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Random matching in adaptive dynamics

Glenn Ellison, Drew Fudenberg, Lorens A. Imhof

November 9, 2006

Abstract

This paper studies the effect of randomness in per-period match-
ing on the long-run outcome of non-equilibrium adaptive processes.
If there are many matchings between each strategy revision, the ran-
domness due to matching will be small; our question is when a very
small noise due to matching has a negligible effect. We study two
different senses of this idea, and provide sufficient conditions for each.
The less demanding sense corresponds to sending the matching noise
to zero while holding fixed all other aspects of the adaptive process.
The second sense in which matching noise can be negligible is that
it doesn’t alter the limit distribution obtained as the limit of the in-
variant distributions as an exogeneous “mutation rate” goes to zero.
When applied to a model with mutations, the difference between these
two senses is in the order of limits: the first sense asks for continuity
of e.g. the ergodic distribution in the matching noise holding the mu-
tation rate fixed, whereas the second sense asks for continuity of the
limit distribution in the matching noise.

1 Introduction

This paper studies how the relative frequency of strategic interactions and
strategy revision influences the long-run outcome of non-equilibrium adap-
tive processes. Many analyses of these processes abstract away from any
randomness in the per-period matching process by assuming either that each
agent plays each other agent exactly once in each period, or that agents are
independently matched an infinite number of times; in either case, the result
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is that each agent faces the true distribution of opponents’ play. This is true
for example of Kandori, Mailath and Rob [1993] (KMR), Bergin and Lipman
[1996] and Binmore and Samuelson [1997]. Neither of these motivations is
compelling as stated; a more plausible reason for ignoring the randomness
due to the matching process is that the neglected noise is small and thus has
little effect. The first claim–that the randomness is small–will follow from the
law of large numbers when there are sufficiently many pairings between each
strategy revision; our focus is thus on when the second claim then follows,
i.e. when a very small noise due to matching has a negligible effect.

We study two different senses of this idea. The first, and less demanding,
sense corresponds to sending the matching noise to zero while holding fixed
all other aspects of the adaptive process. The second sense in which matching
noise can be negligible is that it doesn’t alter the limit distribution obtained
as the limit of the invariant distributions as an exogeneous “mutation rate”
goes to zero. When applied to a model with mutations, the difference between
these two senses is in the order of limits: the first sense asks for continuity of
e.g. the ergodic distribution in the matching noise holding the mutation rate
fixed, whereas the second sense asks for continuity of the limit distribution
in the matching noise.

Theorem 1 provides a sufficient condition for the first form of continuity,
which is roughly that the transition probabilities of the no-noise adjustment
process are continuous in the realized per-period payoffs. Under this condi-
tion, if the no-noise process is ergodic, its invariant distribution is a continu-
ous function of the noise at the zero matching-noise limit, and for non-ergodic
systems the absorption probabilities are continuous. Theorem 2 extends the
former conclusion to finite time horizons. To put Theorem 1 into perspective,
recall that Robson and Vega-Redondo [1996] (RV) show that the limit distri-
bution in KMR’s adjustment model selects the Pareto-dominant equilibrium
in 2 × 2 coordination games if players are randomly paired and players ob-
serve and respond to the realized distribution of payoffs (even if players are
rematched any finite number m times before adjusting their strategies, so
that the noise due to matching is small). This contrasts with KMR’s finding
that the risk-dominant equilibrium is selected when players observe the true
state so there is no matching noise at all. For generic payoff matrices, the
RV adjustment process satisfies the condition of Theorem 1, so the difference
between their findings and those of KMR comes from taking the no-mutation
limit before taking the limit on the number of rounds.

This motivates our investigation of when the second sort of continuity is
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satisfied: When is the limit distribution a continuous function of the match-
ing noise? Theorem 3 gives a sufficient condition: In addition to the conti-
nuity requirement of Theorem 1, it requires essentially that any transition
probabilities that are approaching zero as the mutation rate vanishes do so at
similar rates when there is no matching noise or a small amount of matching
noise. This condition is not satisfied in RV, but is satisfied in the frequency-
dependent Moran process studied by Fudenberg, Imhof, Nowak, and Taylor
[2006] and also by the frequency-dependent Wright-Fisher process studied by
Imhof and Nowak [2006]. More generally, the condition is satisfied for the
class of imitation process covered by our Theorem 4.

Theorems 5 and 6 turn to the issue of how the frequency of interaction
influences the basins of attraction, D(m) and D∗, of the processes with m
and infinitely many rounds of matching per period. We focus on the case
where the processes have the same recurrent classes for every m. Theorem
5 replaces the continuity condition of Theorems 1 and 2 with a mild form
of monotonicity that is satisfied by RV, and shows that D(m) = D(1) ⊆ D∗.
An example of RV shows that D(m) can be a proper subset of D∗; this helps
further explain the source of the discontinuity in the limit distribution at
m = ∞. Theorem 6 reimposes the continuity condition to get a sharper
result on the relationship of D(m) and D∗.

2 The model

Suppose the evolution of a population is described by a homogeneous Markov
chain {X(θ)

t : t = 0, 1, . . . } with finite state space S and transition proba-

bilities p
(θ)
ij . The parameter θ is an element of some parameter set Θ with

accumulation point θ∗ 6∈ Θ and relates to the number of rounds that an un-
derlying game is played. We assume that R

(θ)
t rounds are played in period t,

where R
(θ)
0 , R

(θ)
1 , . . . are i.i.d. finite random variables such that

lim
θ→θ∗

P (R
(θ)
t ≥ M) = 1 for all M < ∞, (1)

and for each t, R
(θ)
t and X

(θ)
t are independent.

Example 1 a) Condition (1) is satisfied if the number of rounds per period

is deterministic, R
(θ)
t ≡ m, and m = θ → θ∗ = ∞, Θ = N.
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b) Suppose that in any given period, the game is not played at all with
probability 1 − θ, and after each round that has taken place there will be
another round in the same period with probability θ, where θ ∈ Θ = (0, 1).

Then R
(θ)
t is geometrically distributed with parameter 1−θ, that is, P (R

(θ)
t =

r) = θr(1− θ), r = 0, 1, 2, . . . , and condition (1) is met when θ → θ∗ = 1.

For each period t, let Yt,r be a random vector that describes the payoffs

in round r, r = 1, 2, . . . . The distribution of Yt,r may depend on X
(θ)
t , but

not on R
(θ)
t . Given X

(θ)
t , the vectors Yt,1, Yt,2, . . . are assumed to be i.i.d.

with finite expectation. (Note that the support of the Yt,r is not restricted
to be finite, but it typically will be finite if the game has only finitely many
possible outcomes.) Their common conditional distribution is assumed to be
the same for all θ and t. Thus for every state i ∈ S there is an integrable
random vector Zi such that

P Yt,r|X(θ)
t =i = PZi for all r, t and θ. (2)

Assume that for all i, j ∈ S, there is a function fij such that on the set

{X(θ)
t = i} ∩ {R(θ)

t > 0},

P
{

X
(θ)
t+1 = j|R(θ)

t , Yt,1, Yt,2, . . .
}

= fij

 1

R
(θ)
t

R
(θ)
t∑

r=1

Yt,r

 . (3)

Note that no assumption is made on the conditional probability on the set
{R(θ)

t = 0}. Clearly, by (1), P (R
(θ)
t = 0) → 0 as θ → θ∗. Let {X∗

t : t =
0, 1, 2, . . . } be the Markov chain with transition probabilities

p∗ij = P
{
X∗

t+1 = j|X∗
t = i

}
= fij(EZi), i, j ∈ S.

This is the Markov chain obtained by assuming that there are infinitely many
rounds during each period.

Note that transition probabilities of the form (3) can also occur when
matching is deterministic but choices of agents are stochastic. For example,
consider a two-player game with two pure strategies A and B and suppose
a finite population consists of n types of agents, where agents of type i
play A with probability pi and B with probability 1 − pi. Suppose further
that in every round, every individual plays exactly once against every other
individual. Then realized payoffs are stochastic and it is natural to assume
transition probabilities of the form (3).
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3 Invariant distributions and absorption prob-

abilities

In this section we show that a continuity condition on the adjustment pro-
cess implies that long-run and finite-horizon outcomes are continuous as the
number of rounds of random matching goes to infinity.

3.1 A theorem on long-run behavior

Theorem 1 a) If fij is continuous at EZi, then limθ→θ∗ p
(θ)
ij = p∗ij.

b) Suppose that limθ→θ∗ p
(θ)
ij = p∗ij for all i, j ∈ S. If (p∗ij) has a unique

invariant distribution v∗ and v(θ) is an invariant distribution of (p
(θ)
ij ),

then
lim
θ→θ∗

v(θ) = v∗.

c) Suppose that limθ→θ∗ p
(θ)
ij = p∗ij for all i, j ∈ S. Suppose that the chains

{X(θ)
t }, θ ∈ Θ, and {X∗

t } have a common set A of absorbing states
and that the other states are transient states of {X∗

t }. For j ∈ A and

i ∈ S \ A, let ρ
(θ)
ij denote the probability that {X(θ)

t } gets absorbed at j

if X
(θ)
0 = i, and let ρ∗ij denote the corresponding absorption probability

for {X∗
t }. Then

lim
θ→θ∗

ρ
(θ)
ij = ρ∗ij.

Proof. a) By (3), we have on {R(θ)
t > 0},

P
{

X
(θ)
t+1 = j|X(θ)

t

}
= E

{
1{X(θ)

t+1=j}|X
(θ)
t

}
= E

{
E
[
1{X(θ)

t+1=j}|X
(θ)
t , R

(θ)
t , Yt,1, Yt,2, . . .

]
|X(θ)

t

}
= E

f
X

(θ)
t ,j

 1

R
(θ)
t

R
(θ)
t∑

r=1

Yt,r

 |X(θ)
t

 .
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Thus, in view of (2),

p
(θ)
ij := P

{
X

(θ)
t+1 = j|X(θ)

t = i
}

= P (R
(θ)
0 = 0)qij + P (R

(θ)
0 > 0)E

fij

 1

R
(θ)
0

R
(θ)
0∑

r=1

Zi,r

 |R(θ)
0 > 0

 ,

where qij = P
{

X
(θ)
t+1 = j|X(θ)

t = i, R
(θ)
t = 0

}
and Zi,1, Zi,2, . . . are i.i.d. copies

of Zi, which are also independent of R
(θ)
0 . Hence

p
(θ)
ij = P (R

(θ)
0 = 0)qij +

∞∑
k=1

P (R
(θ)
0 = k)Efij

(
1

k

k∑
r=1

Zi,r

)
.

By the strong law of large numbers, (Zi,1+ · · ·+Zi,k)/k → EZi almost surely.
Since fij is continuous at EZi,

lim
k→∞

fij

(
1

k

k∑
r=1

Zi,r

)
= fij(EZi) = p∗ij almost surely.

It follows by Lebesgue’s dominated convergence theorem that

lim
k→∞

Efij

(
1

k

k∑
r=1

Zi,r

)
= p∗ij. (4)

Thus, for every ε > 0, there exists Mε such that∣∣∣∣∣Efij

(
1

k

k∑
r=1

Zi,r

)
− p∗ij

∣∣∣∣∣ ≤ ε for all k > Mε.

Therefore,

|p(θ)
ij − p∗ij| ≤ P (R

(θ)
0 = 0)|qij − p∗ij|+

∞∑
k=1

P (R
(θ)
0 = k)

∣∣∣∣∣Efij

(
1

k

k∑
r=1

Zi,r

)
− p∗ij

∣∣∣∣∣
≤

Mε∑
k=0

P (R
(θ)
0 = k) + ε

∞∑
k=Mε+1

P (R
(θ)
0 = k)

≤ P (R
(θ)
0 ≤ Mε) + ε.
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It now follows by assumption (1) and the fact that ε > 0 was arbitrary that

lim
θ→θ∗

p
(θ)
ij = p∗ij. (5)

b) Write Π(θ) = (p
(θ)
ij )i,j∈S and Π∗ = (p∗ij)i,j∈S . If the invariant distribu-

tions v(θ) do not converge to v∗ as θ → θ∗, the sequence has some accumula-
tion point w 6= v∗. Because Π(θ) is continuous in θ and v(θ)Π(θ) = v(θ) for all
θ, this would imply that wΠ∗ = w. This contradicts the assumption that v∗

is the unique invariant probability vector for Π∗.
c) Fix a common absorbing state j. Since all non-absorbing states are

transient states of {X∗
t }, it follows from (5) that all non-absorbing states are

also transient states of {X(θ)
t } when θ is close enough to θ∗ (that is, when

θ is large enough in the case where θ∗ = ∞.) Therefore, the absorption
probabilities are uniquely determined by

ρ
(θ)
ij = p

(θ)
ij +

∑
s∈T

p
(θ)
is ρ

(θ)
sj , ρ∗ij = p∗ij +

∑
s∈T

p∗isρ
∗
sj, i ∈ T ,

where T = S \ A, see e.g. Karlin and Taylor [1975, page 90]. It now follows

as in the proof of b) that ρ
(θ)
ij → ρ∗ij. �

Remark 1 a) Theorem 1a) continues to hold if one replaces the indepen-
dence assumption on Yt,1, Yt,2, . . . by the assumption that these vectors sat-
isfy the weak law of large numbers. In this case, fij((Zi,1 + · · ·+ Zi,k)/k) →
fij(EZi) in distribution and this implies (4).

b) The perturbation bounds reviewed by Cho and Meyer [2001] show that
the invariant distributions v(θ) converge at least as quickly as the transition
matrices Π(θ). These bounds also imply our result in Theorem 1b), but the
much simpler self-contained argument in the present proof is sufficient for
our purposes.

3.2 Illustrative examples

The following examples show that the continuity assumption in Theorem 1
is crucial. We begin with a simple artificial example in which the fij func-
tions are not continuous and long-run behavior differs between models with
a finitely and infinitely many rounds of matching.
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Example 2 Suppose there are two actions 0 and 1, and in every round every
player gets payoff

√
2 with probability 1/

√
2 and 0 with probability 1− 1/

√
2,

independent of his action and the state of the population. Suppose the dy-
namics are that players switch from 0 to 1 if and only if they get a payoff of
1 and never switch from 1 to 0.

In the limit model with an infinite number of rounds of matching, all
players play action 1 after the first period. Hence, the unique invariant dis-
tribution, v∗ places probability one on all agents’ playing action 1. For any
finite number m of rounds, in contrast, there cannot be a switch because

√
2

is irrational. Hence, any distribution over the two actions is an invariant
distribution of (p

(m)
ij ).

Next, we present a more natural example: transition rules are discontin-
uous because agents adopt the strategy that provided the highest payoff in
previous period. Again, there is a discontinuity in long-run behavior.

Example 3 Consider a symmetric 2-player game with pure strategies 1, 2
and payoff matrix (

2 2
1 3

)
.

Consider of population of size 3 and suppose that in every period there are
exactly m rounds. Let X

(m)
t denote the number of agents using strategy 1 at

time t. At each round, two individuals are drawn at random to play the game,
the remaining individual receives no payoff in that round. For every period
t and round r, let Y

(i)
t,r denote the average payoff to agents using strategy i.

Set Y
(i)
t,r = 0 if strategy i is not present at time t. If X

(m)
t = 1, the probability

that the two agents that use strategy 2 are chosen is 1
3
, and the probability

for a mixed pair is 2
3
. Hence

P
{

Y
(1)
t,r = 0, Y

(2)
t,r = 3|X(m)

t = 1
}

=
1

3
, P

{
Y

(1)
t,r = 2, Y

(2)
t,r =

1

2
|X(m)

t = 1

}
=

2

3
.

(6)
Similarly,

P
{

Y
(1)
t,r = 2, Y

(2)
t,r = 0|X(m)

t = 2
}

=
1

3
, P

{
Y

(1)
t,r = 1, Y

(2)
t,r = 1|X(m)

t = 2
}

=
2

3
.

If after m rounds, the average payoff of agents using strategy 1 is larger
than the average payoff of the other agents, all agents switch to strategy
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1. Otherwise, they all switch to strategy 2. (Agents do not switch if only
one strategy is currently present.) After this adjustment step, every agent
changes (independently of the others) to the other strategy with probability ε,
0 < ε < 1

2
. Thus for i, j = 0, . . . , 3,

fij(y
(1), y(2)) =



(
3

j

)
(1− ε)jε3−j, if y(1) > y(2),(

3

j

)
εj(1− ε)3−j, otherwise.

For any number of rounds m,

p
(m)
0j = p∗0j =

(
3

j

)
εj(1− ε)3−j, p

(m)
3j = p∗3j =

(
3

j

)
(1− ε)jε3−j.

In view of (6), EZ1 = (4
3
, 4

3
), and so

p∗1j = f1j(EZ1) =

(
3

j

)
εj(1− ε)3−j.

Let (Z
(1)
11 , Z

(2)
11 ), (Z

(1)
12 , Z

(2)
12 ), . . . be i.i.d. copies of Z1. By the central limit

theorem,

P

{
Z

(1)
11 + · · ·+ Z

(1)
1m

m
>

Z
(2)
11 + · · ·+ Z

(2)
1m

m

}

= P

{
1√
m

m∑
r=1

(
Z

(1)
1r − Z

(2)
1r

)
> 0

}
→ 1

2

as m →∞. It follows that

lim
m→∞

p
(m)
1j =

(
3

j

)
1

2

[
(1− ε)jε3−j + εj(1− ε)3−j

]
;

in particular, limm→∞ p
(m)
1j 6= p∗1j. A similar calculation shows that

lim
m→∞

p
(m)
2j = p∗2j =

(
3

j

)
(1− ε)jε3−j.

It can now be verified that for fixed ε > 0, the invariant distribution of {X(m)
t }

does not converge to the invariant distribution of {X∗
t }.
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The following example illustrates the effect of smoothing the transition
functions.

Example 4 Modify the model of the previous example so that agents switch
to strategy 1 if the difference of the average payoff of agents using strategy 1
and the average payoff of the other agents exceeds a random threshold. Other-
wise, all agents switch to strategy 2. Then mutations may occur as described
above. Suppose the threshold is normally distributed with expectation zero
and variance σ2 > 0. Denote the corresponding distribution function by Fσ2.
Then the function fij in (3) is given by the continuous function

f
(σ2)
ij (y(1), y(2)) = Fσ2(y(1) − y(2))

(
3

j

)
(1− ε)jε3−j

+ Fσ2(y(2) − y(1))

(
3

j

)
εj(1− ε)3−j.

Clearly, if y(1) 6= y(2), then f
(σ2)
ij (y(1), y(2)) → fij(y

(1), y(2)) as σ2 → 0. Again,

for every fixed σ2 > 0, p
(m)
0j = p∗0j, p

(m)
3j = p∗3j and p

(m)
2j → p∗2j. But now,

p∗1j = f
(σ2)
1j (EZ1) =

(
3

j

)
1

2

[
(1− ε)jε3−j + εj(1− ε)3−j

]
,

so that p
(m)
1j → p∗1j. Thus, with smoothing, the invariant distribution of (p

(m)
ij )

converges to that of (p∗ij).

3.3 A theorem on finite-horizon behavior

Theorem 1a) implies in the case of ergodicity that the long-run behavior

of {X(θ)
t } is similar to that of {X∗

t }, provided θ is close enough to θ∗. To

investigate the similarity for any finite time-horizon, suppose that {X(θ)
t }

and {X∗
t } have the same initial distribution q. Then the distribution of X

(θ)
t

and X∗
t are given by p(θ)(t) := q

(
Π(θ)

)t
and p∗(t) := q (Π∗)t, respectively.

Thus under the continuity condition of Theorem 1, it follows from (5) that
p(θ)(t) → p∗(t) for every t. The following theorem shows that the convergence
is uniform in t if {X∗

t } is irreducible and aperiodic. Note that in Example 3,

p
(m)
1j 6→ p∗1j, and so the distribution of X

(m)
1 will not approach that of X∗

1 if

P (X
(m)
0 = 1) = P (X∗

0 = 1) > 0.
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For probability vectors p = (pi)i∈S , q = (qi)i∈S let ‖p−q‖ = 1
2

∑
i∈S |pi−qi|

be their variation distance.

Theorem 2 Suppose that {X∗
t } is irreducible and aperiodic and that for

every i, j ∈ S, fij is continuous at EZi. Then, for every common initial

distribution for the chains {X(θ)
t } and {X∗

t },

lim
θ→θ∗

sup
t=0,1,2,...

‖p(θ)(t)− p∗(t)‖ = 0.

Proof. It follows from (5) that there is a neighborhood U0 of θ∗ such that

{X(θ)
t } is also irreducible and aperiodic for all θ ∈ U0 ∩ Θ. Let ε > 0. By

Theorem 1 a), there exists a neighborhood U1 of θ∗ with U1 ⊂ U0 such that

‖v(θ) − v∗‖ <
ε

2
for all θ ∈ U1 ∩Θ.

Moreover, there exist constants β(θ), β∗ < 1 such that for t = 0, 1, 2, . . . ,

‖p(θ)(t)− v(θ)‖ ≤ 2[β(θ)]t, θ ∈ U0 ∩Θ, ‖p∗(t)− v∗‖ ≤ 2(β∗)t,

and β(θ) → β∗, see e.g. [10, p. 126]. Consequently, there exists T < ∞ and
another neighborhood U2 of θ∗ with U2 ⊂ U1 such that for all θ ∈ U2∩Θ and
all t > T ,

‖p(θ)(t)− p∗(t)‖ ≤ ‖p(θ)(t)− v(θ)‖+ ‖v(θ) − v∗‖+ ‖v∗ − p∗(t)‖ < ε.

To complete the proof note that by (5) there is a neighborhood U3 of θ∗ such
that if θ ∈ U3 ∩Θ, ‖p(θ)(t)− p∗(t)‖ < ε for t = 0, . . . , T . �

4 Limit distributions

In this section we consider evolutionary processes with mutations where the
updating depends on the outcomes of a repeated game as in Section 2. The
mutations ensure that the processes have unique ergodic distributions. In
such models it is standard to describe long-run behavior with infrequent
mutations by characterizing the limit distribution obtained as the limit of
the invariant distribution as the mutation rate goes to zero.
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In these models analysts typically think that both mutation probabilities
and matching noise are very small; which we can idealize by sending them
both to zero. The paper of Robson and Vega-Redondo [1996] (RV), combined
with our results, shows that the order of limits can matter. RV analyze a
model in which players are repeatedly randomly matched to play a symmetric
2×2 coordination game in which strategy A is Pareto optimal and strategy B
is risk-dominant. They consider an emulation-learning rule with ε mutations:
in each period there are m rounds of random matching and each player adopts
the strategy that achieved the highest payoff with independent probability
1− ε.

With m = ∞ the RV model coincides with the KMR model, and hence
the “long-run equilibrium” (the limit as ε → 0 of v(∗,ε)) places probability
one on all players playing the risk-dominant equilibrium. For any finite m,
in contrast, RV show that the long-run equilibrium places probability one on
the Pareto optimal equilibrium.

The transition rule in the RV model need not satisfy our continuity con-
dition, but it does satisfy it for generic payoff functions.1 Hence, Theorem 1
implies that for any fixed mutation rate ε we have v(m,ε) → v(∗,ε), i.e. long-
run behavior when m is sufficiently large (with “sufficient” depending on
ε) is similar to long-run behavior with m infinite. This shows that the dif-
ference between the long-run equilibrium of the KMR model and the long-
run equilibrium of the RV model is not from a discontinuity at m = ∞
as in Example 1, but rather is due to a difference in the order of limits:
limm→∞ limε→0 v(m,ε) 6= limε→0 limm→∞ v(m,ε). Which order of limits is more
relevant will depend on the magnitudes of ε and m. Intuitively, the differ-
ence between the RV model and the KMR model is that in the RV model
a transition from one equilibrium to the other can be facilitated by an un-
representative draw of the random matching. The probability of such draws
goes to zero as m gets large, so the unrepresentative matching draws is the
main source of transitions when ε is small compared to m.

1We only require continuity when payoffs are equal to their expectation under an infinite
number of matching. Generically, a player will not be indifferent when facing a mixed
strategy of the form Ak/N + B(N − k)/N . If this did happen, we could smooth the
best response functions when the two strategies have payoffs within some small σ without
affecting RV’s analysis.
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4.1 Continuity theorems

In this subsection we prove a general theorem showing that limit distributions
will be continuous as θ → θ∗ if the transition probabilities pθ,ε

ij are continuous
and in addition any transition probabilities that are approaching zero as
ε → 0 in the θ∗ model do so at similar rates when θ is close to θ∗. One
application of this result is that the limit distributions of imitation processes
like that of RV will be continuous as the number of rounds of play goes to
infinity if players react smoothly to payoff differences.

Theorem 3 Consider a family of Markov transition matrices (pθ,ε
jk ) on a

common state space S. For each θ ∈ Θ ∪ {θ∗}, suppose that (pθ,ε
jk ) is ergodic

with invariant distribution v(θ,ε) when ε > 0. Suppose that the limit distribu-
tion of the θ∗-process, λθ∗ ≡ limε→0 v(θ∗,ε) is well defined. Suppose also that
the transition probabilities satisfy

lim
θ→θ∗

lim
ε→0

pθ,ε
jk

pθ∗,ε
jk

= 1

for all j, k ∈ S, where all 0/0 fractions are taken to be equal to 1. Then,
for θ sufficiently close to θ∗ the limit distributions λθ = limε→0 v(θ,ε) are also
well-defined and satisfy

lim
θ→θ∗

λθ = λθ∗ .

In particular, we have

lim
θ→θ∗

lim
ε→0

v(θ,ε) = lim
ε→0

lim
θ→θ∗

v(θ,ε).

Proof. It is a standard result in this literature (e.g. Freidlin and Wentzell
[1984]) that the invariant distribution v(θ,ε) satisfies

v
(θ,ε)
i =

∑
z∈Zi

(∏
(j,k)∈z pθ,ε

j,k

)
∑

z∈Z

(∏
(j,k)∈z pθ,ε

j,k

) ,

where Zi is the set of all i-trees on S and Z is the union of the Zs over all
s ∈ S.(An i-tree is a set of ordered pairs of states describing a directed graph

13



in which there is an unique directed edge out of every element other than i
and in which there is a path from every state other than i to i.) Hence,

v
(θ,ε)
i

v
(θ∗,ε)
i

=

∑
z∈Zi

(∏
(j,k)∈z pθ,ε

j,k

)
∑

z∈Zi

(∏
(j,k)∈z pθ∗,ε

j,k

) · ∑z∈Z

(∏
(j,k)∈z pθ∗,ε

j,k

)
∑

z∈Z

(∏
(j,k)∈z pθ,ε

j,k

) .

Each of the fractions on the right side of the above expression is of the form∑
y∈Y ay/

∑
y∈Y by. Such a ratio is bounded below by miny∈Y ay/by and above

by maxy∈Y ay/by. Every i-tree on S contains |S| − 1 directed edges. Hence,

the first of the two fractions is bounded below by (minj,k∈S pθ,ε
jk /pθ∗,ε

jk )|S|−1

and bounded above by the same expression with max in place of min. The
second fraction has similar bounds. Our assumption on the convergence of
the transition probabilities thereby implies that limθ→θ∗ limε→0 v

(θ,ε)
i /v

(θ∗,ε)
i =

1. This gives λθ
i → λθ∗

i as θ → θ∗ for all i. The final conclusion of the
theorem about the order of limits follows from Theorem 1b): The hypothesis
about the limit of the ratios implies that the transition probabilities are
continuous as θ → θ∗. Hence Theorem 1b) implies v(θ∗,ε) = limθ→θ∗ v(θ,ε), so
that λθ∗ = limε→0 v(θ∗,ε) = limε→0 limθ→θ∗ v(θ,ε). �

Remark 2 The RV model does not satisfy the assumption of Theorem 3.
Consider the state i where two of the agents play the action of the Pareto-
optimal equilibrium, while N−2 of them play the other action, where N ≥ 4.
When m = ∞, a transition to state j where all agents play the Pareto-
optimal action has probability εN . For finite m, pm,ε

ij = g(m)(1− ε)N + (1−
g(m))εN , where g(m) is the probability that the random matching is such that
the Pareto-optimal action has the higher realized payoff. g(m) converges to
zero as m →∞, so the pm,ε

ij is continuous in the m →∞ limit. The ratio of
the two transition probabilities, however, is pm,ε

ij /p∞,ε
ij = 1− g(m) + g(m)(1−

ε)N/εN . This diverges as ε → 0 for every value of m, so the hypothesis of
Theorem 3 is not satisfied.

In models of evolution with mutations, some transitions are typically as-
sumed to be much less likely than others when ε is small, e.g. a transition
requiring two simultaneous mutations may have probability ε2, whereas a
transition requiring a single mutation has probability ε. Young [1993] and
others have noted that the calculation of the limit distribution can be simpli-
fied by ignoring some relatively unlikely transitions and focusing on what are
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known as “minimum cost trees.” Theorem 3 can similarly be strengthened
by noting that the condition on the ratios of the transition probabilities need
only hold for a subset of the transitions.

Specifically, we will say that state i is a long-run equilibrium for θ near
θ∗ if every neighborhood of θ∗ contains a θ for which λθ

i > 0. We will say
that an i-tree zi is negligible relative to state i for small ε (for θ near θ∗) if
there exists a neighborhood U of θ∗ such that∏

(j,k)∈zi
pθ,ε

jk

maxz′∈Zi

(∏
(j,k)∈z′ p

θ,ε
jk

) → 0 as ε → 0,

for all θ in U .

Remark 3 A weaker sufficient condition for the conclusion of Theorem 3 is
that pθ,ε

jk be continuous as θ → θ∗ for all (j, k), and that

lim
θ→θ∗

lim
ε→0

pθ,ε
jk

pθ∗,ε
jk

= 1

holds for those ordered pairs (j, k) for which there exists a state i and an
i-tree zi such that i is a long-run equilibrium for θ near θ∗ and zi contains
(j, k) and is nonnegligible relative to i for small ε.

Proof. The argument for this extension is straightforward. It suffices to
show that λθ

i → λθ∗
i for states i that are long-run equilibria in the θ∗ process.

In the proof of Theorem 3 we noted that

v
(θ,ε)
i

v
(θ∗,ε)
i

=

∑
z∈Zi

(∏
(j,k)∈z pθ,ε

j,k

)
∑

z∈Zi

(∏
(j,k)∈z pθ∗,ε

j,k

) · ∑z∈Z

(∏
(j,k)∈z pθ∗,ε

j,k

)
∑

z∈Z

(∏
(j,k)∈z pθ,ε

j,k

) .

Let W be the set of all trees that are nonnegligible relative to a state that is
a long-run equilibrium for θ near θ∗. To prove the extension of the theorem it
suffices to show that each of the four sums on the right side of this expression
are asymptotically unchanged if the sum is restricted to trees belonging to
W , e.g. to show ∑

z∈Zi∩W

(∏
(j,k)∈z pθ,ε

j,k

)
∑

z∈Zi

(∏
(j,k)∈z pθ,ε

j,k

) → 1 as ε → 0.
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This is immediate from the definition of negligible. �

We now discuss a class of smoothed imitation processes as an illustration
of when the order of limits doesn’t matter. Consider a population of size
N and a game with pure strategies 1, . . . , K. Let S = {(x1, . . . , xK) : xi ∈
{0, . . . , N}, x1 + · · · + xK = N}, where xi is the number of agents that use

strategy i. Assume that for each fixed ε ≥ 0, the family ({X(θ,ε)
t : θ ∈ Θ})

satisfies the assumptions of Section 2 with certain functions f
(ε)
ij and that

{X(θ∗,ε)
t } is the corresponding Markov chain for infinitely many rounds. Here

ε corresponds to the mutation rate, as specified below, and {X(θ,0)
t } and

{X(θ∗,0)
t } are the no-mutation processes.
Following Fudenberg and Imhof [2006], we say that the no-mutation pro-

cess is an imitation process if (a) pθ,0
jk = 0 whenever there exists a strategy i

that is present in state k but not in state j and (b) every state where two or
more actions are played is transient.

Mutations are typically introduced into processes like these to capture
the idea that extinct strategies can arise via mutations. For i = 1, . . . , K,
let si denote the homogeneous state in which every agent plays i, and for
i, j = 1, . . . , K with i 6= j, let si/j denote the state in which every agent

plays i except for one, who plays j. We will say that X
(θ,ε)
t is a standard

mutation extension of X
(θ,0)
t if the transition probabilities are continuous in

ε and for s 6= si we have

lim
ε→0

1

ε
P{X(θ,ε)

t+1 = s|X(θ,ε)
t = si} =

{
µ

(θ)
ij > 0 for s = si/j, j 6= i,

0 otherwise,

with µ
(θ)
ij → µ

(θ∗)
ij as θ → θ∗. Let ρ

(θ)
ij be the probability that X

(θ,0)
t will be

absorbed in sj when X
(θ,0)
0 = si/j. Define a K ×K matrix Λ(θ) = (Λ

(θ)
ij ) by

Λ
(θ)
ij = µ

(θ)
ij ρ

(θ)
ij /M, j 6= i, Λ

(θ)
ii = 1−

∑
j 6=i

µ
(θ)
ij ρ

(θ)
ij /M,

where M is some constant chosen sufficiently large so that all of the diagonal
elements are strictly positive.

We assume that this matrix is irreducible and aperiodic; one case in which
that is true is if every strategy has a positive chance of increasing its share, so
that Λ(θ) is a strictly positive stochastic matrix. The Λ(θ) matrix is not irre-
ducible for the RV process, because players are assumed to emulate the more

16



successful strategy with probability one, and the strategy that is used by only
one player will have a lower payoff regardless of the realization of the random
matching. The property would be satisfied if under the no-mutation process,
every existing strategy had some probability of being copied, as for example
under the aspiration-and-imitation process of Binmore and Samuelson [1997]
and the frequency-dependent Moran process considered in Fudenberg et al.
[2006].

We now show that limit distributions are continuous as the number of
rounds of matching increases in such smoothed imitation processes.

Theorem 4 Suppose that the no-mutation processes X
(θ,0)
t are imitation pro-

cesses for every θ ∈ Θ ∪ {θ∗}. Let X
(θ,ε)
t be standard mutation extensions of

the X
(θ,0)
t and suppose that for all ε > 0 and every θ ∈ Θ ∪ {θ∗}, {X(θ,ε)

t } is
irreducible with unique ergodic distribution v(θ,ε) and that Λ(θ) is irreducible
and has a unique invariant distribution. Finally, suppose that all the func-
tions f

(ε)
ij (z) are continuous in z. Then the limit distributions

λθ = lim
ε→0

v(θ,ε), θ ∈ Θ, λ∗ = lim
ε→0

v(∗,ε)

exist and limθ→θ∗ λθ = λ∗, i.e. limθ→θ∗ limε→0 v(θ,ε) = limε→0 limθ→θ∗ v(θ,ε).

Proofs. We give two different short proofs, one drawing on Theorem 1
and the Fudenberg and Imhof [2006] result on imitation processes, the other
based on Theorem 1a and the least-cost-trees analysis of Theorem 3 and
Remark 3.

First proof: The assumptions of Theorem 1 of Fudenberg and Imhof
[2006] are satisfied, so it follows that for each θ the limit distribution exists,
and that the limit distributions are all concentrated on the homogeneous
states s1, . . . , sK . Moreover, the probabilities the limit distribution assigns to
the homogeneous states are given by η

(θ)
1 , . . . , η

(θ)
K , where η(θ) is the unique

invariant distribution of Λ(θ). From Theorem 1a) and c), Λ(θ) → Λ(θ∗) as
θ → θ∗, and it follows by Theorem 1b) that η(θ) → η(θ∗).

Second proof: As noted above, the limit distribution of the θ∗ process is
concentrated on the pure states si. The assumption that Λ(θ) is irreducible
and aperiodic implies that for any θ (including θ∗), there is an si-tree with
probability that is O(εK−1). The nonnegligible trees consist of transitions
from each si to some si/j together with transitions that have positive prob-
ability in the no mutation process. Part (a) of Theorem 1 implies that the
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transition probabilities are continuous as θ → θ∗, which implies that ratios
of transition probabilities of the latter type converge to one (because the
denominator is bounded away from 0). Our definition of a standard muta-
tion extension ensures that the former also have ratios that converge in the
ε → 0 limit to constants that approach one as θ → θ∗, so we can apply the
argument of Remark 3. �

4.2 Noisy matching in finite-memory fictitious play

Ellison [1997] discusses a model in which N ≥ 4 players are repeatedly ran-
domly matched to play the symmetric 3× 3 coordination game shown below
(with η a small positive number).10 + η 0 0

1 1 1
11 −100 0


He assumes that players are matched with only one opponent in each period
(m = 1), that players only observe the outcomes of matches they participate
in, and that players follow finite-memory fictitious play learning rules (with
a ten period memory). When no mutations are present, play converges in
the long run to all players playing B. Ellison notes, however, that there is
another behavior that is more relevant in the intermediate run. A single
mutation away from the steady-state sets in motion a fairly regular cycle in
which most of the population shifts to A, then to C, then to B, and then
back to A again. In even moderately large populations (e.g. N = 100) this
cycle will persist for millions of periods before play returns to the steady
state.

We can illustrate and elaborate on this point using a version of the
model with ε-mutations. Although the invariant distributions do satisfy
limε→0 v(1,ε) = v(1,0), v(1,ε) will look very different from v(1,0) if ε is not ex-
tremely small, e.g. if there is one mutation somewhere in the population
every thousand periods. A model in which players are matched with every
opponent in every period (m = ∞) would not share this property, as all
players would continue to play B after any moderate number of mutations,
and even if a shift to A was set in motion by all N players mutating simul-
taneously, the system would return to the steady state after a single cycle
through A and C.
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The m = 1 and m = ∞ versions of this model can be fit directly into our
framework by letting the state space S be the set of N×10 matrices describing
possible observations in each of the ten previous periods by each player. In
order to apply our theorem to examine the behavior of the system with
large finite m, however, some modification of the model would be needed.
Our theorem assumes a common state space across m, whereas the possible
realizations of average play change with m. One way to modify the large finite
m model so that our theorem would be applicable would be to have players
beliefs always lie on some finite grid (e.g. by discretizing them to the closest
value involving multiples of 1/N).2 Theorem 1 would then imply that the
behavior of the ε-perturbed models is continuous as m →∞. Hence, behavior
with a large m would look very different from behavior with m = 1. This
highlights that the assumption of a small number of rounds is important for
two reasons: First, it is an amplification mechanism that lets a small number
of mutations influence future play (because they are a disproportionate part
of the history of players who see them); second, it allows belief heterogeneity
to persist in the population, which plays an important role in the recurrence
of the cycles.

5 Basins of attraction

In this section we assume that there are always exactly m rounds in each
period. If Ω ⊂ S is the union of one or more recurrent (i.e. closed and

irreducible) classes of {X(m)
t }, the basin of attraction of Ω for {X(m)

t } is (see
Ellison [2000])

D(m)(Ω) =
{

s ∈ S|P{∃t0 s.t. X
(m)
t ∈ Ω∀t ≥ t0|X(m)

0 = s} = 1
}

.

Let D∗(Ω) denote the basin of attraction of Ω for {X∗
t }.

Theorem 5 Suppose that the chains {X(m)
t }, m = 1, 2, . . . , and {X∗

t } have
the same recurrent classes, and that for every i ∈ S, the support of the
distribution of Zi is finite.

Let Ω ⊂ S be the union of one or more of the recurrent classes.

2One might also need to smooth best responses when players are nearly indifferent
between two strategies if any such indifferences can occur in the m = ∞ model for the
given value of N .
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a) For every m ∈ N,
D(m)(Ω) ⊆ D(1)(Ω).

b) If for every i, j ∈ S, the set {x : fi,j(x) = 0} is convex, then for every
m ∈ N,

D(m)(Ω) = D(1)(Ω) ⊆ D∗(Ω).

Proof. Let Ω′ denote the set of all recurrent states in S \ Ω. If Ω′ = ∅,
then D(m)(Ω) = D∗(Ω) = S for all m. Assume now that Ω′ 6= ∅.

a) We show that S \ D(1)(Ω) ⊆ S \ D(m)(Ω). Let s ∈ S \ D(1)(Ω). Then
there is a path (i1, i2, . . . , ik) such that i1 = s, ik ∈ Ω′, and

p
(1)
ij ,ij+1

= Efij ,ij+1
(Zij) > 0 for j = 1, . . . , k − 1.

Thus for every j = 1, . . . , k − 1, there exists zij such that P{Zij = zij} > 0
and fij ,ij+1

(zij) > 0. Let Zij ,1, . . . , Zij ,m be i.i.d. copies of Zij . Then

P{Zij ,1 = Zij ,2 = · · · = Zij ,m = zij} = [P{Zij = zij}]m > 0,

and it follows that

p
(m)
ij ,ij+1

= Efij ,ij+1

(
Zij ,1 + · · ·+ Zij ,m

m

)
≥ [P{Zij = zij}]mfij ,ij+1

(zij) > 0.

This shows that s 6∈ D(m)(Ω).
b) Let Ni,j := {x : fi,j(x) = 0} be convex for all i, j ∈ S. We show

that S \ D(m)(Ω) ⊆ S \ D(1)(Ω). Let s ∈ S \ D(m)(Ω). Then there is a path
(i1, i2, . . . , ik) such that i1 = s, ik ∈ Ω′, and

p
(m)
ij ,ij+1

= Efij ,ij+1

(
Zij ,1 + · · ·+ Zij ,m

m

)
> 0 for j = 1, . . . , k − 1.

This implies that

P

{
Zij ,1 + · · ·+ Zij ,m

m
∈ Nij ,ij+1

}
< 1.

Since Nij ,ij+1
is convex, it follows that P{Zij ∈ Nij ,ij+1

} < 1. Therefore,

p
(1)
ij ,ij+1

= Efij ,ij+1
(Zij) > 0 for j = 1, . . . , k − 1. Hence s 6∈ D(1)(Ω). In view

of part a), it follows that D(m)(Ω) = D(1)(Ω).

20



We next show that S \ D∗(Ω) ⊆ S \ D(1)(Ω). Let s ∈ S \ D∗(Ω). Then
there is a path (i1, i2, . . . , ik) such that i1 = s, ik ∈ Ω′, and

p∗ij ,ij+1
= fij ,ij+1

(EZij) > 0 for j = 1, . . . , k − 1.

That is, EZij 6∈ Nij ,ij+1
, and so, as Nij ,ij+1

is convex, P{Zij ∈ Nij ,ij+1
} < 1.

Therefore, p
(1)
ij ,ij+1

= Efij ,ij+1
(Zij) > 0 for j = 1, . . . , k−1. Hence s 6∈ D(1)(Ω).

�

Remark 4 The convexity assumption in part b) of Theorem 5 is satisfied in
models derived from two-action games if fij is of the form fij(x1, x2) > 0 for
x1 > x2 and fij(x1, x2) = 0 otherwise. It would also be satisfied under any
process that was such that either fij(x) = 0 for all x or fij(x) > 0 for all
x. The condition is, however, more demanding in models involving games
with more than two actions. For example, it would not be satisfied for the
best-response dynamic in a 3× 3 game if strategy A was the best response to
A, strategy B was the best response to B, but C was the best response to a
mixture of A and B.

The following example of Robson and Vega-Redondo [1996, Section 2],
shows that D(m)(Ω) can be a proper subset of D∗(Ω), that is D(m)(Ω) ⊂
D∗(Ω) and D(m)(Ω) 6= D∗(Ω). The convexity assumption in Theorem 5 b) is
satisfied in the example.

Example 5 Consider a population of size N , where N is even and N ≥ 4.
In each round, all N individuals are paired at random to play a symmetric
2× 2 game with payoff matrix(

a11 a12

a21 a22

)
=

(√
3 0

1 1

)
.

Let X
(m)
t denote the number of individuals using strategy 1. The payoff vector

in period t, round r is given by

Yt,r =

[
Y

(1)
t,r

Y
(2)
t,r

]
,

where Y
(i)
t,r is the (sub-population) average payoff of all players that use strat-

egy i, where Y
(i)
t,r = 0 if strategy i is not used. To calculate the distribution

of Yt,r suppose X
(m)
t = x and 0 < x < N . Clearly,

Y
(2)
t,r = 1.
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Let Ct,r denote the random number of cross-pairings. The distribution of Ct,r

depends only on x. There are

X
(m)
t − Ct,r

2
(1, 1)− pairs,

Ct,r mixed pairs,

N −X
(m)
t − Ct,r

2
(2, 2)− pairs.

Thus

Y
(1)
t,r =

1

X
(m)
t

[a11(X
(m)
t − Ct,r) + a12Ct,r] =

√
3

X
(m)
t

[X
(m)
t − Ct,r]

The (no-mutation) process is defined as follows: if

Y
(1)
t,1 + · · ·+ Y

(1)
t,m

m
>

Y
(2)
t,1 + · · ·+ Y

(2)
t,m

m
,

then X
(m)
t+1 = N , otherwise X

(m)
t+1 = 0. Thus, for i = 0, . . . , N , fi,j(y

(1), y(2)) ≡
0 for 1 ≤ j ≤ N − 1, and

fi,0(y
(1), y(2)) =

{
1, y(1) < y(2),

0, y(1) > y(2),
fi,N(y(1), y(2)) =

{
0, y(1) < y(2),

1, y(1) > y(2).

For every m < ∞,

D(m)({0}) = {0, 1}, D∗({0}) ⊇ {0, 1, 2}. (7)

To see this note that if only one agent plays 1, he is always in a mixed pair and
receives payoff 0, while all 2-players receive payoff 1. Thus 1 ∈ D(m)({0}) and
1 ∈ D∗({0}). If two agents play 1, the probability that they are matched in
all the m rounds is 1/(N − 1)m > 0. If this happens, they receive

√
3, which

is more than 1, the payoff to strategy 2. Thus 2 6∈ D(m)({0}). However,
if two agents play 1 and there are infinitely many rounds, their payoff is√

3/(N − 1) < 1, and it follows that 2 ∈ D∗({0}).

Example 6 Note that when mutations are added (as in RV) the example
satisfies the continuity assumption of Theorems 1 and 2: The behavior rule
is only discontinuous when the realized payoffs to the two actions are equal,
which is impossible because the payoff to 2 is irrational.
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Theorem 6 Suppose that the chains {X(m)
t }, m = 1, 2, . . . , and {X∗

t } have
the same recurrent classes. Let Ω ⊂ S be the union of one or more of the
recurrent classes. Suppose that for all i, j ∈ S, fij is continuous at EZi.
Then there exists m0 such that for every number of rounds m ≥ m0,

D(m)(Ω) ⊆ D∗(Ω) (8)

and the inclusion is strict if and only if there exists i ∈ D∗(Ω) and j ∈
S \ D(m)(Ω) with p

(m)
ij > 0.

Proof. By Theorem 1 a), the present continuity assumption on fij implies

that for all i, j, p
(m)
ij → p∗ij as m →∞. It follows that there is m0 such that

p∗ij > 0 =⇒ p
(m)
ij > 0 for all m ≥ m0. (9)

Now if i 6∈ D∗(Ω), then there must exist some recurrent class Ω′ with Ω∩Ω′ =
∅ such that Ω′ can be reached by {X∗

t } starting from i. It therefore follows

from (9), that for m ≥ m0, Ω′ can also be reached by {X(m)
t } starting from

i. Hence i 6∈ D(m)(Ω). This proves inclusion (8). �

Example 7 In the setting of Example 5, (7) continues to hold for every m,
if fij(y

(1), y(2)) ≡ 0 for 1 ≤ j ≤ N − 1, and with some small δ > 0,

fi,0(y
(1), y(2)) =

{
1, y(1) < y(2) − δ,

0, y(1) > y(2) + δ,
fi,N(y(1), y(2)) =

{
0, y(1) < y(2) − δ,

1, y(1) > y(2) + δ,

and all fij arbitrarily smooth. This shows that despite smoothness of the
functions fij there need not be equality in (8) even if m is large.

The next example shows that the inclusion (8) need not hold for m suf-

ficiently large if we merely assume that Ω is a recurrent class of {X(m)
t } for

all m = 1, 2, . . . and of {X∗
t } and that the fij are continuous.

Example 8 Consider a symmetric 2-player game with pure strategies 1, 2,
3 and payoff matrix 1 1

2
1
2

1
2

2 2
1
2

0 0

 .
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The population consists of N agents, which may be of type A or B. Type
A agents play strategy 1. Type B agents play strategy 2 or 3, each with
probability 1

2
. Every time a type B agents plays, he makes a new randomized

decision independent of everything else. Let X
(m)
t and X∗

t denote the number
of type A agents in period t. If the average payoff p of an agent is at least 1,
he keeps his type, otherwise he changes to the opposite type with probability
1− p. That is, the probability of keeping the type is given by the continuous
function min{1, p}.

If X
(m)
t = N or X∗

t = N , there will be only pairs of type A agents.
Thus everyone receives everytime payoff 1, so that no-one will change his
type. Hence N is an absorbing state of {X(m)

t } for every m and of {X∗
t }.

If 1 ≤ X
(m)
t ≤ N − 1, then in every round there is a positive probability

that a mixed pair is formed, so that both agents receive payoff 1
2
. Using this

fact, one can show that p
(m)
i,i+1 > 0 and p

(m)
i,i−1 > 0 for all m. Similarly, if

1 ≤ X∗
t ≤ N − 1, then the average payoff of every agent is less than 1, and

it follows that p∗i,i+1 > 0 and p∗i,i−1 > 0. If X
(m)
t = 0, there will be only B

pairs and there is a positive probability that every agent plays strategy 2 in
each of the m rounds. In this case, all average payoffs are 0 and every agent
switches his type. Hence p

(m)
0N > 0 for all m. However, if there are infinitely

many rounds and X∗
t = 0, the average payoff to every agent is 1, so that

no-one switches. That is, p∗00 = 1. Consequently,

D(m)({N}) = {0, . . . , N}, D∗({N}) = {N}.
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