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Abstract

This paper studies network formation in settings where players are
heterogeneous with respect to benefits as well as the costs of forming
links. Our results demonstrate that centrality, center-sponsorship and
short network diameter are robust features of equilibrium networks. We
find that in a society with many groups, where it is cheaper to connect
within groups as compared to across groups, strategic play by individuals
leads to a network architecture in which there is a core group which
is entirely internally connected while all the other groups are entirely
externally linked and hence completely fragmented. Since internal /within
group links are cheaper to form, this implies that individual incentives
may generate a significant waste of valuable social resources.
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1 Introduction

This paper studies the nature of network formation when individual players
differ in their cost of forming links with other players as well as in the benefits
derived from other players. There is a variety of settings in which asymmetries
between players are natural. For example, some players may be more productive
or more informed as compared to others; likewise, some players may have high
costs of linking while others have low cost of forming links. We examine the
incentives of individual players to form or sever links and the architecture of the
strategic stable and efficient networks in such settings.

Our point of departure is the paper by Bala and Goyal (2000). More precisely, we
will be studying a model where links can be formed by individuals independently
(they are one-sided), but flow of benefits is frictionless and two-sided.! Bala and
Goyal paper provides a complete characterization of (strict) Nash networks when
players are homogeneous. In particular, they show that when a player’s payoffs
are increasing in the number of other players accessed and decreasing in the
number of links formed, the strict Nash network is either a center-sponsored
star or the empty network. Thus partially connected networks cannot arise in
equilibrium and only a very specific architecture can be sustained within the
class of connected networks.? It is worthwhile to briefly sketch the argument
underlying these two aspects of the result. First, we discuss the absence of partial
connectedness. Suppose there are two components in an equilibrium network
with one of them being non-singleton. In the non-singleton component, it must
be the case that there is a player who forms a link and that this individual’s
returns to forming the link exceed the costs of doing so. However, for a player
external to the component, the returns to forming a link with someone in the
component are strictly larger (since he has access to all the members of the
component and wvaluations are identical) while the costs are the same as that
for the player internal to the component. Hence the player external to the
component would like to form a link with the component and this network
cannot be sustained in equilibrium. Second, we discuss the argument underlying
the center-sponsored star. Suppose that a player ¢ forms a link with a player j
in the network. Then it cannot be the case that player j is directly connected
with any other player. This is because if player j is linked with a player k,
then player i is indifferent between linking with player j or with player k (since
costs of forming links are identical). Hence, the network is not a strict Nash
network. Thus player 7 must not have any links with other players; however,
the network is connected, and so player 7 must access every player via player 1.
Using a variant of the above switching argument it can be shown that player ¢

'This model is referred to as the two-way flow model in Bala and Goyal (2000).

2A network is connected if there is a path between every pair of agents. A network is
partially connected if it is not empty and there exists at least a pair of agents which are not
linked by any path. A center-sponsored star network is characterized by one agent (the center)
who bears all the links with the remaining players.



must form a link with every other player. Hence player ¢ must be the centre of
a star and he must sponsor all the links in the network.

The above arguments suggest that homogeneous costs and valuations play an
important role in obtaining the results in Bala and Goyal (2000). In this paper
we examine the implications of relaxing the assumption of homogeneity.

We start with a general model of heterogeneous players: the costs to player ¢ of
a link with player j as well as the benefits are allowed to depend on both 7 and j.
In addition, we assume that the length of the path does not matter in defining
the benefits (there is no decay). This assumption implies that any Nash network
must be acyclic or minimal. Our first result establishes an equivalence between
the set of minimal and equilibrium networks: every equilibrium network is min-
imal and every minimal network can be sustained as a strict Nash equilibrium
for some set of costs and value parameters. This result shows that individual
incentives and strategic interaction generate no further restrictions apart from
minimality. This result motivates a closer examination of the role of cost and
value heterogeneity.

We then study a setting where costs of forming links for a particular player are
the same across the links he forms, while the valuations are allowed to vary freely.
In this setting, we show that an equilibrium network is either a center-sponsored
star or a collection of such architectures. The converse result also holds: any
such network can be supported in a Nash equilibrium for some parameters.
Moreover, if the benefits of accessing a particular individual are the same for
everyone but different players are differently valued by everyone then there is
at most one non-singleton component and this is a center-sponsored star. A
comparison of this result with the above mentioned result of Bala and Goyal
(2000) suggests that heterogeneity in values is important in defining the level of
connectedness but does not play any role in defining the (center-sponsored star)
architecture of individual components.

We next study the case of cost heterogeneity and homogeneous values. We
start by showing that the above mentioned correspondence between the set of
minimal networks and the set of equilibrium networks still obtains. We therefore
need to place some restrictions on the cost parameters of the model in order to
obtain any further restrictions on the set of equilibrium networks. This leads
us to consider an insider-outsider model where the society is formed by several
distinct groups which are spatially arranged. The cost of forming a link between
two players is non-decreasing in the distance between the groups to which the two
players belong. Thus, the spatial distance among groups represents the degree
of heterogeneity across players. In this setting, our main result is a complete
characterization of strict Nash networks: a connected equilibrium network is a
generalized center-sponsored star. This architecture has the following features:
each path in the network is oriented towards a unique player, say ¢. Therefore,
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this player plays a central role in the network itself. Furthermore, the group
to which player ¢ belongs, say N, is the only group to be entirely internally
linked: any two players belonging to N; are either directly linked or indirectly
linked via a path that contains only members of their own group. This group
represents the core of the network. Furthermore, all the remaining groups are
entirely externally linked: members of these groups are completely split up in
the network structure. From these properties it follows that the diameter of
this class of architectures depends only on the number of groups composing the
society and not on the number of network participants per se. Figure 1A depicts
a generalized center-sponsored star in a society composed by three groups, each
of them containing three players, i.e. 1la denotes player a belonging to group
1. Each path in this network is oriented toward player la; hence, player la is
the center of this graph and group 1 is the core of the network. Furthermore,
it is easy to note that each pair of players both belonging either to groups 2 or
3, say 2a and 2b, access each other through intermediary players, in this case
16, that always belong to a different group from their own. Similarly to the
Bala and Goyal (2000) result where in a connected equilibrium network, i.e.the
center-sponsored star, all players but the center are split up in the structure,
we obtain that, when heterogeneity is taken into account, then each group but
the core will be split up in the generalized center-sponsored network. It is
possible that an equilibrium network is partially connected. In this case each
of the components consists of members of only one group and has the center-
sponsored star architecture. Figure 1B depicts a partially connected strict Nash
network. Player 1a bears all the links with members belonging to his own group
(as represented by the filled circles on each link adjacent to this player), and
the same holds for player 2a and 3a that are the centers of groups 2 and 3,
respectively.

Our final set of results pertain to the architecture of efficient networks in the
insider-outsider model. It is clear that an efficient network must minimize the
number of outsider links since they are more costly as compared to insider links.
Indeed, an efficient connected network is characterized by having each group
entirely internally linked and m — 1 outsider links, where m is the number of
groups in the network formation game (see Figure 2). However, our characteriza-
tion result above states that a (connected) equilibrium network is a generalized
centre-sponsored star, with |N| — | N;| outsider links (where |V,| is the number
of players in the core group). Thus strategic incentives of players potentially
generate a significant waste of resources. This conflict disappears when the cost
of forming outside links is so high to make connectivity between groups socially
inefficient. When this is the case, our model becomes essentially equivalent to
a set of homogeneous player models and the general result of Bala and Goyal
obtains, sustainable networks are also efficient.

To summarize: our analysis illustrates the scope of the research programme
which studies network formation from the perspective of individual incentives.
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Our results highlight the robustness of properties such as centrality, center-
sponsorship and short network diameter. Moreover, the characterization of Nash
networks shows how individual incentives can generate very particular and some-
what unexpected network outcomes, such as the generalized center-sponsored
star, where there is a core group which is entirely internally connected while all
the other groups are entirely externally linked and hence completely fragmented.
This strategic effect has high social costs and can lead to significant waste of
resources.

Our paper is a contribution to the theory of network formation. This is an ac-
tive area of research; earlier work includes Bala and Goyal (2000), Dutta, van
den Nouweland and Tijs (1995), Jackson and Wolinsky (1996) and Kranton and
Minehart (2001), among others. These papers and indeed most of the existing
literature focuses on symmetric settings. We briefly discuss three other papers
which examine the role of heterogeneity in network formation. McBride (2001)
considers a non-cooperative network formation game in a framework character-
ized by imperfect information about valuations of players. Haller and Sarangi
(2000) study the implications of heterogeneous reliability levels across players.
Johnson and Gilles (2001) investigate the effects of heterogeneous cost of linking
across players in a two-sided network formation game. The main difference be-
tween their paper and the present paper is the nature of link formation. There
are also some other differences in terms of the model specification, such as the
role of decay and the insider-outsider formulation that we use. These differences
lead to very different results. More precisely, the authors show that if cost of
linking is low in respect to the potential benefit, locally complete networks where
a connected agent is always connected to at least one of his direct neighbors and
belong to a complete subnetwork, are more likely to arise in equilibrium. This
is in sharp contrast to our findings both in the context of the generalized het-
erogeneity model as well as in the context of the insider-outsider model.

The rest of the paper is organized as follows. Section 2 presents the model.
Section 3 presents results on network formation when costs and values are al-
lowed to vary freely. Section 4 analyzes an insider-outsider model of network
formation. Section 5 concludes.

2 The Model

Let N = {1,...,n} be a set of players and let ¢ and j be typical members of
this set. To avoid trivialities, we shall assume throughout that n > 3. Each
player is assumed to possess some information of value to himself and to other
players. He can augment his information by communicating with other people;
this communication takes resources, time and effort and is made possible via
pair-wise links.



A strategy of player i € N is a (row) vector ¢; = (Gi1, -, Gisi—15 Giit1s -+ Jimm)
where g; ; € {0,1} for each j € N\ {i}. We say that player ¢ has a link with j if
gi; = 1. A link between player i and j can allow for either one-way (asymmetric)
or two-way (symmetric) flow of information. We assume throughout the paper
that a link g; ; = 1 allows both players to access each other’s information. The
set of strategies of player i is denoted by G;. Throughout the paper we restrict
our attention to pure strategies. Since player ¢ has the option of forming or not
forming a link with each player of the remaining n — 1 players, the number of
strategies of player i is clearly |G;| = 2"7'. The set G = G x ... x G,, is the
space of pure strategies of all the players.

A strategy profile g = (g1, ..., gn) can be represented as a direct network. Let
g € G. To describe information flows, it is useful to define the closure of g : this
is a non-directed network denoted g =cl(g) , and define by g, ; = max {g; j, g;:}
for each i and j in N.? Pictorially, the closure of a network simply means replac-
ing every directed edge of g by a non-directed one. We say there is a path in g
between 4 and j if either g, ; = 1 or there exist players ji, ..., jm distinct from

each other and ¢ and j such that {gm = =9.;i= 1}. We write i <2 J
to indicate a path between ¢ and j in g. Furthermore, a path between 7 and
J is said to be i — oriented if either g;; = 1 or there is a sequence of dis-

tinct players i1, 4o, ..., %, with the property that: {g;;, = gi,.i,, = 1, ..., 9i,; = 1}.
Define N¢(i;g) = {k € N|gix = 1} as the set of players with whom 4 main-
tains a link and let pf (9) = |N(i;9)| be the cardinality of the set. The set
N (i;9) = {k eEN )z AN k} U {i} consists of players that i observes in g, while
w; (g) = |N (i;9)| is its cardinality. To complete the definition of a normal-form
game of network formation, we specify the payoffs. Let V; ; denote the benefits
that player 7 derives from accessing player j. Similarly, let ¢; ; denote the cost for

player i of forming a link with player j. The payoff function can now be stated
as follows:

—~
—_
~—

IL; (g) = Z Vij— Z Cij

JeN(isg) JEN(i59)
Throughout we shall assume that ¢; ; > 0 and V; ; > 0 for all 4, 7 in V.

Given a network g € G, let g ; denote the network obtained when all of player
1’s links are removed. Note that the network g ; can be regarded as the strategy
profile where ¢ chooses not to form a link with anyone. The network g can be
written as ¢ = ¢g; ® g_; where the ®’ indicates that g is formed as the union of
the links in g; and g_;. The strategy g; is said to be a best response of player i
to g_; if:

I (9: ® g-4) 2 1L (9; ® g-4) for all g; € Gi. (2)

3Note that Ji; = 9;,; so that the order of players is irrelevant.
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The set of all of player i's best responses to g_; is denoted by BR; (¢g_;) . Further-
more, a network g = (g1, ..., g,) is said to be a Nash network if g; € BR; (g_;)
for each i, i.e. players are playing a Nash equilibrium. A strict Nash network
is one where each player gets a strictly higher payoff with his current strategy
than he would with any other strategy.

Finally, in order to analyze the efficient architectures we need to introduce a
welfare measure. As in Bala and Goyal we define the social welfare of a network
g as the sum of payoffs of all players. Formally, given a network g, its welfare,
W : G — R, can be stated as follows:

W (g) = ZH (9) for g € G. (3)

A network is said to be efficient if W (g) > W (¢') for any ¢’ € G. Hence, an
efficient architecture can be seen as the one that minimize the cost of providing
a certain amount of information to the players.

3 General Heterogeneity

We begin our analysis with some results that outline the scope of our study. In
our analysis, we shall use the idea of minimal networks. Given a network g, we
define a component of g, C'(g), a set C'(g) C N such that Vi,j € C(g) there
exists a path between them and there does not exist a path between Vi € C' (g)
and an player k € N\ C (g). Given a network g, let #C' (g) be the number of
components in g. A network ¢ is said to be minimal if #C (g) < #C (g — gi;), V
i # j. Moreover a network g is said to be connected if it is composed by only one
component, i.e. #C (g) = 1. If this component is minimal, then ¢ is said to be
minimal connected. It follows that each link in a minimal connected network is
critical in the way that it is enough to delete it, ceteris paribus, to induce some
degree of social isolation in the society.*

Our first result shows a correspondence between the set of minimal networks
and the set of strict Nash equilibrium networks. Here, we start with assuming
value homogeneity, i.e. V; ; =V, Vi,j € N.

Proposition 3.1: Let the payoffs satisfy (1). Then a strict Nash network is
minimal.  Given any minimal network g there exist costs and benefits,
{ci;,V'}, such that this network is a strict Nash network.

4GQ0cial isolation stands for a situation where the social architecture does not allow each
player to observe the whole society.



Proof: We first show that an equilibrium network is minimal. Let g be a Nash
network, and suppose that it is not minimal. Then there is a link g; ; = 1 such
that N (i;9) = N (i;9 — g:;) , for all ¢ € N. Given the specification of payoffs,
and the assumption that c; ; > 0, for all 4, 7, player ¢ can strictly increase his
payoff by deleting the link. This violates the assumption that ¢ is Nash.

We now prove the converse. Fix some minimal network g. For any link
gi; = 1, set the corresponding cost ¢; ; = € < V, while for any link ¢, ; = 0, set
the corresponding ¢; ; > (n — 1) V. The optimality of forming the existing links
follows from the cost restrictions and the fact that the network ¢ is minimal.
The optimality of not forming the link follows directly from the assumption on
the costs. U

Proposition 3.1 motivates an examination of conditions under which we can
derive some restrictions on the strict Nash networks, apart from minimality. We
note that the second part of the result shows that any minimal network can
be sustained in a setting where values are homogeneous. A comparison of this
result with the earlier results of Bala and Goyal for the homogeneous players
setting suggests that costs homogeneity plays a crucial role in restricting the
architecture of equilibrium networks. To get a clearer idea of this issue, we now
analyze the case where the cost of link formation is homogeneous across links
for any particular individual i.e. ¢;; = ¢; for all j € N\ {i}, but it may vary
across individuals, ¢; # ¢; is allowed. In addition we allow values to vary freely.

Proposition 3.2: Suppose that for each i € N, ¢; j = ¢;, for every j € N\ {i}.
Let g be a strict Nash network and suppose that C (g) is a component in
g, with |C(g)| = 3. Then C(g) is a center-sponsored star. Let g be a
minimal network in which every component with 3 or more players is a
center-sponsored star. Then there exist costs and benefits {c;,V;;}, such
that this network is strict Nash.

Proof: We start with the first part. Let players ¢, j and k belong to C (g) .
Suppose g; ; = 1. We claim that player j cannot have any other link. Suppose
not and let g,, = 1. Since ¢;; = ¢; it then follows from the payoffs (1) that
player i is indifferent between forming a link with players j or k. This contradicts
strictness of equilibrium. Since C'(g) is a component, it follows that player j
accesses everyone in C (g) via the link g; ;. By analogous reasoning we can infer
that no player k forms a link with player i. Hence, player ¢ must form all links
and must be the center of a star. This implies that the component must be a
center-sponsored star.

We prove the second part now. Fix some minimal network g with the said
properties. Let there be m components in this network, C; (g), ..., Cp, (9) . Fix
some player ¢ and without loss of generality, let i € C (g) . For any link g; ; = 1,



set the corresponding returns ¢; ; = ¢; < V; ;, while for every component Cy, (g) ,
k=2,..,m, and any player j € Ci (9), let >, () Vij < ¢ . The optimality
of forming the existing links follows from the cost restrictions and the fact that
the network ¢ is minimal. The optimality of not forming the link follows directly
from the assumption on the costs and benefits. Since ¢ was arbitrary, the proof
follows. O

This result shows that the center-sponsored star architecture plays a prominent
role even in the presence of heterogeneous values and differences in cost of form-
ing links across players. A comparison of this result with the earlier result,
Proposition 3.1, also suggests that the assumption ¢; ; = ¢;, V j, plays a critical
role in the analysis. In section 4 we shall explore further the role of heterogeneity
in costs of forming links.

The above proposition shows that value and cost heterogeneity permit the ex-
istence of more than one non-singleton component in an equilibrium. We now
show that a slightly stronger restriction on valuations, V;; = V;, for all j, implies
that this is no longer possible in equilibrium.

Proposition 3.3: Suppose that for any player i, ¢;; = ¢;, and V;; =V; for all
j € N. Then every strict Nash network is minimal and has at most one
non-singleton component (which is a center sponsored star). Moreover,
any mainimal network with these properties is sustainable as a strict Nash
network for some value of {c;,V;} .

Proof: Suppose that g is a strict Nash network and C} (g) and C; (g) are two
non-singleton components. From earlier results we know that the network is
minimal and that in each of the two components only one player forms all the
links. Let i € C; (g) and let j € Cy(g) be these players. Since g is strict Nash
network, it follows that II; (g) > II; (¢ — gix) , with player k € C; (¢) . In other
words,

Vi—c;i >0VseC(g). (4)

However, the net payoff to player j from forming a link with player ¢ is given
by:

> Vi—g<0 (5)

s€C1(g)

Since player j does not form this link. It must be the case that ¢; < ¢;. Likewise,
we can now reason that:

Vi—c; >0, Vt € C (g) (6)



However, the net payoff to player ¢ from forming a link with player j is given
by:

Y Vime<0 (7)

tECQ(g)

Since player 7 does not form this link, it must be the case that ¢; > ¢;. This leads
to a contradiction. Hence, there can be at most one non-singleton component
in a strict Nash network.

We now prove that every such network can be sustained as a strict Nash network.
The proof is by construction. Take any such network: minimal, with one non-
singleton component, where only one player forms all the links. Suppose that
C1 (g) is the non-singleton component, and that player i € C (g) forms all the
links. Then this network is strict Nash for the following cost/value parameters:
(Z) c < V}', Vj e (g), c; > Vk, vk ¢ & (g), (ZZ) Cr > Zl;ékw‘ O

The results in this section demonstrate several points. First, that if we allow
for values and costs to vary freely then the only restriction imposed by the equi-
librium requirement is minimality. Minimality is a direct consequence of the
assumption that the distance between players does not affect the transmission
of value. Second, if we allow for value heterogeneity but only a moderate amount
of cost heterogeneity, then equilibrium has considerable bite. In particular, if
any individual ¢’s costs of forming links are the same, i.e. if ¢;; = ¢;, for all
j € N\ {i}, then any equilibrium network is either a center-sponsored star or
comprises of smaller center-sponsored stars. Thus, the results demonstrate that
the center-sponsored stars continue to be prominent even in settings with con-
siderable value and cost heterogeneity across individuals as long as a player’s
costs of forming links is independent of the identity of the player being con-
nected to. However, little can be said about equilibrium networks if costs of link
formation differ across links for the same individual. The next section presents
a model with heterogeneous costs where individual incentives do have strong
implications.

4 An insider-outsider model

We consider a society composed by m groups. We define the set of players
belonging to group [ as N;, [ = 1,...,m. Let |N;|, be the size of group [, with
I =1,2,3,...,m. The set of players is then N = U}, N;. We assume perfect
symmetry in value across individuals and we normalize it to one, i.e. V;; =1 for
all 4,5 € N. To allow for cost heterogeneity we consider a spatial cost structure:
groups can be ordered in a line according to some well defined characteristics.
Hence, the distance between two groups can be interpreted as a measure of the
heterogeneity that distinguishes them. Given two players i € N; and j € Ny,
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the cost of forming a link g, ;, is:

¢ij = cji=f (|l — k) (8)

If 7 and j belong to the same group we let:

cij=cji=[f(0)=ct (9)

We shall assume that f(-) is non-decreasing in its argument and c;, > 0.
Let N%* (i;9) = {j € Ng|gi; =1}, for k = 1,...,m,; then define N (i;g) =

m_ N%k (3; g) . Furthermore, let p®" (g) be the cardinality of N* (i;g). In
other words, u®* (g) represents the number of links initiated by 7 with mem-
bers of group k. Hence, given a network g and an player ¢« € N;, the payoft
function described by (1) can be rewritten as follows:

m

I (9) = mi(g) — > i f (|1 — K|) (10)

k=1

We note two interesting special cases of our specification.
1. Homogeneous Players: This case arises when f(0) = f(1) = ... =
f(m —1) = ¢. This implies that player i’s payoff is the number of players he
observes less the total cost of link formation. Clearly, the distinction between
inside and outside links becomes irrelevant and we can consider that the whole
society is composed of one group. In this case, the payoff is given by:

I (9) = i (9) — 1 (g) (11)

2. Two-cost levels: The case of two-cost levels arises when we assume that
f(d) =cpy,V¥d > 2, and f(0) = ¢ < cy. We can then write the cost structure
as follows:

e, ifijeEN,
C%J‘{CH, ifie N, and j € Ny, | # k (12)

In words, the cost of creating a link across groups (outside link), ¢y, is equal or
higher than the cost of creating a link within a group, ¢y, (inside link). However,
links formed with different external groups are equally costly. The two-cost
levels case will be discussed below to illustrate some of our results.

We now develop some additional notation. We say that 7,7 € N, are en-
tirely internally linked if either g,;, = 1 or there is a path between i and
j in which all players belong to N;. We say that 7,7 € N, are externally
linked if they are linked but not entirely internally linked. Moreover, let the
diameter of a non-singleton component, C(g), be defined as the length of
the largest geodesic distance between any pair of players belonging to it, i.e.
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D (C(g)) = max; jec(g) d (i, 7;C (g)).° To complete the notation, in the charac-
terization of strict Nash networks we will deal with the class of generalized
center-sponsored star architectures. More specifically, a generalized center-
sponsored star architecture is a minimally connected network which satisfies
the following conditions: (A) 3! and 3i € N; such that g;; = 1, Vj € N\ {i};

(B) Let i € N; be the player identified in (A), then for any j € N, i <2 j, is an
i — oriented path; (C) consider an i — oriented path. Without loss of general-
ity, numbered the players as ¢, 41, %9, ..., %, With {gm-1 = Girio = - = Gip_rin = 1} .
Let ip € N, , then f (|lx — lpy1|) < f(|lx — l]) forz € {k+2,k+3,...,n}; (D)
D (g) <2m.

4.1 Equilibrium Networks

Our first result describes Nash equilibrium networks.

Proposition 4.1: Let the cost structure be given by (8) and let the payoffs be
given by (10). A Nash network is minimal. In particular, depending on the
cost levels, a Nash network can be empty, connected or partially connected.

The proof is given in the appendix; we briefly outline the intuition here. First,
we note that a Nash network is minimal; this follows from the no-decay assump-
tion. Next, we note that in the presence of heterogeneity in cost levels, partially
connected networks (with each component being composed of members belong-
ing to the same group) can be sustained in equilibrium. There are two reasons
for this: a coordination problem and an incentive problem. The coordination
problem arises as follows: suppose the inside cost is slightly higher than 1 and
the outside cost, f (1), is a bit higher then the size of the smallest group, say N;.
Consider a network where the smallest group is internally linked and all other
players are singletons. It is easy to see that such a network can be sustained
as a Nash equilibrium. However, if the largest group is able to coordinate by
generating a minimal connected component, it will create the right incentives
to achieve a connected network, and therefore a partially connected structure
is not sustainable anymore. The incentive problem arises in the following way:
suppose that the inside cost is low, ¢, € (0,1). Then members of each group
will have an incentive be internally linked. If f (1) is sufficiently high then a
player has no incentive to link up with a component comprising of members of
any other single group. In this situation a partially connected network with m
minimal components is a Nash equilibrium. The above result suggests that a
wide range of networks can arise in a Nash equilibrium. Earlier work suggests

5Given two players i and j in g, the geodesic distance, d (i, j;g), is defined as the length
of the shortest path between them.
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that strictness has considerable bite in homogeneous player settings. Is this
also true in a setting with heterogeneous players? Our next result provides a
complete response to this question.

Proposition 4.2: Assume that |N,| > 2,Vl =1,...,m. Let the cost structure be
given by (8) and let the payoffs be given by (10):

1) If ¢;, > 1 then the only strict Nash network is the empty network.

2) Suppose c;, € (0,1), then there are three cases: 2a) if f(1) € (cp,1),
then a strict Nash network is a generalized center-sponsored star. 2b) If
f (1) € (1, max [Ny, ..., Np|) , then a strict Nash network does not exist. 2c)
If f(1) > max|[Ny, ..., Ny, then the only strict Nash network is partially
connected with each group constituting a center-sponsored star.

The first step of the proof consists of showing that in each non-singleton compo-
nent there exists one group that is entirely internally linked. We start proving
that in each non-singleton component there exists at least one inside link. Sup-
pose g is a strict Nash network. For simplicity assume that it is connected;
then there is a path between any two players belonging to the same group, say
1,i" € N;. There are two possible path configurations. First, the two players
are directly linked and if this is the case the claim follows. Second, the two
players access each other indirectly, through other players. In this case, it can
be shown by an application of the switching argument that this path has to
have the following pattern of links: {g;; =1,...,g;.+ = 1}. Next we note that
the same property must also hold for any other pair of players belonging to the
same group. Since the number of groups is finite and each group is composed
by at least two players, we can iterate this argument to show that there always
exist two players belonging to the same group who access each other via a direct
connection. We then use network externality effects to argue that if two players
of a group are directly linked then all members of this group must belong to the
same component. Finally, we use the switching argument to show that given an
inside link, i.e. g; » = 1 with ¢,7" € N}, 7 will bear all the links with members of
his own group. Hence, group 1V, is entirely internally linked.

The second step in the proof shows that if a group is not entirely internally linked
then it is entirely externally linked. Consider a connected strict Nash network.
Let N; be the group highlighted in the previous step and let ¢ be the center of
this group. Consider a path between ¢ and an arbitrary player j. Using a variant
of the argument sketched above, we show that the path must be i — oriented.
Now it is easy to see that along any path leading away from player ¢, there can
be at most one player of any specific group. Hence it follows that if we take a
pair of players in a group I’ # [ there exists a path (since g is connected) and
along this path there is no player of group I’. Thus all groups apart from [ are
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entirely externally linked. The final step in the proof consists of combining the
above observations for different cost parameters.

We discuss some aspects of this characterization result. The first remark is
about insider and outsider links. Our result shows that there is one group which
is entirely internally linked in the connected strict Nash network, while all other
groups are entirely externally linked. In other words, the formation of local
connections is not allowed in equilibrium (except for one group). This is an
unexpected result and it suggests that incentives for link formation completely
undermine the structure that one might have expected: a set of local center-
sponsored stars (corresponding to individual groups) linked with each other.
The second observation concerns the centrality and center-sponsorship proper-
ties. If the strict Nash network is connected, there is a player ¢ such that all
paths are oriented toward him. Hence, this player plays a particularly central
role in the network. Furthermore, if the strict Nash network is non-empty but
unconnected, then each component consists of members of one group and it has
the center-sponsored star structure. Third, it is worth noting that the diameter
of connected strict Nash network is independent of the number of players, while
it only depends on the number of groups. Fourth, we consider the two special
cases introduced in the specification of the insider-outsider model. When apply-
ing Proposition 4.2 to the homogeneous case we obtain the result provided by
Bala and Goyal (2000): if ¢ > 1 the only strict Nash network is the empty one,
while if ¢ € (0,1) then the only strict Nash network is a center-sponsored star.
Let’s now turn to the two-cost levels case. When ¢y € (¢, 1), a strict Nash net-
work has a generalized center-sponsored star architecture. More formally, there
is an individual, say ¢ € N; which is the center of the whole network: each path
in the network is oriented to him. Furthermore, group /N, is the only group to
be entirely internally linked. Moreover, the members of all the remaining groups
are passively linked with some members belonging to group N;.° In particular,
if all the remaining players are passively linked with player 7, then the network
is a center-sponsored star (see Figure 3).

Finally, we remark on the assumption that there are at least two members in
each group. If we relax this assumption and allow for some groups to have
only one member then two substantial changes occur. The first change is that
there may exist more than one entirely internally linked group while the second
change is that the non-existence result may be ruled out. The following example
illustrates these points. Consider a society composed by three groups, where
group N; and N3 consist of two players and group Ns has only one player. Let
g be a connected network depicted in Figure 4. When f (1) € (cp, 1), g is strict
Nash. We note that in g all groups are entirely internally linked. Now, suppose
that f (1) = 1+ ¢, where € is positive and small enough. Again, the network g

0We say that an agent i is passively linked with an agent j if g;; = 1 and g; ; = 0.
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is strict Nash. However, if we assume that group N, consists of more than one
player, a standard switching argument leads to the non-existence result.

4.2 Efficient Networks

We now turn into the issue of efficiency. We first introduce some new terminology
that will be used in the proposition below. Let g™ refer to a minimal connected
network with each group N, forming a minimal connected component with | N;|—
1 inside links respectively and with (m — 1) outside links of distance one (see
Figure 2). A network ¢ is said to be partially connected, gP°, if there exists at
least one non-singleton component but the network is not connected. Finally,
a partially connected network with each group generating a minimal connected
component will be denoted as ¢&¢ (see Figure 1B).

In the further analysis we assume that groups are of equal size. We develop
a simple example in order to illustrate how relaxing this assumption can lead
to a variety of efficient networks. For sake of clearness, we consider the two-
cost levels case. Let the society be composed by three groups where group
N is small while groups N, and N3 are large. Suppose now that ¢, € (0,1)
and cy < 2|Ny||Ns|, then an efficient network must have the three groups
internally linked and group N; and N3 connected by one outside link. However,
if cg € (2| Ny1| (| Na| + | N3]), 2| Na| | N3|) then it is socially efficient to leave group
Nj isolated. Therefore, the efficient network is one in which the three groups are
linked internally and where group N, and N3 are connected by one outside link
while group N is left out. Clearly, if ¢, € (0,1) and ¢y < 2|Ny| (| V2| + | N3))
the efficient network is minimal connected with m — 1 outside links, while if
¢y > 2|Ny| | N3| then only a partially connected network where the three groups
are linked internally is efficient. Finally for ¢, > max {|Ny|,|Na|, |N3|} and ¢y
sufficiently high the only efficient network is the empty one.

The following result provides a complete characterization of efficient networks
for the case of equal group sizes. Let |[Ni| = [N]| for all I = 1,2, .., m; moreover,
we define ¢; = m|N|? and ¢y = [m|N|(m|N| — 1) — (m|N| — m)cg]/(m — 1).

Proposition 4.3: Let the cost structure be given by (8) and let the payoffs be
given by (10). In addition suppose that Ny = N for alll =1,2,..,m.

1) Suppose c;, € (0,|N|). If f(1) € (cp,c1) the network g™ is uniquely
efficient, while if f(1) > ¢1 then the network gF¢ is uniquely efficient.

2) Suppose c; € (|N|,m|N|). If f(1) € (cp,c2) then the network g™ is
uniquely efficient, while if f(1) > co then the empty network is uniquely
efficient.

3) If cp, > m|N| then the empty network is uniquely efficient.
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The proof is presented in the appendix. We briefly sketch the intuition here. An
efficient network is minimal; this follows from the no-decay assumption. When
cr, is high enough the empty network is efficient, while if ¢y, is relatively low it is
beneficial for the society to have each group internally linked. Considerations on
f (1) allow us to divide this cost space into two sub-spaces: for f (1) high enough
the society is better-off leaving each group isolated by the others, yielding the
network ¢P¢, while if f(1) is not so high then the connected network arises.
However, only a connected network with a minimal number of outside links
(m — 1) and all of ‘length’ one, is efficient. This yields us g™*.”

The above characterization of efficient networks allows us to make some re-
marks on the trade-off between efficient and sustainable architectures.® We
have showed that if ¢g™¢ is efficient, the corresponding set of strict Nash net-
works does not contain any architectures compatible with the efficient one. This
conflict persists until the level of f (1) is such that any outside link is not ben-
eficial both from an individual and social point of view. When this is the case,
the heterogeneity introduced in the model becomes irrelevant and our problem
degenerates in a sum of independent homogeneous problems leading to partially
connected strict Nash network with each group generating a center-sponsored
star component. It follows that the trade-off between efficiency and stability
fades in this case.

The conflict between efficient and sustainable connected architectures arises out
of a misallocation of links: too many outside links are set-up in order to obtain
connectedness. Consider a connected network g and pick two players belonging
to a group different from the core group, then if g is strict Nash, they will
access each other via a sequence of outside links. This does not allow network
participants to minimize the costs of connecting with each other and this lowers
social welfare.

This result is altered if we relax the assumption, used in the characterization
of strict Nash networks, that each group is composed of at least two players.
Consider a society composed by three groups where groups N; and N3 consist
of two individuals each while group N, consists of a single individual. Suppose
f(1) € (cg,1). The network depicted in Figure 4 is strict Nash. Moreover,
this network satisfies all the necessary conditions for a connected network to
be efficient: the allocation of links is optimal from a societal point of view.
In general, the presence of a single player between two heterogeneous groups
composed by at least two individuals mitigates substantially the conflict between
the notion of efficiency and strategic stability.

"Each minimal connected network produces the same gross social welfare but different
minimal connected networks will be characterized by a different total cost depending on the
allocation of links.

81t is worth noting that the characterization of strict Nash networks presented in Proposi-
tion 4.2 is valid if |N;| > 2, for all [ = 1,2,..,m. This allows us to compare the set of strict
Nash networks with the set of efficient ones.
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5 Conclusion

In this paper we have investigated the implications of heterogeneity for network
formation. We have used an extension of the Bala and Goyal (2000) model of
one-sided link formation to study this issue. Our analysis suggests two general
observations: first, by showing the robustness of equilibrium properties such as
centrality, center-sponsorship and short network diameter this paper illustrates
the scope of the research programme which seeks to understand social and eco-
nomic structure in terms of individual incentives. Moreover, our characterization
of equilibrium networks shows that individual incentives lead to very particular
and somewhat unexpected networks, in which there is a core group which is
entirely internally connected while all the other groups are entirely externally
linked and hence completely fragmented. This finding leads to our second point:
individual incentives can generate a significant waste of valuable social resources.

6 Appendix:

Proof of Proposition 4.1 Minimality follows as a direct consequence of the
no-decay assumption. The proof that the empty network is Nash if and only
if ¢ > 1 is straightforward and omitted. Next, we argue that if ¢, < 1 and
f(1) < max{|Ny|,...,|Ni|}, then a Nash network is connected. Since ¢, < 1
there must exist a path between any pair of players in the same group N;. Let,
without loss of generality, m be the largest group. Since f (1) < |Ny,|, it follows
that players in all the groups other than N,, have an incentive to form a link
with group N,,. Hence, a Nash network must involve a path between any two
players i € N; and j € N,,, i.e. the network is connected.

Finally we note that if ¢, < 1 but f (1) > |N,,| then no player i € N, has an
incentive to form a link with j € Ny, [ # ', so long as Ny constitutes a com-
ponent by itself. Hence, it is possible to sustain a network with m components,
each component consisting of members of one and only one group, respectively,
in equilibrium. Next, we argue that if g is Nash and there exists a link g; ; = 1,
wherei € N;and j € N/, with [ # I, then g is connected. If g; ; = 1, then it must
be the case that the returns to player ¢ from the link g; ;, (say) |C(g — i), ex-
ceed the cost of the link, ¢; ;. Suppose that g is not connected. Let j € N\C(g)
and suppose that j belongs to a group that is closest to the groups represented
in C(g). It then follows that if j € N,, then there is a player j/ € N, with
j € C(g) and |x — y| < 1. Tt is easy to see that the payoff to player j from
linking with player j" is |C'(g)| > |C(g — gi;)|, while the cost is (weakly) smaller
than the cost to player ¢ of the link g; ;. Hence, player j has a strict incentive
to form a link with some player in C(g), contradicting the hypothesis that g is
a Nash network. U
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Proof of Proposition 4.2: We recall some definitions that will be used in the
proof. In a network g, a path between i and j is said to be ¢ — oriented if either
gi; = 1 or there is a sequence of distinct players {i1, is, ..., 7, } with the property
that: {gii, = gi,in = 1, ..., ¢i,.j = 1}. The proof consists of a sequence of steps,
which are covered in the following lemmas.

Lemma 1 Suppose g is a strict Nash network. If g, ; = 1, where ¢ € N; and
j € Ny, L#U, theng; ;, =0, Vj" € Ny where k is such that |l — k| < [l =]

Proof: Consider a strict Nash network g. Choose i € N; and j € Ny, I # U,
such that ¢, ; = 1. Let j* € Ny where k is such that || — k| < |l —'|. Suppose
that g, , = 1. The spatial cost structure implies that ¢ can do at least as well by

deleting his link with j and forming a link with j'. This contradicts strict Nash.
O

Lemma 2 Suppose g is a strict Nash network. If i € Ny and j € Np, | £,
and g;; =1, then gy, = 0, Vj' € Ny, such that |k —1| > |k —1'|.

Proof: Suppose g;; = 1. Since the cost of forming links is non-decreasing in
the distance between players’ groups, j' can do at least as well by deleting his
link with ¢ and forming a link with j. This contradicts strict Nash. U

Lemma 3 Assume |N;| > 2,V 1 =1,...,m. Suppose g is a strict Nash network,
then in any non-singleton component there exists a pair of players who belong
to the same group (this group will differ across components) and have a direct
link.

Proof(Sketch): Consider a non-singleton component C' (g) . There exists ¢, ; =
1,7 € Ny and j € N\{i}. Suppose that j € Ny, [ #1'. We first note that, given
gi; = 1, it must be true that N; C C (g). This follows by noting that the returns
to a player k € N, from linking with component C(g) are strictly greater than
the returns to player i, while the costs are strictly smaller (since k forms a link
with 7). Hence every player k € N; must belong to C(g). Therefore i € N; must
access every i € N; in g. There are two possibilities. One, ¢ accesses i’ via j.
This violates Lemma 1. Two, i accesses ' via a player j', where g;»; = 1. Given
gi; = 1, Lemma 2 implies that the link g;;; = 1 is sustainable in a strict Nash
network, only if j° belongs to a group that is not accessed by i before the link
gjri = 1 has been formed. Next note that, using the above argument, it follows
that all members of j"’s group must belong to C (g). Suppose j' € N,. Then
Lemmas 1 and 2 imply that j' accesses any j” € N, either by being directly
linked, and if this is the case the proof trivially follows, or by being passively
linked with some player j” € N,, belonging to a group other than [. We can
then repeat the same argument with respect to j” and j"”. Since the number of
groups is finite, we will eventually arrive at a point where two members of the
same group are directly linked. The proof follows. U
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Lemma 4 Assume |N;| > 2, ¥V [ = 1,...,m. Suppose g is a non-empty strict
Nash network. If g, =1, 4,7 € Ny, then g;,» =1, Vi" € N\ A{i}.

Proof: Consider a non-singleton component, C' (g). Given the argument in
Lemma 3, if ¢;» = 1, for 4,4/ € N;, then N, C C(g). We first note that,
if g;» = 1, then g»; = 0, Vi’ € N \J{i}. This follows from the standard
switching argument. We have two possible configurations. First, suppose that
N, = C (g) - Then an application of the switching argument immediately implies
that g;» = 1, for all i € N;. Second, suppose N; G C(g). Since C(g) is
connected, there is a path between i and ¢”, and d(i,i") > 2. Then there is
some player j # " such that g, ; = 1. Suppose that j € N;. If g;; = 1 then a
simple switching argument applies with regard to player ¢ and this contradicts
the hypothesis that g is strict Nash. If g;; = 1 then the switching argument
applies to player j, who is indifferent between the link with 7 and the link with
i'. This contradicts the hypothesis that g is strict Nash. Similar arguments can
be used in the case that j ¢ N; to complete the proof of this lemma. U

Lemma 5 Assume |N;| > 2, V I = 1,...,m. Suppose g is a connected strict
Nash network and let i € N; be the player identified by Lemma 4. Then any path

i <25 j,Vj e N\ {i}, is i — oriented.

Proof: Let g be a strict Nash network which is connected. Since g is minimal,
every path starting at 7 ends with a well defined end-player. The proof proceeds
by contradiction. Suppose there is a path ending with player j, which is not
i-oriented. Suppose g;; = 1; in this case g;; = 1. Since |N;| > 2, a switching
argument can be applied for player j with respect to some other member of his
group which leads to a contradiction with the hypothesis that g is a strict Nash
network.

Suppose next that g;; = 0. Let {i1,12,13,...,7,}, be the players on the path
between ¢ and j, with g;;, = ... = g;, ; = 1. We first take up the case g;;, = 1.
Let j € N,; if i,, ¢ N, then a simple switching argument with regard to player
j and some member of his group implies that g is not a strict Nash network. If
in € Ny, there are two possibilities: (i) ¢;, .4, = 1 and (ii) ¢;,4,_, = 1. In the
first case, player i,_; is indifferent between a link with player i,, and a link with
player j. This contradicts the hypothesis that g is a strict Nash network. In the
second case, there are two sub-cases: suppose 7, and 7,,_; belong to the same
group; then a switching argument applies to player j, with respect to players i,
and i, 1. If 4, and 7, ; belong to different groups then a switching argument
applies to player i,, with regard to members of the group of i, 1 (given that
|IN;| > 2, for all I =1,2,...,m).

Consider finally the case g;, ; = 1. Let k be the first player along the path
{i1,i2,...,1,}, such that g1 = 1. Let iy_y € N,. Since gy_24-1 = 1, Lemma
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1 implies that ix, k41, ..., 0 ¢ Ny,. By hypothesis, |N,| > 2, and so there is
a player p € Ny, p # i1, and we know that p ¢ {ig,ix11,..4,5}. Thus, p €
N\{ix 1,7k, ..,0n,j}. In this case however, a switching argument would apply
to player i, with regard to p. Hence ¢ is a not a strict Nash network. This
contradiction completes the proof of the lemma. O

Lemma 6 Assume |N;| > 2,V 1 =1,...,m. Suppose g is a connected strict Nash
network. Then D (g) < 2m.

Proof: This follows directly by Lemma 1, 3, 4 and 5 U

We now complete the proof of Proposition 4.2.

1. Consider a strict Nash network g and suppose c;, > 1. We claim that the
only strict Nash network is the empty one. Suppose that there exists a
non-singleton component C (g). Using arguments from Lemma 3 it follows
that if i € N;, and g; ; = 1, then N; C C(g). If N, = C(g), then it is easy to
show by applying the switching argument that C'(g) is a center-sponsored
star. However, this is impossible given the hypothesis that ¢, > 1. If on
the other hand, C(g) contains players from more than one group then it
follows that ¢ is a connected network. Lemma 5 now implies that there is
central player and that all paths are oriented towards this player. However,
given that f(1) > ¢ > 1, this is not sustainable in equilibrium. This
contradicts the hypothesis that g is a strict Nash equilibrium. Hence the
empty network is the only possible strict Nash network.

2a. Suppose c¢f, € (0,1) and f (1) € (¢, 1). Suppose g is a strict Nash network;
given the parameter restrictions, it is immediate that g must be connected.
Lemma 3 and Lemma 4 imply that g satisfies property (A). Since g is
connected, Lemma 5 holds and that implies property (B). Considering
the restrictions imposed by Lemma 1, Property (C') follows by verification.
Finally, Lemma 6 implies that the diameter of g satisfies properties (D)

2b. Suppose ¢, € (0,1) and f (1) € (1, max [Ny, ..., Ny]) . Suppose g is a strict
Nash network; it follows from Proposition 4.1 that it is connected. Lemma
5 implies that g has a central player ¢, and that all paths are i-oriented.
However, f (1) > 1, g cannot be sustained in equilibrium, leading to a
contradiction. Hence, there does not exist a strict Nash network.

2c. Suppose ¢g, € (0,1) and f (1) > max [Ny, ..., N,,]. Consider a strict Nash
network g. From Lemmas 3 and 4 it follows that either g has m components
corresponding to each of the groups or it is connected. In the former case,
Lemmas 3 and 4 imply that each of the components is a center-sponsored
star. In the latter case, Lemma 5 implies that g has a central player and
all the paths are oriented towards this player. But then the argument from

Part 2b applies and such a network cannot arise in equilibrium given that
f(].) > HlaX[Nl, No, N3, ..., Nm]
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4

Proof of Proposition 4.3: In this proposition we assume equal group size, i.e.
|N;| = |N| for any [ = 1, ...,m. We first start with two observations: (a) The no-
decay assumption implies that each non-singleton component part of an efficient
architecture is minimal; (b) If ¢ is efficient and non-empty then it is either
minimally connected with m— 1 outside links of ‘length’ one and m|N|—m inside
links, or partially connected with each group generating a minimal connected
component. This observation follows by the assumption of equal group size and
by the definition of efficiency concept. If a link between two members of the
same group is socially efficient, then, from a societal point of view, each group
should be internally linked. Furthermore, the assumption of equal group sizes
implies that each group internally linked contributes equally to the total social
welfare produced by the network. It follows that if an outside link is social
enhancing, then an efficient network should be minimally connected. Moreover,
since the definition of efficiency requires the minimization of the total cost of
information flow, a connected efficient network should have m — 1 outside links
of length one. Using these observations we compare three different architectures:

1) The social welfare from ¢™<, is given by:
W(g™) = (mN)* =m (N = 1) e = (m-1)f (1) (13)
2) The social welfare from gF¢, is given by:
W (ghe) = m (INI)" —m (IN| 1) ez (14)
3) The social welfare from ¢° is given by:
W (g°) = m|N]| (15)

First, we compare ght with g°. It is easily checked that W (gh) > W (g°) if and
only if ¢, <|N].

Second, suppose ¢, € (0,[N|] and compare ¢™¢ with ¢gE. Simple computations
show that W (¢™¢) > W (g7°) if and only if f (1) < m|N|? = ¢;. It follows that
given c;, € (0,|N|] if (1) € (cp,c1] the only efficient network is g™, while if
f (1) > ¢; the only efficient network is ¢gF¢. This proves part (1).

Third, suppose ¢, > ]N] and compare ¢"¢ with g°. A_gaianimple computations
show that W(gmc) > W(ge) if and Only lff (1) < m\N|(m|N\*1)f(m|N|*m)CL _

m—1

We note that ¢, is a decreasing function of ¢;, and attains the value m|N| when
c;, = m|N|. Suppose therefore that c;, € (|N|,m|N|). If f (1) € (cz,co] then
g™ is uniquely efficient, while if f(1) > ¢, then ¢° is uniquely efficient. Finally,
if c; > m|N| then ¢y < c. Given our hypothesis that f (1) > ¢, it follows that
empty network is uniquely efficient. This proves parts (2) and (3). O
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