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IMPACT OF HIGHER-ORDER UNCERTAINTY

JONATHAN WE1NSTEIN AND MUHAMET YILDIZ

Abstract. In some games, the impact of higher-order uncertainty is very

large, implying that present economic theories may be misleading as these

theories assume common knowledge of the type structure after specifying the

first or the second orders of beliefs. Focusing on normal-form games in which

the players' strategy spaces are compact metric spaces, we show that our

key condition, called "global stability under uncertainty," implies a variety

of results to the effect that the impact of higher-order uncertainty is small.

Our central result states that, under global stability, the maximum change in

equilibrium strategies due to changes in players' beliefs at orders higher than

k is exponentially decreasing in k. Therefore, given any need for precision,

we can approximate equilibrium strategies by specifying only finitely many

orders of beliefs.

Key words: higher-order uncertainty, stability, incomplete information,

equilibrium.

JEL Numbers: C72, C73.

1. Introduction

Most economic theories are based on equilibrium analysis of models in which

the players' types (following Harsanyi (1967)) are simply taken as their beliefs

about some underlying uncertainty, such as the marginal cost of a firm or the

value of an object for a buyer, and rarely include a player's beliefs about the

other players' beliefs about the underlying uncertainty. Using such a type struc-

ture implicitly assumes that, conditional on the first-order beliefs about some

Date: First Version: October, 2002; This version: March, 2003.
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2 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

payoff-relevant uncertainty, all of a player's higher-order beliefs are common

knowledge. 1 Even the literature on global games (Carlsson and van Damme

(1993)) and on forecasting others' forecasts (Townsend (1983)) makes this as-

sumption (in a finite-dimensional space of payoff uncertainty) 2

There is now an extensive literature, however, that emphasizes that in some

games higher-order uncertainty has as large an impact on equilibrium behavior

as lower-order uncertainty (see Rubinstein (1989), Kajii and Morris (1998) and

Morris (2002)). As Rubinstein (1989) illustrates, the equilibria of a game in

which a particular piece of information is common knowledge can be profoundly

different from the equilibria of games in which this information is mutually

known only up to some finite order — no matter how many orders we consider.

Most importantly, when the higher-order beliefs have large impact, the present

economic theories may be misleading.
3 This large impact is also disturbing

because it is hard to believe that we would ever know a player's high-order

beliefs with any precision. Without such knowledge, we cannot make accurate

predictions when the impact of higher-order uncertainty is large. Moreover,

assuming that higher-order beliefs correspond to higher-order reasoning, such a

large impact implies that the bounds of rationality are at least as important as

the basic incentives. This would necessitate a change of paradigm for analyzing

these problems. Therefore, it is of fundamental importance to classify games in

which high-order uncertainty has little impact.

In this paper, we provide a broad set of sufficient conditions under which

high-order uncertainty has little impact. Our main sufficient condition is called

"global stability under uncertainty." It states that the variation in each player's

best response is always less than the variation in his beliefs about the others'

Here we use the standard terminology: a player's first-order beliefs are his beliefs about

the underlying uncertainty; his second-order beliefs are roughly his beliefs about the other

players' first-order beliefs, and so on.
2For an illustration of how a model with such an assumption can be deceptive regarding

the impact of higher-order uncertainty, see Section 2.3.

For example, the Coase conjecture may fail when we introduce second-order uncertainty

as shown by Feinberg and Skrzypacz (2002).
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actions (according to the embedding metric defined later), multiplied by a con-

stant b that is less than 1. Under certain continuity assumptions, we show that

global stability under uncertainty is closely related to the standard concept of

global stability of best-response correspondence (under certainty). For games

with one-dimensional strategy spaces, we further provide a simple second-order

condition that guarantees global stability under uncertainty.

We consider finite-person games in which the strategy spaces are compact

metric spaces and there is some payoff-relevant source of uncertainty that comes

from a complete, separable metric space. We work in universal type space, where

the players' types are their entire hierarchy of beliefs about the underlying un-

certainty, allowing players to entertain any coherent set of beliefs. We show

that, when the best responses are always unique, global stability implies that

our game is dominance-solvable.
4
In that case, whenever there exists an equilib-

rium (e.g., under the conditions of Vives (1990)), it is the unique rationalizable

strategy profile. This is important because rationalizability is considered to have

much stronger epistemic support than equilibrium (see Bernheim (1984), Pearce

(1984), Aumann and Brandenburger (1995) and Dekel and Gul (1997)). We

will refer to equilibrium throughout the paper because our results also apply to

games without unique best responses, which might not be dominance-solvable.

We fix a (Bayesian) Nash equilibrium of this game. Note that, since every

type space can be embedded in universal type space, this corresponds to fixing

an equilibrium for all type spaces simultaneously. Let us also fix a player's

beliefs up to a certain order k. Our main result states that, assuming global

stability, the maximum variation in the player's equilibrium strategy, as we vary

all his higher-order beliefs, is at most b
k times a constant. That means that, if

we want to determine the equilibrium behavior within a certain margin of error

(e.g., in order to check the validity of a certain theoretical prediction), we only

need to specify finitely many orders of beliefs, where the required number of

orders k* is a logarithmic function of the desired precision. In particular, the

impact of an erroneous common knowledge assumption at orders higher than k*

See Milgrom and Roberts (1990) for a related result in supermodular games.
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will be less than the specified bound. This is a contribution to the goal set out

by Wilson (1987) of "successive reductions in the base of common knowledge

required to conduct useful analyses of practical problems."

We have so far- focused on the maximum change in a player's equilibrium

strategy due to any change in his higher-order beliefs. We also investigate

the relationship of the change in strategy to the size of the change in beliefs.

Towards this goal, firstly, we define an "embedding metric" on beliefs at each

order (as well as on beliefs about the other players' actions). This metric has

the crucial property of preserving the distances in lower-order beliefs when they

are embedded in the space of higher-order beliefs as point masses, allowing

us to sensibly compare variations at different orders. We ask how much a

player's strategy varies as we vary his belief at some order k and keep all his

other beliefs fixed. (To be able to do this without violating the coherency of

his beliefs, we need an independence assumption about the different orders of

beliefs, an assumption that is satisfied in traditional "independent private value"

environments.) Now we can define the marginal impact of a change in fcth-order

beliefs as the variation in equilibrium strategies divided by the size of this change

in beliefs as measured by our embedding metric. We show that, under global

stability and the independence assumption, the marginal impact of changes

in fcth-order beliefs is at most b
k times a constant. This formalizes our notion

that, under global stability, the marginal impact of higher-order beliefs decreases

exponentially. In that case, precision in lower-order beliefs will be much more

important than the precision in higher-order beliefs in approximating a problem.

It also follows that the players' equilibrium behavior would not change much

if they formed erroneous higher-order beliefs. These assertions may all sound

very natural; we should emphasize that they may easily fail when global stability

does not hold. In particular, with linear best-responses, the marginal impact of

fcth-order beliefs actually increases exponentially in k whenever global stability

does not hold.

It also follows from our assumptions that equilibrium behavior is continu-

ous with respect to the product topology on type space that comes from the
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embedding metric; when the best responses are always unique, the equilibrium

correspondence will be continuous.

Although there is a sizeable literature on the impact of higher-order uncer-

tainty following Rubinstein (1989), the focus of most studies has been relax-

ation of common knowledge and lower semi-continuity of equilibrium in the

worst-case scenarios, such as approximating common knowledge with common

p-beliefs (Monderer and Samet (1989)), robustness of equilibrium against (pos-

sibly substantial) payoff uncertainty with small probability (Fudenberg, Kreps,

and Levine (1988) and Kajii and Morris (1997)), and strong topologies under

which equilibrium is lower semi-continuous uniformly over all games (Monderer

and Samet (1997) and Kajii and Morris (1998)). Most closely related to our

work, Morris (2002) analyzes the impact of higher-order uncertainty within a

model with linear best responses, reaching the conclusion that impact of higher-

order beliefs can be arbitrarily large if we require a uniform bound over all

games. Our focus differs in two ways. Firstly, we measure the impact of higher-

order uncertainty within a single game (dropping the uniformity requirement).

Second, while our sufficient condition implies continuity of best response, most

of these papers analyze matrix games and naturally use the supremum metric

on the mixed strategies, when the best response is generically discontinuous.

The outline of the paper is as follows. In the next section, we illustrate the

relation between stability and dampening impact of higher-order beliefs using

games with linear best responses. In Section 3, we present our basic model with

independence assumption and introduce the embedding metric; we introduce

global stability in Section 4 and provide sufficient conditions and examples for

it in Section 5. Our major results are presented in Section 6 with independence

assumption, and our main result is extended beyond this assumption in Section

7. Section 8 concludes. Some proofs are relegated to the Appendix.

2. Examples with Linear Best Responses

We will now show how dampening impact of higher-order uncertainty is equiv-

alent to stability in games with linear best-response functions, such as the linear
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Cournot duopoly. This illustrates the close relationship between these two con-

cepts which we will establish in a broader context in the later sections.

2.1. Cournot Duopoly. Consider a Cournot duopoly where the inverse-demand

function is given by

P=l-Q

where P is the price of a good and Q = q\ + qo where qt is the supply of firm

i E N = {1,2}. The marginal cost of firm i is denoted by q, so that its payoff

function is

ui (Qi, 12) = qt (1 - <7i
- 92 - (k)

The inverse-demand and payoff functions are common knowledge.

Each firm knows its own marginal cost. If we assumed that the marginal costs

were common knowledge, then we would have the classical complete-information

case. We could also allow incomplete information by assuming that (c\,C2) is

drawn from a commonly known distribution, representing the beliefs of j about

Cj conditional on its own cost Cj. If we further assumed that C\ and C2 were

independently distributed, then this would correspond to the assumption that

the firms' beliefs about the other firms' cost are common knowledge. In this

paper, we do not make such strong informational assumptions; we want to allow

variations in all levels of uncertainty. Firm j has a probability distribution ij

on Cj, representing its beliefs about Cj. Firm i has also a probability distribution

if on ijj representing i's beliefs about j's beliefs about q. In general, firm i has

probability distribution i^ on t
k,~ l

, representing fcth-order beliefs of firm i. Firm

i's type is the entire list t, = {ci,t\,tf, .

.

.).

A strategy profile (gj,^)? where q* : U h-> q*{U) specifies firm z's supply as a

function of its type, is an equilibrium iff q*(U) maximizes the expected payoff

of type tj given the strategy q* of the other firm. That is, equilibrium strategy

q* will maximize the expected payoff

Et [q, (l- ql
- q* (tj) - c,)} = q{ (l - q, - Et [q* (tj)] - a) ,



HIGHER-ORDER UNCERTAINTY 7

where expectation Ei will be determined by its beliefs {tj,tf, .

.

.) at all levels,

as q* (tj) depends on the entire type tj. This implies that

(2-1) 8f =^£L -^te(*i)]-

Of course, we also have

(2-2) q* =^ - \e
3

[q* ft)] -

Substituting (2.2) in (2.1), we can obtain

(2-3) ^= 1~^- 1-^M + \e,EM}-

A further substitution of (2.1) in (2.3) would yield

_ l - a l - E [
Cj

]
l - EjEj N l

r

,

Here ^ [cj] depends only on t}, the beliefs of i about the cost of j, Et Ej [ci\

depends only on i|, the beliefs of i about the beliefs of j about the cost of i,

and EiEjEi [g*] depends on the third and all higher-order beliefs. In general,

n* - 1 ~ Cl l ~ Ei ^ 4- - - EiEi fcl 4-
1
F F F F ^*1

Ql
- —2

4 + g + T^ EjEjEj •Ei [qj \

k times

when k is odd; the last term is ElEJ
Ei Ej[q*]/2

k when k is even. In equilib-

rium, each firm's supply will always be in [0, 1]; hence the absolute value of the

last term is at most l/2 fc

. That is, if we fix the beliefs up to fcth order, we know

the equilibrium strategy q* up to an error of at most l/2 fc
.

This also implies that we can write the equilibrium strategy as a convergent

series

* =
1 -c, _ 1 - Ez [cj] 1 - EjEj [cj] _ 1 - EiEjEi [c-j]

Ql ~
2 4 8 16

where the coefficient of the kih term is l/2 fc

. The significance of this formula is

that the coefficients of expectations decrease exponentially as we go to higher-

order expectations.
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2.2. General Case with Linear Best Responses. The analysis above can

be easily generalized to the case with linear best-response functions

BRi = a, + bEz [sj]

where at
is the underlying parameter for player i (such as (1 — c*) /2) and Sj is

the (unknown) action of player j. Now, the equilibrium strategies satisfy

(2.4) s* = a,
;
+ bEi [a,-] + b

2EtE3
[a,] + + ^E^E, Et \s*]

v
k times

when k is odd. The absolute value of the coefficients will decrease exponentially,

resulting in a convergent infinite series as above, if and only if \b\ < 1.

• Note that this corresponds precisely to the stability of the equilibrium of

the complete information game under the best-response correspondence.

• When the equilibrium is unstable, the impact of higher-order beliefs

in equilibrium is actually higher than that of lower-order beliefs, and

one must know the higher-order beliefs to an impossibly high level of

precision in order to predict behavior.

• Our derivation in this section relies only on the formation of higher-order

expectations—not on the particular type space used. Hence it applies

to any type structure.

• We are only able to use the substitution trick here to derive a simple

formula because of the linearity of the best-response function. In the

general case a player's best response depends on the details of the entire

distribution (as noted by Morris (2002)) and there is no direct relation-

ship between a player's best responses under certainty and uncertainty,

rendering such elementary analysis impossible and requiring the more

sophisticated tools of the following sections.

Note also that Morris and Shin (2003) and Morris (2002) obtain specific

examples with linear best responses similar to ours in this section. They focus

on different issues; Morris and Shin (2003) focus on the role of public information

while Morris (2002) focus on the large impact of higher-order expectations in

the worst-case scenario (when the slope of the best response approaches 1 )

.
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2.3. A Traditional Type Structure. We have ex ante a ~ AT (0,1), and

each player i gets a private signal x, = a + £; where e t
~ N (0, (1 — v) /v)

for some v G (0, 1) and a, e\, and £2 are all independent. For each i, assume

BRi = E [a + bsj\xi] — a, + 6is [sj|xi] for some b > 0, where di = E [a|x,] = vx;.

The above is all common knowledge.

Check that, whenever bv ^ 1, we have a Bayesian Nash equilibrium s* with

VXi
(2.5) 1 l-6u

When bv < 1, equilibrium seems intuitive. When 6u > 1, however, counterin-

tuitively the coefficient of x^ is negative and hence s* is decreasing in x l . Now,

write s* as a series of higher order expectation as in (2.4). Since the fcth-order

expectation of a is EiEjEi . . . Ej [a] = vk
Xi, we have

s* = vxt + bv
2x z + &Vx; -f h b

k
EiEjEi E{ \s*} .

V
fc times

Firstly, notice that when bv > 1, higher-order terms increase exponentially,

yielding a divergent series. This explosively large impact of higher-order uncer-

tainty, however, does not appear in the directly computed formula in (2.5). Sec-

ond, when bv < 1 < 6, we have a convergent series yielding seemingly intuitive

formula in (2.5), despite the fact that marginal contributions of higher-order ex-

pectations increase exponentially. This is only because our single-dimensional

type space forced the variations in higher-order expectations to decrease expo-

nentially,
5 compensating the increases in marginal contributions. But in the

approximated real-life situation, the players will probably have higher-order

doubts about this model. In that case, their higher-order expectations may

vary significantly, leading to dramatically different behavior (under the equi-

librium of more accurate model). In that case, the model's predictions about

the behavior will be misleading, and considerations about higher-order beliefs

within the model will yield a false sense of robustness.

JThis is a general phenomenon (see Samet (1998).)
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3. Model with independence

We consider a game among players N = {1, 2, . .
.

, n}. The source of underly-

ing uncertainty is a payoff-relevant parameter a € A where (A, d) is a compact

Polish space (i.e., a complete and separable metric space), where d is a metric

on set A. (In the Cournot example above a = (01,02) € [0, 1] .) Each player

i has action space Si, which is a compact metric space, and utility function

m : A x S -»• K where S = Hi #•

Notation. Given any list X\,..., Xn of sets, write X-i = Ylj^i %}, x -i =

\X\, . . . , Xi—\, Xi-\-i, . . . ,
Xn ) xz j\—i, anu \Xi, X—i) v-^li •

i Ei—li ^ij 2-i+l j - •
i %n)

•

Likewise, for any family of functions fj : Xj —> Yj, j £ N, we define /_, : X-i —

>

Y-i by /_j (x-i) = (fj {xj))-,v Given any metric space (X,d), write A(X) for

the space of probability distributions on X, suppressing the fixed <r-algebra on

X which at least contains all open sets; when we use product spaces, we will

always use the product cr-algebra. We write di for the metric on Si for each

i G TV and define the metric eLj on 5_ t by

d_i (s_n s'_.) = maxdj {sj,s'
3) .

We now define the players' hierarchy of beliefs about the underlying parame-

ter a. We confine ourself to the belief structures where a player's beliefs are

independent from Ms own beliefs at other orders. We do this because we want

to be able to (i) vary a player's /cth-order beliefs without worrying about the

coherency of his beliefs and (ii) measure the impact of this change on equilib-

rium strategies without worrying about its impact through the changes in the

player's beliefs at other orders. (The independence assumption will be dropped

in our main result.)

We define the beliefs (or type) of a player i inductively. His first order beliefs

(about a) are represented by a probability distribution t\ e Ai = A (A) on A.

His fcth-order beliefs (about i^T 1
) are represented by a probability distribution

t\ e A fc
= A (AJJlJ) on A£I*. The type of a player % is the list

t . = Ul
t
2

f
3 \
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of all these probability distributions. We write T
t for the set of all possible

types ti of player i. We also write T = Yli^i f°r the se^ OI" an type profiles

t. His beliefs are represented by the product measure ij x if x if x • of his

beliefs (t},tf,tf, .

.

.) at each order; that is, given any rifclo^fc C ^ x T_;, the

probability that he assigns to the event {(a, £_,-) G rifclo-^fc} *s FlfcLi ^f POfc-i)-

(Here, of course, we have used the independence assumption.) We write t\tf

for the belief structure obtained by changing t\ to t\ in i; t\vL
i
and ti\tf are

defined similarly.

Example 1. (^Independent private value environment) Take any incomplete-

information game with payoffs Ui (s; #,) for each i where each 9i G Oj is inde-

pendently distributed with some probability distribution Px and privately known

by player i, and this is common knowledge. This game can be embedded in our

framework, by taking A = U r i; t] = 5eit if = if = P_jo£
_1

where P^i = Uj^Pj

and £ : 6-i i—> H,^^., and taking t\ = i\ = o^-i /or eac/i k > 2, where 5X de-

notes the measure that puts probability 1 on {x}.

A strategy of a player i is a measurable mapping

ti i S{ (ti) G Oj,

that determines which action s, (i,) he would choose given his type U. We fix a

Bayesian Nash equilibrium s* = (s\, s^
1 , s*), which must be such that s* (ti)

maximizes the expected value E \ui (a,Si,s*_
l
(i-i)) |ij] of Ui (a, Si, slf) under

the probability distribution i* x if x if x - • at each i, and for each i. The next

result, due to Vives (1990) (see also Milgrom and Roberts (1990)), presents

conditions under which there exists an equilibrium. (This result is proven by

the devise of considering the "agent-normal form game" in which each type is

taken as a new player.) The conditions that are already true in our model are

omitted. The stated conditions in this result will not be assumed in our paper.

Existence Theorem (Vives (1990)). For each i G N, assume that S, is a

compact lattice subset of a Euclidean space, and Ui is bounded, supermodular on

S and upper semi-continuous on Sz
. Then, there exists an equilibrium s*

.
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Embedding metric. Throughout the paper, we will need a measure of the dis-

tances between probability distributions. We therefore introduce the following

metric, which we will call embedding metric. Let (X, d) be any metric space.

Given any fi, /J G A (X), we first write

(3.1) A
MiA,/ = {u G A (X x X) Imarg^ = //, marg2 */ = //}

for the set of all joint probability distributions with marginals /i and [/,', where

margi is the marginal distribution on the z'th copy of X. Now we define our

embedding metric don A (X) by setting

(3.2) d(/j,,n')= inf Ev [d(x 1 ,x2 )} ,

where Ev is the expectation operator with respect to v and (x\, x2 ) is a generic

member of X x X. It is easy to verify that this is an extension in the following

sense: if \i and // are point masses at x and x', respectively, then d(u, fjf) =

d(x,x') -- thus the notational convenience of using d for both metrics. An

equivalent definition is given by

(3.3) d(^//)= inf E[d{YX))
Y~ii,Y'~ij.

where inf is taken over all pairs Y and Y' of X-valued random variables with

distributions \i and fjf, respectively, and coming from the same probability space,

and E is the expectation operator on this space.

The embedding metric has the following property of preserving Lipschitz con-

tinuity; the proof is in the Appendix. Notice in the lemma that /i o f~
l

is the

distribution of / (Y) for a random variable Y ~ [i.

Lemma 1. Let (X,dx) and (Z,dz) be two metric spaces, and f : X —
» Z be

such that

dz (f(x),f(x'))<Xdx (x,x') (Vx,x')

for some X. Let also dx and dz be the embedding metrics on A (X) and A (Z),

respectively. Then,

dz (/i o f-\u' o /- 1

) < \dx (ji, /i') (V/i, a')

.
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4. Stability, Rationalizability, and Higher-order Uncertainty

We are now ready to present our sufficient condition for the dampening impact

of higher order uncertainty: stability of equilibrium under the best-response

function. The global stability of equilibrium is usually defined by the condition

that the variation in the best response is less than the variation in the other

players' strategies under certainty.
6 We will first extend this notion to the best

response function under uncertainty, which is not directly related to the best

response function under certainty.

Best Responses. Given any player i and any probability distribution it on

A x S-i, we write BRj (tt) for the best response of player i when his beliefs

about the underlying uncertainty a and the other players' actions s_ 2 are rep-

resented by tt. Notice that we are taking the best response to be a function

rather than a correspondence. Under certain conditions (e.g., when the strat-

egy spaces are convex and utilities are strictly quasi-concave in own strategy),

the best-response correspondence will indeed be singleton. In general, however,

there may be multiple best responses. In those cases we will assume that the

equilibrium uses a single consistent selection from the best-response correspon-

dence. In the former case, the global stability defined below will be a property

of the game, while in the latter case, it will be a property of equilibrium. Under

the independence assumption, we will have tt — t\ x /i for some t\ G A (A)

and /.i G A(S'_ Z ). In that case, we will write BR^ (t},/J,) instead of BR4 {-k).

When it does not lead to any confusion, we will sometimes suppress some of

the arguments (e.g., write BRi ({i) when t\ is fixed) or write it in the form of

BRt (a, s_,; t
l ) 1

denoting the best response of player i when his type is £;, where

a and s_j are random variables.

Global Stability under uncertainty. We say that global stability under un-

certainty holds iff there exists b G [0, 1) such that, given any i G N, t\ G A (^4),

The usual definition appears to be different. For instance, in two player games we only

need that the product of maximum variations is less than 1. Of course, under this condition,

we could rescale our metrics on each strategy space so that our definition is also satisfied.
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and any /z, // G A (SLj),

d% (BRi (ji) ,
BR

r (//)) < 6d_i (m, A*')

,

where gLj is the embedding metric on A (5_j).

The required condition for global stability is the standard condition for Lip-

schitz continuity (of each BRi with respect to the embedding metric defined

on A (S-i)) with the additional requirement that the constant b, which can be

thought of as an upper bound on the absolute value of the slope, be less than

1. Of course, this is the same as saying that for each i there is a 6, G [0, 1)

satisfying the above condition, since we can take b = max {6j, . .
.

, bn }.

Our first result states that global stability implies that our game is dominance-

solvable. Notice that in our game, a strategy of a player i is a function from his

entire type space to 5,-.

Proposition 1. Assume that each player has single-valued best response corre-

spondence, and assume global stability under uncertainty. Then, there exists at

most one rationalizable strategy profile. If in addition there exists an equilibrium

s* , it is the unique rationalizable strategy profile.

We prove this proposition in the appendix for the general model developed

in Section 7. Our proof essentially shows that the diameter of the space of

surviving strategies, measured as the maximum distance among available ac-

tions to any given type of any player, decreases by a factor of b at each round.

Therefore, in the limit there can be at most one strategy profile. If there is an

equilibrium (e.g., when the conditions in the existence theorem above are sat-

isfied), it will never be eliminated and hence will be the unique rationalizable

strategy profile. The requirement that there is always a unique best response is

not superfluous. For example, for the second-price auction with private values,

there are multiple equilibria, and hence multiple rationalizable strategies, but

the dominant-strategy equilibrium is globally stable and satisfies all of our other

results.

By a well-known result of Milgrom and Roberts (1990), a supermodular game

will be dominance-solvable whenever there is a unique Nash equilibrium. When
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there are two players, this requires a single-crossing property, which we can

guarantee only by a global stability condition on best responses under certainty

(in the region of all possible intersections for each type of each player.) Our

result extends this result beyond supermodular games, by imposing our global

stability condition directly on the best responses under uncertainty.

Global stability is sufficient to guarantee that the impact of higher-order

beliefs on equilibrium is diminishing. This is formally expressed in the next

result. Consider a change in a player i's fcth-order beliefs from t* to if = tfo0
_1

,

so that i believes that the other players' k — 1st order beliefs have changed

according to some mapping
<f>.

The next result states that, in that case, the

change in equilibrium strategy of player i can be at most b times the expected

maximum change in the other players' equilibrium strategies due to the change

in their k — 1st order beliefs, under the original beliefs of i.

Proposition 2. Assume global stability under uncertainty for some b € [0, 1).

Then, given any t, k > 1, i and any measurable function
(f>

: A£~* —» A£~-J ;

dz (s* (u\t* o 0- 1

) , s* (u)) < bE [cL,
(
5 *_

2 (u\<P (t*!
1

)) , s% (t_0) \u]

.

Proof. Let /j, and fjf be the distributions of s*_
i
under t

t
and ti\t% o <j)~

, re-

spectively. Clearly, s*_
l
and s*_

z
o are two random variables coming from the

same state space T_j and have the distributions n and fi', respectively, under t{.

Therefore,

^(tAt^-1),^)) = dipRifafiiBRi^yl))

< inf biE[d-i {s-i ,s'_i )]

< bE[d-i{sU,sU°<t>)\ti\

= bE [<L«
(
sv (t_A0 (^T

1

)) , sU (u)) \u]

.
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5. Sufficient conditions for stability

In this section we present two sets of sufficient conditions for global stability

under uncertainty. Both sets of conditions are closely related to global stability

under certainty. We first present a general class of games where global stability

under uncertainty is closely related to global stability under certainty. This

class is characterized by Assumption la.

Assumption la. Best-response function of player i takes the form of

(5.1) BRi (t
1

i ,fJ,)
= fi (E[gi (a, S-i )])

where expectation is taken with respect to t
l

Q x u 6 A (A x 5_,); fi'.X-^Si and

<7, : A x S-i —> X are two Lipschitz continuous functions defined through some

Banach space (X, dx)\ i.e., there exist a, and P>i
such that di (/,- (x)

, /; (x')) <

OLidx {x, x') and dx (gt {a, s_ 2 ) , gr (a, s'_,)) < /^cL* (s_ 2 , s'_j)

.

Note that the functional form in (5.1) is satisfied whenever u, is analytical

and the optimization problem has an interior solution. (The Taylor expansion

for the first order condition would imply such a functional form, where E [gi\

is the vector of all moments.) The more substantial part of this assumption is

that fi and <& are Lipschitz continuous. Under certainty, Assumption la yields

a best response function

BRj (a, s-i) = fi [gt (a, s_
? )) = hi (a, s-i)

.

Our equilibrium would be stable under the best response correspondence if

di [hi (a, S-i) , hi (a, si,)) < hd-i (s_i,s'_j) at each a for some &,- < 1. The

latter condition is slightly weaker than the following assumption.

Assumption lb. For each i G N, we have 6j = a,/^ < 1.

Proposition 3. Assumptions la and lb imply global stability under uncertainty.

Proof. In the Appendix.

That is, under Assumption la, global stability under uncertainty is implied by

the existence of cti's and /3/s that satisfy Assumption lb. Moreover, whenever

/ or g is the identity, global stability under certainty and uncertainty will be
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equivalent. Hence, there is a close link between these two concepts. Although

Assumption 1 might not be easy to check in general, our next example presents

a general class of games where these conditions can be easily checked.

Example 2. For each i G N,_ take Si = [x, x] for some i,i£l and

Ui (a, Si, s-i) = fa (s^ gx (a, s_ 2 )
- d (sj)

,

where gi : Ax S-i —* R is a continuously differentiate function with \dgz /dsj\ <

j3i for each j ^ i and for some j3 t
G R 7

and <p{
and Cj are twice continuously

differentiable functions with $[ > 0, <f>[
< 0, d

i
> 0, and d[ > 0. Note that

gi is Lipschitz continuous with parameter f3{
with respect to the changes in s_j.

Check that

BRi (tlix)=fi (E[gi (a,s^)])

where ft (z) is x if z < d (x) /<fr' (x), x if z > c(x) /<f/ (x), and it is the unique so-

lution x to the first order condition d (x) /</>' (x) = z otherwise. By the inverse-

function theorem, fi is also Lipschitz continuous with parameter aj = l/j
{

where 7^ = min^^] {^ {
x

) 1$ i
x)) > 0. Therefore, global stability is satisfied

whenever b = maxl6 jv Pi/li < 1-

Focusing on games where the agents' strategy spaces are one-dimensional, our

next result presents a simple sufficient condition for global stability, and hence

for dampening impact of higher order uncertainty, in terms of second derivatives

of the utility functions.

Proposition 4. For each i, assume Si C R, Ui (a, •) is twice-continuously dif-

ferentiable, Ui (a, -, S-i) is strictly concave, d2
Ui/ds

2
is bounded away from zero,

and

<^ maxs \d
2u x (a, s) /dsidsj\

5.2 6
;
=max> .

' / < 1.
a j-£ mms \d2u z

(a, s) /dsf\

Then, we have global stability under uncertainty whenever (i) BF^ {t\,n) is in

the interior of Si for all t\ x /j,, or (ii) Si is convex.

Proof. In the Appendix.



18 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

Example 3. Consider Cournot duopoly with linear inverse-demand function P
and arbitrary cost function Ci with c'/ > (where both P and ct may depend on

parameter a.) Check that \d
2
Ui/dSidsj\ = \P'\ and \d

2
Ui/ds

2
\

= 2\P'\ + c" , so

that

\P'\ 1

bi = max ——

—

< -

,

2\P'\ + d! - 2'

yielding global stability.

6. Equilibrium Impact with Independence

In this section, using the embedding metric defined above, we will put a

natural metric on the type space, which will allow us to compare variations in

different orders of the type space. We will show that, under the previously stated

conditions, variations in higher-order beliefs have a lower impact on equilibrium

behavior than comparable variations in lower-order beliefs.

6.1. Embedding metric on beliefs. We now apply the embedding-metric

construction inductively to define our embedding metric on beliefs of each player

at each order. First, for k = 1, we extend d to At = A (A) by setting

d{t},t$)= inf E[d(a,a')]
a~t\ ,a' ~t\

at each t},t] G Ai and to A"-1
by setting

d^P^m&xd^J.})

at each t
l
_ il i\ i

£ A"-1
. For any k > 1, we extend d to A*, by setting

d{tlt^)= inf E[d(Y,Y')l,

where Y and Y' take values in A£lJ (whose generic member is t^'
1

), and to A
fc

by setting

d(tk_u ik_i
)=m^xd(t';,t^

at each i'L^i'Li G A"-1
.
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6.2. Dampening impact of higher-order uncertainty. Assuming global

stability, we will now find an upper bound for the change in equilibrium strat-

egy caused by a change in any fcth-order beliefs. When we consider comparable

changes (according to d) at all orders k, this bound will be decreasing exponen-

tially in k.

Proposition 5. Assume that, for each i E N , BR4 (•, /i) is Lipschitz continuous

uniformly on \i, i.e.,

(6.1) dt {BPH $;ti),BRi (£;/x)) < ad, $,£) (V/z.^tl)

for some aGl. Assume also global stability under uncertainty for parameter

b. Then, in the model with independence, for any i, U, k, and any i
k

,

(6.2) di {
S*(ti),s*{ti\%))<ab

k-1d(t
k
,i

k
).

The conclusion can be spelled out as follows: Change the beliefs of a player at

some order k while all the other beliefs are fixed. The change in the equilibrium

strategy due to this change in the beliefs is at most an exponentially decreasing

function of k times the change in the beliefs according to our embedding metric.

In other words, the bound of the rate of change in equilibrium strategy as a

function of fcth-order belief is exponentially decreasing in k.

Proof. Firstly, for k = 1, (6.2) is just (6.1). Now assume that (6.2) holds at

some k — 1, i.e., for all j E TV, i, and t
k ~ x

,

(6.3) d
3

(s* (t,-)
,
s* (WH) < «bk

~ 2d (i
kr\tk-i)

.

For any fixed t and i E N, let us define / : A£lJ —> S-i by setting

/
(£ri) = BR_ 7 (Atii

1

)

at each t_~
J E A£~j. Fix U = /,, so that our induction hypothesis (6.3) becomes

d (f (it-
1

) J (t^ 1

)) < ab
k~ 2d{ik-\ik-') (yi

k_-
t
\tk_-^ .

Then, by Lemma 1, for any i
k_1

,

d(t k of-\tk of-i)<abk^d(tk
,t

k
).
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Notice that t
k o f~

x and t
k o /

_1
are the distributions of s*_i under U and U\ik .

Therefore, by global stability,

di {s;(ti),s*(tA^))<bd^or\^or')<abbk-2d{tt^)<abk- 1
d{ttit)

In case we only know a player's beliefs up to kih order and have no knowledge

of his beliefs at higher orders, the following result tells us the accuracy with

which we can predict his equilibrium behavior. This is important because, as

argued in the Introduction, modelers would prefer not to have to specify the

players' higher-order beliefs. This result might be thought to be a corollary to

Proposition 5; it can be obtained simply by adding the effects of changes at

k 4- 1st and all higher orders. The validity of this infinite summation, however,

will be established only when we prove Proposition 9, which is a more general

form of this proposition and only assumes global stability and boundedness of

the strategy space.
7 Notice also that our present result does not refer to any

topology on the type space —although we used our embedding metric to reach

this result.

Proposition 6. Under the assumptions and the notation of Proposition 5, let

Da = maxaja/ e/i d (a, a'). Let t t , U be such that t\ = ^ for all I < k for some

k > 1. Then, in the model with independence.

^(S*(t 2 ),s*(tO) <bkaDA/(l-b).

In certain cases, a modeler might want to predict the equilibrium behavior

within a certain margin of error. For example, checking the validity of certain

qualitative predictions of his theories may only require the knowledge of equi-

librium strategies within a certain margin of error. Proposition 6 tells us how

This infinite summation would give us a proof only if we had continuity at infinity, i.e.,

for any sequence {i^]}^ of types such that t[l] is identical to some fixed type t at the first

/ orders, limj^oo ds
(t [I] ,t) =0. Proposition 9 implies the latter statement as an immediate

corollary.
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many orders of uncertainty he needs to specify. It implies that, given any e >

and any t G T, if we know t up to the order

fRA,
\og(e)-\og(aDA/(l-b))

(6-4) k > —777
,

log (6)

then we can compute the equilibrium strategies up to a maximum error of

e. Notice that the expression on the right-hand side is increasing in b and

decreasing in e.

6.3. Continuity in product topology. Many authors emphasized that equi-

librium strategy is not continuous with respect to the product topology on type

space and introduced stronger topologies, such as the topology of uniform con-

vergence, in order to make the equilibrium strategies continuous (see Monderer

and Samet (1996) and Kajii and Morris (1998)). (The equilibrium correspon-

dence fails to be lower semi-continuous.) These authors require uniform con-

vergence over all games, in essence focusing on the worst-case games, such as

e-mail game which has high dependence on higher order beliefs. Moreover, they

consider the games with discrete strategy-spaces, where the best-response cor-

respondence cannot usually have any continuous selection, which is needed for

global stability. Here we fix a game, and ask whether the equilibrium strategies

of this game are continuous with respect to a product topology. Our next re-

sult answers this question in the affirmative for games satisfying global stability

under uncertainty and for the product topology on type space generated by the

embedding metric on beliefs.

Note that this topology is the topology of pointwise convergence under the

embedding metric. That is, equilibrium strategy s* is continuous with respect

to this topology iff, for any sequence {tz>m }meN of types,

[tm - £ Vfc e N] =» [a* fc,m ) - a; (*)] ,

where convergence of beliefs at each order is according to the embedding metric.

Also, because the space of beliefs is compact under the embedding metric, this
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topology is metrized by the metric <4 (called a Frechet metric) defined by

oo

db (tJ1)=YJ
b
k- l d{tti,

l),

fc=i

where b is any number in (0, 1). Our next result states that, under global sta-

bility, the equilibrium strategy is Lipschitz continuous with respect to a Frechet

metric, and hence it is continuous in the product topology.

Proposition 7. Under the assumptions and the notation of Proposition 5, in

the model with independence, for each i G N , the equilibrium strategy s* of

player i is Lipschitz continuous with respect to d^. In that case, s* is continuous

with respect to the product topology on type space generated by the embedding

metric on beliefs at each order.

Proof. Fix any two types t r and U of player i. For each k G N, define the type

U,k by setting

J
t\ if/<fc,

i k — i -7

I t) otherwise

at each order I. We have

oo oo

dt (s* (t,),s* (U)) < ]T> (s* (ti!k),s* (t
iifc_!)) =Y,di (*J (U,k),s* (tiik\ii))

fc=i fc=i

oo

fc=l

where q is as defined in Proposition 5, proving the result. To see the first in-

equality, note that we can change U to i, by changing t* to t\ one at a time.

Hence, by Proposition 6, for each e > 0, there exists an integer / such that

a\ (s* (U) , s* (t,)) < J2[=1 dx
(5* (ta ) , s* (ti, fc-i))+e < Er=i dt (s* (thk ) , s* (tilfc_i))+

e. Since e is arbitrary, this yields the inequality. The next equality is by defini-

tion; the next inequality Proposition 5, and the last equality is by definition.

Corollary 1. Let S* be the set of Bayesian Nash Equilibria s* that use a con-

sistent selection from best-response correspondence, and define E* by setting
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E* (t) = {s* (t) \s* G 5*} at each t G T. Then, under the assumptions of Propo-

sition 5, E* is lower semi-continuous with respect to the product topology on

type space generated by the embedding metric on beliefs at each order.

Proof. Take any t, any s* (t) G E* (t), and sequence t (n) that converges to t

in the topology above. By definition s* (t) is the value of a Bayesian Nash

equilibrium s* at t. Then, by Proposition 7, s* (t (n)) G E* (t (n)) converges to

s* (i).

7. Without independence

We will now define the universal type space without imposing independence.

We will show that our main result, namely Proposition 6, generalizes to this

structure.

General model (without independence). The independence assumption

was built into our previous model to allow for simpler notation and a clearer

consideration of the effects of changing beliefs at a single order. In order to allow

for the general case, we will need to consider the usual (and more complicated)

construction of the universal type space by Brandenburger and Dekel (1993), a

variant of an earlier construction by Mertens and Zamir (1985). The meanings

of /cth-order beliefs in our two models are not parallel, as in the new model the

/cth-order belief will contain information about all lower orders as well. We will

define our types using the auxiliary sequence {Xk} of sets defined inductively

by Xq = A and Xk = [A (X)~-i)}
n
x Xk-i for each k > 0. We endow each Xk

with the weak topology and the cr-algebra generated by this topology, yielding

a standard separable Borel space as A is a Polish space. A player z's first or-

der beliefs are represented by a probability distribution r\ on Xo, second order

beliefs (about all players' first order beliefs and the underlying uncertainty) are

represented by a probability distribution r? on X\, etc. Therefore, a type r z of

a player i is a member of I7fcli ^ P^fc-i)- Since a player's Mh-order beliefs now

contain information about his lower order beliefs, we need the usual coherence

requirements. We write T for the subset of (Ofc^=i A PGt-i))" in which it is

common knowledge that the players' beliefs are coherent, i.e., the players know
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their own beliefs and their marginals from different orders agree. We will use

the variables t, f G T as generic type profiles. The rest of the model in Section

3 is unchanged.

Dropping the independence assumption causes two complications. First, since

a player's higher-order beliefs contain information about his lower-order beliefs,

we can no longer vary a player's belief at order k and keep his beliefs at order

I > k constant —as in Proposition 5— without violating the coherency require-

ments. Instead, we allow all the beliefs at all orders higher than k to vary (as

in Proposition 6). Second, since the other players' actions are now (possibly)

perceived to be correlated with the underlying uncertainty, we need to extend

our definition of global stability to allow such correlation. To do this, let d-i be

any metric on A x S^ t such that

(7.1) d-i ((a,s-i), (a,s'_,)) = d_
?:
(s-^s'^)

for each a G A and s_,, s'_
r
G 5-,;, so that the metric cL; on <SL, is preserved when

S-i is embedded in A x 5L,-. Extend also d-i to A (A x S-i) using the embedding

metric as before. We are able to leave the metric d-i only partially specified

since global stability is related only to responsiveness of the best response with

respect to the changes in the other players' strategies. Thus we will be able to

prove that as long as the inequality below is satified for some d-i our results

will hold.

Global Stability under uncertainty in general model. We say that global

stability under uncertainty holds iff there exist some b G [0, 1) and some embed-

ding metric d-i on A (A x S-i) satifying (7.1) and such that, given any i G N
and any n, tt' G A (A x S-i) with marg^ = marg^', we have

(7.2) d, (BR (tt) , BRt (tt')) < bd. t (tt, tt') .

The next proposition extends Propositions 3 and 4 to the present set up. One

can also check that Example 2 of Section 5 remains valid under the new defini-

tion, while we will have global stability under the new definition in Example 3

whenever max, \P'\ < 2 min„ \P'\.
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Proposition 8. (a) Assumptions la and lb imply global stability under un-

certainty, (b) For each i, assume St C K, U{ (a, •) is twice-continuously differ-

entiable, Ui(a, -,s_j) is strictly concave, d2
Ui/ds

2
is bounded away from zero,

and

_ v-^ maxS)a \d
2
Ui (a, s) /dsidsj\

2-J min^ld2^ (a,s)/ds 2
\

(
7 - 3

)
bi = 2_J 31 i3 3lw3r < L

27ien
7
we /iaue global stability under uncertainty whenever (i) BRi (tt) is in the

interior of Si for all tt, or (ii) Si is convex.

Proof. In the Appendix.

We are now ready to prove our main result, which extends Proposition 6 to

our general model.

Proposition 9. Let D$ = maxiejy swpvw,e&,Ay.s ^ di (BRi (tt)
, BRi (tt')) G M.

Let also r,f € T be such that r\ = f\ for all I < k for some k > 0. Assume

global stability under uncertainty for parameter b. Then, in the general model,

(7-4) ditfWtsKftf^tfDs.

Notice that our result assumes only global stability and boundedness of the

strategy space. Under these two assumptions we reach the conclusion that, if we

know the beliefs up to a certain order k, we can know the equilibrium play within

a bound of error that is an exponentially decreasing function of k, bounding the

maximum impact all the higher-order beliefs can have on equilibrium. Our

result does not refer to any topology on the type space. Finally, Ds is chosen

as a bound on the variations in equilibrium outcomes. If there are other known

bounds on the equilibrium outcomes (perhaps due to some support restrictions)

,

then we can replace Ds with these bounds. In the remainder of the section we

prove our proposition. We start with the following technical lemma.

Lemma 2. Let (X, Ex), (Y,Ey)
;
(Z,T,Z ) be separable standard Borel spaces,

and endow XxY,YxZ,XxZ, and X xY x Z with the a-algebras generated

by the corresponding product topologies. Let probability measures P and P' on

X x Y and X x Z, respectively, be such that margxP = margx P'. Then, there
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exists a probability measure P on X x Y x Z such that margXxYP = P and

margXxZP = P'.

Proof. In the Appendix.

Proof of Proposition 9. Define Q, = A x T to be the universal state space. This

is the subset of the larger space Q = A x (Jlfcli A (Xk-i))
n

in which coherency

is common knowledge. By Brandenburger and Dekel (1993), Q, is a Polish space,

yielding a standard separable Borel space, and for every t = (ti, . .
.

, rn ) G T
and for every i E N, there exists a probability distribution kt . G A (Q) such

that

(7.5) maigXki KTi =T^ (Vfc),

and kTi (fi) = 1. Let

: (a,r) h^ (a, s!_, (t_,))
,

and write

ttTi
= kTj o /T 1 6 A (.4 x 5_ t )

for the joint distribution of the underlying uncertainty and the other players'

actions induced by r,. Notice that s* (t$) = BRi (7rrJ.

We will use induction on fc. For A; = 0, this is true by definition. Fix any

k > 0, and assume that the result is true for k — 1. Take any r and r as in the

hypothesis. We have

4(s:(Ti)>Sifo)) = diiBRii-K^^RiiTVr,))

< 6d_t-(7rTt.,7r^)

(7.6) = 6 inf Ev [d_ { ((a, s_0
,
(a', aL,))]

,

^t^TTx - 'T=.
I T

]

where the inequality is due to global stability and A 7Tt ^- is defined by (3.1).

The rest of the proof is devoted to constructing ai/6 A 1Tt )7r . such that, under

the induction hypothesis,

(7.7) Ev [(!_, ((o,s_0
,
(a'.s^).)] < ft*"

1
/^-
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Combining (7.6) and (7.7), we obtain (7.4).

We will decompose ClasCl = AxLxH where

k— 1 oo

(7.8) L = 11 (A (AVj))
71

and H = \{ (A {X
l
. l ))

n

1=1 l=k

are the spaces of lower and higher-order beliefs. For k = 1, we use the convention

that L is a singleton set, and I G L can simply be ignored in the following

analysis for that case. Note that Xk-i = A x L.

By (7.5), we have probability distributions nTi and n^
i
on Cl such that

raargx,^^ = r\ = t\ = maigXki Kfi ,

where the second equality is by our hypothesis. Since we have separable stan-

dard Borel spaces, by Lemma 2, there exists a G A (Xk-i x H x H) such that

the marginals of a on the cross product of A
fc
_ x with the first and second copies

of H are

marg12 o" = nTi and marg13 (j = Kf
t ,

respectively.

Now, consider u = a o 7
-1

G A [(A x S-i) ) where

(7.9) 7 : (a, I, hu h2 ) .-> (/3 (a, /,M ,
/? (a, /, /i2 ))

.

Notice that the marginal of u on the first copy of A x S- z is

margjZ/ = margj (a o 7
_1

)
= (marg12a) o (3~ l = kTi

o [3~ 1 = 7rTi ,

and similarly marg2f = 'K-
i

. Therefore, by definition, v G A„.T j7T
- .

We now prove (7.7). Write I = 7 (Afc-i x H x H) and take any ((a, s_,-)
,
(a', s'_

2 )) G

/. By (7.9), we have a = a', and hence by (7.1),

(7.10) d-i {(a, s_ ? ) ,
(a', si,-)) = rf_, (*_-, s'_,) .

But by (7.9), s_, = s!_, (f _,) and s'_j = sl
f
(t_j) for some type profiles f = (I, hi)

and f = (l,h2 ), which agree up to the order k — 1 by (7.8). Then, by the

induction hypothesis,

(7.11) d^^s'^Kb^Ds.
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Combining (7.10) and (7.11), we obtain

(7.12) d_ t ((a, s_ 2 ) ,
(a', s'_

2 )) < b^Ds.

Since suppi/ C / (by construction), (7.12) implies (7.7).

8. Conclusion

Present economic theories are mostly based on equilibrium analysis of models

in which, conditional on only a few low orders of uncertainty, all higher-order

beliefs are unwarrantedly assumed to be common knowledge. We know, how-

ever, that in some games higher-order uncertainty has a profoundly large impact

in equilibrium. In this paper we presented a sufficient condition, namely global

stability under uncertainty, which guarantees that the impact of higher-order

uncertainty is low. Using the universal type space, in which players can enter-

tain any coherent set of beliefs, we have shown under this assumption that if we

specify the players' beliefs up to some order k, we will know their equilibrium

behavior within a bound that decreases exponentially in k (cf. Proposition 9).

That is, if a theoretical prediction requires knowledge of the strategies within a

margin e of error, then the researcher can validate his theory by specifying first

k (e) orders of beliefs, where k (e) is a logarithmic function of e. Under a further

independence assumption we also formalize our notion that, under stability, the

marginal impact of higher-order uncertainty is (exponentially) decreasing in the

order (cf. Propositions 2 and 5).
8 That is, the problem must be approximated

using lower-order uncertainty rather than higher-order uncertainty; this may be

reversed when stability does not hold, as the impact of higher-order uncertainty

may grow exponentially. In the latter case, we believe that accurate prediction

using traditional analysis will be impossible.

When the best responses are always unique, we have a dominance-solvable

game, and hence our analysis would not change if we considered refinements of

equilibrium or non-equilibrium concepts, such as rationalizability. Nevertheless,

in general, our use of normal-form representation and the solution concept of

°It also follows from these assumptions that the equilibrium strategy is continuous in

player's type with respect to a product topology (cf. Proposition 7).
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(unrestricted) Bayesian Nash equilibrium does impose an important limitation

which requires further research. Many theories are based on extensive-form rep-

resentations and use refinements, such as sequential rationality (Selten (1974),

Kreps and Wilson (1982)). Their predictions are often driven by these refine-

ments when equilibrium itself does not have any predictive power in their games.

It is then crucial to extend our analysis to such a framework, using extensive-

form constructions, such as Battigalli and Siniscalchi (1999).

Appendix A. Omitted Proofs

A.l. Proof of Lemma 1. Take any
fj,, // G A (A'), and fix any e > 0. By

definition of dx (li, Li'), there exists u € A^' such that

(A.l) Ev [dx (x1 ,x2 )] < dx (fjt, fjf) + e.

Define / : X 2 —
* Z2 by / (£1,2:2) = (/ (

x i) > / (
x2))- Then, by definition,

i/o J"
1 6 A^of-iyof-i. Hence,

dz {^of-
lJor l

) < Euof- i [dz (z 1 ,z2 )}

= Ev [dz (f(x 1),f(x2))}

< Eu [Xdx {xi, x2 )]
= \E„ [dx (xi,x2 )]

< Xdx {Li,Lt) + Ae;

since e is arbitrary, the result follows. [Here, the first inequality is by (3.2); the

next equality is by change of variables, the next inequality is by the hypothesis,

and the last inequality is by (A.l).]

A. 2. Proof of Proposition 1. We will now show that global stability im-

plies that our game is dominance solvable. Beforehand, we formally define our

elimination method and develop some notation needed in the proof.

Rationalizability. Assume that, for each player i, his best response correspon-

dence is single-valued, given by the best response function BRt. (Recall that this

is the case whenever U{ is continuous and strictly quasi-concave, and Si is con-

vex.) For each i, let M, C 5, ' be the set of all measurable functions s; : % —
> Si,
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i.e., the set of all allowable strategies for player i. Define sets 5f , k = 0, 1, . .
.,

iteratively as follows. Set Sf = Sj\ For each k > 0, let E^ 1 = A (S^ 1 D M_;)

be the set of all possible beliefs of player i on other players' allowable strategies

that are not eliminated in the first k — 1 rounds. Write 7rTii<7_ i
for the induced

beliefs of i on A x S-i by his type r^ and his belief c_i G A (M_j) about

the other players' strategies. Write Sf (tj) = {.B.Ri (tiy^,,) |<t_, G E*:"
1

} for

the set of all best responses of i with type Tj against all his beliefs in E^ 1

,

and set S* = YlT €T &i (
r0- The set of all rationalizable strategies for i is

Proof of Proposition 1. For each non-negative integer k, define

Dk = sup dl (s l (T
i ),s'l (T l )) .

We will show that lim^oo Dk = 0; therefore, there cannot be any two distinct

actions Si (t,) and s^ (t^) available to any type t x of any player i in the limit

of the process of elimination, showing the first part. The second part simply

follows from the observation that s\ G S\ for each k, hence s* G 5°°.

Towards showing that lim^oo D^ = 0, assume global stability for some para-

meter b and metric d_,, and take any k, and any i G N,Ti G %,Si, s^ G S*. By

definition, S; (t^) = BR (7r r ., !<T _.) and s'
t
(t

? )
= BR1

(ttTi a >

>_.) for some o^i 1
o'_

i
G

E*" 1
. Hence,

(A.2)

di {Si (r 2 ) ,5- (r,)) = di (BRi (ir TttCr _ t ) ,BR(nT^a<_U < bd- t

\JTi ,<T-i, nTita>_. ) .

On the other hand, for each u> = (a,r), define fi^ = Sa x (cr_
z
o p" 1

) and

ML — ^o x
\°~'-i

° p^
1

)) where pw : s_, i—> s_^ (r_,) and 5a is the point mass at

a; define also /iw = //w x fi'u . Notice that
fj,u and /j^ are the probability distri-

butions on A x S- z conditional on u, induced by behefs ct_j and a'_
{ , respec-

tively. Notice also that vt t?i(7 _ i

= f fj,w () dnTi (u), 7rT .

>(7/_.
= / fjfu (-)dKTi (u),

and z/ = J/iw (•) dnTi (to) G A ffT a _ >7T , . Moreover, since cr_j,cr'_, G E^ 1

,

given any u = (a, r), and any ((a, s_; (r_,))
,
(a, s'_j (t-0)) e SUPPA*W >

we fiave
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d- {
((a,s- z (r_,)) ,

(a,s'_
{
(r_i))) = d-i (s_* (r_j) , s'_, (t_;)) < D fc-i, yielding

(A.3) J_, fflV
i ,(7_i> 7rT

il<r'_J < £„ [<J_i (xi,x2 )] = Ejx [J_ t (xi,x2 )]
< Dk-i-

By combining, (A. 2) and (A.3), we obtain

di(Si{Ti) ,S;(ri)) < ^fc-i-

By taking the supremum on both sides, we obtain

Dk <bDk-i.

Therefore, < Dk < b
k
Do, showing that lirrifc_00 Dk = 0. D

A.3. Proof of Proposition 3. Take any i E N, t} £ A (A), and any fi, fj! £

A (S-i). Recall that d_, (n,fj?) = infs_
t-~/z,3^_.~//

E [d_i (s_i,s'_j)l. Take any

random variable a with distribution t| € A (/I), and any two random variables

S-i and s'_
l
with distributions \i and //, respectively. By Assumption 1, we have

BR, (t},n) = fi (E [9l (a, s-i)]) and BR, (tj, //) = £ (£ [# (a, sL
f)])

. Hence,

dkiBMtiiBRiW)) = di (fi (E[gi (a, S-i))),fi {E[gi (a,s'_
i)]))

< a,dx (E \gt (a, s_ z )] , £ [& (a, s'_,)])

< o 2 (£ [dx (gi (a, s_f) jft (
a

>
5-z))])

< a,-ftE [d_i (s_,, sf_i)] =b t
E [d-

t (s_i, s'_
2 )] ,

where the first and the last inequalities are due to Assumption 1 , and the second

inequality is by triangle inequality. Since s_j and s'_
{
are arbitrary, this yields

dt (BR, (jm) , BRi (//)) < M-i (/i, //) •

A.4. Proof of Proposition 4. Take any t] E A (A) and /*,// G A (5-,). We

will assume i?/?, (^,m) and ##i (U,n') are m the interior of Si. (When St is

convex, we can take BRi (t,-, /x) and £?/?, (£j, //) as the unconstrained optima, as

in that case the variations in the constrained optima are if anything less than

the variations in unconstrained optima.) We write

Ui (s;t})= Jui(a,s)dt}(a)



32 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

and write U\, U^, and U^ for the first and second order partial derivatives of

Ul with respect to si; and the cross partial with respect Sj and Sj, respectively.

Firstly, since BRi (fi) and BRi (//) are in the interior, the first order conditions

for optimization problems with \i and // yield

(A.4) EptiBIk^)^^)] =

and

(A.5) E[Ui(BRi (»'), S'_
i)]=0,

respectively. Let

J = E[ir
i
{BRi (f

M),J_
i )]

be the value of the derivative at BRi (/.*) for the optimization problem with //.

We will now find upper and lower bounds for \J\, and these bounds will yield

(??). First we find an upper bound:

\J\ = lEptiBRiMis'-i)]]

= \E[U\ [BR (p) , sU) - Ul (BRi (/i) , s_ ?: )] |

< E[\Ut {BR (li),^.) - V\ (BR
(M ) ,s_0|]

< £ ^max^^^lcU-^,^)

(A.6) = ^maxl^.^;^)^^;^,^)].

Here the first equality is by definition, the second equality is by (A.4), and the

following inequality is is by the triangle inequality. To derive the penultimate

inequality, we write U- (BR^ (jj,) , s'_,) — U- (BR,, (/.i) , s_j) as the some of the

changes that we would get by changing each coordinate in turn, and apply the

mean value theorem to each, obtaining

|i£ (BifcM y_<) - 0? (BifcM,s_0 1 < ^max|t£.(s;tj)|| 5i -sj|

^maxl^.fatJJId-^S-i.slO<
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where the last inequality is by our definition of the metric cLj. To find our lower

bound, we write

\J\ = \E[Ui{BBd {p),s'_
i)]\

= \E[Ui{BRi {p),s'_i
)-Ul

x {BRi {f
j,'),s

f

_i)]\

= E[\U\ {BR, {p) , s'_
%) - U\ {BR, {pi) , s'_ t ) \]

> E mmpt^tfjWBRi^-BRi^)

(A.7) = rmn'\Ui
i
{s;t})\\BRi {^-BRi { f

,')\.

Here the first and the second equalities are by definition and (A. 5), respectively.

The third equality is crucial; we have equality here because U\ (•; s'_A is strictly

decreasing, and hence U\ {BRi (p) ,s'_
t )
— U\ {BRi (//) ,s'_

? ) never changes its

sign. The inequality in the next line is again by the mean value theorem, and the

last equality is because the term inside the expectation is a constant. Combining

(A.6) and (A.7) and observing that cLj {/j,, p') = i'n$s-
1 ~n,s'_ ~^' & [^-» (

s -«i 5-t)]

and that s_j and s'_j are arbitrary, we obtain

\BRi (p) -BRi{n)\< d_4 (a*, A' )^ irrw g . fni
j¥«

mins
|^(s;ti)|-

Check that max s \U^ (s; t,-)| < Jmaxs |<9
2
U; (a, s) fdsidsj] dt\ (a) and min s | C/^ (5; t})\ >

f mins \d
2
Ui (a, s) /ds2

\
dt] (a) . Therefore,

Emaxs
I

Ulj (s; t\)\ ^ J maxs |9
2«t (a, s) /ds lds] |

dt (a)

.
min,|££(s;tj)| ^> |mms |^ (a, s) Jds* |

dtj (a)

v-> /" max, |<s>V (a, 5) /ds ldsJ \

,

~ ^J mms \d2Ul {a, S)/ds2
\

"< W

EmaXj \d
2
Ui (a, s) /<9sidsj|

mm s \olUi (a.s) /osf\

completing the proof.

A. 5. Proof of Proposition 8. The proof of part (b) is very similar to the

proof of Proposition 4 above. We will prove part (a).
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Under Assumptions la and lb, take any t 6 Af. Firstly, if /3 i
= 0, then

gi (a, S-i) = gi (a, s'_^) = g~i (a) for each (a, s_;, s'_,), hence, for each tt, it' with

margA 7r = margA 7r', we have BRZ {tt) = fz {E% (gz (a))) = f{ (En, (g{ (a))) =

BFU (tt'), yielding dx {BR, {tt)
,
BRX (tt')) = < M_* (tt, tt') for any (L*.

Now assume that /3{ > 0. Since <& is continuous and /4 x £Lj is compact, there

exists Mi > such that

(A.8) dx (gl {a,s_ t),gl (a',s'_
l ))
<M

t (V^s^a',^) .

Define a metric c^, on A by setting d^ (a, a') = M;//3j at each distinct a, a',

and define d_j onAx S-i by

cL* ((a, s_
?: ) ,

(a, s'_
?; )) = d^ (a, a') + d_

7; (s_i, s'_,-) .

Now, take any two random variables (a,S-i) ~ 7r and (a',s'__j) ~ 7r' that come

from the same probability space and write p for the probability that a ^ a'.

Note that

(A.9) E [d_, ((a, s_0
,
(a', s^-))] = PMr /f3l

+ E [d_, (s_i; s'_.)] .

Moreover, we have

diiBRiWtBIUW)) < aiE[dx (gi (a, S-i),gi (a,s'_
i))]

otiE [dx [gi (a, s_ z ) ,& (a, s'_,)) : a ^ a']

+a zE [dx (gi (a, s_,-) ,# (a, s'_,)) : a = a']

< ttjpMi + Qi^S [d_; (s_i, s'_.) : a = a]

< OipMj + <*&£ [d_i (s_,-, sLj]

= bi {pMi/Pi + E[(Li (s-i ,^_i)])

= b,E [d-i((a, s^), (a'.sLj)]
,

where the first inequality is derived as in the proof of Proposition 3, the next

equality is by additivity, the next equality is by (A.8) and the Lipschitz conti-

nuity of gi, the next inequality is by the non-negativity of d_j, and the last two

equalities are by definition of 6, and (A.9). Since (a, S-i) ~ tt and (a!
'

, .s'_
7 )
~ tt'

are arbitrary, this shows that rfj (•£>!?; (7r) , BR, {tt')) < bzE [d_,- (tt, tt')] .
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A. 6. Proof of Lemma 2. Let P = margxP = margxP'. Since we have

separable standard Borel spaces, there exists conditional probability P(-||-) :

(Ex x y) x {X x Y) —> [0, 1] with respect to the cr-field T,x x {Y}, and we sim-

ply write P (B\x) for P (X x B\\ {x,y)) where y can be chosen arbitrarily. We

define P' (C|x) similarly for each C E Hz- Notice that P (-|x) and P' (-|x) are

probability distributions on (Y, Ey) and (Z, Ez), respectively.
9 For each i6X,

let

Px = P(.|x)xP(-|x)

be the product measure of P (|x) and P' (-\x) onY x Z, and define probability

measure P by setting

P(F) =
J
Px (Fx)dP(x)

at each measurable set F C X x Y x Z where

Fx = {(y,z) eY x Z\{x,y,z) € F}

.

Notice that, for any rectangle A x B x C 6 E^ x Ey x E^,

P{AxBxC)= [xa(x)P (B\x) P' (C\x) dP (x)

,

where \A denotes the characteristic function of A.

Now we show that P satisfies the statement of the lemma. For each A € Ex

and P G Ey, we have

margXxYP(A x B) P{A x B x Z)

XA {x)P{B\x)P'{Z\x)dP{x)

XA {x)P{B\x)dP{x)

P(Ax B).

Since the probability measures margXxYP and P agree on the 7r-system of all

rectangles A x B, which generates the entire d-field on X x Y, by Dynkin's tt-A

Theorem they are equal. This is similarly true for margXxZP and P'.

See Parthasaraty (1967) for the results of probability theory in this proof.
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