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Abstract

We consider a finite two-player zero-sum game with vector-valued rewards. We study the question of whether a given polyhedral
set D is “approachable,” that is, whether Player 1 (the “decision maker”) can guarantee that the long-term average reward belongs
to D, for any strategy of Player 2 (the “adversary”). We examine Blackwell’s necessary and sufficient conditions for approachability,
and show that the problem of checking these conditions is NP-hard, even in the special case where D is a singleton. We then
consider a Stackelberg variant whereby, at each stage, the adversary gets to act after observing the decision maker’s action. We
provide necessary and sufficient conditions for approachability, and again establish that checking these conditions is NP-hard, even
when D is a singleton. On the other hand, if the dimension of the reward vector is fixed, an approximate version of these conditions
can be checked in polynomial time.
© 2008 Elsevier Inc. All rights reserved.

JEL classification: C73; C79

1. Introduction

We consider a decision maker (Player 1, P1) who interacts repeatedly with the environment, modeled as an adver-
sary (Player 2, P2). At each stage (time step), each player chooses an action from given finite sets and a vector-valued
reward is realized, as a function of the pair of actions chosen. We are given a polyhedral set D, and we are interested
in the question of whether there exists a strategy for P1 under which the long-term average of the reward vector is
guaranteed to belong to D, for every strategy of P2 (in which case, we say that D is “approachable”). This problem
was introduced and studied by Blackwell (1956), using the tools of what became known as “approachability theory.”
In particular, Blackwell established necessary and sufficient conditions for the case of a convex set D, as well as a pre-
scription for the strategy of P1. However, despite the pervasiveness and the renewed interest in approachability theory
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in the context of learning in games, the computational aspects of this theory do not seem to have been considered
before. The objective of this paper is to close this gap.

We start in Section 2 with a description of the model, and background results from approachability theory (Black-
well’s conditions). Even though in some cases it is fairly straightforward to check whether a set is approachable or
not (see Hart and Mas-Colell, 2001 for a representative example), we show that checking Blackwell’s conditions is an
NP-hard problem, even in the special case where the set D is a singleton. On the other hand, when the dimension of
the reward vector is fixed, we establish that the question of approachability can be decided “approximately” in time
which is polynomial (though exponential in the dimension of the reward vector).

Blackwell’s formulation and conditions refer to the case where, at each stage, the two players act simultaneously,
without knowledge of the other player’s action. In Section 3, we introduce a Stackelberg variant in which, at each
stage, P1 acts first and P2 (the adversary) is informed of P1’s action before choosing her own action. We establish that
the question of approachability is NP-hard, even in the special case where the set D is a singleton, but can be decided
in polynomial time if the dimension of the reward vector is held fixed.

2. Approachability for the case of simultaneous actions

2.1. Model and background

We consider a repeated game where a decision maker wishes to guarantee that the long-term average of a vector-
valued reward belongs to a prespecified target set. The stage game is a finite game involving two players, P1 (the
decision maker) and P2 (the adversary). This naturally abstracts the case where there are multiple players and we are
only concerned with the reward obtained by P1.

The game is defined by a triple (A, B,M) where:

(a) A is the finite set of actions for P1; we will assume that A = {1,2, . . . ,m}.
(b) B is the finite set of actions for P2; we will assume that B = {1,2, . . . , n}.
(c) M is an n × m matrix with vector-valued entries, with M(a,b) denoting the reward obtained by P1, when P1

chooses action a ∈ A, and P2 chooses action b ∈ B; we will assume that M(a,b) ∈ R
k .1

The game is played in stages. At each stage t , P1 chooses an action at ∈ A, P2 chooses an action bt ∈ B , and P1
obtains a reward mt = M(at , bt ). We define P1’s average reward, at time t , as

m̂t = 1

t

t∑
τ=1

mτ .

We further assume that P1 has a prespecified target set D ∈ R
k , assumed to be a polyhedron.2 The goal of P1 is to

have the average reward m̂t approach this set D, as t increases, in a sense to be made precise below.
For a finite set C , we let Δ(C) be the set of all probability measures on a set C , which is identified with the with

the set of |C|-dimensional nonnegative vectors whose entries sum to one, and which will be referred to as the set of
possible mixed actions on C . A strategy for P1 (respectively, P2) is a mapping from all possible histories of the form
(a1, b1, . . . , at−1, bt−1) to the set of mixed actions on A (respectively, B). Given the strategies of the two players, we
assume that the randomizations involved are all independent. We use ‖ · ‖ to denote the Euclidean norm in R

k , and
define the point-to-set distance ρ(x,D) = infy∈D ‖x − y‖. We now define formally the goal of P1.

Definition 2.1. A set D is approachable if there exists a strategy σ of P1 such that for every ε, δ > 0, there exists t0
such that for every strategy τ of P2,

P
(

sup
t�t0

ρ(m̂t ,D) > ε
)

< δ. (1)

1 All of the subsequent development also applies to the case where the rewards are random variables, sampled independently at each time, with
mean M(at , bt ) and finite second moment. We restrict to the deterministic case for simplicity.

2 We restrict to polyhedral sets, as opposed to the general convex sets considered by Blackwell, because we wish to focus on algorithmic aspects.
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A set D is excludable if there exists a strategy τ of P2 and some ε > 0 such that for every δ > 0, there exists t0 such
that for every strategy σ of P1,

P
(

inf
t�t0

ρ(m̂t ,D) < ε
)

< δ. (2)

In both cases, the probability measure is induced by the randomness in the strategies of P1 and P2.

Obviously, a set cannot be both approachable and excludable. But when D is a polyhedron (as assumed in this
paper), it is guaranteed to be either approachable or excludable (this is not true for general sets).

For any a ∈ A and q ∈ Δ(B), we define

M(a,q) =
∑
b∈B

M(a,b)qb,

and for any q ∈ Δ(B), we define

Q(q) = conv
({

M(a,q)
}
a∈A

)
,

so that Q(q) is the convex hull of the set of expected rewards that can be obtained by varying a. The necessary and
sufficient conditions for approachability are as follows (Blackwell, 1956).

Theorem 2.1. The following are equivalent:

(a) The polyhedron D is not approachable.
(b) The polyhedron D is excludable.
(c) There exists some q ∈ Δ(B), such that D ∩ Q(q) = ∅.
(d) There exists some d ∈ R

k and some q ∈ Δ(B), such that

max
x∈D

d�x < d�M(a,q), ∀a ∈ A.

The equivalence of conditions (a)–(c) above was established in (Blackwell, 1956).3 The equivalence with condi-
tion (d) is an immediate consequence of the separating hyperplane theorem.

We now specialize to the case where the set D is a singleton. Without loss of generality, we will assume that
D = {0}.

Corollary 2.1. The set {0} is excludable if and only if there exists some d ∈ R
k and some q ∈ Δ(B), such that

0 < d�M(a,q), ∀a ∈ A.

2.2. NP-hardness

Since M(a,q) is linear in q , we see that checking the condition in Corollary 2.1 is equivalent to solving the
following problem:

EXCLUDABILITY. Given a finite collection of k × n matrices Aa , with rational entries, determine whether there
exists a solution (d, q) ∈ R

k × R
n to the system of inequalities

q � 0,
∑
b∈B

qb = 1, 0 < d�Aaq, ∀a, (3)

where the inequality q � 0 is interpreted componentwise.

It is well known that solving a system of general quadratic inequalities is NP-hard (see Murty and Kabadi, 1987).
Our result below boils down to a proof that the special case that involves only bilinear inequalities and nonnegativity

3 Blackwell’s model considers strategies that depend on the history of past rewards, as opposed to the history of past actions of the two players,
but the same result (with essentially the same proof) is valid for our setting as well.
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constraints is also NP-hard. It is not known whether the problem belongs to NP, because if the inequalities have a
feasible solution, there is no guarantee that there exists a feasible solution with a polynomial number of bits.

Theorem 2.2. EXCLUDABILITY is NP-hard. In particular, the problem of deciding whether the set D = {0} is
approachable is NP-hard.

Proof. We provide a reduction of the 3-satisfiability problem (3SAT), which is NP-complete, to EXCLUDABILITY.
An instance of satisfiability consists of n variables, x1, . . . , xn, and m clauses C1, . . . ,Cm, where each clause is a
disjunction of three literals, and where a literal is a variable or its negation. The question is whether there exists an
assignment of truth values to the literals so that all clauses are satisfied.

Given an instance of 3SAT with n literals and m clauses, we construct an instance of EXCLUDABILITY, as
follows. We let the dimension of d and of q be equal to 2n, and use the notation d = (d1, d1, d2, . . . , dn), q =
(q1, q1, q2, . . . , qn). We also let d0 = ∑n

i=1(di + di) and q0 = ∑n
i=1(qi + qi). In addition to the conditions q � 0 and

q0 = ∑n
i=1(qi + qi) = 1, we introduce the following bilinear inequalities:

diqi + diqi <
1

3n
d0(qi + qi), i = 1, . . . , n, (4)

(note that d0 is a linear combination of the di and di , which makes (4) a bilinear inequality) and

diqi > 0, diqi > 0, i = 1, . . . , n. (5)

For each clause of the form (xi ∨ xj ∨ xk), we introduce the inequality

(di + dj + dk)q0 >
d0

n
q0. (6)

In case a variable xi appears negated in a clause, we write down a similar constraint, except that di is replaced by di .
For example, given the clause (xi ∨ xj ∨ xk), we introduce the inequality

(
di + dj + dk

)
q0 >

d0

n
q0. (7)

Suppose that the instance of 3SAT is satisfiable, and consider a satisfying assignment. If xi is “true,” we set

di = 10, di = 1, qi = 1

10n
, qi = 9

10n
.

If xi is “false,” we set

di = 1, di = 10, qi = 9

10n
, qi = 1

10n
.

Constraints (4) and (5) are satisfied by construction. Since every clause is satisfied, we see that in every constraint
associated with a clause (e.g., constraint (6) or (7)), at least one of the di or di variables in the left-hand side is set
to 10, so that the left-hand side is at least equal to 12. Since the right-hand side evaluates to 11, such a constraint is
satisfied. Thus, all constraints are satisfied, and we conclude that we have a “yes” instance of EXCLUDABILITY.

For the converse, suppose that we have a solution (d, q) to the system of inequalities. We construct a truth assign-
ment by setting each variable xi to “true” if and only if di � di . Since every di is positive (due to (5)), inequality (4)
implies that either di < d0/3n or di < d0/3n. Therefore, if xi is set to false (respectively, true), then di < d0/3n

(respectively, di < d0/3n). Consider a typical clause, say, (xi ∨ xj ∨ xk), and the associated constraint (7). Since the
constraint is satisfied, at least one of the variables di, dj , dk must be at least d0/3n, which implies that at least one of
the literals xi , xj , xk is true and the clause is satisfied. We conclude that the instance of 3SAT is satisfiable, which
completes the reduction. �

As an immediate corollary of Theorem 2.2, we see that the problem of deciding excludability of a polyhedral set D

is NP-hard. In many contexts, the specifications of desired performance, as captured by the set D, consist of minimum
requirements for each component of the reward vector. Equivalently, the set D is a translated orthant. This case is
addressed by the following result.
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Corollary 2.2. EXCLUDABILITY is NP-hard even for the special case where the set D is the nonnegative orthant,
{y ∈ R

k | y � 0}.

Proof. Consider condition (d) in Theorem 2.1. If d has a positive component then maxx∈D d�x = ∞. Therefore, for
the case where D is the nonnegative orthant, excludability is equivalent to the condition that there exist some d � 0
and some q ∈ Δ(B) such that 0 < d�M(a,q) for all a ∈ A.

The proof of Theorem 2.2 applies without change, except that the inequalities diqi > 0, diqi > 0 are no longer
necessary. �

If we restrict the reward dimension k, or the cardinality m or n of either action set, it is not known whether the
problem remains NP-hard or whether a polynomial time algorithm is possible. However, as we show in the next
section, approachability can be decided in an approximate sense, when the dimension is held fixed.

2.3. Approximate approachability

In this section, we provide an algorithm that determines whether a set is approximately approachable or not, and
quantifies (approximately) the degree to which a set is not approachable. In particular, we are interested in approxi-
mating the smallest constant ε such that there exists a strategy that guarantees that the distance between the average
reward and the set D is asymptotically less than ε. We will use the following definitions.

Definition 2.2.

(a) For any ε > 0, the ε-expansion of a set D, denoted Dε , is

Dε = {
x: ρ(x,D) � ε

}
.

(b) A set of vectors C = {d1, . . . , d�} is a δ-covering of a set U ⊂ R
k if for every u ∈ U there exists di ∈ C such that

‖u − di‖ � δ.

The following algorithm receives as input two threshold levels, ε1 and ε2 (where ε1 < ε2), and returns one of the
following: that Dε1 is excludable, or that Dε2 is approachable. Note that these two statements are not mutually exclu-
sive; if both are true, either statement may be returned. The algorithm essentially consists of checking the excludability
condition (d) in Theorem 2.1 only for a finite set of direction vectors d .

Algorithm: APPROACHorEXCLUDE(ε1, ε2;D)

Input:
(a) A polyhedron D specified either in terms of linear inequality constraints or in terms of its extreme points, and an
m × n matrix M with entries M(a,b) ∈ R

k .
(b) Parameters ε1 and ε2, with 0 < ε1 < ε2.
Steps:

(a) Let

δ
�= ε2 − ε1

2 max{maxx∈D ‖x‖ + ε1,maxa,b ‖M(a,b)‖} ,

and construct a δ-covering C = {d1, d2, . . . , d�} of the unit ball in R
k .

(b) For every di ∈ C , check whether there exists some q ∈ Δ(B) such that

max
x∈Dε1

d�
i x < d�

i M(a, q), ∀a ∈ A. (8)

If there exists some di ∈ C and some q ∈ Δ(B) such that (8) is satisfied, declare that Dε1 is excludable and
terminate.

(c) If the algorithm did not terminate earlier, declare that Dε2 is approachable.
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Theorem 2.3. The APPROACHorEXCLUDE algorithm is correct and its complexity is polynomial in the parameters
of D (number of extreme points or inequalities, and the diameter of D), the parameters of the game (m and n), and
1/(ε2 − ε1). It is, however, exponential in k.

Proof. We start with the proof of correctness. If the algorithm declares that Dε1 is excludable, correctness follows
because condition (d) of Theorem 2.1 is satisfied.

Suppose now that the algorithm declares that Dε2 is approachable, so that for every di ∈ C there exists no q ∈ Δ(B)

for which the condition (8) is satisfied. Since D is convex, so is Dε2 . It follows that Dε2 is either approachable or
excludable. Suppose, in order to derive a contradiction, that Dε2 is excludable. Then there exist d ∈ R

k and q ∈ Δ(B)

such that

max
x∈Dε2

d�x < d�M(a,q), ∀a ∈ A. (9)

Fix some d and q with this property, and normalize d so that ‖d‖ = 1. We have

max
x∈Dε2

d�x = max
x∈Dε1

d�x + (ε2 − ε1)

= max
x∈Dε1

(
(d − di)

�x + d�
i x

) + (ε2 − ε1)

� max
x∈Dε1

d�
i x − ‖d − di‖ max

x∈Dε1
‖x‖ + (ε2 − ε1), (10)

where the first equality holds because if x∗ maximizes d�x on Dε1 , the vector x∗ + d�(ε2 − ε1) belongs to Dε2 and
maximizes d�x on Dε2 . Since C is a δ-covering, we can now choose some di ∈ C that satisfies ‖d − di‖ � δ. Using
the definition of δ, Eq. (10) becomes

max
x∈Dε2

d�x � max
x∈Dε1

d�
i x + (ε2 − ε1)/2.

Since the condition (8) was not satisfied for this particular di and q , there exists some a such that

max
x∈Dε1

d�x � d�
i M(a, q).

It follows that

max
x∈Dε2

d�x � d�
i M(a, q) + (ε2 − ε1)/2

= d�M(a,q) + (di − d)�M(a,q) + (ε2 − ε1)/2

� d�M(a,q),

where in the last inequality we used again the condition ‖d − di‖ � δ and the definition of δ. This contradicts (9), and
concludes the proof of correctness.

We now consider the complexity of the algorithm. The number � of elements in the covering C is

O

((
(maxa,b ‖M(a,b)‖ + maxx∈D ‖x‖ + ε1)

ε2 − ε1

)k )
,

where the O(·) notation hides a constant that only depends on the dimension k. For every di ∈ C we need to check
whether there exists some q ∈ Δ(B) for which (8) is satisfied. This is equivalent to checking whether

max
x∈Dε1

d�
i x < max

q∈Δ(B)
min
a∈A

d�
i M(a, q).

As noted earlier, to perform the maximization on the left-hand side, it suffices to maximize d�
i x over the poly-

hedron D, which is a linear programming problem.
As for the right-hand side, it is the value of a finite zero-sum game, which can also be computed using linear

programming. The complexity of solving each linear program is independent of ε1 or ε2, and depends polynomially
on the parameters of the game and of D. �
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Suppose now that we are given a set D, and let η be the smallest ε such that Dε is approachable (equivalently,
the largest ε such that Dε is excludable for every ε < η). The following algorithm calculates η approximately. Its
parameters are a desired approximation level δ > 0 and an upper bound κ on η.

Algorithm: RANGEAPPROACH(δ, κ;D)

Input:
(a) A polyhedron D specified either in terms of linear inequality constraints, or in terms of its extreme points, and an
m × n matrix M with entries M(a,b) ∈ R

k .
(b) Parameters δ and κ , with 0 < δ < κ .
Steps:

(a) Set L = 0 and U = κ .
(b) Repeat until U − L � δ:

(b-i) Run APPROACHorEXCLUDE((U + L)/3, 2(U + L)/3;D).
(b-ii) If it returns that D(U+L)/3 is excludable, set L := (U + L)/3.

(b-iii) If it returns that D2(U+L)/3 is approachable, set U := (U + L)/3.
(c) Return U and L.

Theorem 2.4. RANGEAPPROACH(δ, κ;D) returns U and L such that L � η � U . The number of times APPROA-
CHorEXCLUDE is called is 
log2/3(δ/κ)�. The complexity of the RANGEAPPROACH algorithm is polynomial in the
parameters of the game and of D, and in κ/δ. It is, however, exponential in k.

Proof. This a straightforward consequence of Theorem 2.3. �
3. Stackelberg variants

In this section we consider a variant in which P1 acts as the leader, and P2 as a follower who can take into account
the action chosen by P1 at the current stage. We provide conditions for approachability (Section 3.1), and establish
NP-completeness of the problem of checking these conditions (Section 3.2). In contrast, we present a polynomial
algorithm for the special case where the dimension of the reward vector is fixed (Section 3.3). Finally, the variant
where P1 is the follower and P2 is the leader, is briefly discussed in Section 3.4.

3.1. The model and the approachability conditions

Formally, a strategy for the leader, P1 (respectively, the follower, P2), is a function that maps any possible history of
the form (a1, b1, . . . , at−1, bt−1) (respectively, (a1, b1, . . . , at−1, bt−1, at )) to a mixed action on A (respectively, B).
This setting can be viewed as a special case of the setting in the preceding section, except that we now have a new
action set B for P2, namely the set B = B A, of mappings from A to B. Accordingly, we define the reward vector to be

M(a,f ) = M
(
a,f (a)

)
, a ∈ A, f ∈ B = B A.

As before, we allow the players to choose mixed actions. A mixed action for P2 will now be an element of Δ(B A).4

For any q ∈ Δ(B A), we let

M(a,q) =
∑

f ∈B A

M
(
a,f (a)

)
qf .

We have the following counterpart of Theorem 2.1.

4 With our definition, P2 randomizes between different responses to the action of P1. In an alternative formulation, we could have P2 carry
out a separate randomization for every action of P1. The resulting set of mixed actions would then be (Δ(B))A . It can be checked that the two
formulations are equivalent.
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Theorem 3.1. For the Stackelberg variant in which player P1 leads, the polyhedron D is excludable if and only if

max
x∈D

d�x < d�M
(
a,f (a)

)
, ∀a ∈ A. (11)

Proof. Comparing condition (11) with condition (d) in Theorem 2.1, we only need to show that if there exists some
d ∈ R

k and some q ∈ Δ(B A) such that maxx∈D d�x < d�M(a,q) for all a ∈ A, then there also exists a q that
corresponds to a pure action (i.e., an element of B A) and for which the same condition holds. Indeed, if such a
q ∈ Δ(B A) exists, then for any a ∈ A, we have

min
x∈D

d�x < d�M(a,q)

= d� ∑
f

M
(
a,f (a)

)
qf

= d� ∑
b

∑
{f :f (a)=b}

M
(
a,f (a)

)
qf

= d� ∑
b

M(a, b)
∑

{f :f (a)=b}
qf

� max
b∈B

d� ∑
b

M(a, b).

This implies that for every a ∈ A there exists some b ∈ B such that maxx∈D d�x < d�M(a,b), which is equivalent
to condition (11) in the statement of the theorem. �
3.2. NP-completeness

We now establish that checking the conditions for excludability, for this Stackelberg variant, is also an NP-complete
problem, even in the special case where D is a singleton, e.g., if D = {0}. Condition (11) in Theorem 3.1 leads to the
following problem.

S-EXCLUDABILITY. Given finite sets A and B, and a rational vector-valued function M : A × B → R
k , does there

exist some d ∈ R
k and a function f : A → B such that d�M(a,f (a)) < 0 for all a ∈ A?

Theorem 3.2. S-EXCLUDABILITY is NP-complete.

Proof. We first establish that the problem is in NP. If we have a “yes” instance of S-EXCLUDABILITY, then there
exists a mapping f : A → B (which will be the certificate) such that the zero vector does not belong to the poly-
hedron with vertices M(a,f (a)), a ∈ A, and the latter condition can be checked in polynomial time using a linear
programming algorithm.

For the proof of NP-completeness, we introduce the following auxiliary problem, which will be shown shortly to
be NP-complete.

NONCOVERING CONES. Given m polyhedral cones Ca ⊂ R
k , a ∈ A, each specified by n linear inequalities, is their

union a proper subset of R
n?

An instance of NONCOVERING CONES can be reduced to S-EXCLUDABILITY, as follows. Since we are given
the linear inequalities that define Ca , we can define vectors M(a,b) such that Ca = {d ∈ R

k | d�M(a,b) � 0, b =
1, . . . , n}. We then observe that we have a “yes” instance of NONCOVERING CONES if and only if there is some
d that violates one of the constraints for each Ca , that is, if and only if for every a there exists some f (a) such that
0 < d�M(a,f (a)), which is equivalent to having a “yes” instance of S-EXCLUDABILITY.

To complete the proof, we reduce 3SAT to NONCOVERING CONES, thus establishing NP-completeness. Given
an instance of 3SAT with n variables and m literals, we let ε = 1/4, and introduce the following cones in R

n+1:
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{d | d0 � 0}, (12){
d | di � d0(1 + ε)

}
, i = 1, . . . , n, (13)

{d | di � −d0ε}, i = 1, . . . , n, (14){
d | εd0 � di � d0(1 − ε)

}
, i = 1, . . . , n. (15)

For any clause of the form xi ∨ xj ∨ xk , we introduce the cone

{d | di + dj + dk � 3εd0}. (16)

For any clause of the form xi ∨ xj ∨ xk , we introduce the cone{
d | −di + dj + dk � (−1 + 3ε)d0

}
. (17)

For any clause of the form xi ∨ xj ∨ xk , we introduce the cone{
d | −di − dj + dk � (−2 + 3ε)d0

}
. (18)

For any clause of the form xi ∨ xj ∨ xk , we introduce the cone{
d | −di − dj − dk � (−3 + 3ε)d0

}
. (19)

Suppose that we have a “yes” instance of 3SAT and a corresponding truth assignment. Let d0 = 1 and for each i,
let di = 1 (respectively, di = 0) if the variable xi is set to “true” (respectively, false). We claim that d does not belong
to any of the above defined cones. This is obvious for the first four types of cones (cf. (12)–(15)). Consider a clause of
the form xi ∨ xj ∨ xk . Since the clause is satisfied, at least one of the variables di, dj , dk is set to 1, which is more than
3εd0, and d does not belong to the cone associated with that clause. Consider then a clause of the form xi ∨ xj ∨ xk .
Since the clause is satisfied, it is seen that −di + dj + dk is at least 0, which is more than (−1 + 3ε)d0, and d does not
belong to the cone associated with that clause either. By a similar argument, d does not belong to the last two types of
cones, which shows that we have a “yes” instance of NONCOVERING CONES.

For the converse, suppose that we have a “yes” instance of NONCOVERING CONES. Fix some d that does not lie
in any of the above constructed cones. Since d does not belong to the cone specified by (12), we have d0 > 0; without
loss of generality, we can and will assume that d0 = 1. Since d does not belong to the cones of the form (13), (14),
and (15), we conclude that every di , i �= 0, satisfies either −ε < di < ε, in which case we set xi to “false,” or 1 − ε <

di < 1 + ε, in which case we set xi to true. We now verify that this truth assignment satisfies all clauses. Indeed,
for any clause of the form xi ∨ xj ∨ xk , since d does not lie in the corresponding cone, we have di + dj + dk > 3ε,
which implies that at least one of the variables di , dj , dk exceeds ε, implying that at least one of the variables xi , xj ,
xk is set to “true.” Similarly, for any clause of the form xi ∨ xj ∨ xk , since d does not lie in the corresponding cone
(cf. (17)), we have −di + dj + dk > −1 + 3ε. This implies that not all of the conditions di > 1 − ε, dj < ε, dk < ε

can hold. Therefore, either xi is set to “false” or one of the variables xj , xk is set to true, and the clause is satisfied.
The argument for the last two types of clauses is similar. �

We make a few brief remarks. (i) The problem is clearly NP-complete for the more general case where the set D is
a general polyhedron. (ii) A minor modification of the proof establishes NP-completeness for the case where D is the
positive orthant. (iii) The proof actually establishes that the problem is NP-complete even in the special case where
the adversary has only two actions.

3.3. Low-dimensional rewards

In this subsection, we fix the dimension k of the reward vector, and show that approachability of a polyhedral target
set D can be decided in polynomial time.

A naive algorithm, based on Theorem 3.1 would check condition (11) for every f ∈ B A, and there are exponentially
many such f to be considered. To illustrate the key idea behind the algorithm given here, let us assume that D = {0}
and that for some f , the vector 0 does not belong to the convex hull of the points M(a,f (a)), so that there is a
direction vector d that satisfies (11). It turns out that the search for such a vector d can be restricted to a smaller set of
candidate directions, namely those directions obtained by projecting the zero vector on the convex hull of only k + 1
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of the points M(a,f (a)). The number of possible choices of these k + 1 points is polynomially bounded (when k is
fixed), suggesting the algorithm to be given shortly.

Some terminology first. A partial response g is defined as a specification(
(a1, b1), (a2, b2), . . . , (ak+1, bk+1)

)
of a mapping f : A → B on only k + 1 distinct elements of A. Let P(g) be the convex hull of {M(ai, bi) | i =
1, . . . , k + 1}. The following algorithm assumes that k + 1 � m. If m < k + 1, we can always introduce k + 1 −m new
actions a with M(a,b) = M(1, b) for all b, which does not affect the nature of the game.

Algorithm
Input:
A polyhedron D specified either in terms of linear inequality constraints, or in terms of its extreme points, and an
m × n matrix M with entries M(a,b) ∈ R

k , where k + 1 � m.
Steps:

(a) For every partial response g, of the form ((a1, b1), (a2, b2), . . . , (ak+1, bk+1)), do the following:
(a-i) Find x ∈ D and y ∈ P(g) for which ρ(x, y) is minimized.

(a-ii) If x �= y check whether there exists a response f : A → B, that extends g to all of A, and such that
(y − x)�y � (y − x)�M(a,f (a)) for all a ∈ A. If such an f is found, return “no” (declare the set D

excludable) and terminate.
(b) If the algorithm did not terminate earlier, return “yes” (declare the set D approachable).

Theorem 3.3. The above algorithm is correct, and runs in polynomial time, when the dimension k is held fixed.

Proof. The algorithm is polynomial because for each partial response g (of which there are at most (mn)k+1), it
mainly needs to solve a convex quadratic programming problem (Step (a-i)), which takes polynomial time (Kozlov et
al., 1979). We also note that the algorithm always terminates. If it returns “no,” the response f found in Step (a-ii)
provides a certificate that D is excludable.

Suppose now that D is excludable. By Theorem 3.1, there exists some f ∈ BA such that D does not intersect the
convex hull of the points M(a,f (a)), a ∈ A, which we denote by Q(f ). Let x ∈ D and z ∈ Q(f ) be such that the
distance ρ(x, z) is minimal. Since D and Q(f ) are disjoint, we have ρ(x, z) > 0, and the direction d = z − x defines
a hyperplane that separates D from Q(f ), that is,

max
w∈D

d�w � d�x < d�z � min
w∈Q(f )

d�w. (20)

Consider the polyhedron Q0(f ) = {w ∈ Q(f ) | d�w = d�z}. By Caratheodory’s theorem z can be written as a convex
combination of at most k + 1 extreme points of Q0(f ). These extreme points are also extreme points of Q(f ) (see,
e.g., Bertsimas and Tsitsiklis, 1999, p. 66), and therefore they are a subset of the points M(a,f (a)). If necessary, we
augment that collection of extreme points to a total of k + 1, by picking some more of the points M(a,f (a)) in an
arbitrary fashion. Let Q(g) be the convex hull of these k + 1 points. Since Q(g) is a subset of Q(f ) and z ∈ Q(g), it
follows that x and z also minimize the distance ρ(x, z) between D and Q(g). Consider the iteration of the algorithm
where this particular partial response g was considered in Step (a). The point y calculated by the algorithm during
that iteration is then equal to z. It follows from Eq. (20) that

(y − x)�y � (y − x)�M
(
a,f (a)

)
, ∀a ∈ A.

The termination condition in Step (a-ii) is reached at some point, so that the algorithm returns “yes.” �
3.4. The case where player P2 leads

We comment briefly on the Stackelberg variant where P2 is the leader and P1 is the follower. In particular, at each
stage, the action of P1 can take into account the action of P2, but all other aspects of the repeated game remain the
same as before. For this variant, it can be shown that a polyhedron D is excludable if and only if there exists some
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b ∈ B such that the intersection of D with the convex hull of the points {M(a,b) | a ∈ A} is empty. Checking this
condition amounts to checking the feasibility of n systems of linear inequalities, which can be done in polynomial
time.
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