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Abstract

This paper provides a game-theoretic model of probabilistic voting and then examines the
incentives faced by candidates in a spatial model of elections. In our model, voters’ strategies
form aQuantal Response Equilibriu(@RE), which merges strategic voting and probabilistic
behavior. We first show that a QRE in the voting game exists for all elections with a finite
number of candidates, and then proceed to show that, with enough voters and the addition of
a regularity condition on voters’ utilities, a Nash equilibrium profile of platforms exists when
candidates seek to maximize their expected margin of victory. This equilibrium (1) consists
of all candidates converging to the policy that maximizes the expected sum of voters’ utilities,
(2) exists even when voters can abstain, and (3) is unique when there are only 2 candidates.
Journal of Economic Literatur€lassification Numbers: D71, D72, D50, D60.

Keywords: Voting, Probabilistic Voting, Quantal Response Equilibrium.

Proposed Running Head:Voting in Large Elections



1 Introduction

Probabilistic voting is central to both theoreticaind empirica work in political economy. In
particular, prediction of an individual’s voting behavior is inherently imprecise, even with detailed
information about the voter in question. Accordingly, modern empirical studies of voting behavior
universally assume some form of probabilistic voting behavior (in the form of, say, a logit or
probit regression model). Theoretical models of probabilistic voting incorporate this imprecision
into the candidates’ strategic calculations. Probabilistic models of voting yield predictions more
amenable to empirical testing and have been used to examine many topics, including tax policy,
redistribution, and multiparty elections.

Theoretically, models of probabilistic voting are appealing for two reasons. The first is the
link between the model and the empirical means of evaluating its predictions. In particular, proba-
bilistic voting models and nearly all statistical analyses of individual vote choice share a common
starting point: even the most reliable models of behavior are not guaranteed to predict any given in-
dividual's behavioperfectly Probabilistic voting simply incorporates this reality into the strategic
calculations of the individuals within the model. This common methodological link has another
advantage: as opposed to most models of electoral competition in which voters are presumed to
vote in a deterministic fashiohpure strategy electoral equilibria typically exist when voters are
presumed to vote probabilistically. Indeed, one of the most robust characteristics of models of
probabilistic voting is the stability they induce in models of electoral competition, as highlighted
by Coughlin [1992], Banks and Duggan [2004], and Schofield [2004].

This paper extends this research in an important way by allowing for strategic behavior within

a general formulation of probabilistic voting. Specifically, we investigate the Quantal Response

1The probabilistic voting literature began with the work of Hinich [1977], and was initially extended by Coughlin
and Nitzan [1981a,b]. An excellent overview of the early work is contained in Coughlin [1992]. Recent work in the
area includes Lin, Enelow, and Dorussen [1999], Banks and Duggan [2004], Patty [2002, 2006, 2005], and Schofield
[2004].

2Recent examples include Alvarez, Nagler, and Bowler [2000]; Lacy and Burden [1999]; Quinn, Martin, and
Whitford [1999]; and Schofield, Martin, Quinn, and Whitford [1998], to name only a few.

3For an excellent examination of equilibrium existence in spatial electoral competition, see Banks, Duggan, and
Breton [2002].



Equilibrium (see McKelvey and Palfrey [1995, 1998]) within spatial voting games. Quantal Re-
sponse Equilibrium (QRE) is a theory of behavior in games that assumes that individuals get pri-
vately observed random payoff disturbances for each action available to them. A QRE is then
just a Bayesian equilibrium of this game of incomplete information. In a QRE, although voters
adopt pure strategies, from the point of view of an outside observer who does not know the payoff
disturbance, the players choose between strategies probabilistically, choosing actions that yield
higher utility with higher probability than actions that yield lower utility. The probability that one
action is chosen over another is based on the the utility difference between the alternatives. The
fact that probabilistic voting is generated through a Bayesian equilibrium implies that voters may
vote strategically. This is in contrast to most of the models studied in previous theoretical work on
probabilistic voting, which is reviewed in the next section.

As we discuss further below, our results are very similar in spirit to the results obtained by
previous scholars. However, it must be noted that the approach taken here is much more game-
theoretic than in most previous models of probabilistic voting. In particular, our model allows for
voters to take into account the relative likelihoods of different candidates winning the election. As
opposed to classical models of probabilistic behavior, the expected utility of casting a particular
vote is represented correctly. More precisely, in addition to the candidates’ announced platforms
and his or her own policy preferences, the notion of QRE presumes that each voter also considers
the other voters’ strategies when calculating the expected payoff from each possible ballot he or
she may cast. Put another way, each voter’s (probabilistic) voting behavior generated by a QRE is
consistent with that voter being aware that his or her fellow citizens are also voting probabilisti-
cally.

Providing an equilibrium derivation of probabilistic voting in large elections is important for
three reasons. First, as described above, the assumptions that underpin our theory are taken as
given in many empirical analyses of voting behavior in economics and political science. Second,
our results indicate that, in equilibrium, public policy outcomes may be governed by voters’ pref-

erences even when individual voters’ probabilities of being pivotal are infinitesimal. A somewhat



ironic corollary of this fact is that policy outcomes are governed by voters’ policy preferences even
when any given voter’s observed behavior is nearly independent of his or her policy preferences.
Finally, and most importantly, the equilibrium platform location that we characterize has several
appealing features. As previous authors have shown in other probabilistic voting frameworks, there
is an electoral equilibrium in which office-motivated candidates within our model offer identical
platforms at theex antesocial welfare optimum. This policy is appealing for a number of rea-
sons. First, it is often (but not necessarily) “centrist”. Second, and more importantly, this policy
is sensitive to the strengths of individual voters’ preferences. This stands in contrast to the cele-
brated median voter theorem (Black [1948]), in which the candidate equilibrium is insensitive to
these individual strengths. In addition, while the equilibrium we characterize does require that the
electorate be “large enough,’dbes nodepend upon restrictions on (1) the dimensionality of the
policy space (as opposed to most “median voter” results), (2) the shape of individuals’ utility func-
tions (as opposed to median voter results and many classical probabilistic voting models), or (3)
the number of candidates (as opposed to both median voter results and many classical probabilistic

voting models).

1.1 Related Literature

Many other scholars have studied probabilistic voting (see Coughlin [1992] for a review of this
literature). Hinich [1977] showed that the median voter theorem does not always hold in a setting
with probabilistic voting, and he constructed examples in a one dimensional space with equilibria
at other locations. In particular, with quadratic utility functions, he obtained an equilibrium in
two candidate elections at the mean (which is the social welfare optimum with those preferences).
Coughlin and Nitzan [1981a,b] (see also Coughlin [1992], p. 96, Theorem 4.2) proved if voters
have likelihood of voting functions satisfying the Luce axioms over subsets, there is a local equilib-
rium at a point maximizing the social log likelihood. While this work was not explicitly rooted in

a utility maximization framework, subsequent work (see Coughlin [1992], p. 99-100, Corollaries

4.4 and 4.5, Theorem 4.2) shows how it can be so interpreted. Coughlin [1992] also gives various
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conditions on voter likelihood functions or on preferences that result in a global equilibrium. If the
likelihood functions are concave, there is a global equilibrium. In a re-distributional model where
voters have logarithmic utility functions for income, and candidates use a logistic model to estimate
the probability that voters vote for each candidate, there is a global equilibrium at the social utility
maximum (p. 57, Theorem 3.7). See Banks and Duggan [2004] for a summary and generalization
many of these results. All of the above results are for two candidate competition. Lin et al. [1999]
show that one can also obtain equilibrium for multi-candidate elections using probabilistic voting
models. They assume that voters’ preferences are based on the distance between their own ideal
policy and the candidate’s announced platform, with a random utility shock, and obtain local equi-
libria at the social utility maximum. Lin et al. [1999] also find that if the utility shocks have high
enough variance, then the expected vote function for each candidate becomes concave, implying
the existence of a global equilibrium.

In all of the above cited probabilistic voting literature, game theoretic considerations for the
voter are not modeled. Voters are assumed to vote based on their preferences for the candidate
policy positions rather than based on the effect their vote will have on the outcome of the election.
Ledyard [1984] develops a Bayesian model of two candidate competition that does model the
game theoretic considerations for the voter. In his model, voters vote deterministically (there is
no random utility shock to preferences), but they can abstain as well as vote for one of the two
candidates, and the cost of voting is a random variable. Voter types consist of preferences as well
as a cost of voting. He shows that in large elections, if voting costs are non-negative, there is
an equilibrium at the social welfare optimum, which under certain restrictive conditions on the
distribution of costs, is a global equilibrium. Myerson [2000] extends Ledyard’s results in a model
where the number of voters is a Poisson random variable, unknown to the voters. He shows that as
long as the density function of the costs of voting is positive at zero, there is a global equilibrium
in Ledyard’s model as the number of voters becomes large. Ledyard’s model, as well as Myerson’s

generalization of it, require that no voters have negative costs of voting.



1.2 Overview of The Model

In this paper, as in Ledyard [1984], we work in a Bayesian framework, and take into account
the game theoretic considerations for the voters. Further, we consider elections with an arbitrary
number of candidates. Unlike Ledyard [1984], we assume that voters have privately observed
payoff disturbances associated with each action. We do not require concavity of preferences, but
require that preferences are uniformly bounded. We also impose a regularity condition that the
ratio of the variance to expected value of any utility differences is uniformly bounded. Our results
basically extend those of the earlier literature. We find that for large enough electorates there
is a convergent equilibrium at the alternative that maximizes social welfare. For two candidate
contests, the equilibrium is unique. Our equilibrium is global, as in Lin et al. [1999], but in our
model, the conditions for a global equilibrium are satisfied by allowing the number of voters to
grow large rather than by assuming the utility shock becomes large.

In our model, the payoff disturbances are candidate specific and unrelated to the policy posi-
tion of the candidate or to whether the candidate wins or not. In other words, a voter gets some
randomly drawn (and privately observed) payoff for “pulling the lever” for candiglabeterpreted
in this way, this assumption may appear strange. However, it is standardly and uncontroversially
adopted in modern empirical studies of individual vote choice. For example, any “probit” or “logit”
analysis of individual voting behavior is based on the assumption that voters respond to random
utility shocks that are very similar to those considered Rere.

In addition, one interpretation of the payoff disturbances is as a representaopressive
voting (e.g, Buchanan [1954], Tullock [1971], Brennan and Lomasky [1993], Schuessler [2000]).
The individual experiences a subjective payoff from voting for a specific candidate above and
beyond the instrumental objective benefits derived from his or her vote choice. While this inter-

pretation may create the appearance that the voters in our model are irrational, it should be noted

4The principal difference between our approach and recent empirical waykAlvarez and Nagler [1995, 1998],
Schofield et al. [1998], Lacy and Burden [1999], Quinn et al. [1999], Alvarez et al. [2000], and Schofield [2005]) is
that our model assumes that the random utility shocks are independently distributed across the alternatives. Alvarez
and Nagler [2001] and Dow and Endersby [2004] discuss considerations surrounding the choice between different
multinomial discrete choice models of vote choice.



that the payoff disturbance structure utilized within QRE insures that the likelihood that a voter
votes in accordance with his or hex antepreferences increases as theanteutility difference
between his or her choices increases. In other words, a voter is more likely to vote for the can-
didate whose platform maximizes his or her instrumental expected payoffs as the expected utility
gain from doing so increases.

In addition to providing a link between empirical work on voting, expressive theories of vote
choice, and the logic of strategic voting, the main contribution of this paper to the existing work in
the field is to obtain a global candidate equilibrium in large electorates with very little in the way
of assumptions about voter preferences. The main difference between our approach and previous
work on probabilistic voting is the way in which we model the probabilistic voting. As in Ledyard
[1984], by treating the voter decisions as a game, we explicitly include the pivot probability in the
voters’ expected utility calculations. In large electorates, because the probability of being pivotal
goes to zero, the expected utility difference between any two candidates also goes to zero. Thus,
under the QRE assumptions, the voter’s choice is determined mainly by the candidate specific
payoff disturbance. Hence, in aggregate, voters vote less based on policy, and more based on
candidate attributes as the size of the electorate grows. However, even though individuals become
less responsive to policy differences, in large electorates, since the total number of voters is also
getting large, there is still enough policy voting at the aggregate level to force the candidates to the
social optimum. Noting the generic nonexistence of pure strategy equilibria in multidimensional
electoral competition when voters’ behaviors are perfectly determined by objective paygffs (
McKelvey [1976, 1979], McKelvey and Schofield [1987]), the results of this paper can be seen
as demonstrating a stabilizing role of expressive voting in large electoestas when voters are

strategic and respond to differences between the candidates’ proposed platforms



2 The Model

We assume the existence of a finite dimensiguicy space X C R™, whereX is bounded,
and finite setsV and K of votersand candidatesrespectively. Writen = |N| andk = |K| for
the total number of each. We letindicateabstention and write K, = K U {0} for the set of
alternatives i.e, the set of all candidates and abstention.

We assume that for each voterc NV, there is a spacg; of possible characteristics, types
of the voter. The space of all type profiles is denotedlby x,cn7;. We assume thdf; can
be represented as the Cartesian product of two gemnd R ° (so thatT; = 7 x R¥° for all
1 € N). The first of these setg, represents the set of all policy-based determinants of preference,
while the secondit”° represents the consumption (or expressive) determinants of preference over
vote choice. We assume nothing ab@ubther than that it is a complete separable metric space.
\oters’ preferences over the policy space are described by a utility funetionX x 7 — R.
Hence, the utility of votei € N, of typet; = (7;,m;) € T; for the policyr € X is u(z,7;).8
We assume that is uniformly boundedvith respect taX and7, (i.e. there exists & € R such

that for allz € X andr € 7, |u(z,7)| < D).” We also assume that the marginal distribution of

voteri’'s types is an atomless probability measurepver the Borel sets df;, and denote the joint
distribution bypx .2 Finally, we assume that types are independently distribyigd= x;cnp;.

While this assumption is stronger than we need, it greatly clarifies the exposition of the model’s
results’ Note that the assumption of independence does not preclude degenerate distributions of
7;. in such a case, all voters’ policy preferences are common knowledge.

We write n;; to represent thg’” component ofy; . For eachi € N, each;j € K, and each

SWe leave both the topology and metric with whighis endowed implicit, as they play no substantive role in our
analysis.

6This assumption implies that no candidate possesses a “valence” advantagensolabehere and Snyder, Jr.
[2000], Groseclose [2001], Aragones and Palfrey [2002], Schofield [2004], and Schofield and Sened [2005]).

"Uniform boundedness would follow from the traditional assumptionsuhisicontinuous with respect to both of
its arguments and that bofti and7 are compact.

8]t should be noted that the assumption thats atomless does not rule out the possibility that the policy-based
component of votei's type,7;, is common knowledge, as we discuss below.

9All of the paper’s results hold with the weaker assumption thatis absolutely continuous with respect to the
product measure ;¢ y p;.



7, € 7T, all of then,; are assumed to be independently distributed random variables with full
support, each with a cumulative distribution function that is twice continuously differentiable (and
hence atomless). Thus, the assumption ghat atomless does not preclude the possibility that the
marginal distribution ofr; is degenerate (as in the classical spatial model with commonly known
ideal points, for example). Put succinctly, an atonTjns a point(r;, ;). Thus, nonatomicity of
pn is assured by the fact that no such point (for any votes assigned positive measure. Finally,
we assume thay;; is identically distributed for all electoratés, all : € [V, all candidateg € K,
and all; € 7. As we discuss later, it is important to note that eenotimpose any restrictions
on the distribution of; across voters or electorates.

It is important to note and briefly discuss our assumption that the distributign isfidentical
across all possiblelectoratesV.1° This assumption is made for three reasons. First, it is in keeping
with the notion of Quantal Response Equilibrium, as defined by McKelvey and Palfrey [1995,
1998]. Second, many of our results are asymptotic with respect to the size of the electorate,
Accordingly, this assumption ensures that our results do not depend on an unverifiable assumption
about the effect ofi on the distribution of individuals’ idiosyncratic, policy-independent payoff
disturbances. The third reason is more technical, but substantively interpretable: loosely put, our
results for candidate competititnessentially rely on the existence, for each electofateach
voteri € N, and each candidate € K, and every profile of policy platforms, of some strictly
positive uniform lower bound on the probability that votevill vote for candidate: in electorate
N. From a game-theoretic standpoint, this requirement can be interpreted as requiring that every
vote profile can follow from any profile of announced policy platforths.

Any joint distributionp, on T satisfying all of the above conditions is said todmmissible

10we thank a referee for urging us to clarify this assumption.

gpecifically, Lemma 2 and Proposition 2.

12Strictly speaking, we could relax the assumption that the distributiop;dé invariant across all electoraté&
as the discussion indicates, given our assumed uniform boundamnossX and NV, we could essentially impose
a uniform bound on the “upper tail” of the distribution gf; (specifically, the probability thay;; > D, whereD
is the bound on: as stated on p. 9) across all electoratésfor each voteri and candidatg. We omit this added
generality for clarity of presentation, since relaxing this assumption would require us to carry further notation through
our arguments.

10



Let 1 be the common mean of; for j € K, 1o be the mean of,y, andc = 11 — po. Thencis the
expected cost of voting.

We now define a game, in which the candidates each simultaneously choose policy positions in
X, and then after observing the candidate policy positions, the voters vote for a candidate. Thus,
the strategy sét; for candidate € K isY; = X, and the set of strategy profiles for the candidates
ISY = x,;cxY;. The strategy set; for voter: € N is the set of functions; : Y x T; — Ky, and
the set of strategy profiles for the votersSis= x;cx.S;. We will use the notatiorb_; = x5,
ands_; € S_; to represent strategy profiles for all voters except vagterth similar notation for
candidates.

Given a strategy choice = (yi,...,yx) € Y by the candidates, and= (si,...,s,) € S of

the voters, define for anye Ky, andt € T"
1, .. .
Vily, s;t) = — {1 € N si(y, i) = j 1 (2.1)
to be the proportion of the electorate who chose alternatiaad
Wiy, s;t) ={j € K :j e argmax;c,Vi(y,s;t)} (2.2)
to be the set of winners of the election. For any subset of candidates, write
Py(y,s;t;) =Pr[{t_, € T_; : W(y, s;t) = J}. (2.3)

to be the probability of a first place tie among the candiddte8Ve assume that a fair lottery is
used to select a winner when there is a tie, so that we can define voter utilities over any nonempty

subset of candidates, C K, by

vy(y, ) = 1| Zu(yj,ri). (2.4)

|J jeJ

11



The expected payoff to voteérc N of typet;, = (;,7;) given a strategy profiley, s) € Y x S'is

y7 Sat Z PJ ya S t UJ(yv Ti) + T}isi(y,ti) (25)

JCK

In other words, a voter voting for candidate- s;(y, t;) receives the expected utility of the policy

of the winning candidate (the summation term on the right hand side of Equation (2.5)) plus a
payoff disturbance,,, ., that is associated with the votg(y, t;) € K, that the voter makes as
dictated by the strategy profilg, s). We writeU (j; vy, s,t;) = U(y, (4,s_;); t;) for the utility that

voter: of typet; gets from voting for strategy, giveny, ands_; € S_,. Thus, for allj € K,

where
j Y, s, Tz ZPJ Y, ]a —‘ ; ) vJ(yaTl) (27)
JCK

is the expected utility to voterof type ; of voting for candidatg, unconditioned on the payoff
disturbancey,;.
The difference in the expected utility of voting fgrover abstaining can be written in the

form:13

U(j;y,S,Ti) O Y, S, 7—2 25] Yy, s y]aTz) (?ﬂmﬂ)] (28)
k#j

whereé{k(y, s) is thepivot probabilityfor j overk # j:

o= S o (P 0ot DL @29)

JCK:j ke 7] =1

The pivot probability is the probability that by voting fgrather than abstaining, votéchanges

the outcome from a win fok to a win for j. To understand Equation (2.9), note that the first

3petails about the derivation of pivot probabilities in multicandidate elections can be found in McKelvey and
Ordeshook [1972]. In particular, Equation (2.8) follows by reversing the order of summation in the expression for
(E7 — E°) of the Theorem on p. 49.

12



term, P, (y, (0, s_;); t;) is the probability of a tie between a set of candidates/hich includesj

andk, conditional on the other voters’ strategies;, before accounting for voteéis vote (which

is equivalent to the conditional probability of this tie given abstention by vipter= 0).}* The
probability of victory by candidaté is 1/| | in this case. Recalling that the pivot probabiliy

is the probability of changing the election winner frdnto j, conditional on voter voting for
candidate; and the probability of candidatewinning conditional on receiving voteis vote in

this case is 1 (since we are studying plurality rule), then the probability of changing the election
winner fromk tojis1/|J|«1=1/]J|.

The second term is the probability of a tie between the same set of candifi@tessummation
occurs over all subsets of candidates including hathdk), conditional ons_;, after voter’s vote
for candidatej has been included. The probability#sd vote having changed the winner fronto
j is the probability ofc having won if the set of leading candidates was{;j}, whichis1/|J —1]|,
multiplied by the probability ofi being selected frond, which is1/|.J|. Hence, the probability of
having changed the election winner frénto j, conditional onP; (y, (j,s—i); t;), is1/(|J||J —1]|).
Summing over all potential ties yields Equation (2£9).

Note thatcS{’“(y, s) is not necessarily equal ttﬁj(y, s) due to the fact that it includes the pos-
sibility of creating a tie between the two candidates. In particular, notejthppears on the right
hand side of Equation (2.9) bitdoes not, introducing the potential for asymmetry between any
two candidates. Whether this potential for asymmetry is realized for any givenivageends on
s_;. if candidatej (say) is slightly favored over candidateby the voters other than some voier
then it is more likely that votei voting for candidaté: will create a tie betweemp andk than it is

that voter: voting for j will create a tie between the two. Of course, the probability of breaking

14Because we are assuming that the types are independent (p.Qptiyement inP; (y, (0, s_;); t;) is superfluous.
However, as claimed on p. 2, the assumption of independence is made for expositional purposes. If this assumption
is relaxed, then a rational voter should condition on his or her own typehen calculating his or her probability of
casting a pivotal vote. This feature of pivot probabilities is related to recent work on the “swing voter's @igge” (
Austen-Smith and Banks [1996] and Feddersen and Pesendorfer [L996], among many others).

15A potentially confusing aspect of Equation (2.9) is it is pair-specific with respect to candidates, rather than the
more traditional “pivot probability” for any single given candidate. This probability for a votard a candidatg
is given byzk# 55’“. The pair-specific formulation is necessary because different candidates’ platforms may offer

different utilities to votek.
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a tie between the two candidates is independent of the “order” of the candidates. The key fact is

that this is not the only case in which a vote can be pivotal between the two — creating a tie is also

potentially important.

It then follows from Equation (2.8) that the difference in expected utility of votingifover!

Uisy.sm) = Uly,s,m) = (67(5,9) + 07 (9.9)) - [ulys. ) — uly, )

7k s) - luly:. ) —u T;
s 07" (y,8) - [uly;, 72) — ulyn, 7)) (2.10)

kil | 0 (y, s) - [u(ye, i) — u(y, 7))

which, for the case of two candidatds,= {j, [}, reduces to

UGy, s,m) — ULy, s,7) = (531(3/,5) + 5?(3/,5)) Julyy, 1) — ul(y, )] (2.11)

To define the candidate payoff functions, we first defifig, s) to be theexpectegroportion

of the electorate choosing alternatjyvat the profile(y, s):

Vily,5) = B Vil sit)] = B [1{i € N+ si(y, 1) = )] (2.12)

Writing E. to denote expectation with respect to a random variaplee will find it useful to

re-express candidatés expected vote share as

Vir.s) = "Bl € N syt = )]

_ %E B, [1{i € N : si(y, 7m:) = 3]

1 > sy, )0 ] ZETZ Wy, 1) ()] (2.13)

= —E'T
n :
1EN

Using candidate’s expected vote share @f, s), we assume that candidagte payoff is his or

14



hermargin of expected victory7j, which is defined as:

~

Vily:s) =Vjly.s) — max Vi(y,s). (2.14)

Remark 1 Our assumption that is uniformly bounded rules out the occurrence of the “St. Pe-
tersburg paradox.” The paradox occurs if one can construct a sequence of pdligiesy. .,

such thatu(xy, 7;) > 2" for eachk = 1,2, .... Such a voter would not trade the lottery that gives
outcomer;, with probability%k for anypolicy = — the lottery has an unbounded positive expected
payoff. Similarly, if one constructs the sequer{og }icz, . such thaw(zy, ;) < —2F the voter
preferany policy x over the lottery. Thus, the assumption of bounded utility implies that no voter

is subject to the St. Petersburg paradox. The uniformity of the boundwales out cases in which,

as the electorate grows larger, there exists a sequence of voters the limit of whose preferences is

unbounded and hence subject to the paradox.

Remark 2 Our assumptions about the distribution of voter’s typgs, encompass both the clas-
sical spatial voting framework, in which all voter ideal points are known and common knowledge
and models (such as Ledyard [1984]) in which all voter types are independent and drawn indepen-

dently and identically from a common distribution on voter types.

Remark 3 The assumption that thg; are independently and identically distributed with respect
to voters can be viewed as an implicit normalization of utility functions. This is important in
interpreting the main theorem, since the weights that individuals are given in the social utility

function is determined by this normalization.

3 Voter Equilibrium

In this section, we consider the voter equilibrium to the game defined by Equation (2.6) for any
fixed profile of candidate positiong,c Y. Oncey is fixed, the strategy space for the voter reduces

from S; (the set of functions; : Y xT; — K,) to the set of functions of the form(y, -) : T; — Kj.

15



We write S;(y) to designate this conditional strategy space, 8f1d to designate the set of profiles
of conditional strategies.
For any fixedy € Y, we define avoter equilibrium fory to be a pure strategy Bayesian Nash
equilibrium to the voter game defined by Equation (2.6) over the strategy $fig¢e This is
any profile,s € S(y), in which voters always choose an action that maximizes expected utility

conditional on their type. Thus,is a voter equilibrium for if for all : € N, t; € T;, andj € K,

Si(yati) :] ~ U<j7ya37tz) = maXU(l;y787ti)
leKy

~ U(j;yasvTi) +77U = ?El?g)( [U(l;yaSaTi) +77il] (31)

Note that the structure of the payoffs is essentially the same as used in McKelvey and Palfrey
[1998] in defining the agent quantal response equilibrium (AQRE) for extensive form déiBes.
as long as the distribution of the errorg; is admissible, a Bayesian Nash equilibrium to the voter
game is exactly the same as an AQRE to the game. The following proposition assures as that a
voter equilibrium exists for any profile of policy platforms. The proofs for this and all following

numbered results are contained in the appendix.

Proposition 1 For anyy € Y, there exists a voter equilibrium for.

Of particular interest is the average behavior of a votdrtypet;, after integrating out,. For
anys;(y,-) € Si(y), defines;(y, ) : T — Al%0l 17 as the marginal distribution af with respect

ton;: foranyr, € 7 andj € K,

5i(y, )(J) = Pr[m sy, (1i,mi) = j]‘ (3.2)

We have assumed that thg are independently distributed, for &Jl; andr;, and identically

8strictly speaking, our framework is slightly more general than AQRE, since we allow for the distributigntof
have a different mean than the distributiorvgf for j € K.

"Throughout the paper, the notatidr’<| denotes théJ | — 1-dimensional simplex and the notatian’<! denotes
the |K| — 1 dimensional simplex.
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distributed for all; € K. Let H(-) be the cumulative distribution function of, i.e, H(w) =

Prlni; < w;forallj € Ko forw € R, And letG,(-) be the cumulative distribution function

of z € RIXI, wherez; = n; — n;; for 1 € K — {j}, andz; = n;o — n;;. Thus,

GJ(Z) = Pr[nig — Ny S Zj andml — Nij S 2] for all 75 ]]

(3.3)

for any z € RIXI. Under the assumptions we have made omthefor all j € K, both H(w)

andG;(z) are twice continuously differentiable and strictly increasing in all arguments, and every-

where positive. Thus, if is a Bayesian Nash equilibrium, applying Equation (3.1) jfer K,

= Pr[ny—ni; <U(Gsy,s,m) — Ul y,s,m) foralll € Ko — {j}]

U(]a Y, s, Ti) - U(]" Y, s, Ti)

U(]aya SvTi) - U(] - 1ay7 SvTi)

= G U(jiy,s,7) —U(0;y,5,7)

[_](j;y,s,n) - U(] + 1;3/7577-1')

U(jiy,s,m) — Ulksy, 5, 7))

(3.4)

Example: One example of the above is the logit AQRE, where the density functions, of

nio + ¢ andw; = n;; for j € K follow a type one extreme value distribution, in whiéh(w;) =

exp[— exp[—Aw;]]. The independence of;; across: andj implies H(w) = []; H;(w;). This

17



leads to the logistic formul&’;(z) = 1+epr(C+zv)}er# ap0ay - N this case, for fixed, we get:
J J

gi(ya Tz)(j) = Gj (I_J] (ya S, Tl))
1

- 9

1 + exp |:)‘ : (C + U(Oa Y, 377_1') - 171(]7y7 S, TZ))}

+ X (0 - (05,7 = UGGy, 57)])

and in the case of two candidates, whére= {j, I},

1

5i(y, 1)(J) = 4
1+ exp (/\ . (c + 6y, s) - [uly;, ) — U(?/lﬁz‘)]))

+exp (X (67(y, s) + 0" (y, 5)) - [uly;, =) — uly, 7)])

We now show that for fixed candidate positiongjat Y, and forany voter equilibrium,all
pivot probabilities go to zero and the probability of voting for any two candidatés becomes
equal as: — oo. The reason for this result is simple: one’s vote only matters when it is pitfotal.
Thus, one’s vote only matters when the other voters are either evenly split between the two top
candidates or when the vote difference between the two top candidates differs by one vote. As
grows large, this becomes a very low probability event. Thus, in general, one’s vote rarely affects
the outcome of the election. This implies that voters effectively become indifferent with respect to

which candidate they vote for as— oco. We formalize this in the following proposition.

Proposition 2 Fix y € Y, and for each integen, let py be any admissible joint distribution over

x ,T;, and lets” be any AQRE for the voters. Then for aihy € K andi, k > 0,
(@) lim,_.. 6/ (y,s") = 0 and
(b) lim,, o 67'(y, ") /67 (y,s™) = 1

() limy, o0 67 (y, 5") /67 (y, ") = 1

8For more on the logic of pivotal voting, see Myerson and Weber [1993].
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(d) limp, oo [57 (5, 73) () — 57 (y, 7:) (1)] = 0.

Further, in all cases, the convergence is uniform: for any 0, there is ann. such that, for all

ik, g, Ly, pn,s™, ifn > n,,
o 5y, s") <e,

5y, 5 /08 (g, 5") — 1| < &,

5y, 5")/00 (3,5") — 1] < =, and

o [57(y, 7)) — 5 (v, ) ()] <e.

Before continuing, it should be emphasized that Proposition 2 does not impose any require-
ments on the marginal distribution ef for any voteri as the electorate grows. While we have
assumed that the marginal distributions of the payoff disturbanees{(;; } jcx,) are fixed across
all electoratesV, the marginal distribution of voter 1’s type with respectide.g, voter 1’s ideal
point) when there are + 1 voters in the electorate is not necessarily equal to the marginal dis-
tribution of 7 when there arer voters in the electorate. In addition, the choice of a marginal
distribution of each “new” voter’s policy-based preference type is similarly unconstrained. We feel
that this fact illuminates the strength of the proposition. In other words, great regularity is imposed

asymptotically upon individual pivot probabilities amy AQRE 1°

Remark 4 Note that the requirement that voters adopt a Bayesian equilibrium means that voters
vote strategically in multi-candidate elections, Thus, a voter may vote with higher probability
for their a priori second-ranked candidate than for treepriori first-ranked candidate if the pivot
probability for the first-ranked candidate is sufficiently low in relation to that for the second-ranked

candidate.

%We thank a referee for helping us clarify this discussion.
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4 Candidate Equilibrium

This section examines the incentives of candidates competing for votes in a world populated by
voters who play quantal response equilibrium strategies. Making an additional assumption on
preferences, we establish that for a large enough electavatal] candidates adopting the social
optimum constitutes a global equilibrium. Furthermore, the global equilibrium is unique for two
candidate elections. The proofs of our results utilize our assumptions that tres:.i.d. with full
support and that, for eaghe K, the distribution of they,; is invariant to the electoratéy.

For a fixed electoratey, and measurgy onT = x,;cnT;, let s be any strategy profile for the
voterg® such that for any candidate positiopss Y, s(y, 7) is a quantal response equilibrium for
the voters, as described in the previous section. Then, as discussed earlier, each caadidate

is assumed to maximize

~

Vily) = Vily,s) = V;(y) — max Viy). (4.1)

For any admissible type distributigny, let
z*(pN) = argmax,. y Z E.lu(z, ;)] (4.2)
1EN
denote theexpected social optimumith respect tqpy. We assume throughout the remainder of

the paper that for eacN andpy, that such a point exists, is unique, and lies in the interior of the

policy space,X.?!

Assumption 1 For all N, the expected social optimunt;(py), exists, is unique, and lies in the

interior of X.

We first show that in general we cannot expect even a local equilibrium to exis{ at)

20To be technically correct, since we are considerMigand py to be variables, we should condition voter and
candidate strategies accordingly. To simplify notation, we omit these parameters.

2lwe have not explored the possibility of multiple social optima or the possibility that the social optimum lies on
the boundary ofX .

20



without some additional restrictions on preferences or the policy space.

Example 1 (Nonexistence of Equilibrium atz*(py).) Consider a simple model of electoral pol-
itics: two candidates, with no abstention, and a one dimensional policy space. Specifically, suppose
that K = {1,2}, X = [—1,1], and letT = {0, 1}, associated with the following (strictly concave)

utility functions:

u(z,0) = —z—a* (4.3)

u(z,1) = z/2 -2 (4.4)
Now assume that in a small neighborhood of zero, the CDEfal) is
Gz)=1/2+2z— 22

For some positive integek, let n = 3k. Finally, let py be a measure that puts all mass on the

vectorT* such that fonl <i <k, 73, = 0 andr;;_, = 75,_; = 1. Then

1 * 4
E;u([ﬂ,ﬂ») = —1°,

so that the social utility maximizing policy is*(py) = 0.
To see that 0 is not an equilibrium, suppose that candidate 2 adopts againstr*(py) =

0. Using Equations (3.4) and (2.13) and lettifig = 612, the expected vote for candidates

22Note this function is symmetric around zero, implying that there exists admissible type distributions that are
consistent with this.
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(omitting a few steps of algebra):

% 2G(d1u(x, 1)) + G(dou(z, 0))]

- 1 (_53 (—a® — )" 46 (—a —2) +2 (_5§ (L-at) 40 (2 —x4>)) s

Omitting the straightforward calculations, the first derivative of candidate 3's expected vote at
x = 01is equal to
dvy(0,0) 1

= (01— o). (4.5)

Thus, in order forr = 0 to be an equilibrium, it must be the case that §,. Suppose that this is
the case. Regardless ®fandd;, the second derivative of candidate 2's expected voie-=atl is
equal to 0. Accordingly, for: = 0 to be an equilibrium, it must be the case thattthed derivative
of candidate 2's expected vote is negative. However, the third derivative of candidate 2’s expected
vote atr = 0 is equal to
07

205 — 5> (4.6)

Thus, if 69 # 01, then the first-order necessary condition for an equilibrium at 0, Equation
(4.5), is not satisfied. b, = J;, then the first-order necessary condition is satisfied, but the second
derivative of candidate 2's expected vote is equal to zero, while the third derivative is nonzero,
implying thatz = 0 is a point of inflection. Accordingly, independent&@fands;, x = 0 is not an

equilibrium. A

To avoid situations analogous to Example 1, we define the following condition on the sequence
of preference distributions as the electorate grows.

Condition (4.7) . There exists an integer such that, for allV with | V| > 7, there exists a finite
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number)M satisfying the following for eachy onT"

4.7)

s s P [Eienlulem) —u@n)P]
vex—{aty Br [Yien [ulz, 7) — ula®, 71)]]

Condition (4.7) amounts to a regularity condition on the sequences of preference profiles we
consider for the remainder of the paper. The preferences in Example 1 do not satisfy Condition
(4.7). The condition requires that, for all electorates exceeding some fixed finite size, there exists
a uniform bound (across all policies and large electorates) on the ratio of the variance and mean of
the voters’ payoffs.

We now provide two sufficient conditions for the satisfaction of Condition (4.7). The lemmas
require some additional notation. LBt" be the set of unit length direction vectorsifi* andh
be an arbitrary element @™. For any vectohr € D™, Dyu(z,7) and Diu(x, 7) denote the first
and second directional derivativeswfrespectively, in the directioh. Finally, for any function
o, let|V.|¢ denote the magnitude of the gradientgodvith respect tor, and letH,. [¢] denote the
Hessian ofy with respect tar at (x, 7).

The first lemma establishes that compactnes& p§moothness of(x, 7) for all 7, and uni-
form upper bounds ofV,|u(z*(py), 7) and the eigenvalues ¢f, [E, [,y u(z*(pn), 7)]] are
sufficient for the satisfaction of Condition (4.7). The second corollary notes that, when the voters’
types are independently and identically distributed (as in Ledyard [1984], for example), the re-
quirement of a uniform bound on the eigenvaluesipf £, [, u(z*(pn), 7)]] can be replaced
with simply requiring thatl, [E,[>",y u(z*(pn), 7)]] be negative definite.

In addition to providing leverage for the application of this paper’s results in other settings,
Lemma 1 and Corollary 1 are also intended to illustrate the substantive restriction that Condition
(4.7) is intended to impose “eventually” on the sequence of preference distributions. Essentially,
this requirement is that the sensitivity of individual preferences to poliey, (V. |u(z, 7)) not
be arbitrarily larger than the sensitivity of the sum of individual preferences in a neighborhood of

the social welfare optimumg*(py). The distinction here is intimately related to the difference
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between (A) strict concavity of a real-valued function and (B) negative definiteness of its Hessian
matrix. Of course, for any function, (B) implies (A), but the converse implication does not hold.
Example 1, above, demonstrated that strict concavity of preferences is not enough to guarantee
equilibrium. Lemma 1 includes Example 1, with the exception that it requires that the eigenvalues
of the Hessian of the sum of individuals’ utility functions have a strictly negative uniform upper
bound atz*(py).2® Quadratic preferences (based on Euclidean distance from an ideal point) over

a compact spac& would satisfy the necessary assumptions.

Lemma 1 Assume thaiX is compact and, for every € 7, let u(x,7) be twice continuously

differentiable inx. If there exists a finitd3 > 0 such that, for allV, and allT € 7,

1. |VL|E[Y ey ula*(pn),7)] € [~B, B] and

2. the maximum eigenvalueldf [E.[>",_\ u(z*(pn, 7))]] is no greater than- B,
then Condition (4.7) is satisfied.

The next corollary follows immediately from Lemma 1.

Corollary 1 Assume thafl is compact and, for every € 7, letu(z, 7) be twice continuously

differentiable inz. If
1. eachpy is an admissible product measures of the forin= x,cnp*, and
2. H, [E;[>,cn u(z*(pn), 7)]] is negative definite at*(py),

then Condition (4.7) is satisfied.

DiscussiON OFLEMMA 1 AND CONDITION (4.7). Before continuing to the main result, it is
worthwhile to comment further on the relationship between Condition (4.7) and Lemma 1. As
illustrated by the proof of Lemma 1 (in the appendix), constructing an example in which the se-

guence of type distributions does not satisfy Lemma ldogissatisfy Condition (4.7) essentially

23For each electoraté/, the Hessian in question is evaluated at the social welfare optimum. Thus, the required
uniformity of the upper bound is with respect to the set of all feasible electorates.
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requires that one construct a sequence of type distributions for which the limit of the sequence of
determinants ofH, [E,[>",cy u(z*(pn, 7))]]] is zero. Viewed another way, the uniqueness of the
social welfare optimum is essentially vanishing in such a sequence of electorates.

Finally, if one assumes that is compact and.(z, 7) is continuous in: for eachr € 7,
then by the assumption that(py) is unique, a necessary condition for (4.7) to be violated is the

existence of a subsequence of electorafesatisfying the following:

i —E. [ZieN[u(x7Ti) — u(z”, Ti)]2]
Tzt ET [Zz‘eN [U(ZL’, Ti) - u(l‘*’Tz)H

= 0. (4.8)

Accordingly, verifying that Equation (4.8) does not hold for any subsequence of electorates is

sufficient to ensure that Condition (4.7) is satisfied.

4.1 The Main Result

We now present the main result, Theorem 1, which states that the social optimum is a global
equilibrium in large enough electorates so long as preferences are uniformly bounded and the

distribution of types across electorates satisfies Condition (4.7).

Theorem 1 Let « be uniformly bounded, and assume that Condition (4.7) is met. There exists
an integern* such that for any set of voter§ with |N| = n > n*, and any admissible, on

T = XienTi, y* = (2*(pn), ..., 2" (pN)) constitutes a global equilibrium under the margin of
expected victory: for any € K andy; € X, \7j(y) = \A/j(yj,yij) < ‘A/j(y*), with the weak

inequality becoming strict whenever # =*(pn).

For the case of two candidates, the equilibrium identified in Theorem 1 is unique.

Corollary 2 If k£ = 2, then the equilibrium found in Theorem 1 is unique.
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5 Conclusions and Extensions

In this paper we have provided a general framework for probabilistic spatial voting models in large
electorates. In particular, we have extended equilibrium results of Coughlin, Ledyard, Banks and
Duggan, and other researchers to policy spaces of arbitrary finite dimensionality and elections with
both abstention and arbitrary numbers of candidates. In addition, while our model is agnostic as to
the cause of probabilistic choice — the probabilistic choice in a QRE model can be assumed to arise
either as the result of rational behavior under payoff disturbances (as we have modeled it here),
or as the result of boundedly rational behavior — allows for strategic behavior by the voters. In
particular, our model incorporates strategic voting within a probabilistic voting setting.

Of course, regardless of the structure of the underlying framework, the primary question that
any model must confront is that of empirical validity. Does the equilibrium prediction of con-
vergence comport with observed political platforms? While many readers have (and undoubtedly
will) doubt whether policy convergence in observed in real-world elections, adequately testing
this prediction is difficult for (at least) three reasons. First, the issue of whether the platforms
offered by the major political parties differ from one another is debatable on several levels. This
is because the platforms in this paper represent the credible commitments of the parties regarding
which policies they will implement if elected. Thus, differences in announced platforms that will
not translate into differences in policy outcomes are not inconsistent with the convergent equilib-
rium constructed her&. This is further complicated by the mechanisms of policymaking in real
world democracies. The President of the United States does not set policy unilaterally. Similarly,
party leaders in parliamentary systems generally serve at the pleasure of their party’s MPs. Further
theorizing about electoral competition within richer models of policymaking is necessary before a

definitive conclusion can be reached about the effective amount of divergence between observed

24n addition, our results are based on the assumption that the social welfare maximizing policy is unique. While
we do not feel that this assumption is restrictive when the space of feasible platforms possesses nonempty interior,
it becomes much more restrictive if one allows for finite policy spaces and indifference about certain components of
policy by substantial proportions of the electorate. We have not explored the impact of multiple social welfare optima
on electoral competition within a quantal response voting framework.
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party platforms.

Secondly, the results presented here are asymptotic. Furthermore, the electorate size that is
required to guarantee that the social welfare maximizing policy is a convergent equilibrium in the
electoral competition game depends upon the distribution of payoff disturbances. Speaking some-
what loosely, the required size is decreasing in the variance of this distribution. In other words, as
“expressive” motivations become a larger determinant of individuals’ vote choices, the number of
voters required for the social welfare optimum to be an equilibrium decréasgsus, properly
gauging whether one should expect convergence in electoral competition requires an estimation
of the relative strength of expressive versus instrumental benefits in determining individual vote
choice within a particular polity.

Finally, even if convergence is not observed, our results do not rule out the existence of other
equilibria in races with more than two candidates. On a related note, the motivations of real-world
political parties may include more than plurality maximization. Candidates and/or party leaders
may seek to maximize their own policy-based payoff functi@ng,(Wittman [1983], Duggan and
Fey [2005]). Similarly, minor parties may play out-of-equilibrium strategies for a variety of rea-
sons. Finally, it is entirely plausible that equilibrium platforms are divergent because of nonpolicy
(i.e, “valence”) advantages accruing to one or more of the parties (as examined in Ansolabehere
and Snyder, Jr. [2000], Groseclose [2001], Aragones and Palfrey [2002], Schofield [2004], and
Schofield and Sened [2005]). This type of setting is ruled out in our model by the assumption that
voters’ preferences over the election outcome depend only on the policy chosen by the winning
candidate and not on his or her identity. It should be noted, however, that the predictions of a
“valence” model of electoral politics diverge from those presented here in an interesting way only
if the candidates are assumed to have policy preferences as well, as discussed by Wittman [1983],
Calvert [1985], Duggan and Fey [2005], and others. Accordingly, inclusion of different candidate,

party, and/or voter motivations represent promising avenues for future research.

25This is in accordance with the findings of Lin et al. [1999].
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A Proofs of Numbered Results

Proof of Proposition 1

Proof: This is a game of incomplete information, with action spades- K, and type spacé;
for eachi € N. The action spaces are finite, and the distribution of types is equal to (and hence
absolutely continuous with respect to) the product distribution of the marginal distributions of types
across individuals. Thus, we can apply Theorem 1 of Milgrom and Weber [1985] to conclude that
there exists an equilibrium in distributional strategies. Further, since the distribution of pkayer
types,p;, is assumed atomless, it follows from Theorem 4 in the same paper that the equilibrium

can be purified to be in pure strategies. [

Proof of Proposition 2

To prove Proposition 2, we first need a Lemma.

Lemma 2 Fixe* > 0, and letZ™ be the set of sequenc&s= (7, ..., Z,) ofindependent random

vectorsZ; € RI¥ol of the form

Zi = { «; with probability p;; for j € K,
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wherea; is the j unit basis vector ifR/*l, andp € (A/*l)" satisfiegp;; > &* for all i, j. For

anyJ C K, define
By={zc Al o =2 > yforal jke J,lc K\ J}.

Write Z = 1 3. Z;, and define

8 = max Pr[Z € By] (A.1)

Then for anyJ C K with |J| > 2,
(@) lim, .o 6% =0
(b) lim,, .., 8% /67 =0foranyJ C J°

Proof: Anelement” = (Z,,...,Z,) € Z" consists of independent, but not identically distributed
random vectors, and is characterized by a vegter(py, . . ., p,,), wherep; = (pio, pi1, - - -, Pix) €
Aol The mean ofZ; is p; = (pi1, . .., pix) Which consists of all but the first componentof
Pick Z" = (Z»,...,Z") € Z" to attain the maximum in Equation (A.1). SinBe[Z € B,] is
continuous as a function @f which ranges over a compact set, it follows that sudh aand Z"
exist. DefineX = Z" — 1;. Then theX " form a triangular array (see Meerschaert and Scheffler
[2001], Definition 3.2.1, p. 52), where each random variabjehas zero mean, and for eaeh
the X" are independent.

Define V,; to be the variance covariance matrix 8f and letV,, = L3 V,, denote the
variance-covariance matrix of the random variaple X*. By the assumption that;; > ¢* for

all j € K, it follows thatV;, is strictly positive definite and hence invertible. LEf denote the

33



symmetric, positive definite matrix satisfyifigf = V.. Then

5" = Pr[Z" € By]

P > 20—, Z5 =0forj,k € J, and

= r
Y= Zyp>0forjeJle K\J

p > (ing - Xf%) = > . (pixr — pij) forj,k € J,and

= Pr
Zi(XZ_Xﬁ)>Zi(pil—pij) forjeJle K\J
LTS (X — X)) = 2T, (pi — pii) forj, ke J, and

— Pr vn Zz( iJ zk) vn Zz (plc p]) J (A2)
\/LﬁTnZi (X7 —X7) > \/LﬁTnZi (pi —piy) forje Jle K\ J

Writing Q7 for the cumulative distribution function ok*, the random vectors satisfy the

following multivariate Lindeberg condition: For every> 0,
1 2 2 n
i 3 /” o TP dg() =0 (A3)

To see this, note that!" is in the simplexA'%l. Hence,|X'|| < 2. The probability thatZ!} = 1 is
pij > €. Further, the variances and covariancé/pfare all uniformly bounded away from zero
and one, since,;; > ¢* for all 4, j. Thus, the same will be true d&f,. SoV,, will be invertible,
and for anye, we can pick large enoughso that||7,, X;|| < e,/n. So each term in the summation
of Equation (A.3) goes to zero with, which establishes (A.3). It follows by Lindebrgh’s multi-
variate version of the central limit theorem for triangular arrays (see Bhattacharya and Rao [1986],
Corollary 18.2, p 183) that the distribution %Tn >, X7 converges weakly to a multivariate unit
normal distribution. Hence the probability it falls in a subset of any lower dimensional subspace
goes to zero. Thus, whed| > 2, the right hand side of Equation (A.2) converged taith n.
That is,lim,_., 8" = 0, proving (a). To prove (b), we note th&k; describes a lower dimen-
sional subspace thaBi;. Hence, an argument similar to above shows that for all sequences, the

Pr[Z € Bj] goes to zero faster thah[Z € B,], establishing the result. |
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Proof of Proposition 2.

Proof: To prove (a), definé® = 2-(|K|—1)-sup,., , [u(z,7) — u(y, 7)], ande* = min;cx G;(—1-
D), wherel = (1,...,1) is the unit vector of lengthk’|. The assumption (p. 10) that, for each
Jj € Ky, the marginal distribution of;; possesses full support dhand is identical for all voters

1 € N and all electorated/ implies that=* > 0. Then from Equation (2.8), using the fact that
8" < 1forall 4, j, k,we have—D < U(j;y,s,7;) — U(l;y,s,7) < D forall j,I € K , which
implies thats;(y, ;) (j) = G;(U?(y, s, 7)) > Gj(—=1- D) > &*.

Now, given any sequenee= (1, ..., 7,) with 7, € 7 forall i > 0, define the random variable

Zni(Ti) = oy if 57 (y, (1i,m5)) = J

S0 Zyi(1;) € 2", with p;; = 53(y, 7o) (J)-
Then, letting(0, s”,) be the profile where the votémabstains, andj, s”,) be the profile where

voter: votes for candidatg, we have, from Equation (2.9):

j 1 P 3 -7571' 7t7,

Hus)= Y o (Pj<y,<o,s_i>;ti>+ s >) (A4)
G keJCK

But, from Equation (2.3), for any C K,

Pi(y,(0,s_);t;) = Pr[{t_, € T_;: W(y,s;t) = J}|.

Reexpressin@r({t_; € T_; : W(y,s;t) = J}| asE, , [1[W(y, (0,s",);t_;) = J]|, wherel

denotes the indicator function that is equal to 1 if the condition is true and zero otherwise, we
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obtain

Pri{t ;€T :W(y,s;t)=J} = E._, [1[W(y,(0,5",);t) =J]]
= B, |1]>_ Zu(n) € B)]
i
- E, B, . 1[Zzn,(71)eBJ]
< E”[éﬁ*]=5i}fl, (A-5)

where the inequality follows from the definition & in Lemma 2. A similar argument shows the

second term in Equation ( A.4) is less than or equalfo Thus,

} 1 1
gl ny < E n*< E n*

j,keJCK j,keJCK

whered™ = max; cg 0% By Lemma 2]im,, .., 6" = 0, which proves (a). Sinc&" is indepen-
dent ofi, j, [, y, the convergence is uniform in all arguments.

To show (b), recall the proof of Lemma 2 and note that for eaAch K, we can write

Pi(y,(0,s_3);t;) = Ey_, 1[2 Zn(m) € Byjl|,
I#i
and the corresponding expression for vgter
Py(y,(0,5_3);t:) = Ev_, |1 Zu(7) € B)]
I#]

The right hand sides of these two expressions differ only by‘thand j** terms. Thus, by once

again applying Lindebrgh’s multivariate version of the central limit theorem for triangular arrays
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(Bhattacharya and Rao [1986], Corollary 18.2, p 183), it follows that, for dachi,

lim P;(y, (0,s_;);t;) = lim E;_, 1[2 Zn(m) € By

n—oo n—oo
R

= lim E, | [1])_ Zu(n) € B)]

n—oo ?
L #

= lim Ps(y,(0,s5_;);t;)

n—oo

since both) , i Zni and)_, +j Zni CONVErge weakly to the multivariate standard normal distribu-
tion. Thus, all terms in the sum in (A.4) converge. Thus, conclusion (b) follows. An analogous
argument suffices to establish (c).

To show (d), we have from Equation (3.2) that
5 (y, )(4) = PT[I?%X U(lyy, s", 1) +na < U(j;y, s", 1) + mi5.

Now, in the first part of the proposition we showed all pivot probabilities go to zero uniformly as

n gets large. Hence, using Equation (2.10) we get that as oo, for j,1 € K, U(l;y,s",7;) —

U(j;y,s", ) — 0uniformly in, 5,1, y, 7. But then we get

nh_{{.lo 157 (y, 7)(4) — 50 (y, m)(D)] = Pf[fggji?(ma — Ny < 0] — Pr[rggfma —nu < 0]
= Gj(O) — G4(0) = 0. (A.6)

Since the convergence bf(l; y, s", 7;) — U(j; y, s", ;) is uniform in all arguments, it follows that

the convergence in Equation (A.6) is also. [ |
Proof of Lemma 1

Proof: Define the following function:

my(x) = ' f (( ,' (A7)



To prove the lemma, it is sufficient to show that sup,, _, . [sup,cx[mny(z)] < co.

After normalizing so that.(z*(py), 7) = 0 for all = € 7) we can write Equation (A.7) as

for eachN. Thus, we want to show that

_ET ; ) 2
lim sup |sup [ZZEN w,7) }

00. A.8
n—oo reX ET [ZiEN u(‘f,T)} < ( )

By the fact thatu(z, 7) is twice continuously differentiable im for any 7, we can take any unit

length direction vectoh € D™ and apply L'Hopital’s rule twice, obtaining

E [ ien (Dhu(z*(on), 7))°)
E-[>ien Diu(a*(on), )]

ma(2*(pn)) = limmy (2% (pn) +eh) = — (A.9)

for eachV. If Condition (4.7) is violated, then Equation (A.9) will be infinite for soriVe Ac-

cordingly, satisfaction of Equation (A.8) is equivalent to the following:

lim sup

n—oo

sup

-k, [ZieN (Dru(z*(pn), Ti))ﬂ < 00
heDm ET[ZieN D}QLU(CE*(,ON>, Tl)] '

Since

lim sup

n—oo

sup —E- [Yien (Dru(z(pw), Ti))ﬂ limsup, .. —F- [,cn (Dru(*(pn), Ti)ﬂ
nepm B3y Diu(z*(pn), 7)) liminf, o Er[3 e Dhu(a*(pn), 7))

and
limsup,, .. —E; [ZieN (Dpu(z*(pn), Ti))Q}
liminf, .o E-[> ey Diu(x*(pn), ;)]

BQ
S E =B< o0,
it follows that Condition (4.7) is satisfied for any finil¢ > B, as was to be shown. [
Proof of Theorem 1

Proof: For any set of votersV, and admissible, lety = (y;,y";), wherey; = z*(py) for all
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I # j andy; # z*(p). We first show that for large enough V;(y) = V;(y;, y*;) < V;(y*).
Given an individual € N, and using Equations (2.8) and (2.10), the probability of a vote for
candidatej is given by
s, ) (G) = Prj max [Uy,st:) = U(j;y,5,1)] <0
ik — i < Ay, s) - [u(y;, i) — w(@*(pn), 7)lfor k € K — {;}

and nio — 0y < Al(y, s) - [u(y;, 7:) — u(@*(p), 7))
= Gi(Ai(y,s) - [ulyy, =) —u(z™(p), 7)) (A.10)

= Pr

whereA;(y,s) = (Al(y.s),.... Af(y,s)) , Ay, s) = 2067 (y,8) + Yuryy 057 (y, ), forall I €
K —{j}, andAl(y,s) = > ,.; 61y, 5).

Using Equation (2.13) we can express the vote for candidage

= =3 B, [y ) () (A11)

1EN

Then, from Equation (A.10), we have that

ZEﬂ (Ai(y, s) - [uly;, i) — w(z™(pn), )])]

Without loss of generality, we can assume utility functions are normalizedwith(py ), 7;) = 0
foralli € N andr, € T. Writeu; = u(y;, ) € R, andA; = A,(y, s) . Then, the above can be

written as:

%(y) = E Z E, [G](Az<ya ) yj77—l Z A - Uy ] (A.12)

iEN 1€N

Normalize theA; by A, in the following manner. For € N, let

Al ARNT
Xz:(A_%”A_If) )
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and

Al 0 0
D=1 0 0
0 0 AFf

It is easily shown thaﬁf > (Oforalli € N andj € K, so thaty; is well defined. Then, applying

Taylor’s theorem, we can write

Vily) =Vi(y") = — ) [Bn[G;(D-xi-w)] = Er (G (0]

wherez;(y) = a0+ (1 —«)(0,...,u;0,...,0) for somex € (0, 1) for eachi € N, and0 denotes
ak dimensional vector of zeros.

Now, by Proposition 2, it follows that for any> 0, we can find a value* such thainax D <
€, max;ey [max|y;]] < (1 + €) (where the innemax is with respect to the components g, and
max;en[max|[A;]] < eforalln > n* (where the innemax is with respect to the components of

A;). Using these facts and continuing the derivatiogfy) — V;(y*),

V) =) = 2 3 B 60D (8w G (00) (8w

n
1EN

= —G’ )Y E[D-xiu +—ZETL (AT -G (2i(y)) - A - u?]

1EN iEN
< (146> B [u] + —e2G** > B, [uf] (A.14)
1EN €N

where(’(0) is ak dimensional vector consisting of the gradient(of evaluated a0, G(0) is

ak x k symmetric matrix of second partial derivatives@f evaluated a0, G is the smallest
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element ofG’;(0), andG* is defined as

G5 = sup[G)(2)].

2€RFK

We constructz; as the smallest element 6f(0) since the first term of Equation (A.14) is nega-
tive, which follows becausg® is the unique social welfare maximizer. The constructiotpfis
similarly motivated: it is chosen so as to maximize the impadEof?], which is positive. The
final step in the derivation of Equation (A.14) follows from substitutio6f; for G’;(0), € for D,
(1 + €) for x;, e for A;, andk*G5* for G%(z(y)). It should be noted that (1); is positive by the
assumption that the distribution gf; possesses full support for alandj, (2) G5* must be finite
sinceG; is a cumulative distribution function (and hence is bounded) and is twice continuously
differentiable, and (3} is positive because (i) the marginal distributiomgfpossesses full sup-
port for alls, (ii) G, is bounded between 0 and 1, and (@) is twice continuously differentiable,
so that it must be strictly convex on some open intervatoThus, it follows that; /G5* > 0.

We now show that there exists' such that for allN with n > n*, the right-hand side of

Equation (A.14) becomes less than zero fora# +*(pn) € X. For a givery # z*(py),

k . K2 oy
(1+ e)eGj Z E., [ui] + %62Gj Z B, [Uﬂ < 0

n ) .
iEN 1EN

kQ ok k *
%Esz ZEﬂ [Uﬂ < _E(l + E)eGj ZEﬁ [ul]

1EN €N
— Y ien Er 1] 2(1+¢) G} (A15)
ZieN B, [u;] ke G;w

The inequality in Equation (A.15) is satisfied for sufficiently smealt 0. Of course, this is for
a giveny # z*(py). In order to satisfy Equation (A.15) for ajl # z*(pn), we must take the
supremum of the left-hand side over glk4 2*(py). This supremum is defined to be finite and

denoted byM in Condition (4.7)° resulting in the following requirement for Equation (A.15) to

26|f necessary, we can choosé to exceed: as defined in the statement of Condition (4.7).
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be satisfied for ally # =*(pn):

2(1 + e) G*
M o< 2UT9T A.16
S ke G (A.16)

As with Equation (A.15), fore sufficiently small, Equation (A.16) is satisfied. Thus, for any
y; €Y, Vi(y) = V;(y;, y*,) < V;(y*) with strict inequality whenevey; # z*(p).

Next, we show that for some# j, Vi(y;,y*;) > Vi(y*). We pickl € K — {j} for which
§7(y, s) is maximized. For € RI%I, write G;(z) = G,(z), whereG, is as defined in Equation

(3.3). In this case, the probability of a vote for candidategiven by the following:

U <07 Y, s, Ti) - U<l7 Y, s, Ti) S OJ and
Sl(y77-7«)(l) = Pr U(j;y78a7_i) - U(l’yv SvTi) S Oaand

manEK—{l,j} [U<k’ Y, S, Ti) - U(l7 Y, s, TZ)] S 07

Mio = N < Ai(y, ) - [w(z* (px), i) = u(ya, 73)], and

= Pr| n;—na < Aly,s) - [ulz*(pn), ) — u(y;, 7)), and

i Nik — Nt < MaXpeg {15} (Af(y, s) - [u(x*(pn), 7i) — u(ij Tz))]
= Gi(Aiy, s) - [ulz(pn), i) — uly;, 73)])

whereA;(y, s) = (Al(y, s), .. .Ay, ), with Al(y, s) = 3, 61%(y, 5), Al (y, ) = 267 (y, s)+
> arji 010y, s), andAL (y, s) = 67 (y, s) — 617 (y, s) forall k € K — {1, j}.

Using Equation (2.13) we can express the vote for candidade

Vily) = = > B [sily, m)(1)] = % Y B [Gi(Aiy,s) - Tu(a™(pn)s ) — ulys, m)])] - (ALT)

i€EN 1EN

As above, we can assume utility functions are normalized witti(px),7;) = O foralli € N

42



andr; € T'. As before, writeu; = u(y;, 7;), andA; = A;(y, s). Then, the above can be written as:

ZETZ Y, ) - u(y;, 7)) ZETZ (—Aus)] (A.18)

ZEN ZEN

Note that the above takes exactly the same form as Equation (A.12) above, with the exception
of the negative sign. Consequently, an analogous argument to that in (A.14) establishes that we can
find large enough so thatV;(y) — Vi(y*) is positive. Thus, for any; € Y}, Vi(y) = Vi(y;,v*;) >
Vi(y*) with strict inequality whenevey; # z*(py). We have shown that; (y;, y* ;) < V;(y*) and
Vily;,y*;) = Vily*). So @(yj,yij) < Vj(y*). Soy* is a global equilibrium for the objective

function V. [}
Proof of Corollary 1

Proof: Suppose there is another equilibriugn, Then for at least one candidatey; # «*(pn).
Assume W.L.O.G. thaj = 2. By Theorem 1,171(y1,y2) > XA/l(:p*(pN),yg) > (. It follows that
‘72(y1,y2) < 0. But this cannot be an equilibrium for candid@l;eSince‘A/Q(yl,a:*(pN)) >0 >

172(y1, y2). This yields a contradiction. Hence the equilibrium is unique. [ |
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