
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91125

A THEORY OF VOTING IN LARGE ELECTIONS

Richard D. McKelvey

John W. Patty

1 8 9 1

C
A

L
IF

O
R

N
IA

 I

N
S T IT U T E O F T

E
C

H
N

O
L

O
G

Y

SOCIAL SCIENCE WORKING PAPER 1056

February 1999



A Theory of Voting in Large Elections∗

Richard D. McKelvey†

Division of Humanities and Social Sciences
California Institute of Technology

Pasadena, CA 91125

John W. Patty‡

Department of Government
Institute for Quantitative Social Science

Harvard University
Cambridge, MA 02138

April 3, 2006

∗A previous version of this paper was entitled “Quantal Response Voting”. The financial support of NSF grants
#SBR-9631627 and #SES0079301 to the California Institute of Technology are gratefully acknowledged. In addition,
Patty acknowledges the financial assistance of the Alfred P. Sloan Foundation. This paper benefited from helpful
comments from seminar participants at CERGY-Pontoise (Oct 1998), CORE (Oct 1998), Tilburg (Oct 1998), Caltech
Theory Workshop (May, 1999), Public Choice Society (New Orleans, March 1999), the Stan and Cal Show (Pismo
Beach, May, 1999), the APSA annual meetings (Atlanta, 1999), and the Wallis Conference on Political Economy
(Rochester, NY, October, 1999). We especially thank John Duggan, Tom Palfrey, Norman Schofield, Bob Sherman,
two anonymous referees, and an Associate Editor for helpful input.

†Deceased.Richard passed away on April 22, 2002. He is, and will be, terribly missed as both a friend and a
scholar.

‡Corresponding Author:jpatty@gov.harvard.edu

1



Abstract

This paper provides a game-theoretic model of probabilistic voting and then examines the
incentives faced by candidates in a spatial model of elections. In our model, voters’ strategies
form aQuantal Response Equilibrium(QRE), which merges strategic voting and probabilistic
behavior. We first show that a QRE in the voting game exists for all elections with a finite
number of candidates, and then proceed to show that, with enough voters and the addition of
a regularity condition on voters’ utilities, a Nash equilibrium profile of platforms exists when
candidates seek to maximize their expected margin of victory. This equilibrium (1) consists
of all candidates converging to the policy that maximizes the expected sum of voters’ utilities,
(2) exists even when voters can abstain, and (3) is unique when there are only 2 candidates.
Journal of Economic LiteratureClassification Numbers: D71, D72, D50, D60.

Keywords: Voting, Probabilistic Voting, Quantal Response Equilibrium.

Proposed Running Head:Voting in Large Elections
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1 Introduction

Probabilistic voting is central to both theoretical1 and empirical2 work in political economy. In

particular, prediction of an individual’s voting behavior is inherently imprecise, even with detailed

information about the voter in question. Accordingly, modern empirical studies of voting behavior

universally assume some form of probabilistic voting behavior (in the form of, say, a logit or

probit regression model). Theoretical models of probabilistic voting incorporate this imprecision

into the candidates’ strategic calculations. Probabilistic models of voting yield predictions more

amenable to empirical testing and have been used to examine many topics, including tax policy,

redistribution, and multiparty elections.

Theoretically, models of probabilistic voting are appealing for two reasons. The first is the

link between the model and the empirical means of evaluating its predictions. In particular, proba-

bilistic voting models and nearly all statistical analyses of individual vote choice share a common

starting point: even the most reliable models of behavior are not guaranteed to predict any given in-

dividual’s behaviorperfectly. Probabilistic voting simply incorporates this reality into the strategic

calculations of the individuals within the model. This common methodological link has another

advantage: as opposed to most models of electoral competition in which voters are presumed to

vote in a deterministic fashion,3 pure strategy electoral equilibria typically exist when voters are

presumed to vote probabilistically. Indeed, one of the most robust characteristics of models of

probabilistic voting is the stability they induce in models of electoral competition, as highlighted

by Coughlin [1992], Banks and Duggan [2004], and Schofield [2004].

This paper extends this research in an important way by allowing for strategic behavior within

a general formulation of probabilistic voting. Specifically, we investigate the Quantal Response

1The probabilistic voting literature began with the work of Hinich [1977], and was initially extended by Coughlin
and Nitzan [1981a,b]. An excellent overview of the early work is contained in Coughlin [1992]. Recent work in the
area includes Lin, Enelow, and Dorussen [1999], Banks and Duggan [2004], Patty [2002, 2006, 2005], and Schofield
[2004].

2Recent examples include Alvarez, Nagler, and Bowler [2000]; Lacy and Burden [1999]; Quinn, Martin, and
Whitford [1999]; and Schofield, Martin, Quinn, and Whitford [1998], to name only a few.

3For an excellent examination of equilibrium existence in spatial electoral competition, see Banks, Duggan, and
Breton [2002].

3



Equilibrium (see McKelvey and Palfrey [1995, 1998]) within spatial voting games. Quantal Re-

sponse Equilibrium (QRE) is a theory of behavior in games that assumes that individuals get pri-

vately observed random payoff disturbances for each action available to them. A QRE is then

just a Bayesian equilibrium of this game of incomplete information. In a QRE, although voters

adopt pure strategies, from the point of view of an outside observer who does not know the payoff

disturbance, the players choose between strategies probabilistically, choosing actions that yield

higher utility with higher probability than actions that yield lower utility. The probability that one

action is chosen over another is based on the the utility difference between the alternatives. The

fact that probabilistic voting is generated through a Bayesian equilibrium implies that voters may

vote strategically. This is in contrast to most of the models studied in previous theoretical work on

probabilistic voting, which is reviewed in the next section.

As we discuss further below, our results are very similar in spirit to the results obtained by

previous scholars. However, it must be noted that the approach taken here is much more game-

theoretic than in most previous models of probabilistic voting. In particular, our model allows for

voters to take into account the relative likelihoods of different candidates winning the election. As

opposed to classical models of probabilistic behavior, the expected utility of casting a particular

vote is represented correctly. More precisely, in addition to the candidates’ announced platforms

and his or her own policy preferences, the notion of QRE presumes that each voter also considers

the other voters’ strategies when calculating the expected payoff from each possible ballot he or

she may cast. Put another way, each voter’s (probabilistic) voting behavior generated by a QRE is

consistent with that voter being aware that his or her fellow citizens are also voting probabilisti-

cally.

Providing an equilibrium derivation of probabilistic voting in large elections is important for

three reasons. First, as described above, the assumptions that underpin our theory are taken as

given in many empirical analyses of voting behavior in economics and political science. Second,

our results indicate that, in equilibrium, public policy outcomes may be governed by voters’ pref-

erences even when individual voters’ probabilities of being pivotal are infinitesimal. A somewhat
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ironic corollary of this fact is that policy outcomes are governed by voters’ policy preferences even

when any given voter’s observed behavior is nearly independent of his or her policy preferences.

Finally, and most importantly, the equilibrium platform location that we characterize has several

appealing features. As previous authors have shown in other probabilistic voting frameworks, there

is an electoral equilibrium in which office-motivated candidates within our model offer identical

platforms at theex antesocial welfare optimum. This policy is appealing for a number of rea-

sons. First, it is often (but not necessarily) “centrist”. Second, and more importantly, this policy

is sensitive to the strengths of individual voters’ preferences. This stands in contrast to the cele-

brated median voter theorem (Black [1948]), in which the candidate equilibrium is insensitive to

these individual strengths. In addition, while the equilibrium we characterize does require that the

electorate be “large enough,” itdoes notdepend upon restrictions on (1) the dimensionality of the

policy space (as opposed to most “median voter” results), (2) the shape of individuals’ utility func-

tions (as opposed to median voter results and many classical probabilistic voting models), or (3)

the number of candidates (as opposed to both median voter results and many classical probabilistic

voting models).

1.1 Related Literature

Many other scholars have studied probabilistic voting (see Coughlin [1992] for a review of this

literature). Hinich [1977] showed that the median voter theorem does not always hold in a setting

with probabilistic voting, and he constructed examples in a one dimensional space with equilibria

at other locations. In particular, with quadratic utility functions, he obtained an equilibrium in

two candidate elections at the mean (which is the social welfare optimum with those preferences).

Coughlin and Nitzan [1981a,b] (see also Coughlin [1992], p. 96, Theorem 4.2) proved if voters

have likelihood of voting functions satisfying the Luce axioms over subsets, there is a local equilib-

rium at a point maximizing the social log likelihood. While this work was not explicitly rooted in

a utility maximization framework, subsequent work (see Coughlin [1992], p. 99-100, Corollaries

4.4 and 4.5, Theorem 4.2) shows how it can be so interpreted. Coughlin [1992] also gives various
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conditions on voter likelihood functions or on preferences that result in a global equilibrium. If the

likelihood functions are concave, there is a global equilibrium. In a re-distributional model where

voters have logarithmic utility functions for income, and candidates use a logistic model to estimate

the probability that voters vote for each candidate, there is a global equilibrium at the social utility

maximum (p. 57, Theorem 3.7). See Banks and Duggan [2004] for a summary and generalization

many of these results. All of the above results are for two candidate competition. Lin et al. [1999]

show that one can also obtain equilibrium for multi-candidate elections using probabilistic voting

models. They assume that voters’ preferences are based on the distance between their own ideal

policy and the candidate’s announced platform, with a random utility shock, and obtain local equi-

libria at the social utility maximum. Lin et al. [1999] also find that if the utility shocks have high

enough variance, then the expected vote function for each candidate becomes concave, implying

the existence of a global equilibrium.

In all of the above cited probabilistic voting literature, game theoretic considerations for the

voter are not modeled. Voters are assumed to vote based on their preferences for the candidate

policy positions rather than based on the effect their vote will have on the outcome of the election.

Ledyard [1984] develops a Bayesian model of two candidate competition that does model the

game theoretic considerations for the voter. In his model, voters vote deterministically (there is

no random utility shock to preferences), but they can abstain as well as vote for one of the two

candidates, and the cost of voting is a random variable. Voter types consist of preferences as well

as a cost of voting. He shows that in large elections, if voting costs are non-negative, there is

an equilibrium at the social welfare optimum, which under certain restrictive conditions on the

distribution of costs, is a global equilibrium. Myerson [2000] extends Ledyard’s results in a model

where the number of voters is a Poisson random variable, unknown to the voters. He shows that as

long as the density function of the costs of voting is positive at zero, there is a global equilibrium

in Ledyard’s model as the number of voters becomes large. Ledyard’s model, as well as Myerson’s

generalization of it, require that no voters have negative costs of voting.
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1.2 Overview of The Model

In this paper, as in Ledyard [1984], we work in a Bayesian framework, and take into account

the game theoretic considerations for the voters. Further, we consider elections with an arbitrary

number of candidates. Unlike Ledyard [1984], we assume that voters have privately observed

payoff disturbances associated with each action. We do not require concavity of preferences, but

require that preferences are uniformly bounded. We also impose a regularity condition that the

ratio of the variance to expected value of any utility differences is uniformly bounded. Our results

basically extend those of the earlier literature. We find that for large enough electorates there

is a convergent equilibrium at the alternative that maximizes social welfare. For two candidate

contests, the equilibrium is unique. Our equilibrium is global, as in Lin et al. [1999], but in our

model, the conditions for a global equilibrium are satisfied by allowing the number of voters to

grow large rather than by assuming the utility shock becomes large.

In our model, the payoff disturbances are candidate specific and unrelated to the policy posi-

tion of the candidate or to whether the candidate wins or not. In other words, a voter gets some

randomly drawn (and privately observed) payoff for “pulling the lever” for candidatej. Interpreted

in this way, this assumption may appear strange. However, it is standardly and uncontroversially

adopted in modern empirical studies of individual vote choice. For example, any “probit” or “logit”

analysis of individual voting behavior is based on the assumption that voters respond to random

utility shocks that are very similar to those considered here.4

In addition, one interpretation of the payoff disturbances is as a representation ofexpressive

voting (e.g., Buchanan [1954], Tullock [1971], Brennan and Lomasky [1993], Schuessler [2000]).

The individual experiences a subjective payoff from voting for a specific candidate above and

beyond the instrumental objective benefits derived from his or her vote choice. While this inter-

pretation may create the appearance that the voters in our model are irrational, it should be noted

4The principal difference between our approach and recent empirical work (e.g., Alvarez and Nagler [1995, 1998],
Schofield et al. [1998], Lacy and Burden [1999], Quinn et al. [1999], Alvarez et al. [2000], and Schofield [2005]) is
that our model assumes that the random utility shocks are independently distributed across the alternatives. Alvarez
and Nagler [2001] and Dow and Endersby [2004] discuss considerations surrounding the choice between different
multinomial discrete choice models of vote choice.
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that the payoff disturbance structure utilized within QRE insures that the likelihood that a voter

votes in accordance with his or herex antepreferences increases as theex anteutility difference

between his or her choices increases. In other words, a voter is more likely to vote for the can-

didate whose platform maximizes his or her instrumental expected payoffs as the expected utility

gain from doing so increases.

In addition to providing a link between empirical work on voting, expressive theories of vote

choice, and the logic of strategic voting, the main contribution of this paper to the existing work in

the field is to obtain a global candidate equilibrium in large electorates with very little in the way

of assumptions about voter preferences. The main difference between our approach and previous

work on probabilistic voting is the way in which we model the probabilistic voting. As in Ledyard

[1984], by treating the voter decisions as a game, we explicitly include the pivot probability in the

voters’ expected utility calculations. In large electorates, because the probability of being pivotal

goes to zero, the expected utility difference between any two candidates also goes to zero. Thus,

under the QRE assumptions, the voter’s choice is determined mainly by the candidate specific

payoff disturbance. Hence, in aggregate, voters vote less based on policy, and more based on

candidate attributes as the size of the electorate grows. However, even though individuals become

less responsive to policy differences, in large electorates, since the total number of voters is also

getting large, there is still enough policy voting at the aggregate level to force the candidates to the

social optimum. Noting the generic nonexistence of pure strategy equilibria in multidimensional

electoral competition when voters’ behaviors are perfectly determined by objective payoffs (e.g.,

McKelvey [1976, 1979], McKelvey and Schofield [1987]), the results of this paper can be seen

as demonstrating a stabilizing role of expressive voting in large electorates,even when voters are

strategic and respond to differences between the candidates’ proposed platforms.
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2 The Model

We assume the existence of a finite dimensionalpolicy space, X ⊆ <m, whereX is bounded,

and finite setsN andK of votersand candidates, respectively. Writen = |N | andk = |K| for

the total number of each. We let0 indicateabstention, and writeK0 = K ∪ {0} for the set of

alternatives: i.e., the set of all candidates and abstention.

We assume that for each voter,i ∈ N , there is a spaceTi of possible characteristics, ortypes

of the voter. The space of all type profiles is denoted byT = ×i∈NTi. We assume thatTi can

be represented as the Cartesian product of two sets,T and<K0 (so thatTi = T × <K0 for all

i ∈ N ). The first of these sets,T represents the set of all policy-based determinants of preference,

while the second,<K0 represents the consumption (or expressive) determinants of preference over

vote choice. We assume nothing aboutT other than that it is a complete separable metric space.5

Voters’ preferences over the policy space are described by a utility function,u : X × T → <.

Hence, the utility of voteri ∈ N , of type ti = (τi, ηi) ∈ Ti for the policyx ∈ X is u(x, τi).6

We assume thatu is uniformly boundedwith respect toX andT , (i.e., there exists aD ∈ R such

that for allx ∈ X andτ ∈ T , |u(x, τ)| < D).7 We also assume that the marginal distribution of

voteri’s types is an atomless probability measure,ρi, over the Borel sets ofTi, and denote the joint

distribution byρN .8 Finally, we assume that types are independently distributed:ρN = ×i∈Nρi.

While this assumption is stronger than we need, it greatly clarifies the exposition of the model’s

results.9 Note that the assumption of independence does not preclude degenerate distributions of

τi: in such a case, all voters’ policy preferences are common knowledge.

We writeηij to represent thejth component ofηi . For eachi ∈ N , eachj ∈ K0, and each

5We leave both the topology and metric with whichT is endowed implicit, as they play no substantive role in our
analysis.

6This assumption implies that no candidate possesses a “valence” advantage (e.g., Ansolabehere and Snyder, Jr.
[2000], Groseclose [2001], Aragones and Palfrey [2002], Schofield [2004], and Schofield and Sened [2005]).

7Uniform boundedness would follow from the traditional assumptions thatu is continuous with respect to both of
its arguments and that bothX andT are compact.

8It should be noted that the assumption thatρi is atomless does not rule out the possibility that the policy-based
component of voteri’s type,τi, is common knowledge, as we discuss below.

9All of the paper’s results hold with the weaker assumption thatρN is absolutely continuous with respect to the
product measure×i∈Nρi.
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τi ∈ T , all of the ηij are assumed to be independently distributed random variables with full

support, each with a cumulative distribution function that is twice continuously differentiable (and

hence atomless). Thus, the assumption thatρi is atomless does not preclude the possibility that the

marginal distribution ofτi is degenerate (as in the classical spatial model with commonly known

ideal points, for example). Put succinctly, an atom inTi is a point(τi, ηi). Thus, nonatomicity of

ρN is assured by the fact that no such point (for any voteri) is assigned positive measure. Finally,

we assume thatηij is identically distributed for all electoratesN , all i ∈ N , all candidatesj ∈ K,

and allτi ∈ T . As we discuss later, it is important to note that wedo not impose any restrictions

on the distribution ofτi across voters or electorates.

It is important to note and briefly discuss our assumption that the distribution ofηij is identical

across all possibleelectoratesN .10 This assumption is made for three reasons. First, it is in keeping

with the notion of Quantal Response Equilibrium, as defined by McKelvey and Palfrey [1995,

1998]. Second, many of our results are asymptotic with respect to the size of the electorate,n.

Accordingly, this assumption ensures that our results do not depend on an unverifiable assumption

about the effect ofn on the distribution of individuals’ idiosyncratic, policy-independent payoff

disturbances. The third reason is more technical, but substantively interpretable: loosely put, our

results for candidate competition11 essentially rely on the existence, for each electorateN , each

voter i ∈ N , and each candidatek ∈ K, and every profile of policy platforms, of some strictly

positive uniform lower bound on the probability that voteri will vote for candidatek in electorate

N . From a game-theoretic standpoint, this requirement can be interpreted as requiring that every

vote profile can follow from any profile of announced policy platforms.12

Any joint distributionρN on T satisfying all of the above conditions is said to beadmissible.

10We thank a referee for urging us to clarify this assumption.
11Specifically, Lemma 2 and Proposition 2.
12Strictly speaking, we could relax the assumption that the distribution ofηij is invariant across all electoratesN :

as the discussion indicates, given our assumed uniform bound onu acrossX andN , we could essentially impose
a uniform bound on the “upper tail” of the distribution ofηij (specifically, the probability thatηij ≥ D, whereD
is the bound onu as stated on p. 9) across all electoratesN , for each voteri and candidatej. We omit this added
generality for clarity of presentation, since relaxing this assumption would require us to carry further notation through
our arguments.
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Let µ be the common mean ofηij for j ∈ K, µ0 be the mean ofηi0, andc = µ− µ0. Thenc is the

expected cost of voting.

We now define a game, in which the candidates each simultaneously choose policy positions in

X, and then after observing the candidate policy positions, the voters vote for a candidate. Thus,

the strategy setYi for candidatei ∈ K is Yi = X, and the set of strategy profiles for the candidates

is Y = ×i∈KYi. The strategy setSi for voteri ∈ N is the set of functionssi : Y × Ti → K0, and

the set of strategy profiles for the voters isS = ×i∈NSi. We will use the notationS−i = ×j 6=iSj,

ands−i ∈ S−i to represent strategy profiles for all voters except voteri, with similar notation for

candidates.

Given a strategy choicey = (y1, . . . , yk) ∈ Y by the candidates, ands = (s1, . . . , sn) ∈ S of

the voters, define for anyj ∈ K0, andt ∈ T n

Vj(y, s; t) =
1

n
|{i ∈ N : si(y, ti) = j}| (2.1)

to be the proportion of the electorate who chose alternativej, and

W (y, s; t) = {j ∈ K : j ∈ argmaxl∈KVl(y, s; t)} (2.2)

to be the set of winners of the election. For any subset of candidatesJ ⊆ K, write

PJ(y, s; ti) = Pr[{t−i ∈ T−i : W (y, s; t) = J}]. (2.3)

to be the probability of a first place tie among the candidatesJ . We assume that a fair lottery is

used to select a winner when there is a tie, so that we can define voter utilities over any nonempty

subset of candidates,J ⊆ K, by

vJ(y, τi) =
1

|J |
∑
j∈J

u(yj, τi). (2.4)
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The expected payoff to voteri ∈ N of typeti = (τi, ηi) given a strategy profile(y, s) ∈ Y × S is

U(y, s, ti) =
∑
J⊆K

PJ(y, s; ti) · vJ(y, τi) + ηisi(y,ti) (2.5)

In other words, a voter voting for candidatej = si(y, ti) receives the expected utility of the policy

of the winning candidate (the summation term on the right hand side of Equation (2.5)) plus a

payoff disturbanceηisi(y,ti) that is associated with the vote,si(y, ti) ∈ K0, that the voter makes as

dictated by the strategy profile(y, s). We writeU(j; y, s, ti) = U(y, (j, s−i); ti) for the utility that

voteri of typeti gets from voting for strategyj, giveny, ands−i ∈ S−i. Thus, for allj ∈ K0,

U(j; y, s, ti) = Ū(j; y, s, τi) + ηij (2.6)

where

Ū(j; y, s, τi) =
∑
J⊆K

PJ(y, (j, s−i); ti) · vJ(y, τi) (2.7)

is the expected utility to voteri of typeτi of voting for candidatej, unconditioned on the payoff

disturbance,ηij.

The difference in the expected utility of voting forj over abstaining can be written in the

form:13

Ū(j; y, s, τi)− Ū(0; y, s, τi) =
∑
k 6=j

δjk
i (y, s) · [u(yj, τi)− u(yk, τi)] (2.8)

whereδjk
i (y, s) is thepivot probabilityfor j overk 6= j:

δjk
i (y, s) =

∑
J⊆K;j,k∈J

1

|J |

(
PJ(y, (0, s−i); ti) +

PJ(y, (j, s−i); ti)

|J | − 1

)
(2.9)

The pivot probability is the probability that by voting forj rather than abstaining, voteri changes

the outcome from a win fork to a win for j. To understand Equation (2.9), note that the first

13Details about the derivation of pivot probabilities in multicandidate elections can be found in McKelvey and
Ordeshook [1972]. In particular, Equation (2.8) follows by reversing the order of summation in the expression for
(Ej − E0) of the Theorem on p. 49.
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term,PJ(y, (0, s−i); ti) is the probability of a tie between a set of candidatesJ , which includesj

andk, conditional on the other voters’ strategies,s−i, before accounting for voteri’s vote (which

is equivalent to the conditional probability of this tie given abstention by voteri, si = 0).14 The

probability of victory by candidatek is 1/|N | in this case. Recalling that the pivot probabilityδjk
i

is the probability of changing the election winner fromk to j, conditional on voteri voting for

candidatej and the probability of candidatej winning conditional on receiving voteri’s vote in

this case is 1 (since we are studying plurality rule), then the probability of changing the election

winner fromk to j is 1/|J | ∗ 1 = 1/|J |.

The second term is the probability of a tie between the same set of candidates,J (the summation

occurs over all subsets of candidates including bothj andk), conditional ons−i, after voteri’s vote

for candidatej has been included. The probability ofi’s vote having changed the winner fromk to

j is the probability ofk having won if the set of leading candidates wasJ−{j}, which is1/|J−1|,

multiplied by the probability ofj being selected fromJ , which is1/|J |. Hence, the probability of

having changed the election winner fromk to j, conditional onPJ(y, (j, s−i); ti), is1/(|J ||J−1|).

Summing over all potential ties yields Equation (2.9).15

Note thatδjk
i (y, s) is not necessarily equal toδkj

i (y, s) due to the fact that it includes the pos-

sibility of creating a tie between the two candidates. In particular, note thatj appears on the right

hand side of Equation (2.9) butk does not, introducing the potential for asymmetry between any

two candidates. Whether this potential for asymmetry is realized for any given voteri depends on

s−i: if candidatej (say) is slightly favored over candidatek by the voters other than some voteri,

then it is more likely that voteri voting for candidatek will create a tie betweenj andk than it is

that voteri voting for j will create a tie between the two. Of course, the probability of breaking

14Because we are assuming that the types are independent (p. 9), theti argument inPJ(y, (0, s−i); ti) is superfluous.
However, as claimed on p. 2, the assumption of independence is made for expositional purposes. If this assumption
is relaxed, then a rational voter should condition on his or her own type,ti, when calculating his or her probability of
casting a pivotal vote. This feature of pivot probabilities is related to recent work on the “swing voter’s curse” (e.g.,
Austen-Smith and Banks [1996] and Feddersen and Pesendorfer [1996], among many others).

15A potentially confusing aspect of Equation (2.9) is it is pair-specific with respect to candidates, rather than the
more traditional “pivot probability” for any single given candidate. This probability for a voteri and a candidatej
is given by

∑
k 6=j δjk

i . The pair-specific formulation is necessary because different candidates’ platforms may offer
different utilities to voteri.
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a tie between the two candidates is independent of the “order” of the candidates. The key fact is

that this is not the only case in which a vote can be pivotal between the two – creating a tie is also

potentially important.

It then follows from Equation (2.8) that the difference in expected utility of voting forj over l

is:

Ū(j; y, s, τi)− Ū(l; y, s, τi) =
(
δjl
i (y, s) + δlj

i (y, s)
)
· [u(yj, τi)− u(yl, τi)]

+
∑
k 6=j,l

 δjk
i (y, s) · [u(yj, τi)− u(yk, τi)]

+δlk
i (y, s) · [u(yk, τi)− u(yl, τi)]

 (2.10)

which, for the case of two candidates,K = {j, l}, reduces to

Ū(j; y, s, τi)− Ū(l; y, s, τi) =
(
δjl
i (y, s) + δlj

i (y, s)
)
· [u(yj, τi)− u(yl, τi)] (2.11)

To define the candidate payoff functions, we first defineVj(y, s) to be theexpectedproportion

of the electorate choosing alternativej at the profile(y, s):

Vj(y, s) = Et [Vj(y, s; t)] =
1

n
Et [|{i ∈ N : si(y, ti) = j}|] (2.12)

Writing Ez to denote expectation with respect to a random variablez, we will find it useful to

re-express candidatej’s expected vote share as

Vj(y, s) =
1

n
Et [|{i ∈ N : si(y, ti) = j}|]

=
1

n
Eτ [Eη [|{i ∈ N : si(y, τi, ηi) = j}|]]

=
1

n
Eτ

[∑
i∈N

s̄i(y, τi)(j)

]
=

1

n

∑
i∈N

Eτi
[s̄i(y, τi)(j)] . (2.13)

Using candidatej’s expected vote share at(y, s), we assume that candidatej’s payoff is his or

14



hermargin of expected victory, V̂j, which is defined as:

V̂j(y, s) = Vj(y, s)− max
l∈N−{j}

Vl(y, s). (2.14)

Remark 1 Our assumption thatu is uniformly bounded rules out the occurrence of the “St. Pe-

tersburg paradox.” The paradox occurs if one can construct a sequence of policies,{xk}k∈Z++ ,

such thatu(xk, τi) > 2k for eachk = 1, 2, . . .. Such a voter would not trade the lottery that gives

outcomexk with probability 1
2k for anypolicy x – the lottery has an unbounded positive expected

payoff. Similarly, if one constructs the sequence{xk}k∈Z++ such thatu(xk, τi) < −2k, the voter

preferanypolicy x over the lottery. Thus, the assumption of bounded utility implies that no voter

is subject to the St. Petersburg paradox. The uniformity of the bound onu rules out cases in which,

as the electorate grows larger, there exists a sequence of voters the limit of whose preferences is

unbounded and hence subject to the paradox.

Remark 2 Our assumptions about the distribution of voter’s types,ρN , encompass both the clas-

sical spatial voting framework, in which all voter ideal points are known and common knowledge

and models (such as Ledyard [1984]) in which all voter types are independent and drawn indepen-

dently and identically from a common distribution on voter types.

Remark 3 The assumption that theηij are independently and identically distributed with respect

to voters can be viewed as an implicit normalization of utility functions. This is important in

interpreting the main theorem, since the weights that individuals are given in the social utility

function is determined by this normalization.

3 Voter Equilibrium

In this section, we consider the voter equilibrium to the game defined by Equation (2.6) for any

fixed profile of candidate positions,y ∈ Y . Oncey is fixed, the strategy space for the voter reduces

fromSi (the set of functionssi : Y×Ti → K0) to the set of functions of the formsi(y, ·) : Ti → K0.

15



We writeSi(y) to designate this conditional strategy space, andS(y) to designate the set of profiles

of conditional strategies.

For any fixedy ∈ Y , we define avoter equilibrium fory to be a pure strategy Bayesian Nash

equilibrium to the voter game defined by Equation (2.6) over the strategy spaceS(y). This is

any profile,s ∈ S(y), in which voters always choose an action that maximizes expected utility

conditional on their type. Thus,s is a voter equilibrium fory if for all i ∈ N , ti ∈ Ti, andj ∈ K0,

si(y, ti) = j ⇔ U(j; y, s, ti) = max
l∈K0

U(l; y, s, ti)

⇔ Ū(j; y, s, τi) + ηij = max
l∈K0

[
Ū(l; y, s, τi) + ηil

]
(3.1)

Note that the structure of the payoffs is essentially the same as used in McKelvey and Palfrey

[1998] in defining the agent quantal response equilibrium (AQRE) for extensive form games.16 So

as long as the distribution of the errors,ηij is admissible, a Bayesian Nash equilibrium to the voter

game is exactly the same as an AQRE to the game. The following proposition assures as that a

voter equilibrium exists for any profile of policy platforms. The proofs for this and all following

numbered results are contained in the appendix.

Proposition 1 For anyy ∈ Y , there exists a voter equilibrium fory.

Of particular interest is the average behavior of a voteri of typeti, after integrating outηi. For

anysi(y, ·) ∈ Si(y), defines̄i(y, ·) : T → ∆|K0|,17 as the marginal distribution ofsi with respect

to ηi: for anyτi ∈ T andj ∈ K0,

s̄i(y, τi)(j) = Pr[ηi : si(y, (τi, ηi)) = j]. (3.2)

We have assumed that theηij are independently distributed, for alli, j andτi, and identically

16Strictly speaking, our framework is slightly more general than AQRE, since we allow for the distribution ofηi0 to
have a different mean than the distribution ofηij for j ∈ K.

17Throughout the paper, the notation∆|K0| denotes the|K0|−1-dimensional simplex and the notation∆|K| denotes
the|K| − 1 dimensional simplex.
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distributed for allj ∈ K. Let H(·) be the cumulative distribution function ofηi, i.e., H(w) =

Pr[ηij ≤ wj for all j ∈ K0] for w ∈ <|K0|. And letGj(·) be the cumulative distribution function

of z ∈ <|K|, wherezl = ηil − ηij for l ∈ K − {j}, andzj = ηi0 − ηij. Thus,

Gj(z) = Pr[ηi0 − ηij ≤ zj andηil − ηij ≤ zl for all l 6= j] (3.3)

for any z ∈ <|K|. Under the assumptions we have made on theηij, for all j ∈ K, bothH(w)

andGj(z) are twice continuously differentiable and strictly increasing in all arguments, and every-

where positive. Thus, ifs is a Bayesian Nash equilibrium, applying Equation (3.1), forj ∈ K,

s̄i(y, τi)(j) = Pr[Ū(j; y, s, τi) + ηij = max
l∈K0

[
Ū(l; y, s, τi) + ηil

]
]

= Pr[ηil − ηij ≤ Ū(j; y, s, τi)− Ū(l; y, s, τi) for all l ∈ K0 − {j}]

= Gj





Ū(j; y, s, τi)− Ū(1; y, s, τi)

. . .

Ū(j; y, s, τi)− Ū(j − 1; y, s, τi)

Ū(j; y, s, τi)− Ū(0; y, s, τi)

Ū(j; y, s, τi)− Ū(j + 1; y, s, τi)

. . .

Ū(j; y, s, τi)− Ū(k; y, s, τi))





. (3.4)

Example: One example of the above is the logit AQRE, where the density functions ofw0 =

ηi0 + c andwj = ηij for j ∈ K follow a type one extreme value distribution, in whichHj(wj) =

exp[− exp[−λwj]]. The independence ofηij acrossi andj implies H(w) =
∏

j Hj(wj). This
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leads to the logistic formulaGj(z) = 1
1+exp λ(c+zj)+

P
l6=j exp(λzl)

. In this case, for fixedλ, we get:

s̄i(y, τi)(j) = Gj(Ū
j(y, s, τi))

=
1

1 + exp
[
λ ·
(
c + Ū(0; y, s, τi)− Ūi(j; y, s, τi)

)]
+
∑

l 6=j

(
exp

[
λ ·
(
Ū(l; y, s, τi)− Ū(j; y, s, τi)

)])
,

and in the case of two candidates, whereK = {j, l},

s̄i(y, τi)(j) =
1

1 + exp
(
λ ·
(
c + δjl(y, s) · [u(yj, τi)− u(yl, τi)]

))
+ exp

(
λ · (δjl(y, s) + δlj(y, s)) · [u(yj, τi)− u(yl, τi)]

)
.

We now show that for fixed candidate positions aty ∈ Y , and forany voter equilibrium,all

pivot probabilities go to zero and the probability of voting for any two candidates inK becomes

equal asn →∞. The reason for this result is simple: one’s vote only matters when it is pivotal.18

Thus, one’s vote only matters when the other voters are either evenly split between the two top

candidates or when the vote difference between the two top candidates differs by one vote. Asn

grows large, this becomes a very low probability event. Thus, in general, one’s vote rarely affects

the outcome of the election. This implies that voters effectively become indifferent with respect to

which candidate they vote for asn →∞. We formalize this in the following proposition.

Proposition 2 Fix y ∈ Y , and for each integern, let ρN be any admissible joint distribution over

×n
i=1Ti, and letsn be any AQRE for the voters. Then for anyj, l ∈ K andi, k > 0,

(a) limn→∞ δjl
i (y, sn) = 0 and

(b) limn→∞ δjl
i (y, sn)/δjl

k (y, sn) = 1

(c) limn→∞ δjl
i (y, sn)/δlj

i (y, sn) = 1

18For more on the logic of pivotal voting, see Myerson and Weber [1993].
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(d) limn→∞[s̄n
i (y, τi)(j)− s̄n

i (y, τi)(l)] = 0.

Further, in all cases, the convergence is uniform: for anyε > 0, there is annε such that, for all

i, k, j, l, y, ρN , sn, if n > nε,

• δjl
i (y, sn) < ε,

•
∣∣∣δjl

i (y, sn)/δjl
k (y, sn)− 1

∣∣∣ < ε,

•
∣∣∣δjl

i (y, sn)/δlj
i (y, sn)− 1

∣∣∣ < ε, and

• |s̄n
i (y, τi)(j)− s̄n

i (y, τi)(l)| < ε.

Before continuing, it should be emphasized that Proposition 2 does not impose any require-

ments on the marginal distribution ofτi for any voteri as the electorate grows. While we have

assumed that the marginal distributions of the payoff disturbances (i.e., {ηij}j∈K0) are fixed across

all electoratesN , the marginal distribution of voter 1’s type with respect toτ1 (e.g., voter 1’s ideal

point) when there aren + 1 voters in the electorate is not necessarily equal to the marginal dis-

tribution of τ1 when there aren voters in the electorate. In addition, the choice of a marginal

distribution of each “new” voter’s policy-based preference type is similarly unconstrained. We feel

that this fact illuminates the strength of the proposition. In other words, great regularity is imposed

asymptotically upon individual pivot probabilities inanyAQRE.19

Remark 4 Note that the requirement that voters adopt a Bayesian equilibrium means that voters

vote strategically in multi-candidate elections, Thus, a voter may vote with higher probability

for their a priori second-ranked candidate than for theira priori first-ranked candidate if the pivot

probability for the first-ranked candidate is sufficiently low in relation to that for the second-ranked

candidate.
19We thank a referee for helping us clarify this discussion.
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4 Candidate Equilibrium

This section examines the incentives of candidates competing for votes in a world populated by

voters who play quantal response equilibrium strategies. Making an additional assumption on

preferences, we establish that for a large enough electorate,N , all candidates adopting the social

optimum constitutes a global equilibrium. Furthermore, the global equilibrium is unique for two

candidate elections. The proofs of our results utilize our assumptions that theηij arei.i.d. with full

support and that, for eachj ∈ K0, the distribution of theηij is invariant to the electorate,N .

For a fixed electorate,N , and measureρN onT = ×i∈NTi, let s be any strategy profile for the

voters20 such that for any candidate positions,y ∈ Y , s(y, τ) is a quantal response equilibrium for

the voters, as described in the previous section. Then, as discussed earlier, each candidatej ∈ K

is assumed to maximize

V̂j(y) = V̂j(y, s) = Vj(y)− max
l∈N−{j}

Vl(y). (4.1)

For any admissible type distributionρN , let

x∗(ρN) = argmaxx∈X

∑
i∈N

Eτi
[u (x, τi)] (4.2)

denote theexpected social optimumwith respect toρN . We assume throughout the remainder of

the paper that for eachN andρN , that such a point exists, is unique, and lies in the interior of the

policy space,X.21

Assumption 1 For all N , the expected social optimum,x∗(ρN), exists, is unique, and lies in the

interior of X.

We first show that in general we cannot expect even a local equilibrium to exist atx∗(ρN)

20To be technically correct, since we are consideringN andρN to be variables, we should condition voter and
candidate strategies accordingly. To simplify notation, we omit these parameters.

21We have not explored the possibility of multiple social optima or the possibility that the social optimum lies on
the boundary ofX.
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without some additional restrictions on preferences or the policy space.

Example 1 (Nonexistence of Equilibrium atx∗(ρN).) Consider a simple model of electoral pol-

itics: two candidates, with no abstention, and a one dimensional policy space. Specifically, suppose

thatK = {1, 2}, X = [−1, 1], and letT = {0, 1}, associated with the following (strictly concave)

utility functions:

u(x, 0) = −x− x4 (4.3)

u(x, 1) = x/2− x4. (4.4)

Now assume that in a small neighborhood of zero, the CDF forG(z) is

G(z) = 1/2 + z − z3.22

For some positive integerk, let n = 3k. Finally, let ρN be a measure that puts all mass on the

vectorτ ∗ such that for1 ≤ i ≤ k, τ ∗3i = 0 andτ ∗3i−2 = τ ∗3i−1 = 1. Then

1

n

∑
i

u(x, τ ∗i ) = −x4,

so that the social utility maximizing policy isx∗(ρN) = 0.

To see that 0 is not an equilibrium, suppose that candidate 2 adoptsx 6= 0 againstx∗(ρN) =

0. Using Equations (3.4) and (2.13) and lettingδτ∗i
= δ12

i , the expected vote for candidatei is

22Note this function is symmetric around zero, implying that there exists admissible type distributions that are
consistent with this.
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(omitting a few steps of algebra):

V2(x, 0) =
1

n

∑
i

G(δτ∗i
u(x, τ ∗i ))

=
1

3
[2G(δ1u(x, 1)) + G(δ0u(x, 0))]

=
1

3

(
−δ3

0

(
−x4 − x

)3
+ δ0

(
−x4 − x

)
+ 2

(
−δ3

1

(x

2
− x4

)3

+ δ1

(x

2
− x4

)))
+

1

2

Omitting the straightforward calculations, the first derivative of candidate 3’s expected vote at

x = 0 is equal to
dV ′

2(0, 0)

dx
=

1

3
(δ1 − δ0). (4.5)

Thus, in order forx = 0 to be an equilibrium, it must be the case thatδ1 = δ0. Suppose that this is

the case. Regardless ofδ0 andδ1, the second derivative of candidate 2’s expected vote atx = 0 is

equal to 0. Accordingly, forx = 0 to be an equilibrium, it must be the case that thethird derivative

of candidate 2’s expected vote is negative. However, the third derivative of candidate 2’s expected

vote atx = 0 is equal to

2δ3
0 −

δ3
1

2
. (4.6)

Thus, if δ0 6= δ1, then the first-order necessary condition for an equilibrium at 0, Equation

(4.5), is not satisfied. Ifδ0 = δ1, then the first-order necessary condition is satisfied, but the second

derivative of candidate 2’s expected vote is equal to zero, while the third derivative is nonzero,

implying thatx = 0 is a point of inflection. Accordingly, independent ofδ0 andδ1, x = 0 is not an

equilibrium. 4

To avoid situations analogous to Example 1, we define the following condition on the sequence

of preference distributions as the electorate grows.

Condition (4.7) . There exists an integer̃n such that, for allN with |N | > ñ, there exists a finite
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numberM satisfying the following for eachρN onT :

M > sup
x∈X−{x∗}

−Eτ

[∑
i∈N [u(x, τi)− u(x∗, τi)]

2
]

Eτ

[∑
i∈N [u(x, τi)− u(x∗, τi)]

] . (4.7)

Condition (4.7) amounts to a regularity condition on the sequences of preference profiles we

consider for the remainder of the paper. The preferences in Example 1 do not satisfy Condition

(4.7). The condition requires that, for all electorates exceeding some fixed finite size, there exists

a uniform bound (across all policies and large electorates) on the ratio of the variance and mean of

the voters’ payoffs.

We now provide two sufficient conditions for the satisfaction of Condition (4.7). The lemmas

require some additional notation. LetDm be the set of unit length direction vectors in<m andh

be an arbitrary element ofDm. For any vectorh ∈ Dm, Dhu(x, τ) andD2
hu(x, τ) denote the first

and second directional derivatives ofu, respectively, in the directionh. Finally, for any function

φ, let |∇x|φ denote the magnitude of the gradient ofφ with respect tox, and letHx [φ] denote the

Hessian ofφ with respect tox at (x, τ).

The first lemma establishes that compactness ofX, smoothness ofu(x, τ) for all τ , and uni-

form upper bounds on|∇x|u(x∗(ρN), τ) and the eigenvalues ofHx

[
Eτ [
∑

i∈N u(x∗(ρN), τ)]
]

are

sufficient for the satisfaction of Condition (4.7). The second corollary notes that, when the voters’

types are independently and identically distributed (as in Ledyard [1984], for example), the re-

quirement of a uniform bound on the eigenvalues ofHx

[
Eτ [
∑

i∈N u(x∗(ρN), τ)]
]

can be replaced

with simply requiring thatHx

[
Eτ [
∑

i∈N u(x∗(ρN), τ)]
]

be negative definite.

In addition to providing leverage for the application of this paper’s results in other settings,

Lemma 1 and Corollary 1 are also intended to illustrate the substantive restriction that Condition

(4.7) is intended to impose “eventually” on the sequence of preference distributions. Essentially,

this requirement is that the sensitivity of individual preferences to policy (i.e., |∇x|u(x, τ)) not

be arbitrarily larger than the sensitivity of the sum of individual preferences in a neighborhood of

the social welfare optimum,x∗(ρN). The distinction here is intimately related to the difference
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between (A) strict concavity of a real-valued function and (B) negative definiteness of its Hessian

matrix. Of course, for any function, (B) implies (A), but the converse implication does not hold.

Example 1, above, demonstrated that strict concavity of preferences is not enough to guarantee

equilibrium. Lemma 1 includes Example 1, with the exception that it requires that the eigenvalues

of the Hessian of the sum of individuals’ utility functions have a strictly negative uniform upper

bound atx∗(ρN).23 Quadratic preferences (based on Euclidean distance from an ideal point) over

a compact spaceX would satisfy the necessary assumptions.

Lemma 1 Assume thatX is compact and, for everyτ ∈ T , let u(x, τ) be twice continuously

differentiable inx. If there exists a finiteB > 0 such that, for allN , and allτ ∈ T ,

1. |∇x|Eτ [
∑

i∈N u(x∗(ρN), τ)] ∈ [−B, B] and

2. the maximum eigenvalue ofHx

[
Eτ [
∑

i∈N u(x∗(ρN , τ))]
]

is no greater than−B,

then Condition (4.7) is satisfied.

The next corollary follows immediately from Lemma 1.

Corollary 1 Assume thatX is compact and, for everyτ ∈ T , let u(x, τ) be twice continuously

differentiable inx. If

1. eachρN is an admissible product measures of the formρN = ×i∈Nρ∗, and

2. Hx

[
Eτ [
∑

i∈N u(x∗(ρN), τ)]
]

is negative definite atx∗(ρN),

then Condition (4.7) is satisfied.

DISCUSSION OFLEMMA 1 AND CONDITION (4.7). Before continuing to the main result, it is

worthwhile to comment further on the relationship between Condition (4.7) and Lemma 1. As

illustrated by the proof of Lemma 1 (in the appendix), constructing an example in which the se-

quence of type distributions does not satisfy Lemma 1 butdoessatisfy Condition (4.7) essentially

23For each electorateN , the Hessian in question is evaluated at the social welfare optimum. Thus, the required
uniformity of the upper bound is with respect to the set of all feasible electorates.
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requires that one construct a sequence of type distributions for which the limit of the sequence of

determinants of
[
Hx

[
Eτ [
∑

i∈N u(x∗(ρN , τ))]
]]

is zero. Viewed another way, the uniqueness of the

social welfare optimum is essentially vanishing in such a sequence of electorates.

Finally, if one assumes thatX is compact andu(x, τ) is continuous inx for eachτ ∈ T ,

then by the assumption thatx∗(ρN) is unique, a necessary condition for (4.7) to be violated is the

existence of a subsequence of electoratesN satisfying the following:

lim
x→x∗

−Eτ

[∑
i∈N [u(x, τi)− u(x∗, τi)]

2
]

Eτ

[∑
i∈N [u(x, τi)− u(x∗, τi)]

] = ∞. (4.8)

Accordingly, verifying that Equation (4.8) does not hold for any subsequence of electorates is

sufficient to ensure that Condition (4.7) is satisfied.

4.1 The Main Result

We now present the main result, Theorem 1, which states that the social optimum is a global

equilibrium in large enough electorates so long as preferences are uniformly bounded and the

distribution of types across electorates satisfies Condition (4.7).

Theorem 1 Let u be uniformly bounded, and assume that Condition (4.7) is met. There exists

an integern∗ such that for any set of votersN with |N | = n > n∗, and any admissibleρN on

T = ×i∈NTi, y∗ = (x∗(ρN), . . . , x∗(ρN)) constitutes a global equilibrium under the margin of

expected victory: for anyj ∈ K and yj ∈ X, V̂j(y) = V̂j(yj, y
∗
−j) ≤ V̂j(y

∗), with the weak

inequality becoming strict wheneveryj 6= x∗(ρN).

For the case of two candidates, the equilibrium identified in Theorem 1 is unique.

Corollary 2 If k = 2, then the equilibrium found in Theorem 1 is unique.
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5 Conclusions and Extensions

In this paper we have provided a general framework for probabilistic spatial voting models in large

electorates. In particular, we have extended equilibrium results of Coughlin, Ledyard, Banks and

Duggan, and other researchers to policy spaces of arbitrary finite dimensionality and elections with

both abstention and arbitrary numbers of candidates. In addition, while our model is agnostic as to

the cause of probabilistic choice – the probabilistic choice in a QRE model can be assumed to arise

either as the result of rational behavior under payoff disturbances (as we have modeled it here),

or as the result of boundedly rational behavior – allows for strategic behavior by the voters. In

particular, our model incorporates strategic voting within a probabilistic voting setting.

Of course, regardless of the structure of the underlying framework, the primary question that

any model must confront is that of empirical validity. Does the equilibrium prediction of con-

vergence comport with observed political platforms? While many readers have (and undoubtedly

will) doubt whether policy convergence in observed in real-world elections, adequately testing

this prediction is difficult for (at least) three reasons. First, the issue of whether the platforms

offered by the major political parties differ from one another is debatable on several levels. This

is because the platforms in this paper represent the credible commitments of the parties regarding

which policies they will implement if elected. Thus, differences in announced platforms that will

not translate into differences in policy outcomes are not inconsistent with the convergent equilib-

rium constructed here.24 This is further complicated by the mechanisms of policymaking in real

world democracies. The President of the United States does not set policy unilaterally. Similarly,

party leaders in parliamentary systems generally serve at the pleasure of their party’s MPs. Further

theorizing about electoral competition within richer models of policymaking is necessary before a

definitive conclusion can be reached about the effective amount of divergence between observed

24In addition, our results are based on the assumption that the social welfare maximizing policy is unique. While
we do not feel that this assumption is restrictive when the space of feasible platforms possesses nonempty interior,
it becomes much more restrictive if one allows for finite policy spaces and indifference about certain components of
policy by substantial proportions of the electorate. We have not explored the impact of multiple social welfare optima
on electoral competition within a quantal response voting framework.
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party platforms.

Secondly, the results presented here are asymptotic. Furthermore, the electorate size that is

required to guarantee that the social welfare maximizing policy is a convergent equilibrium in the

electoral competition game depends upon the distribution of payoff disturbances. Speaking some-

what loosely, the required size is decreasing in the variance of this distribution. In other words, as

“expressive” motivations become a larger determinant of individuals’ vote choices, the number of

voters required for the social welfare optimum to be an equilibrium decreases.25 Thus, properly

gauging whether one should expect convergence in electoral competition requires an estimation

of the relative strength of expressive versus instrumental benefits in determining individual vote

choice within a particular polity.

Finally, even if convergence is not observed, our results do not rule out the existence of other

equilibria in races with more than two candidates. On a related note, the motivations of real-world

political parties may include more than plurality maximization. Candidates and/or party leaders

may seek to maximize their own policy-based payoff functions (e.g., Wittman [1983], Duggan and

Fey [2005]). Similarly, minor parties may play out-of-equilibrium strategies for a variety of rea-

sons. Finally, it is entirely plausible that equilibrium platforms are divergent because of nonpolicy

(i.e., “valence”) advantages accruing to one or more of the parties (as examined in Ansolabehere

and Snyder, Jr. [2000], Groseclose [2001], Aragones and Palfrey [2002], Schofield [2004], and

Schofield and Sened [2005]). This type of setting is ruled out in our model by the assumption that

voters’ preferences over the election outcome depend only on the policy chosen by the winning

candidate and not on his or her identity. It should be noted, however, that the predictions of a

“valence” model of electoral politics diverge from those presented here in an interesting way only

if the candidates are assumed to have policy preferences as well, as discussed by Wittman [1983],

Calvert [1985], Duggan and Fey [2005], and others. Accordingly, inclusion of different candidate,

party, and/or voter motivations represent promising avenues for future research.

25This is in accordance with the findings of Lin et al. [1999].
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A Proofs of Numbered Results

Proof of Proposition 1

Proof: This is a game of incomplete information, with action spacesAi = K0 and type spaceTi

for eachi ∈ N . The action spaces are finite, and the distribution of types is equal to (and hence

absolutely continuous with respect to) the product distribution of the marginal distributions of types

across individuals. Thus, we can apply Theorem 1 of Milgrom and Weber [1985] to conclude that

there exists an equilibrium in distributional strategies. Further, since the distribution of playeri’s

types,ρi, is assumed atomless, it follows from Theorem 4 in the same paper that the equilibrium

can be purified to be in pure strategies.

Proof of Proposition 2

To prove Proposition 2, we first need a Lemma.

Lemma 2 Fix ε∗ > 0, and letZn be the set of sequencesZ = (Z1, . . . , Zn) of independent random

vectorsZi ∈ <|K0| of the form

Zi =

{
αj with probabilitypij for j ∈ K0
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whereαj is thejth unit basis vector in<|K0|, andp ∈
(
∆|K0|

)n
satisfiespij ≥ ε∗ for all i, j. For

anyJ ⊆ K, define

BJ = {z ∈ ∆|K0| : zj = zk > zl for all j, k ∈ J , l ∈ K \ J}.

Write Z̄ = 1
n

∑
i Zi, and define

δn∗

J = max
Z∈Zn

Pr[Z̄ ∈ BJ ] (A.1)

Then for anyJ ⊆ K with |J | ≥ 2,

(a) limn→∞ δn∗
J = 0

(b) limn→∞ δn∗

J ‘ /δ
n∗
J = 0 for anyJ ( J ‘

Proof: An elementZ = (Z1, . . . , Zn) ∈ Zn consists of independent, but not identically distributed

random vectors, and is characterized by a vectorp = (p1, . . . , pn), wherepi = (pi0, pi1, . . . , piK) ∈

∆|K0|. The mean ofZi is µi = (pi1, . . . , piK) which consists of all but the first component ofp.

Pick Zn = (Zn
1 , . . . , Zn

n) ∈ Zn to attain the maximum in Equation (A.1). SincePr[Z̄ ∈ BJ ] is

continuous as a function ofp, which ranges over a compact set, it follows that such aδn∗
J andZn

exist. DefineXn
i = Zn

i − µi. Then theXn
i form a triangular array (see Meerschaert and Scheffler

[2001], Definition 3.2.1, p. 52), where each random variableXn
i has zero mean, and for eachn,

theXn
i are independent.

Define Vni to be the variance covariance matrix ofZn
i and letVn = 1

n

∑
i Vni denote the

variance-covariance matrix of the random variable
∑

i X
n
i . By the assumption thatpij > ε∗ for

all j ∈ K0, it follows thatVn is strictly positive definite and hence invertible. LetTn denote the

33



symmetric, positive definite matrix satisfyingT 2
n = V −1

n . Then

δn∗ = Pr[Z̄n ∈ BJ ]

= Pr

 ∑
i Z

n
ij −

∑
i Z

n
ik = 0 for j, k ∈ J , and∑

i Z
n
ij −

∑
i Z

n
il > 0 for j ∈ J, l ∈ K \ J


= Pr

 ∑
i

(
Xn

ij −Xn
ik

)
=
∑

i (pik − pij) for j, k ∈ J , and∑
i

(
Xn

ij −Xn
il

)
>
∑

i (pil − pij) for j ∈ J, l ∈ K \ J


= Pr

 1√
n
Tn

∑
i

(
Xn

ij −Xn
ik

)
= 1√

n
Tn

∑
i (pik − pij) for j, k ∈ J , and

1√
n
Tn

∑
i

(
Xn

ij −Xn
il

)
> 1√

n
Tn

∑
i (pil − pij) for j ∈ J, l ∈ K \ J

 (A.2)

Writing Qn
i for the cumulative distribution function ofXn

i , the random vectors satisfy the

following multivariate Lindeberg condition: For everyε > 0,

lim
n→∞

1

n

∑
i

∫
‖TnXi‖>ε

√
n

‖TnXi‖2 dQn
i (X) = 0 (A.3)

To see this, note thatZn
i is in the simplex∆|K|. Hence,‖Xn

i ‖ ≤ 2. The probability thatZn
ij = 1 is

pij ≥ ε∗. Further, the variances and covariance ofVni are all uniformly bounded away from zero

and one, sincepij ≥ ε∗ for all i, j. Thus, the same will be true ofVn. SoVn will be invertible,

and for anyε, we can pick large enoughn so that‖TnXi‖ < ε
√

n. So each term in the summation

of Equation (A.3) goes to zero withn, which establishes (A.3). It follows by Lindebrgh’s multi-

variate version of the central limit theorem for triangular arrays (see Bhattacharya and Rao [1986],

Corollary 18.2, p 183) that the distribution of1√
n
Tn

∑
i X

n
i converges weakly to a multivariate unit

normal distribution. Hence the probability it falls in a subset of any lower dimensional subspace

goes to zero. Thus, when|J | ≥ 2, the right hand side of Equation (A.2) converges to0 with n.

That is,limn→∞ δn∗ = 0 , proving (a). To prove (b), we note thatBJ ‘ describes a lower dimen-

sional subspace thanBJ . Hence, an argument similar to above shows that for all sequences, the

Pr[Z̄ ∈ BJ ‘ ] goes to zero faster thanPr[Z̄ ∈ BJ ], establishing the result.
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Proof of Proposition 2.

Proof: To prove (a), defineD = 2·(|K|−1)·supx,y,τ [u(x, τ)− u(y, τ)], andε∗ = minj∈K Gj(−1·

D), where1 = (1, . . . , 1) is the unit vector of length|K|. The assumption (p. 10) that, for each

j ∈ K0, the marginal distribution ofηij possesses full support on< and is identical for all voters

i ∈ N and all electoratesN implies thatε∗ > 0. Then from Equation (2.8), using the fact that

δjl
i ≤ 1 for all i, j, k,we have−D ≤ Ū(j; y, s, τi) − Ū(l; y, s, τi) ≤ D for all j, l ∈ K , which

implies that̄si(y, τi)(j) = Gj(Ū
j(y, s, τi)) ≥ Gj(−1 ·D) ≥ ε∗.

Now, given any sequenceτ = (τ1, . . . , τn) with τi ∈ T for all i > 0, define the random variable

Zni(τi) = αj if sn
i (y, (τi, ηi)) = j

SoZni(τi) ∈ Zn, with pij = s̄n
α(y, τα)(j).

Then, letting(0, sn
−i) be the profile where the voteri abstains, and(j, sn

−i) be the profile where

voteri votes for candidatej, we have, from Equation (2.9):

δjl
i (y, sn) =

∑
j,k∈J⊆K

1

|J |

(
PJ(y, (0, s−i); ti) +

PJ(y, (j, s−i); ti)

|J | − 1

)
(A.4)

But, from Equation (2.3), for anyJ ⊆ K,

PJ(y, (0, s−i); ti) = Pr[{t−i ∈ T−i : W (y, s; t) = J}].

ReexpressingPr[{t−i ∈ T−i : W (y, s; t) = J}] asEt−i

[
1[W (y, (0, sn

−i); t−i) = J ]
]
, where1

denotes the indicator function that is equal to 1 if the condition is true and zero otherwise, we
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obtain

Pr[{t−i ∈ T−i : W (y, s; t) = J}] = Et−i

[
1[W (y, (0, sn

−i); t−i) = J ]
]

= Et−i

[
1[
∑
l 6=i

Znl(τl) ∈ BJ ]

]

= Eτ−i
Eη−i

[
1[
∑
l 6=i

Znl(τl) ∈ BJ ]

]
≤ Eτ−i

[δn∗

J ] = δn∗

J , (A.5)

where the inequality follows from the definition ofδn∗
J in Lemma 2. A similar argument shows the

second term in Equation ( A.4) is less than or equal toδn∗
J . Thus,

δjl
i (y, sn) ≤

∑
j,k∈J⊆K

(
1

|J | − 1

)
δn∗

J ≤

( ∑
j,k∈J⊆K

1

|J | − 1

)
δn∗ ,

whereδn∗ = maxJ⊆K δn∗
J By Lemma 2,limn→∞ δn∗ = 0, which proves (a). Sinceδn∗ is indepen-

dent ofi, j, l, y, the convergence is uniform in all arguments.

To show (b), recall the proof of Lemma 2 and note that for eachJ ⊆ K, we can write

PJ(y, (0, s−i); ti) = Et−i

[
1[
∑
l 6=i

Znl(τl) ∈ BJ ]

]
,

and the corresponding expression for voterj:

PJ(y, (0, s−j); ti) = Et−j

[
1[
∑
l 6=j

Znl(τl) ∈ BJ ]

]
.

The right hand sides of these two expressions differ only by theith andjth terms. Thus, by once

again applying Lindebrgh’s multivariate version of the central limit theorem for triangular arrays
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(Bhattacharya and Rao [1986], Corollary 18.2, p 183), it follows that, for eachJ ⊆ K,

lim
n→∞

PJ(y, (0, s−i); ti) = lim
n→∞

Et−i

[
1[
∑
l 6=i

Znl(τl) ∈ BJ ]

]

= lim
n→∞

Et−j

[
1[
∑
l 6=j

Znl(τl) ∈ BJ ]

]
= lim

n→∞
PJ(y, (0, s−j); ti)

since both
∑

l 6=i Znl and
∑

l 6=j Znl converge weakly to the multivariate standard normal distribu-

tion. Thus, all terms in the sum in (A.4) converge. Thus, conclusion (b) follows. An analogous

argument suffices to establish (c).

To show (d), we have from Equation (3.2) that

s̄n
i (y, τi)(j) = Pr[max

l 6=j
Ū(l; y, sn, τi) + ηil ≤ Ū(j; y, sn, τi) + ηij].

Now, in the first part of the proposition we showed all pivot probabilities go to zero uniformly as

n gets large. Hence, using Equation (2.10) we get that asn → ∞, for j, l ∈ K, Ū(l; y, sn, τi) −

Ū(j; y, sn, τi) → 0 uniformly in i, j, l, y, τ . But then we get

lim
n→∞

[s̄n
i (y, τi)(j)− s̄n

i (y, τi)(l)] = Pr[max
α 6=j

ηia − ηij ≤ 0]− Pr[max
a 6=l

ηia − ηil ≤ 0]

= Gj(0)−Gl(0) = 0. (A.6)

Since the convergence of̄U(l; y, sn, τi)− Ū(j; y, sn, τi) is uniform in all arguments, it follows that

the convergence in Equation (A.6) is also.

Proof of Lemma 1

Proof: Define the following function:

mN(x) =
−Eτ

[∑
i∈N [u(x, τi)− u(x∗, τi)]

2
]

Eτ

[∑
i∈N [u(x, τi)− u(x∗, τi)]

] , (A.7)
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To prove the lemma, it is sufficient to show thatlim supn→∞[supx∈X [mN(x)] < ∞.

After normalizing so thatu(x∗(ρN), τ) = 0 for all τ ∈ T ) we can write Equation (A.7) as

mN(x) =
−Eτ [u(x, τ)2]

Eτ [u(x, τ)]

for eachN . Thus, we want to show that

lim sup
n→∞

[
sup
x∈X

−Eτ

[∑
i∈N u(x, τ)2

]
Eτ

[∑
i∈N u(x, τ)

] ] < ∞. (A.8)

By the fact thatu(x, τ) is twice continuously differentiable inx for any τ , we can take any unit

length direction vectorh ∈ Dm and apply L’Hopital’s rule twice, obtaining

mh(x
∗(ρN)) ≡ lim

ε→0
mN(x∗(ρN) + εh) = −

Eτ [
∑

i∈N (Dhu(x∗(ρN), τi))
2]

Eτ [
∑

i∈N D2
hu(x∗(ρN), τi)]

, (A.9)

for eachN . If Condition (4.7) is violated, then Equation (A.9) will be infinite for someN . Ac-

cordingly, satisfaction of Equation (A.8) is equivalent to the following:

lim sup
n→∞

[
sup

h∈Dm

−Eτ

[∑
i∈N (Dhu(x∗(ρN), τi))

2]
Eτ [
∑

i∈N D2
hu(x∗(ρN), τi)]

]
< ∞.

Since

lim sup
n→∞

[
sup

h∈Dm

−Eτ

[∑
i∈N (Dhu(x∗(ρN), τi))

2]
Eτ [
∑

i∈N D2
hu(x∗(ρN), τi)]

]
<

lim supn→∞−Eτ

[∑
i∈N (Dhu(x∗(ρN), τi))

2]
lim infn→∞ Eτ [

∑
i∈N D2

hu(x∗(ρN), τi)]
,

and
lim supn→∞−Eτ

[∑
i∈N (Dhu(x∗(ρN), τi))

2]
lim infn→∞ Eτ [

∑
i∈N D2

hu(x∗(ρN), τi)]
≤ B2

B
= B < ∞,

it follows that Condition (4.7) is satisfied for any finiteM ≥ B, as was to be shown.

Proof of Theorem 1

Proof: For any set of votersN , and admissibleρ, let y = (yj, y
∗
−j), wherey∗l = x∗(ρN) for all
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l 6= j andyj 6= x∗(ρ). We first show that for large enoughn, Vj(y) = Vj(yj, y
∗
−j) ≤ Vj(y

∗).

Given an individuali ∈ N , and using Equations (2.8) and (2.10), the probability of a vote for

candidatej is given by

si(y, τi)(j) = Pr

[
max

l∈K0−{j}
[U(l; y, s, ti)− U(j; y, s, ti)] ≤ 0

]

= Pr

 ηik − ηij ≤ ∆k
i (y, s) · [u(yj, τi)− u(x∗(ρN), τi)]for k ∈ K − {j}

and ηi0 − ηij ≤ ∆j
i (y, s) · [u(yj, τi)− u(x∗(ρ), τi)]


= Gj(∆i(y, s) · [u(yj, τi)− u(x∗(ρ), τi)]) (A.10)

where∆i(y, s) = (∆1
i (y, s), . . . , ∆k

i (y, s)) , ∆l
i(y, s) = 2δlj

i (y, s) +
∑

α 6=j,l δ
αj
i (y, s), for all l ∈

K − {j}, and∆j
i (y, s) =

∑
α 6=j δjα

i (y, s).

Using Equation (2.13) we can express the vote for candidatej as

Vj(y) =
1

n

∑
i∈N

Eτi
[s̄i(y, τi)(j)] (A.11)

Then, from Equation (A.10), we have that

Vj(y) =
1

n

∑
i∈N

Eτi
[Gj(∆i(y, s) · [u(yj, τi)− u(x∗(ρN), τi)])]

Without loss of generality, we can assume utility functions are normalized withu(x∗(ρN), τi) = 0

for all i ∈ N andτi ∈ T . Write ui = u(yj, τi) ∈ R, and∆i = ∆i(y, s) . Then, the above can be

written as:

Vj(y) =
1

n

∑
i∈N

Eτi
[Gj(∆i(y, s) · u(yj, τi))] =

1

n

∑
i∈N

Eτi
[Gj(∆i · ui)] (A.12)

Normalize the∆i by ∆1 in the following manner. Fori ∈ N , let

χi =

(
∆1

i

∆1
1

, . . . ,
∆k

i

∆k
1

)T

,
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and

D =


∆1

1 0 0

0
... 0

0 0 ∆k
1

 .

It is easily shown that∆j
i > 0 for all i ∈ N andj ∈ K, so thatχi is well defined. Then, applying

Taylor’s theorem, we can write

Vj(y)− Vj(y
∗) =

1

n

∑
i∈N

[Eτi
[Gj (D · χi · ui)]− Eτi

[Gj (0)]]

=
1

n

∑
i∈N

Eτi

[
(D · χi · ui)

T G′
j (0) +

1

2
(∆i · ui)

T G′′
j (zi(y)) (∆i · ui)

]
(A.13)

wherezi(y) = α0+(1−α)(0, . . . , ui, 0, . . . , 0) for someα ∈ (0, 1) for eachi ∈ N , and0 denotes

ak dimensional vector of zeros.

Now, by Proposition 2, it follows that for anyε > 0, we can find a valuen∗ such thatmax D <

ε, maxi∈N [max[χi]] < (1 + ε) (where the innermax is with respect to the components ofχi), and

maxi∈N [max[∆i]] < ε for all n > n∗ (where the innermax is with respect to the components of

∆i). Using these facts and continuing the derivation ofVj(y)− Vj(y
∗),

Vj(y)− Vj(y
∗) =

1

n

∑
i∈N

Eτi

[
G′

j (0) D · χi · ui +
1

2
(∆i · ui)

T G′′
j (zi(y)) (∆i · ui)

]
=

1

n
G′

j (0) ·
∑
i∈N

Eτi
[D · χi · ui] +

1

2n

∑
i∈N

Eτi

[
∆T

i ·G′′
j (zi(y)) ·∆i · u2

i

]
≤ k

n
G∗

jε(1 + ε)
∑
i∈N

Eτi
[ui] +

k2

2n
ε2G∗∗

j

∑
i∈N

Eτi

[
u2

i

]
(A.14)

whereG′
j(0) is ak dimensional vector consisting of the gradient ofGj evaluated at0, G′′

j (0) is

a k × k symmetric matrix of second partial derivatives ofGj evaluated at0, G∗
j is the smallest
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element ofG′
j(0), andG∗∗

j is defined as

G∗∗
j = sup

z∈Rk

[G′′
j (z)].

We constructG∗
j as the smallest element ofG′(0) since the first term of Equation (A.14) is nega-

tive, which follows becausey∗ is the unique social welfare maximizer. The construction ofG∗∗
j is

similarly motivated: it is chosen so as to maximize the impact ofEτi
[u2

i ], which is positive. The

final step in the derivation of Equation (A.14) follows from substitution ofkG∗
j for G′

j(0), ε for D,

(1 + ε) for χi, ε for ∆i, andk2G∗∗
j for G′′

j (zi(y)). It should be noted that (1)G∗
j is positive by the

assumption that the distribution ofηij possesses full support for alli andj, (2) G∗∗
j must be finite

sinceGj is a cumulative distribution function (and hence is bounded) and is twice continuously

differentiable, and (3)G∗∗
j is positive because (i) the marginal distribution ofηij possesses full sup-

port for all i, (ii) Gj is bounded between 0 and 1, and (iii)Gj is twice continuously differentiable,

so that it must be strictly convex on some open interval of<. Thus, it follows thatG∗
j/G

∗∗
j > 0.

We now show that there existsn∗ such that for allN with n > n∗, the right-hand side of

Equation (A.14) becomes less than zero for ally 6= x∗(ρN) ∈ X. For a giveny 6= x∗(ρN),

k

n
(1 + ε)εG∗

j

∑
i∈N

Eτi
[ui] +

k2

2n
ε2G∗∗

j

∑
i∈N

Eτi

[
u2

i

]
< 0

k2

2n
ε2G∗∗

j

∑
i∈N

Eτi

[
u2

i

]
< −k

n
(1 + ε)εG∗

j

∑
i∈N

Eτi
[ui]

−
∑

i∈N Eτi
[u2

i ]∑
i∈N Eτi

[ui]
<

2(1 + ε)

kε

G∗
j

G∗∗
j

, (A.15)

The inequality in Equation (A.15) is satisfied for sufficiently smallε > 0. Of course, this is for

a giveny 6= x∗(ρN). In order to satisfy Equation (A.15) for ally 6= x∗(ρN), we must take the

supremum of the left-hand side over ally 6= x∗(ρN). This supremum is defined to be finite and

denoted byM in Condition (4.7),26 resulting in the following requirement for Equation (A.15) to

26If necessary, we can choosen∗ to exceed̃n as defined in the statement of Condition (4.7).
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be satisfied for ally 6= x∗(ρN):

M <
2(1 + ε)

kε

G∗
j

G∗∗
j

. (A.16)

As with Equation (A.15), forε sufficiently small, Equation (A.16) is satisfied. Thus, for any

yj ∈ Yj, Vj(y) = Vj(yj, y
∗
−j) ≤ Vj(y

∗) with strict inequality wheneveryj 6= x∗(ρ).

Next, we show that for somel 6= j, Vl(yj, y
∗
−j) ≥ Vl(y

∗). We pick l ∈ K − {j} for which

δjl(y, s) is maximized. Forz ∈ <|K|, write Gj(z) = Gl(z), whereGl is as defined in Equation

(3.3). In this case, the probability of a vote for candidatel is given by the following:

si(y, τi)(l) = Pr


U (0; y, s, τi)− U(l; y, s, τi) ≤ 0, and

U(j; y, s, τi)− U (l; y, s, τi) ≤ 0, and

maxk∈K−{l,j} [U(k; y, s, τi)− U(l; y, s, τi)] ≤ 0,



= Pr


ηi0 − ηil ≤ ∆l

i(y, s) · [u(x∗(ρN), τi)− u(yα, τi)], and

ηij − ηil ≤ ∆j
i (y, s) · [u(x∗(ρN), τi)− u(yj, τi)], and

ηik − ηil ≤ maxk∈K−{l,j}
(
∆k

i (y, s) · [u(x∗(ρN), τi)− u(yj, τi)
)
]


= Gj(∆i(y, s) · [u(x∗(ρN), τi)− u(yj, τi)])

where∆i(y, s) = (∆1
i (y, s), . . .,∆k

i (y, s)), with ∆l
i(y, s) =

∑
α 6=l δ

lα
i (y, s), ∆j

i (y, s) = 2δlj
i (y, s)+∑

α 6=j,l δ
jα
i (y, s), and∆k

i (y, s) = δjl
i (y, s)− δkj

i (y, s) for all k ∈ K − {l, j}.

Using Equation (2.13) we can express the vote for candidatel as

Vl(y) =
1

n

∑
i∈N

Eτi
[si(y, τi)(l)] =

1

n

∑
i∈N

Eτi
[Gj(∆i(y, s) · [u(x∗(ρN), τi)− u(yj, τi)])] (A.17)

As above, we can assume utility functions are normalized withu(x∗(ρN), τi) = 0 for all i ∈ N
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andτi ∈ T . As before, writeui = u(yj, τi), and∆i = ∆i(y, s). Then, the above can be written as:

Vl(y) =
1

n

∑
i∈N

Eτi
[Gj(−∆i(y, s) · u(yj, τi))] =

1

n

∑
i∈N

Eτi
[Gj(−∆iui)] (A.18)

Note that the above takes exactly the same form as Equation (A.12) above, with the exception

of the negative sign. Consequently, an analogous argument to that in (A.14) establishes that we can

find large enoughn so thatVl(y)−Vl(y
∗) is positive. Thus, for anyyj ∈ Yj, Vl(y) = Vl(yj, y

∗
−j) ≥

Vl(y
∗) with strict inequality wheneveryj 6= x∗(ρN). We have shown thatVj(yj, y

∗
−j) ≤ Vj(y

∗) and

Vl(yj, y
∗
−j) ≥ Vl(y

∗). So V̂j(yj, y
∗
−j) ≤ V̂j(y

∗). So y∗ is a global equilibrium for the objective

functionV̂ .

Proof of Corollary 1

Proof: Suppose there is another equilibrium,y. Then for at least one candidatej, yj 6= x∗(ρN).

Assume W.L.O.G. thatj = 2. By Theorem 1,̂V1(y1, y2) ≥ V̂1(x
∗(ρN), y2) > 0. It follows that

V̂2(y1, y2) < 0. But this cannot be an equilibrium for candidate2, SinceV̂2(y1, x
∗(ρN)) ≥ 0 >

V̂2(y1, y2). This yields a contradiction. Hence the equilibrium is unique.
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