ãm(C) ¸ Ãm(C 0).

Cost monotonicity is an extremely appealing property. The property applies to

two cost matrices which di¤er only in the cost of connecting the pair (ij), c0ij being

lower than cij . Then, cost monotonicity requires that no agent in the pair fi; jg be

charged more when the cost matrix changes from C to C 0.

Despite its intuitive appeal, cost monotonicity has a lot of bite.9 The following

example shows that the Bird allocation rule does not satisfy cost monotonicity.

Example 2: Let N = f1;2g. The two cost matrices are speci…ed below.

(i) c01 = 4; c02 = 4:5; c12 = 3:

(ii) c001 = 4; c002 = 3:5; c012 = 3:

Then, B1(C) = 4; B2(C) = 3, while B1(C0) = 3;B2(C 0) = 3:5. So, 2 is charged

more when the cost matrix is C0 although c002 < c02 and the costs of edges involving

1 remain the same.

The cost allocation rule corresponding to the Shapley value of the cost game does

satisfy cost monotonicity. However, it does not always select an outcome which is

in the core of the cost game. Our main purpose in this section is to de…ne a new

allocation rule which will be a core selection and satisfy cost monotonicity. We are

able to do this despite the impossibility result due to Young because of the special

structure of minimum cost spanning tree games - these are a strict subset of the

class of balanced games. Hence, monotonicity in the context of m.c.s.t. games is a

weaker restriction.

We describe an algorithm whose outcome will be the cost allocation prescribed

by the new rule. Our rule is de…ned for all cost matrices in C. However, in order to

economise on notation, we describe the algorithm for a cost matrix in C2. We then

indicate how to construct the rule for all cost matrices.
9 In fact, Young [15] shows that an analogous property in the context of TU games cannot be

satis…ed by any solution which selects a core outcome in balanced games.

8



Fix some N ½ N , and choose some matrix C 2 C2N . Also, for any A ½ N, de…ne

Ac as the complement of A in N+. That is Ac = N+ n A.

The algorithm proceeds as follows.

Let A0 = f0g, g0 = ;, t0 = 0.

Step 1 : Choose the ordered pair (a1b1) such that (a1b1) = argmin(i;j)2A0£A0ccij :

De…ne t1 = max(t0; ca1b1), A1 = A0 [fb1g, g1 = g0 [ f(a1b1)g:
Step k: De…ne the ordered pair (akbk) = argmin(i;j)2Ak¡1£Ak¡1c cij, Ak = Ak¡1[fbkg,
gk = gk¡1 [ f(akbk)g, tk = max(tk¡1; cakbk). Also,

Ã¤bk¡1(C) = min(tk¡1; cak bk): (1)

The algorithm terminates at step #N = n. Then,

Ã¤bn(C) = tn (2)

The new allocation rule Ã¤ is described by equations (1), (2).

At any step k, Ak¡1 is the set of nodes which have already been connected to the

source 0. Then, a new edge is constructed at this step by choosing the lowest-cost

edge between a node in Ak¡1 and nodes in Ak¡1c . The cost allocation of bk¡1 is

decided at step k. Equation (1) shows that bk¡1 pays the minimum of tk¡1, which is

the maximum cost amongst all edges which have been constructed in previous steps,

and cakbk , the edge being constructed in step k. Finally, equation (2) shows that bn,

the last node to be connected, pays the maximum cost.10

Remark 1: The algorithm has been described for cost matrices in C2. Suppose

that C 62 C2. Then, the algorithm is not well-de…ned because at some step k, two

distinct edges (akbk) and (¹ak¹bk) may minimise the cost of connecting nodes in Ak¡1

and Ak¡1c . But, there is an easy way to extend the algorithm to deal with matrices

not in C2. Let ¾ be a strict ordering over N . Then, ¾ can be used as a tie-breaking

rule - for instance, choose (akbk) if bk is ranked over ¹bk according to ¾. Any such

tie-breaking rule makes the algorithm well-de…ned. Now, let § be the set of all strict
10 From Prim[12], it follows that gn is also the m.c.s.t. corresponding to C.
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orderings over N. Then, the eventual cost allocation is obtained by taking the simple

average of the “component" cost allocations obtained for each ordering ¾ 2 §. That

is, for any ¾ 2 §, let Ã¤¾(C) denote the cost allocation obtained from the algorithm

when ¾ is used as the tie-breaking rule. Then,

Ã¤(C) =
1

#§
X

¾2§
Ã¤¾(C): (3)

We illustrate this procedure in Example 5 below.

Remark 2: Notice that Ã¤ only depends on the m.c.s.t.s corresponding to any cost

matrix. This property of Tree Invariance adds to the computational simplicity of

the rule, and distinguishes it from rules such as the Shapley Value and nucleolus.

We now construct a few examples to illustrate the algorithm.

Example 3: Suppose C1 is such that the m.c.s.t. is unique and is a line. That is,

each node has at most one follower. Then the nodes can be labelled a0; a1; a2; : : : ; an,

where a0 = 0; #N = n, with the predecessor set of ak, P(ak; g) = f0; a1; : : : ; ak¡1g.
Then,

8 k < n; Ã¤ak(C
1) = min(max0·t<kcatat+1; cakak+1) (4)

and

Ã¤an (C
1) = max

0·t<n
catat+1 (5)

Example 4: Let N = f1;2;3; 4g, and

C2 =

0
BBBBBBBBB@

0 4 5 5 5

4 0 2 1 5

5 2 0 5 5

5 1 5 0 3

5 5 5 3 0

1
CCCCCCCCCA

There is only one m.c.s.t. of C2.

Step 1 : We have (a1b1) = (01), t1 = c01 = 4; A1 = f0; 1g:
Step 2 : Next, (a2b2) = (13), Ã¤1(C2) = min(t1; c13) = 1, t2 = max(t1; c13) = 4,

A2 = f0;1;3g.
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Step 3 : We now have (a3b3) = (12), Ã¤3(C2) = min(t2; c12) = 2, t3 = max(t2; c12) =

4, A3 = f0; 1;2;3g:

Step 4 : Next, (a4b4) = (34), Ã¤2(C2) = min(t3; c34) = 3, t4 = max(t3; c34) = 4,

A4 = f0;1;2; 3; 4g.
Since A4 = N+, Ã¤4(C2) = t4 = 4, and the algorithm is terminated.

So, Ã¤(C2) = (1;3; 2; 4). This example shows that it is not necessary for a node

to be assigned the cost of its preceding or following edge. Here 2 pays the cost of

the edge (34), while 3 pays the cost of the edge (12). 11

The next example involves a cost matrix which has more than one m.c.s.t., with

one of the trees having edges which cost the same.

Example 5: Let N = f1;2;3g, and

C3 =

0
BBBBBB@

0 4 4 5

4 0 2 2

4 2 0 5

5 2 5 0

1
CCCCCCA

C3 has two m.c.s.t.s - gN = f(01); (12); (13)g and g1N = f(02); (12); (13)g. Also,

in gN, the edges (12) and (13) have the same cost.12

Suppose the algorithm is …rst applied to gN . Then, we have b1 = 1. In step

2, a2 = 1, but b2 can be either 2 or 3. Taking each in turn, we get the vectors

x1 = (2;2; 4) and x2 = (2;4;2).

Now, consider g1N, which is a line. So, as we have described in Example 3, the

resulting cost allocation is bx = (2;2; 4).

The algorithm will “generate" g1N instead of gN for all ¾ 2 § which ranks 2 over

1. Hence, the “weight" attached to g1N is half. Similarly, the weight attached to x1

and x2 must be one-sixth and one-third.

Hence, Ã¤(C3) = (2; 83 ; 103 ).

Given C , let gN(C) be the (unique) m.c.s.t. of C . Suppose gN(C) = gN1 [
gN2 : : : [ gNK , where each gNk is the m.c.s.t. on Nk for the cost matrix C restricted

11 For m.c.s.t. of C2 see Fig. 1.
12 For m.c.s.t. of C3 see Fig. 2.
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to N+
k , with [Kk=1Nk = N and Ni \ Nj = ©8i 6= j. We will call such a partition the

m.c.s.t. partition of gN(C).

We now show that Ã¤ is a core selection and also satis…es Cost Monotonicity.

Theorem 1: The cost allocation rule Ã¤ satis…es Cost Monotonicity and is a core

selection.

Proof : We …rst show that Ã¤ satis…es Cost Monotonicity.

Fix any N ½ N . We give our proof for cost matrices in C2, and then indicate

how the proof can be extended to cover all cost matrices. Let C; ¹C 2 C2 be such

that for some i; j 2 N+, cij > ¹cij , and ckl = ¹ckl for all other pairs (kl). We need to

show that Ã¤k(C) ¸ Ã¤k( ¹C) for k 2 N \ fi; jg.
In describing the algorithm which is used in constructing Ã¤, we …xed a speci…c

cost matrix, and so did not have to specify the dependence of Ak; tk; ak; bk etc. on the

cost matrix. But, now we need to distinguish between these entities for the two cost

matrices C and ¹C . We adopt the following notation in the rest of the proof of the

thorem. Let Ak; tk; ak; bk; gN etc. refer to the cost matrix C, while ¹Ak; ¹tk; ¹ak;¹bk; ¹gN

etc. will denote the entities corresponding to ¹C.

Case 1: (ij) 62 ¹gN .

Then, ¹gN = gN . Since the cost of all edges in gN remain the same, Ã¤k( ¹C) = Ã¤k(C)

for all k 2 N.

Case 2: (ij) 2 ¹gN .

Without loss of generality, let i be a predecessor of j in ¹gN . Since the source

never pays anything, we only consider the case where i is not the source.

Suppose i = ¹bk¡1. As the cost of all other edges remain the same, Ak¡1 = ¹Ak¡1

and tk¡1 = ¹tk¡1. Now, Ã¤i ( ¹C) = min(¹tk¡1; ¹c¹ak¹bk) and Ã¤i (C) = min(tk¡1; cakbk).

Since ¹c¹ak¹bk · cakbk , Ã¤i ( ¹C) · Ã¤i (C).

We now show that Ã¤j( ¹C) · Ã¤j(C). Let j = bl and j = ¹bm. Note that l ¸ m,

and that ¹Am µ Al , and tl ¸ ¹tm.

Now, Ã¤j( ¹C) = min(¹tm; ¹c¹am+1¹bm+1), while Ã¤j(C) = min(tl ; cal+1bl+1). Since tl ¸
¹tm, we only need to show that ¹c¹am+1¹bm+1 · cal+1bl+1.
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Case 2(a): Suppose al+1 2 ¹Am. Since bl+1 2 N+ n ¹Am, ¹c¹am+1¹bm+1 · ¹cal+1bl+1 ·
cal+1bl+1.

Case 2(b): Suppose al+1 62 ¹Am. Then, al+1 6= j. Also, al+1 2 Al, and so

cal+1bl+1 ¸ calbl (6)

We need to consider two sub-cases.

Case 2(bi): al 2 Al¡1 n ¹Am¡1.

Then, since Al = Al¡1 [ fjg and ¹Am = ¹Am¡1 [ fjg, al 2 Al n ¹Am.

Now since j 2 ¹Am and al 62 ¹Am, ¹c¹am+1¹bm+1 · ¹cjal · cjal = calbl. Using equation

6, cal+1bl+1 ¸ calbl ¸ ¹c¹am+1¹bm+1 :

Case 2(bii): al 2 ¹Am¡1 = Am¡1.

Then, calbl ¸ cambm since m · l.

Also, ¹Am µ Al and al+1 2 Al n ¹Am imply that # ¹Am < #Al. That is, l > m. So,

bm 6= j = bl . This implies bm 62 ( ¹Am¡1 [ fjg) = ¹Am.

Now, am 2 Am¡1 = ¹Am¡1. So, am 2 ¹Am. But am 2 ¹Am and bm 62 ¹Am together

imply that ¹c¹am+1¹bm+1 · ¹cambm · cambm.

So, using equation 6, ¹c¹am+1¹bm+1 · cambm · calbl · cal+1bl+1:

Hence, Ã¤ satis…es cost monotonicity.13

We now show that for all C 2 C, Ã¤(C) is an element in the core of the cost game

corresponding to C.

Again, we present the proof for any C 2 C2 in order to avoid notational compli-

cations.14 We want to show that for all S µ N,
X

i2S
Ã¤i (C) · c(S).

Without loss of generality, assume that for all i 2 N; bi = i and denote cakbk = ck.

Claim 1: If S = f1;2; : : :Kg where K · #N, then
X

i2S
Ã¤i (C) · c(S).

13 Suppose C 62 C2 . What we have shown above is that the outcome of the algorithm for each

tie-breaking rule satis…es cost monotonicity. Hence, the average must also satisfy cost monotonicity.
14 Suppose instead that C 62 C2 . Then, our subsequent proof shows that the outcome of the

algorithm is in the core for each ¾ 2 §. Since the core is a convex set, the average (that is, Ã¤)

must be in the core if each Ã¤¾ is in the core.
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Proof of Claim: Clearly, g = [Kk=1fakkg is a connected graph over S [ f0g.
Also, g is in fact the m.c.s.t. over S.

So, c(S) =
KX

k=1
ck. Also,

X

i2S
Ã¤i (C) =

K+1X

k=1
ck ¡ max

1·k·K+1
ck ·

KX

k=1
ck = c(S).

Hence, a blocking coalition cannot consist of an initial set of integers, given our

assumption that bk = k for all k 2 N.

Now, let S be a largest blocking coalition. That is,

(i)
X

i2S
Ã¤i (C) > c(S).

(ii) If S ½ T, then
X

i2T
Ã¤i (C) · c(T ).

There are two possible cases.

Case 1: 1 62 S.

Let K = minj2S j. Consider T = f1; : : : ;K ¡1g. We will show that S [T is also

a blocking coalition, contradicting the description of S.

Now,
X

i2T[S
Ã¤i (C) =

X

i2S
Ã¤i (C)+

X

i2T
Ã¤i (C) > c(S)+

KX

k=1
ck¡ max

1·k·K
ck ¸ c(S)+

KX

k=1
ck¡c0s,

where (0s) 2 gS, the m.c.s.t. of S. Note that the last inequality follows from the

fact that ck · c0s for all k 2 f1; : : : Kg.
Since g = ([Kk=1a

kbk) [ (gS n f(0s)g) is a connected graph over (T [ S [ f0g),

c(S) +
KX

k=1
ck ¡ c0s ¸ c(S [ T ). Hence,

X

i2S[T
Ã¤i (C) > c(S [ T), establishing the

contradiction that S [ T is a blocking coalition.

Case 2: 1 2 S.

From the claim, S is not an initial segment of the integers. So, we can partition

S into fS1; : : : ; SKg, where each Sk consists of consecutive integers, and i 2 Sk; j 2
Sk+1 implies that i < j. Assume m = maxj2S1 j and n = minj2S2 j. Note that

n > m + 1. De…ne T = fm + 1; : : : ; n ¡ 1g. We will show that S [ T is a blocking

coalition, contradicting the assumption that S is a largest blocking coalition.

14



Now,

X

i2S[T
Ã¤i (C) =

X

i2S
Ã¤i (C) +

X

i2T
Ã¤i (C)

> c(S) +
X

i2S1[T
Ã¤i (C) ¡

X

i2S1
Ã¤i (C)

= c(S) + (
nX

i=1
ci ¡ max

1·i·n
ci) ¡ (

m+1X

i=1
ci¡ max

1·i·m+1
ci)

= c(S) + (
nX

i=m+2
ci ¡ ( max

1·i·n
ci¡ max

1·i·m+1
ci))

Of course, max1·i·n ci ¸ max1·i·m+1 ci. If max1·i·n ci = max1·i·m+1 ci, then
X

i2S[T
Ã¤i (C) > c(S) +

nX

i=m+2
ci ¸ c(S [ T), where the latter inequality follows from

the fact that [[nk=m+2f(akbk)g [ gS] is a connected graph over S [ T [ f0g.

If max1·i·n ci > max1·i·m+1 ci, then max1·i·n ci = maxm+2·i·n ci. Then,

X

i2S[T
Ã¤i (C) > c(S) + max

1·i·m+1
ci +

nX

i=m+2
ci¡ max

m+2·i·n
ci

¸ c(S) +
nX

i=m+1
ci ¡ max

m+2·i·n
ci

¸ c(S) +
nX

i=m+1
ci ¡ cs1s2

where (s1s2) 2 gS with s1 2 S1 [ f0g; s2 2 N n S1.15 Since the edge (s1s2) could

have been connected ( but was not) in steps m+2; : : : ; n of the algorithm for N, we

must have cs1s2 > ck for k 2 fm + 2; : : : ; ng. Hence, the last inequality follows.

But, note that [gSnf(s1s2)g][nk=m+1f(akbk)g is a connected graph over S[T[f0g.
So,

X

i2S[T
Ã¤i (C) > c(S) +

nX

i=m+1
ci ¡ cs1s2

¸ c(S [ T ):

So, S [ T is a blocking coalition, establishing the desired contradiction.

This concludes the proof of the theorem.
15 Such (s1s2) must exist in gS since gS is the m.c.s.t. over S.
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4 Characterization Theorems

In this section, we present characterizations of the allocation rules Ã¤ and B.16

We …rst describe the axioms used in the characterization. These characterization

theorems will be proved for the restricted domains C1 for B and C2 for Ã¤.

E¢ciency (EF):
X

i2N
Ãi(C) =

X

(ij)2gN(C)
cij .

This axiom ensures that the agents together pay exactly the cost of the e¢cient

network.

Before moving on to our next axiom, we introduce the concept of an extreme point.

Let C 2 CN be such that the m.c.s.t. gN(C) is unique. Then, i 2 N is called an

extreme point of gN(C) (or equivalently of C), if i has no follower in gN(C).

Extreme Point Monotonicity (EPM): Let C 2 CN, and i be an extreme point of

C. Let ¹C be the restriction of C over the set N+ n fig. An allocation rule satis…es

Extreme Point Monotonicity if Ãk( ¹C) ¸ Ãk(C) 8k 2 N+ n fig.

Suppose i is an extreme point of gN(C). Note that i is of no use to the rest

of the network since no node is connected to the source through i. Extreme Point

Monotonicity essentially states that no “existing" node k will agree to pay a higher

cost in order to include i in the network.

The next two axioms are consistency properties, analogous to reduced game prop-

erties introduced by Davis and Maschler [2] and Hart and Mas-Collel [8].17

We need some further notation before we can formally describe the consistency

axioms. Consider any C with a unique m.c.s.t. gN(C), and suppose that (i0) 2
gN(C). Let xi be the cost allocation ‘assigned’ to i. Suppose i ‘leaves’ the scene

(or stops bargaining for a di¤erent cost allocation), but other nodes are allowed to

connect through it. Then, the e¤ective reduced cost matrix changes for the remaining

nodes. We can think of two alternative ways in which the others can use node i.

(i) The others can use node i only to connect to the source.
16 See Feltkamp [3] for an alternative characterization of B.
17 Thomson[14] contains an excellent discussion of consistency properties in various contexts.
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(ii) Node i can be used more widely. That is, node j can connect to node k through

i.

In case (i), the connection costs on N+ n fig are described by the following

equations:

For all j 6= i; ¹cj0 = min(cj0; cji + ci0 ¡ xi) (7)

If fj; kg \ fi; 0g = ;; then ¹cjk = cjk (8)

Equation 7 captures the notion that node j’s cost of connecting to the source is the

cheaper of two options - the …rst option being the original one of connecting directly

to the source, while the second is the indirect one of connecting through node i. In

the latter case, the cost borne by j is adjusted for the fact that i pays xi. Equation

8 captures the notion that node i can only be used to connect to the source.

Let Csrxi represent the reduced cost matrix derived through equations 7, 8.

Consider now case (ii).

For all j;k 2 N+ n fig; ¹cjk = min(cjk; cji + cki ¡ xi): (9)

Equation 9 captures the notion that j can use i to connect to any other node k,

where k is not necessarily the source.

Let C trxi represent the reduced cost matrix derived through equation 9.

We can now de…ne the two consistency conditions.

Source Consistency (SR): Let C 2 C1N , and (0i) 2 gN(C). Then, the allocation rule

Ã satis…es Source Consistency if Ãk(CsrÃi(C)) = Ãk(C) for all k 2 N n fig whenever

CsrÃi(C) 2 C1
Nni.

Tree Consistency (TR): Let C 2 C2
N , and (0i) 2 gN(C). Then, the allocation rule

Ã satis…es Tree Consistency if Ãk(C trÃi(C)) = Ãk(C) for all k 2 N n fig whenever

CtrÃi(C) 2 C2
Nni.

The two consistency conditions require that the cost allocated to any agent be

the same on the original and reduced cost matrix. This ensures that once an agent

connected to the source agrees to a particular cost allocation and then subsequently

17



allows other agents to use its location for possible connections, the remaining agents

do not have any incentive to reopen the debate about what is an appropriate allo-

cation of costs.

The following lemmas will be used in the proofs of Theorems 2 and 3.

Lemma 1 : Let C 2 C1N , and i 2 N. If cik = min
l2N+nfig

cil, then (ik) 2 gN(C).

Proof : Suppose (ik) =2 gN(C). As gN(C) is a connected graph over N+, 9 j 2
N+ n fi; kg such that (i j) 2 gN(C) and j is on the path between i and k. But,

fgN [ (ik)g n f(ij)g is still a connected graph which costs no more than gN(C), as

cik · cij . This is not possible as gN(C) is the only m.c.s.t. of C.

Lemma 2 : Let C 2 C2N ; and (01) 2 gN(C). Let Ã1(C) = mink2N+nf1g c1k: Then,

CtrÃ1(C) 2 C2
Nnf1g.

Proof : We will denote CtrÃ1(C) by ¹C for the rest of this proof.

Let Ã1(C) = mink2N+nf1g c1k = c1k¤ (say).

Suppose there exists (ij) 2 gN(C) such that i; j 6= 1. Since (ij) 2 gN(C), either

i precedes j or vice versa. Without loss of generality assume i precedes j in gN(C).

Since (01); (ij) 2 gN(C), (1j) =2 gN(C). Then, c1j > cij. As Ã1(C) · ci1, ci1 + c1j ¡
Ã1(C) ¸ c1j > cij . Hence ¹cij = cij8(ij) 2 gN(C); such that i; j 6= 1.

Now, suppose there is j 2 N such that j 6= k¤ and (1j) 2 gN(C). Since

(1j); (1k¤) 2 gN(C), (jk¤) =2 gN(C). Hence, c1j < ck¤j . Thus,

¹ck¤j = minf(c1j + c1k¤ ¡ Ã1(C)); ck¤jg = min(c1j ; ck¤j) = c1j .

Next, let ¹gNnf1g, be a connected graph over N+ n f1g, de…ned as follows.

¹gNnf1g = f(ij)j either (ij) 2 gN(C) s.t. i; j 6= 1 or (ij) = (k¤l) where (1l) 2 gN(C)g:

Note that no two edges have equal cost in ¹gNnf1g.

Also,
X

(ij)2¹gNnf1g
¹cij =

X

(ij)2gN(C)
cij ¡ c1k¤: (10)

We prove that ¹C belongs to C2Nnf1g by showing that ¹gNnf1g is the only m.c.s.t. of ¹C.

18



Suppose this is not true, so that g¤Nnf1g is an m.c.s.t. corresponding to ¹C . Then,

using 10,
X

(ij)2g¤Nnf1g
¹cij ·

X

(ij)2gN(C)
cij ¡ c1k¤ (11)

Let g¤Nnf1g = g1 [ g2, where

g1 = f(ij)j(ij) 2 g¤Nnf1g; cij = ¹cijg

g2 = g¤Nnf1g n g1

If (ij) 2 g2, then

¹cij = min(cij ; c1i + c1j ¡ Ã1(C))

= c1i + c1j ¡ Ã1(C)

¸ max(c1i; c1j)

where the last inequality follows from the assumption that Ã1(C) = mink2N+nf1g c1k.

So,

¹cij = cij if (ij) 2 g1

¸ max(c1i; c1j) if (ij) 2 g2: (12)

Now, extend g¤Nnf1g to a connected graph g0N over N+ as follows. Letting g =

f(1i)j(ij) 2 g2; j 2 U (i;k¤; g¤Nnf1g)g, de…ne

g0N = g1 [ (1k¤) [ g:

Claim: g0N is a connected graph over N+.

Proof of Claim: It is su¢cient to show that every i 2 N+ n f1g is connected

to 1 in g0N . Clearly, this is true for i = k¤. Take any i 2 N+ n f1; k¤g. Let

U(i;k¤; g¤Nnf1g) = f(m0m1); : : : ; (mpmp+1)g where m0 = i and mp+1 = k¤. If all

these edges are in g1, then they are also in g0N , and there is nothing to prove.

So, suppose there is (mtmt+1) 2 g2 while all edges in f(m0m1); : : : ; (mt¡1mt)g
belong to g1. In this case, (mt1) as well as all edges in f(m0m1); : : : ; (mt¡1mt)g
belong to g0N . Hence, i is connected to 1.
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To complete the proof of the lemma, note that

X

(ij)2g0N

cij =
X

(ij)2g1
cij + c1k¤ +

X

(ij)2g
c1i:

Using (12),

X

(ij)2g0N
cij ·

X

(ij)2g1
¹cij + c1k¤ +

X

(ij)2g2
¹cij =

X

(ij)2g¤Nnf1g
¹cij + c1k¤

Finally, using (11),
X

(ij)2g0N

cij ·
X

(ij)2gN(C)
cij :

But, this contradicts the assumption that gN(C) is the unique m.c.s.t. for C .

Lemma 3 : Let C 2 C1N, (10) 2 gN(C). Suppose Ã1(C) = c01. Then CsrÃ1(C) 2
C1Nnf1g.
Proof : Throughout the proof of this lemma, we denote CsrÃ1(C) by ¹C .

We know Ã1(C) = c01. Suppose (ij) 2 gN(C) such that fi; jg\f0;1g = ;. Then

¹cij = cij .

On the other hand if (i0) 2 gN(C), and i 6= 1, then ¹c0i = minf(ci1 + c10 ¡
Ã1(C)); c0ig = min(ci1; ci0) = ci0. Note that the last equality follows from the fact

that (i0) 2 gN(C) but (i1) =2 gN(C) implies that ci1 > ci0.

If (i1) 2 gN(C), then ¹ci0 = minf(ci1 + c10 ¡Ã1(C)); ci0g = min(ci1; ci0) = ci1, as

(i1) 2 gN(C) but (i0) =2 gN(C).

Now we construct ¹gNnf1g, a connected graph over N+ n f1g as follows.

¹gNnf1g = f(ij)j either (ij) 2 gN(C) s.t. i; j 6= 1 or (ij) = (l0) where (l1) 2 gN(C)g

Then, ¹gNnf1g must be the only m.c.s.t. of ¹C . For if there is another g¤Nnf1g which

is also an m.c.s.t. of ¹C, then one can show that gN(C) cannot be the only m.c.s.t.

coresponding to C .18

Lemma 4: Suppose Ã satis…es TR, EPM and EF. Let C 2 C2N . If (i0) 2 gN(C),

then Ãi(C) ¸ mink2N+nfig cik.
18 The proof of this assertion is analogous to that of the corresponding assertion in Lemma 2, and

is hence omitted.
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Proof : Consider any C 2 C2
N , (i0) 2 gN(C), and Ã satisfying TR, EPM, EF. Let

Ã(C) = x, and cim = mink2N+nfig cik. We want to show that xi ¸ cim.

Choose j 62 N , and de…ne ¹N = N [ fjg. Let ¹C 2 C2
¹N be such that

(i) ¹C coincides with C on N+.

(ii) For all k 2 N+ n fig, ¹cjk > ¹cij >
X

(pq)2gN(C)
cpq.19

Hence, g ¹N( ¹C) = gN(C) [ f(ij)g.

Notice that j is an extreme point of ¹C. Denoting Ã( ¹C) = ¹x, EPM implies that

xi ¸ ¹xi (13)

We prove the lemma by showing that ¹xi ¸ ¹cim = cim.

Let ¹C tr¹xi = C 0, and N 0 = ¹N n fig;Ã(C0) = x0. Assume ¹xi < ¹cim.

Case 1: C0 2 C2N0 .
Suppose there is some k 2 N 0 such that (ik) 62 g ¹N( ¹C). Let l be the predecessor

of k in g ¹N( ¹C). Since (kl) 2 g ¹N( ¹C) and (ik) 62 g ¹N( ¹C), ¹ckl < ¹cki. Also, ¹cil ¸ ¹cim > ¹xi.

Hence,

c0kl = min(¹ckl; ¹cki+ ¹cli ¡ ¹xi) = ¹ckl (14)

Now, consider k 2 (N 0[f0g)n fm;jg such that (ik) 2 g ¹N( ¹C). Note that (km) 62
g ¹N( ¹C) since (im) 2 g ¹N( ¹C) from lemma 1. Hence, ¹ckm > ¹cik since (ik) 2 g ¹N( ¹C) and

(km) 62 g ¹N( ¹C). So,

c0km = min(¹ckm; ¹cik +¹cim ¡ ¹xi) > ¹cik (15)

Take any (kl) 62 g ¹N( ¹C). Suppose (s1s2) 2 U (k; l; g ¹N( ¹C)). Then, ¹cs1s2 <

min(¹ckl; ¹cik;¹cil). So, 8(s1s2) 2 U (k; l; g ¹N( ¹C))

c0kl = min(¹cki+ ¹cil ¡ ¹xi; ¹ckl) > ¹cs1s2 (16)
19 Note that the exact lower bound on ¹cij will play no role in the subsequent proof. All that we

require is that ¹cij is “high" so that the reduced cost matrix C 0, to be de…ned below, has appropriate

properties.
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Next, note that since ¹cjm can be chosen arbitrarily high,

c0jm = min(¹cjm; ¹cij + ¹cim ¡ ¹xi) = ¹cij + ¹cim ¡ ¹xi (17)

Since for all t 2 (N 0 [ f0g) n fm; jg, c0jt = ¹cij +¹cit ¡ ¹xi > c0jm, (jm) 2 gN0(C0).

From TR, we have x0k = ¹xk for all k 2 N 0. Using EF, and equations 14, 15, 16,

17,
X

k2 ¹Nnfig
¹xk =

X

k2N0
x0k = c(gN0(C0)) > c(g ¹N (¹C)) ¡ ¹xi (18)

But, this violates EF since
X

k2 ¹N

¹xk > c(g ¹N( ¹C)).

Case 2: C0 =2 C2N0 .
This implies that there exist (pn); (kl) such that c0pn = c0kl, and both (pn); (kl)

belong to some m.c.s.t. (not necessarily the same one) corresponding to C0.

Note that i 62 fp; n; k; lg. So, if (pn) 2 g ¹N( ¹C), then ¹cpn = c0pn. Similarly, if

(kl) 2 g ¹N( ¹C), then ¹ckl = c0kl . So, both pairs cannot be in g ¹N( ¹C) since ¹C 2 C2¹N.

Without loss of generality, assume that (pn) 62 g ¹N( ¹C). There exists a path from

p to n denoted by U (p;n; g ¹N( ¹C)) = fs1; s2; : : : ; sKg. We …rst want to show that

c0pn > ¹csksk+1 for all k = 1; : : :K ¡ 1: (19)

Note that c0pn = min(¹cpi+¹cin¡¹xi; ¹cpn). If (19) is not true, then either (a)¹cpn · ¹csksk+1

or (b)¹cpi + ¹cni ¡ ¹xi · ¹csksk+1 for some k.

Suppose (a) holds. Then, (g ¹N( ¹C) [ f(pn)g) n f(sksk+1)g is a m.c.s.t. for ¹N

corresponding to ¹C, contradicting the fact that ¹C 2 C2
¹N .

Suppose (b) holds. Then, ¹cpi · ¹csksk+1 and ¹cni · ¹csksk+1 since min(¹cpi; ¹cni) > ¹xi.

If (pi)( or (ni)) 62 g ¹N( ¹C), then we can delete (sksk+1), join (pi)( or (ni)), and

contradict the fact that g ¹N( ¹C) is the unique m.c.s.t.

So, the only remaining possibility is that the path U(p; n; g ¹N( ¹C)) = f(ni); (pi)g.
But, in this case, we already know that ¹cni + ¹cpi ¡ ¹xi > max(¹cni; ¹cpi) since ¹xi <

min(¹cni; ¹cpi).

So, (19) is true.
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Now, choose q 62 ¹N, and de…ne bN = ¹N [ fqg. Consider a cost matrix bC 2 C2bN
such that

(i) bC coincides with ¹C on ¹N+.

(ii) bcqp = mink2 ¹N+ bcqk.

(iii) c0pn > bcqn > max(st)2U(p;n;g ¹N( ¹C)) ¹cst.20

(iv) bcqt is “su¢ciently" large for all t 6= p; n.

Then, we have gbN( bC) = g ¹N( ¹C) [ f(qp)g, so that q is an extreme point of bC. Let

Ã( bC) = bx. From EPM,

¹xi ¸ bxi (20)

Now, consider the reduced cost matrix eC ´ bC trbxi . We assert that eC 2 C2bNnfig.
21 This

is because (pn) is now “irrelevant" since in the m.c.s.t. corresponding to eC , p and n

will be connected through the path (pq) and (qn). To see this, note the following.

First,

c0pn = min(¹cpi + ¹cin ¡ ¹xi; ¹cpn)

· min(bcpi + bcin ¡ bxi; bcpn)

= ecpn

since ¹cpn = bcpn; ¹cpi = bcpi;¹cin = bcin and ¹xi ¸ bxi from (20).

Second, c0pn > bcqn by construction. Lastly, bcqn = ecqn since ecqn = min(bcqn; bcqi +

bcin ¡ bxi) and bcqi has been chosen su¢ciently large.

So, ecpn > ecqn. Since (qp) 2 gbNnfig( eC) from Lemma 1, this shows that (pn) 62
gbNnfig( eC).

Since eC 2 C2bNnfig, we apply the conclusion of Case 1 of the lemma to conclude

that bxi ¸ bcim = ¹cim. Equation (20) now establishes that ¹xi ¸ ¹cim.
20 Note that this speci…cation of costs is valid because (19) is true.
21 This assertion is contingent on (pn); (kl) being the only pairs of nodes in some m.c.s.t. of C0

having the same cost. However, the proof described here can be adapted to establish a similar

conclusion if there are more such pairs.
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We state without proof the corresponding lemma when TR is replaced with SR.

The proof is almost identical to that of Lemma 4.

Lemma 5: Suppose Ã satis…es SR, EPM and EF. Let C 2 C1N . If (i0) 2 gN(C),

then Ãi(C) ¸ mink2N+nfig cik.

We now present a characterization of Ã¤ in terms of Tree Consistency, E¢ciency

and Extreme Point Monotonicity.

Theorem 2 : Over the domain C2, a cost allocation rule Ã satis…es TR, EF and

EPM if and only if Ã = Ã¤.

Proof : First, we prove that Ã¤ satis…es all the three axioms.

Let C 2 C2.
E¢ciency follows trivially from the algorithm which de…nes the allocation.

Next, we show that Ã¤ satis…es TR.

Let (10) = argmink2N ck0. Hence, the algorithm yields b1 = 1, and Ã¤1(C) =

min(c10; ca2b2). There are two possible choice of a2.

Case 1 : a2 = 1. Then, we get c1b2 = mink2Nnf1g c1k. Therefore Ã¤1(C) = min(c10; c1b2) =

mink2N+nf1g c1k.

Case 2 : a2 = 0. Then, cb20 · c1k 8k 2 N n f1g. Since c10 · cb20, we conclude

Ã¤1(C) = min(c10; cb20) = c10 = mink2N+nf1g c1k.

So, in either case, 1 pays its minimum cost.

Let Ã¤1(C) = x1 = mink2N+nf1g c1k = c1k¤ . Denoting Ctrx1 by ¹C , we know from

Lemma 2, that ¹C 2 C2. Hence, the algorithm is well de…ned on ¹C.

Let ¹ak;¹bk; ¹tk, etc denote the relevant variables of the algorithm corresponding to
¹C.

Claim: 8i 2 N n f1g, Ã¤i (C) = Ã¤i ( ¹C). That is, Ã¤ satis…es Tree Consistency.

Proof of Claim: From the proof of lemma 2,

(i) ¹cij = cij 8(ij) 2 gN(C) s.t. i; j 6= 1.

(ii) ¹ck¤j = c1j for j 2 N+ n fk¤g s.t. (1j) 2 gN(C).
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Also,

gNnf1g( ¹C) = f(ij)j(ij) 2 gN(C)if i; j 6= 1 and (ij) = (k¤l) if (1l) 2 gN(C)g:

Let b2 = i. Either k¤ = 0 or k¤ = i. In either case, ¹c0i = c01 < ¹c0j for j 62 f0;1; ig.
Hence, ¹b1 = i.

Now, t2 = max(ca1b1; ca2b2) = max(c10; ca2i) = ¹c0i = ¹t1:

Also, a3 2 f0;1; ig, while b3 2 f0; 1; igc. If a3 2 f0; ig, then ¹a2 = a3. If a3 = 1,

then ¹a2 = k¤. In all cases, b3 =¹b2, and ca3b3 = ¹c¹a2¹b2. So,

Ã¤i (C) = min(t2; ca3b3) = min(¹t1;¹c¹a2¹b2) = Ã¤i ( ¹C): (21)

The claim is established for fb3; : : : ; bng by using the strucure of gNnf1g( ¹C), the

de…nition of ¹C given above, and the following induction hypothesis. The details are

left to the reader.

For all i = 2; : : : ; k ¡ 1,

(i) ¹bi¡1 = bi.

(ii ¹ti¡1 = ti.

(iii) ¹ai¡1 = ai if ai 6= 1, and ¹ai¡1 = k¤ if ai = 1.

We now have to show that Ã¤ satis…es EPM.

Let i 2 N be an extreme point of gN(C), and bC be the restriction of C over

N n fig. Of course, bC 2 C2.

In order to di¤erentiate between the algorithms on C and bC, we denote the

outcomes corresponding to the latter by bak;bbk;btk, etc.

Suppose bk = i. Clearly, the algorithm will produce the same outcomes till step

(k ¡ 1), and so Ã¤j(C) = Ã¤j( bC) for all j 2 fb1; : : : ; bk¡2g, and tk¡1 = btk¡1.

Now, let us calculate Ã¤j (C) where j = bk¡1. As i is an extreme point of gN , and

(aki) 2 gN , ak+1 6= i. Also, Ak = Ak¡1 [ fig. Hence, ak+1 2 Ak¡1. This implies

caki · cak+1bk+1 . But i =2 bAk¡1c . Hence (bakbbk) = (ak+1bk+1). Thus,

Ã¤j(C) = min(tk¡1; caki) · min(btk¡1; cak+1bk+1) = Ã¤j( bC) (22)
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Also, btk = max(btk¡1; cak+1bk+1) ¸ max(tk¡1; caki; cak+1bk+1 ) = tk+1. The algorithm

on C determines the cost allocation for i in step (k+1). Since i is an extreme point

of gN , i 6= as for any s. Hence, the choice of aj and bj must be the same in C and bC

for j ¸ k+1. So, for all j 2 fk+1; : : : ;#Ng, aj = baj¡1; bj = bbj¡1; tj · btj¡1. Hence,

Ã¤bj(C) = min(tj ; caj+1bj+1) · min(btj¡1; cbajbbj ) = Ã¤bj¡1( bC) (23)

Hence, we can conclude that Ã¤ satis…es Extreme Point Monotonicity.

Next, we will prove that only one allocation rule over C2 satis…es all three axioms.

Let Ã be an allocation rule satisfying all the three axioms. We will show by induction

on the cardinality of the set of nodes that Ã is unique.

Let us start by showing that the result is true for jN j = 2. There are several

cases.

Case 1: c12 > c10; c20. From Lemma 4, Ã1(C) ¸ c10;Ã2(C) ¸ c20. By EF,

Ã1(C) + Ã2(C) = c10 + c20. Thus Ã1(C) = c10; and Ã2(C) = c20. So, the allocation

is unique.

Case 2: c20 > c12 > c10. Introduce a third agent 3 and costs c20 < ¹c13 <

min(¹c32; ¹c30). Let the restriction of ¹C on f1;2g+ coincide with C . Hence, gf1;2;3g =

f(01); (12); (13)g. Let Ã( ¹C) = ¹x. From Lemma 4, x1 ¸ c10.

Denote the reduced matrix ¹Ctr¹x1 as bC. Now, bc02 = min(¹c01 + ¹c12 ¡ ¹x1; ¹c02) =

¹c01+¹c12¡ ¹x1. Similarly, bc23 = min(¹c13+¹c12¡x1; ¹c23). Noting that x1 ¸ ¹c10;¹c23 > ¹c12

and ¹c13 > ¹c10, we conclude that

bc02 < bc23:

Analogously, bc03 = ¹c01 + ¹c13 ¡ ¹x1 < bc23.

Hence, gf2;3g( bC) = f(02); (03)g. So, bC 2 C2. Using TR,

Ã2( bC) = Ã2( ¹C); Ã3( bC) = Ã3( ¹C) (24)

From Case 1 above,

Ã2( bC) = ¹c01 + ¹c12 ¡ ¹x1; Ã3( bC) = ¹c01 +¹c13 ¡ ¹x1 (25)
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From (24) and (25),

Ã2( ¹C) + Ã3( ¹C) = ¹c01 + ¹c12 ¡ ¹x1 + ¹c01 + ¹c13 ¡ ¹x1

or ¹x1 +Ã2( ¹C) + Ã3( ¹C) = ¹c01 + ¹c12 + ¹c13 + (¹c01 ¡ ¹x1)

But, from EF, ¹x1 + Ã2( ¹C) + Ã3( ¹C) = ¹c01 + ¹c12 + ¹c13. So, ¹x1 = ¹c01. So, Ã2(bC) =

Ã2( ¹C) = ¹c12 = c12.

By EPM, ¹x1 · Ã1(C), and Ã2( ¹C) · Ã2(C). Using EF, it follows that Ã1(C) = c01

and Ã2(C) = c12. Hence, Ã is unique.

The case c10 > c12 > c20 is similar.

Case 3: c20 > c10 > c12.

We again introduce a third agent (say 3). Consider the cost matrix ¹C, coinciding

wih C on f1; 2g+, and such that

(i) ¹c32 > ¹c13 > ¹c20.

(ii) ¹c30 > ¹c10 + ¹c13.

Then, ¹C 2 C2 since it has the unique m.c.s.t. gN( ¹C) = f(01); (12); (13)g, where

no two edges have the same cost.

Note that 3 is an extreme point of the m.c.s.t. corresponding to ¹C . Using EPM,

we get

Ã1(C) ¸ Ã1( ¹C); Ã2(C) ¸ Ã2( ¹C): (26)

Now, ¹c10 < min(¹c20; ¹c30). Consider the reduced cost matrix ¹CtrÃ1( ¹C) on f2;3g.
Denote ¹C trx1 = bC for ease of notation. Since Ã1( ¹C) ¸ ¹c12 from Lemma 4, it follows

that ¹c12 + ¹c10 ¡Ã1( ¹C) · ¹c10 < ¹c20, and ¹c12 + ¹c13 ¡ Ã1( ¹C) · ¹c13 < ¹c23. Hence,

bc20 = ¹c12 + ¹c10 ¡ Ã1( ¹C);bc23 = ¹c12 + ¹c13 ¡ Ã1( ¹C); bc30 = ¹c13 + ¹c10 ¡ Ã1( ¹C) (27)

Note that

¹c21 + ¹c10 ¡Ã1( ¹C) < ¹c21 + ¹c13 ¡ Ã1( ¹C) < ¹c10 + ¹c13 ¡Ã1( ¹C)

Hence, gf23g( bC) = f(02); (23)g.
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Applying case 2, Ã2( bC) = bc20 = ¹c12 +¹c10 ¡Ã1( ¹C) and Ã3(bC) = bc23 = ¹c21 +¹c13 ¡
Ã1( ¹C). Using TR, Ã2(bC) = Ã2( ¹C);Ã3(bC) = Ã3( ¹C). EF on ¹C gives,

Ã1( ¹C)+ Ã2( ¹C) + Ã3( ¹C) = ¹c10 + ¹c12 + ¹c13

or Ã1( ¹C)+ (¹c12 + ¹c10 ¡ Ã1( ¹C)) + (¹c12 + ¹c13 ¡ Ã1( ¹C)) = ¹c10 +¹c12 +¹c13

or Ã1( ¹C) = ¹c12
Hence Ã2( ¹C) = ¹c10; Ã3( ¹C) = ¹c13. From equation 26, Ã1(C) ¸ ¹c12; Ã2(C) ¸ ¹c10.

Using EF on C we can conclude that, Ã1(C) = c12 and Ã2(C) = c10, i.e. the

allocation is unique.

The case c10 > c20 > c12 is similar.

This completes the proof of the case jNj = 2.22

Suppose the theorem is true for all C 2 C2
N , where jNj < m. We will show that

the result is true for all C 2 C2
N such that jNj = m.

Let C 2 C2N . Without loss of generality, assume c10 = mink2N ck0.23 Thus

(10) 2 gN(C). There are two possible cases.

Case 1: c10 = mink2N+nf1g c1k.

Then choose j 2 N such that (j0) 2 gN(C) or (j1) 2 gN(C).

Case 2: c1j = mink2N+nf1g c1k.

Then from Lemma 1, (1j) 2 gN(C).

In either Case 1 or 2, let ¹C denote the restriction of C on f1; jg. Then, from the

case when #N = 2, it follows that Ã1( ¹C) = mink2N+nf1g c1k.

Now, by iterative elimination of extreme points and repeated application of EPM,

it follows that Ã1(C) · Ã1( ¹C) = mink2N+nf1g c1k. But, C 2 C2N , and Ã satis…es EF,

TR and EPM. So, from lemma 4, it follows that Ã1(C) ¸ mink2N+nf1g c1k. Hence,

Ã1(C) = mink2N+nf1g c1k = x1 (say).

We remove 1 to get reduced cost matrix Ctrx1. From lemma 2, C trx1 2 C2. By TR,

Ãk(C trx1) = Ãk(C) 8k 6= 1. From the induction hypothesis, the allocation is unique

on Ctrx1 and hence on C.

22 Note that these three cases cover all possibilities since equality between di¤erent costs will result

in the cost matrix not being in C2N .
23 This is unique as C 2 C2N .
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This completes the proof of the theorem.

We now show that the three axioms used in the theorem are independent. The

examples constructed below are all variants of Ã¤. So, ak; bk are derived from the

algorithm used to construct Ã¤.

Example 6: We construct a rule Á which satis…es EPM and TR but violates EF.

Let Ák(C) = Ã¤k(C) 8k 6= bn; Ábn (C) = Ã¤bn(C) + ²; where ² > 0.

Using the result that Ã¤ satis…es EPM and TR it can be easily checked that Á

also satis…es these axioms. Also note that
Pn
k=1 Ák(C) =

Pn
k=1 Ã¤k(C) + ² > c(N),

and hence Á violates EF.

Example 7: We now construct a rule ¹ which satis…es EF and TR, but does not

satisfy EPM.

For n = 1, ¹1(C) = c10. For n ¸ 2,

(i) ¹k(C) = Ã¤k(C) 8k 6= bn¡1; bn.

(ii) ¹bn¡1 (C) = ¹bn (C) =
(Ã¤
bn¡1(C)+Ã

¤
bn(C))

2 .

This allocation satis…es EF and TR but violates EPM. In order to see the latter,

consider the following cost matrix C .

C =

0
BBBBBB@

0 3 5 7

3 0 1 2

5 1 0 4

7 2 4 0

1
CCCCCCA

:

Then, gN(C) = f(01); (12); (13)g. Clearly, 3 is an extreme point of C . Let ¹C denote

the restriction of C over {0,1,2}. Then, ¹2(C) = 2:5 > 2 = ¹2( ¹C) and hence EPM

is violated.

We remark in the next theorem that the Bird rule B satis…es EF and EPM. Since

B 6= Ã¤, it follows that B does not satisfy TR. Here is an explicit example to show
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that B violates TR.

C =

0
BBBBBB@

0 2 3:5 3

2 0 1:5 1

3:5 1:5 0 2:5

3 1 2:5 0

1
CCCCCCA

Then, B1(C) = 2; B2(C) = 1:5 and B3(C) = 1: The reduced cost matrix is Ctrx1 is

shown below.

Ctrx1 =

0
BB@

0 1:5 1

1:5 0 0:5

1 0:5 0

1
CCA :

Then, B2(Ctrx1 ) = 0:5 and B3(C trx1) = 1. Therefore TR is violated.

However, B does satisfy Source Consistency on the domain C1. In fact, we now

show that B is the only rule satisfying EF, EPM and SR.

Theorem 3 : Over the domain C1, an allocation rule Á satis…es SR, EF and EPM

i¤ Á = B.

Proof : We …rst show that B satis…es all the three axioms. EF and EPM follows

trivially from the de…nition. It is only necessary to show that B satis…es SR.

Let (10) 2 gN . Then, B1(C) = c01. Let us denote the reduced cost matrix CsrB1
by ¹C . From Lemma 3, ¹C 2 C1. Also, the m.c.s.t. over N nf1g corresponding to ¹C is

gNnf1g = f(ij)j either (ij) 2 gN with i; j 6= 1 or (ij) = (l0) where (1l) 2 gNg:

Also, for all i; j 2 N n f1g, ¹cij = cij if (ij) 2 gN, and for k 2 N n f1g;¹ck0 = c1k if

(1k) 2 gN. Hence, for all k 2 N n f1g; ¹ck®(k) = ck®(k). So, Bk( ¹C) = Bk(C) for all

k 2 N n f1g and B satis…es Source Consistency.

Next, we show that B is the only allocation rule over C1, which satis…es all the

three axioms. This proof is by induction on the cardinality of the set of agents.

We remark that the proof for the case jNj = 2 is virtually identical to that of

Theorem 2, with SR replacing TR and Lemma 5 replacing Lemma 4.
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Suppose B is the only cost allocation rule satisfying the three axioms, for all

C 2 C1, where jN j < m. We will show that the result is true for all C 2 C1 such

that jN j = m.

Let C 2 C1. Without loss of generality, assume (10) 2 gN(C). There are two

possible cases.

Case 1 : There are at least two extreme points of C , say m1 and m2.

First, remove m1 and consider the cost matrix Cm1, which is the restriction of C

over (N+ n fm1g). By EPM, Ãi(C) · Ãi(Cm1) for all i 6= m1. As Cm1 has (m ¡ 1)

agents, the induction hypothesis gives Ãi(Cm1) = ci®(i): So, Ãi(C) · ci®(i) 8i 6=
m1. Similarly by eliminating m2 and using EPM, we get Ãi(C) · ci®(i) 8i 6= m2.

Combining the two, we get Ãi(C) · ci®(i) 8i 2 N .

But from EF, we know that
P
i2N Ãi(C) = c(N) =

P
i2N ci®(i). Therefore

Ãi(C) = ci®(i) 8i 2 N, and hence the allocation is unique.

Case 2: If there is only one extreme point of C, then gN(C) must be a line, i.e. each

agent has atmost one follower. Without loss of generality, assume 1 is connected to

2 and 0. Let ¹C be the restriction of C over the set f0; 1;2g: By iterative elimination

of the extreme points and use of EPM we get Ãi(C) · Ãi( ¹C). Using the induction

hypothesis, we get Ã1(C) · c10 and Ã2(C) · c12.

Suppose Ã1(C) = x1 = c10 ¡ ², where ² ¸ 0. Now consider the reduced cost

matrix Csrx1 , which will be denoted by bC. It can be easily checked that gNnf1g is also

a line where 2 is connected to 0. Thus Ã2( bC) = cc20 = c21+c10¡Ã1(C) = c21+². By

SR, Ã2(C) = Ã2( bC) = c21+². But from EPM Ã2(C) · Ã2( ¹C) = c21. This is possible

only if ² = 0. Therefore, Ã1(C) = c10. Using SR and the induction hypothesis, we

can conclude that Ã = B.

We now show that the three axioms used in Theorem 3 are independent.

Example 8: The following allocation rule Á satis…es EPM and SR but violates EF.

Let Ák(C) = Bk(C) 8k 6= i, where i is an extreme point of C with (i0) 62 gN(C),

and Ái(C) = Bi(C) + ²; ² > 0.

Using the result that B satis…es EPM and SR it can be easily checked that Á also
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satis…es these axioms. Also note that
Pn
k=1 Ák(C) =

Pn
k=1 Bk(C) + ² > c(N), and

hence Á violates EF.

Example 9: The following example shows that EPM is independent of other axioms.

For n ¸ 2, let ¹ coincide with B on all m.c.s.t. s which are not lines. Over a

line g if k is the extreme point, and (kl); (lm) 2 g, then ¹i(C) = Bi(C) 8i 6= k; l,

¹k(C) = ¹l(C) = ckl+clm
2 .

This rule satis…es EF and SR but violates EPM. Let the cost matrix C be

C =

0
BBBBBB@

0 3 5 7

3 0 1 2

5 1 0 4

7 2 4 0

1
CCCCCCA

Then, gN(C) = f(01); (12); (13)g. Here, 3 is an extreme point of C. Let ¹C be the

restriction of C over {0,1,2}, and gNnf3g( ¹C) = f(01); (12)g: Then ¹1(C) = 3 > 2 =

¹1( ¹C) and hence EPM is violated.

Our new allocation rule Ã¤ satis…es all the axioms but SR. The fact that Ã¤

satis…es EF and EPM is proved in the previous theorem. Here is an example to

show that our allocation rule may violates SR.

C =

0
BBBBBB@

0 2 3 4

2 0 1:5 1

3 1:5 0 3:5

4 1 3:5 0

1
CCCCCCA

Then, Ã¤1(C) = 1; Ã¤2(C) = 2 and Ã¤3(C) = 1:5. The reduced cost matrix is bC ,

bC =

0
BB@

0 2:5 2

2:5 0 3:5

2 3:5 0

1
CCA

Ã¤2( bC) = 2:5 and Ã¤3( bC) = 2. Therefore SR is violated.

In Theorem 2, we have restricted attention to cost matrices in C2. This is because

Ã¤ does not satisfy TR outside C2. The next example illustrates.
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Example 10: Consider

C =

0
BBBBBB@

0 3 4 3

3 0 2 5

4 2 0 1

3 5 1 0

1
CCCCCCA

Then, g1N(C) = f(10); (12); (23)g and g2N(C) = f(30); (32); (21)g are the two m.c.s.t.

s corresponding to C. Taking the average of the two cost allocations derived from

the algorithm, we get Ã¤(C) = (2:5; 1:5; 2). If we remove 1, which is connected to 0

in g1N, the reduced cost matrix bC is:

bC =

0
BB@

0 2:5 3

2:5 0 1

3 1 0

1
CCA

Then, Ã¤2( bC) = 1 and Ã¤3(C) = 2:5. So, TR is violated.

Remark 3: Note that in the previous example C lies outside C1. If we take a cost

matrix in C1 n C2, then Lemma 2 will no longer be valid - the reduced cost matrix

may lie outside C1 even when a node connected to the source pays the minimum

cost amongst all its links. Thus, Ã¤ will satisfy TR vacuously. But there may exist

allocation rules other than Ã¤ which satis…es EF, TR and EPM over C1.

Similarly, B does not satisfy SR outside C1.

Example 11: Consider the same cost matrix as in Example 10. Recall that B(C) =

(2:5;1:5;2).

If we remove 1, which is connected to 0 in g1N , the reduced cost matrix bC is:

bC =

0
BB@

0 2:5 3

2:5 0 1

3 1 0

1
CCA

Then, B2( bC) = 2:5 and B3( bC) = 1. Therefore SR is violated.

Remark 4: An interesting open question is the characterization of Ã¤ using cost

monotonicity and other axioms.
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