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Abstract. In games with population uncertainty some perfect
equilibria are in dominated strategies. We prove that every Poisson
game has at least one perfect equilibrium in undominated strate-
gies.

1. Introduction

Models of population uncertainty have been introduced by Myerson
(1998, 2000) and Milchtaich (2004), in order to describe situations in
which players do not know the number of opponents. Among these
games, a special attention has been reserved to Poisson games, where
the number of players is a Poisson random variable with a given mean
and where the players’ types are independent identically distributed
random variables. The properties of the Poisson distribution make
Poisson games an extremely convenient subclass of games. They are
characterized by the properties of independent actions (for every pos-
sible strategy profile the number of players who take different actions
are independent random variables) and environmental equivalence (a
player assesses the same probability for the type profile of the others as
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an external observer does for the type profile of the whole game, where
a type profile is a vector that lists how many players there are of each
type).

Myerson (1998) extends the definition of Nash equilibrium and shows
its existence. The existing literature on equilibrium refinements in
noncooperative game theory warns that we should be cautious about
the strategic stability of the Nash equilibrium concept. If this concern
is well founded, we can ask which Nash equilibria are self-enforcing in
this setting.

The following example serves us to both introducing Poisson games
to the reader and illustrating the nature of the question. A player
is sitting at home and faces two possible alternatives, either she goes
out to some social event, or she stays home. She does not know how
many players are facing this same disjunctive, but she knows that this
number is a Poisson random variable with parameter n. If she goes
out and meets somebody she receives a payoff equal to 1. If she meets
nobody or decides to stay home, she gets a payoff equal to 0. Every
player faces this same two options and has the same preferences.

The strategy “everybody stays home” is a Nash equilibrium of the
described game. However, we cannot consider it a good equilibrium
since players use a dominated strategy. It is not difficult to come up
with similar examples with patently implausible Nash equilibria.1

Recall that in conventional normal form games (from now on just
normal form games), a modest refinement like perfection only selects
undominated strategies. This is the case in the previous example. How-
ever, in Poisson games this is not true in general. We can go further,
straightforward extensions of proper and strictly perfect equilibrium
may select dominated strategies as well and, in addition, not every
Poisson game has a strictly perfect equilibrium.

On the other hand, as it happens in normal form games, not ev-
ery undominated equilibrium is perfect. The same arguments that in
normal form games suggest that we should dispose of some of the un-
dominated equilibria that are not perfect are valid here. The difference
being that, as argued above, some perfect equilibria may be dominated.

We define undominated perfect equilibria for Poisson games as strat-
egy combinations that are limits of sequences of undominated equilibria
of perturbed Poisson games. We prove that every Poisson game has at

1For instance, Myerson (2002), analyzing voting contexts, considers only Nash
equilibria in which weakly dominated actions have been eliminated for all the types.
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least one undominated perfect equilibrium and that the set of undom-
inated perfect equilibria is exactly the set of perfect equilibria which
are also undominated.

Our analysis is focused on Poisson games. However, we must point
out that none of the implications that we derive relies on the spe-
cific shape of the Poisson distribution. They are a consequence of a
symmetry assumption that is embodied in the description of games of
population uncertainty. Poisson games are taken as a reference be-
cause, together with their comparative computational simplicity, they
are the most used subclass within this type of games.

This paper is organized as follows: In the next section we formally
define Poisson games, strategies and Nash equilibria. We closely follow
the description of Poisson games made by Myerson (1998). The third
section is devoted to examine the properties of undominated strategies
in Poisson games, where we show that there exist important asymme-
tries with respect to normal form games. The fourth section studies the
perfect equilibrium concept and some of its possible variations. We de-
fine the concept of undominated perfect equilibrium for Poisson games
in Section 5, where some of its properties are also proved.

2. Preliminaries

Recall that a Poisson random variable is a discrete probability dis-
tribution characterized by only one parameter that coincides with the
mean of the distribution. The probability that a Poisson random vari-
able with mean n takes the value k, being k a nonnegative integer,
is

f(k; n) = e−n nk

k!
.

A Poisson game Γ is a five-tuple (n, T, r, C, u). The number of players
in the game is a Poisson random variable with parameter n > 0. The
set T represents the set of possible types of players, we assume it to be
a nonempty finite set.

As usual, if A is a finite set, ∆(A) represents the set of probability
distributions over A. Given the event that a player is in the game, she
is of type t ∈ T with probability r(t). This information is contained
in the vector r ∈ ∆(T ). The decomposition property of the Poisson
distribution implies that for each type t in T , the number of players of
the game whose type is t is a Poisson random variable with parameter
nr(t). These random variables together are mutually independent and
form a vector, called the type profile, which lists the number of players
in the game who have each type.



4 UNDOMINATED (AND) PERFECT EQUILIBRIA IN POISSON GAMES

For any finite set S, we denote as Z(S) the set of elements w ∈ R
S

such that w(s) is a nonnegative integer for all s ∈ S. Using this
notation, the set Z(T ) denotes the set of possible values for the type
profile in the game.

The set C is the set of available choices or pure actions that a player
may take. We assume that it is common to all players regardless of
their type and that it is a finite set containing at least two different
alternatives. The set ∆(C) is the set of mixed actions. Henceforth, we
refer to mixed actions simply as actions.

The utility to each player depends on her type, on the action that she
chooses and on the number of players, not counting herself, who choose
each possible action. A vector that lists these numbers of players for
each possible element of C is called an action profile and belongs to
the set Z(C). We assume that preferences of a player of type t can be
summarized with a bounded function ut : C × Z(C) → R, i.e. ut(b, x)
is the payoff that a player of type t receives if she takes the pure action
b and the number of players who choose action c is x(c), for all c ∈ C.
Furthermore, let u = (ut)t∈T .

In games with population uncertainty, as Myerson (1998, p. 377)
argues, “. . . players’ perceptions about each others’ strategic behavior
cannot be formulated as a strategy profile that assigns a randomized
strategy to each specific individual of the game, because a player is not
aware of the specific identities of all the other players”. Notice that two
players of the same type do not have any other known characteristic
by which others can assess different conducts. The conclusion of the
previous reasoning is that a strategy σ is an element of (∆(C))T , i.e.
a mapping from the set of types to the set of possible actions.2

This symmetry assumption is a fundamental part of the description
of the game. Notice that it is not made for convenience, on the contrary,
symmetry is a critical assumption of a model of population uncertainty
for it to be meaningful and well constructed.

If players play according to the strategy σ, σt(c) is the probability
that a player of type t chooses the pure action c. The decomposition
property of the Poisson distribution implies that the number of players
of type t ∈ T who choose the pure action c is a Poisson distribution with
parameter nr(t)σt(c). The aggregation property of the Poisson distri-
bution implies that any sum of independent Poisson random variables
is also a Poisson random variable. It follows that the total number

2One may wonder how the game might be affected if the subdivision of types was
finer, thus, allowing a larger variety of different behaviors. Myerson (1998) proves
that, for Poisson games, utility-irrelevant subdivisions of types cannot substantially
change the set of Nash equilibria (Theorem 4, page 386).
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of players who take the pure action c is a Poisson distribution with
parameter nτ(c), where τ(c) =

∑

t∈T r(t)σt(c).
A player of type t who plays the pure action b ∈ C while all other

players are expected to play according to σ has expected utility equal
to

Ut(b, σ) =
∑

x∈Z(C)

P(x|σ)ut(b, x)

where,

P(x|σ) =
∏

c∈C

e−nτ(c) (nτ(c))x(c)

x(c)!

and her expected utility from playing action θ ∈ ∆(C) is

Ut(θ, σ) =
∑

b∈C

θ(b)Ut(b, σ).

The set of best responses for a player of type t against a strategy σ
is the set of actions that maximizes her expected utility given that the
rest of the players, including those whose type is t, behave as prescribed
by σ. The set PBRt(σ) = {c ∈ C : c ∈ arg maxb∈C Ut(b, σ)} is the set of
pure best responses against σ for a player of type t. The set of mixed
best responses against σ for a player of type t is the set of actions
BRt(σ) = ∆(PBRt(σ)).

Definition 1. The strategy σ∗ is a Nash equilibrium if σ∗

t ∈ BRt(σ
∗)

for all t.

Standard fixed-point arguments show that every Poisson Game has
at least one Nash equilibrium, see Myerson (1998).

3. Dominated Strategies

The admissibility principle, which in normal form games stipulates
that no player must choose a dominated strategy, translates into the
current framework imposing that no player should choose a dominated
action.3

3Some properties of (un)dominated strategies in normal form games are also true
in Poisson games, although they have to be stated in terms of actions for Poisson
games. It is easy to to see that if a pure action is dominated then every mixed
action that gives positive probability to that pure action is also dominated, also
that an action that does not give positive probability to a dominated pure action
may be dominated, and that a pure action may just be dominated by a mixed
action. See De Sinopoli and González Pimienta (2007).
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Definition 2. The action θ ∈ ∆(C) is dominated for a player of type
t if there exists an alternative action θ′ such that Ut(θ, σ) ≤ Ut(θ

′, σ),
for every possible strategy σ and Ut(θ, σ

′) < Ut(θ
′, σ′) for at least one

σ′. A strategy σ is dominated if there is some type t for which σt is a
dominated action.

Although contained in a voting framework, Myerson (2002) offers
a stronger definition of dominated action. Under such definition the
(pure) action c is dominated for a player of type t if there exists an
alternative (pure) action b such that ut(c, x) ≤ ut(b, x) for every x ∈
Z(C) and with strict inequality for at least one x′. This definition
leads to too many undominated strategies. We use the former since it
is equivalent to the definition of dominated strategies for normal form
games.

We can use this formal apparatus to revisit the example discussed
in the introduction. Let a stand for “going out” and b for “staying
home”:

Example 1. Let Γ be a Poisson game with n > 0, only one possible
type, set of available choices C = {a, b}, and utility function:

u(a, x) =

{

1 if x(a) > 0

0 otherwise

u(b, x) = 0 ∀x ∈ Z(C).

Since this Poisson game has only one possible type, we can identify
the set of strategies with the set of actions. There are two equilibria,
a and b. We have already argued that the equilibrium strategy b is
unsatisfactory. Notice that b is a dominated action, even when we
consider the stronger definition given by Myerson (2002), which makes
b a dominated strategy.

The example highlights that the Nash equilibrium concept is inad-
equate for Poisson games since it allows for equilibrium points where
players use dominated actions (strategies).

In normal form games the admissibility requirement is taken care
of by perfection. Every perfect equilibrium selects only undominated
strategies and, moreover, perfect equilibrium conditions do not admit
just every equilibrium in undominated strategies, but only a subset of
them.

Mertens (2004) links undominated strategies and perfect equilibrium
through the concept of admissibility. He defines 3 possible concepts of
admissible best response:
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(α) θ is an admissible best response against σ if there exists a se-
quence of completely mixed σk converging to σ such that θ is a
best response against each (σk).

(β) θ is an admissible best response against σ if θ is a best response
against σ and there exist completely mixed σ′ such that θ is a
best response against σ′.

(γ) θ is an admissible best response against σ if θ is a best response
against σ and no other best response θ′ is at least as good
against every σ′ and better against some.

The third concept corresponds to the usual concept of admissibility,
i.e. players must use undominated strategies, while the first one is a
characterization of perfect equilibria. In normal form games, the first
concept is strictly stronger than the second, which in turn is strictly
stronger than the third.

It is not clear that the same relationship holds for Poisson games
(apart from the fact that the second concept is clearly weaker than
the first). We are interested in finding out if there is any connection
between α and γ in the present setting. Once we know this, we will
be able to propose a definition of a strong version of admissibility for
Poisson games.

This is done in Section 5. Before that we have to extend the perfect
equilibrium concept to Poisson games and look into its properties.

4. Perfection

Three equivalent definitions of perfect equilibrium have been pro-
posed for normal form games. One based on perturbed games (Selten,
1975), a second one based on the item α of the previous list (also Sel-
ten, 1975) and a last one based on ε-perfect equilibria (Myerson, 1978).
Below we provide the three corresponding definitions for Poisson games
and prove their equivalence, so that we always have the most advanta-
geous definition available.

The leading definition that we use is the one based on perturbed
games

Definition 3. Let Γ be a Poisson Game, for every t ∈ T , let ηt and
Σt(ηt) be defined by:

ηt ∈ R
C with ηt(c) > 0 for all c ∈ C and

∑

c∈C

ηt(c) < 1

Σt(ηt) = {θ ∈ ∆(C) : θ(c) ≥ ηt(c) for all c ∈ C}.
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Furthermore, let η = (ηt)t. The perturbed Poisson game (Γ, η) is the
Poisson game (n, T, r, C, u) where players of type t are restricted to
play only actions in Σt(ηt), for every t.

In the perturbed Poisson game (Γ, η), an action θ ∈ Σt(ηt) is a best
reply against σ ∈ Σ (η) =

∏

t∈T Σt(ηt) for a player of type t if every
pure action c that is not a best response in Γ against σ for a player of
type t is played with minimum probability, that is to say, σt(c) = ηt(c).
A strategy σ ∈ Σ (η) is an equilibrium of the Poisson game (Γ, η) if for
every type t, σt is a best response to σ in (Γ, η). Kakutani fixed point
theorem implies that:

Lemma 1. Every perturbed Poisson game has an equilibrium.

Perturbed games lead to the following definition of perfection:

Definition 4. A strategy σ is a perfect equilibrium if it is the limit
point of a sequence {ση}η→0, where ση is an equilibrium of the per-
turbed game (Γ, η), for all η.

Since every perturbed Poisson game has an equilibrium and since
this equilibrium is contained in the compact set (∆(C))T , every Poisson
game has a perfect equilibrium.4 By continuity of the utility function,
every perfect equilibrium is also a Nash equilibrium.

As we mentioned earlier, another possible definition of perfect equi-
librium uses ε-perfect equilibria. A completely mixed strategy σε is an
ε-perfect equilibrium if it satisfies:

Ut(c, σ
ε) < Ut(d, σε), then σε

t (c) ≤ ε for all t ∈ T.

What follows is an adaption to Poisson games of some results and proofs
contained in van Damme (1991, pp. 26–29) for perfect equilibrium
in normal form games. Although this is rather straightforward, we
include it here to maintain the paper self-contained. The next lemma
lists the two remaining concepts of perfect equilibrium and proves their
equivalence.

Lemma 2. Let Γ be a Poisson game, and let σ ∈ (∆(C))T . The

following assertions are equivalent:

(1) σ is a perfect equilibrium of Γ,

(2) σ is a limit point of a sequence {σε}ε→0, where σε is an ε-perfect
equilibrium of Γ, for all ε, and

4Take any sequence of η → 0, and for each η, an equilibrium ση of (Γ, η). The
sequence {ση}η→0 has a convergent subsequence whose limit point is a perfect
equilibrium.
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(3) σ is a limit point of a sequence {σε}ε→0 of completely mixed

strategy combinations with the property that, for all t, σt is a

best response against each element σε in this sequence.

Proof. (1)→(2): Let σ be a limit point of a sequence {ση}η→0, where
ση is equilibrium of Γ(η) for all η. Define ε(η) ∈ R++ by

ε(η) = max
t,c

ηt(c).

Then ση is an ε(η)-perfect equilibrium for Γ.
(2)→(3): Let {σε}ε→0 be a sequence of ε-perfect equilibria with limit

σ. By continuity, every element of the carrier of σ, which from now on
we denote as C(σ), is a best response against σ(ε) for ε close enough
to zero.

(3)→(1): Let {σε}ε→0 be a sequence as in (3) with limit σ. Define
ηε by:

ηε
t (c) =

{

σε
t (c) if c /∈ C(σt)

ε otherwise
for all t, c.

For ε small enough σε is equilibrium of the perturbed Poisson game
(Γ, ηε), which establishes (1). �

Example 2. Let Γ be a Poisson game with expected number of players
equal to n = 2,5 only one possible type, set of choices C = {a, b}, and
utility function

u(a, x) = e−2 ∀x

u(b, x) =

{

1 if x(a) = x(b) = 1

0 otherwise.

Notice that e−2 is the probability that x(a) = x(b) = 1 under the
strategy σ = 1/2a + 1/2b. Also notice that the action b is dominated
by the action a, the former only does as good as the latter against
the strategy σ = 1/2a + 1/2b, and does strictly worse for any other
strategy σ′ 6= σ. The action θ = 1/2a + 1/2b is also dominated by a.
Nevertheless it is a best response against the strategy σ. Consequently,
the dominated strategy σ is a perfect equilibrium.

5The set of examples in the paper is designed to be as clear and simple as possible.
This is the reason why we many times fix the expected number of players to be
n = 1 or n = 2. This contrasts with the fact that Poisson games fit more naturally
to a situation where the expected number of players is large. At the expense of
computational simplicity, similar examples can be constructed for any value of the
Poisson parameter n.
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The next example is more illustrative in showing how the perfect
equilibrium concept fails to select only undominated strategies in Pois-
son games.

Example 3. Consider the Poisson game Γ = {n, T, r, C, u}, with ex-
pected number of players n = 2, set of types T = {1, 2}, with equal
probability for each type r(1) = r(2) = 1/2, set of choices C = {a, b},
and utility function:

u1(a, x) =

{

1 if x(b) = 1

0 otherwise

u1(b, x) = e−1 ∀x ∈ Z(C)

u2(a, x) = e−1 ∀x ∈ Z(C)

u2(b, x) =

{

1 if x(a) = 1

0 otherwise.

The number of players of type 1 is a Poisson random variable with
expected value equal to 1. The same is true for type 2. Notice also
that e−1 coincides with the probability that a Poisson random variable
of parameter 1 is equal to 1. The action a is dominated for players of
type 1, while action b is dominated for players of type 2. We claim that
the strategy σ = (σ1, σ2) = (a, b) is a perfect equilibrium. Take the
sequence of ε-perfect equilibria σε

1 = (1 − ε)a + εb, σε
2 = εa + (1 − ε)b.

For every ε, Ut(a, σε) = Ut(b, σ
ε), and the sequence {σε}ε→0 converges

to σ.

Each one of this last two examples actually proves the next proposi-
tion:6

Proposition 1. A Perfect equilibrium can be dominated.

6As we mentioned in the introduction, the results are a consequence of the sym-
metry assumption that is inherent to games of population uncertainty. To see why,
consider the following three person normal form game:

a b
a 1, 1, 1 0, 0, 0
b 0, 0, 0 1, 1, 1

a

a b
a 0, 0, 0 1, 1, 1
b 1, 1, 1 0, 0, 0

b

There are two symmetric equilibria, one in which every player plays a and a
second one in which every player plays 1/2a+1/2b. Both are perfect equilibria and,
hence, undominated. However, if dominated strategies are defined over symmetric
strategies of the opponents, strategy b and, consequently, strategy 1/2a + 1/2b are
dominated for every player.
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Hence, the doubts that we have raised at the end of the previous
section are justified. In Poisson games, the relationship between α and
γ of the possible concepts of admissible best response listed by Mertens
is different from the one that holds in normal form games.

In the last example, the undominated equilibrium σ = (σ1, σ2) =
(b, a) is also perfect. The next question that we must answer is whether
or not undominated equilibria are always perfect. Proposition 2 shows
that in this case things work as they do in normal form games.

Proposition 2. An undominated equilibrium may not be perfect.

Proof. Consider a Poisson game Γ, with expected number of players
equal to n, two possible types with equal probabilities, i.e. T = {1, 2}
and r(1) = r(2) = 1/2, set of available choices C = {a, b, c} and utility
function:7

u1(a, x) = x(a) + x(b)

u1(b, x) = |x(a) + x(b) − x(c)|

u1(c, x) = 0 ∀x ∈ Z(C)

u2(a, x) = x(a)

u2(b, x) = 0 ∀x ∈ Z(C)

u2(c, x) = 0 ∀x ∈ Z(C).

The game has a continuum of undominated equilibria (λa+(1−λ)b, a),
for λ taking values in the closed interval [0, 1]. Note, in particular, that
the action b is not dominated for players of type 1 since it does better
than the action a against the strategy σ = (σ1, σ2) = (c, c). However,
the strategy σ̂ = (σ̂1, σ̂2) = (a, a) is the unique perfect equilibrium of
the game. �

The example used in the proof of the last proposition depicts that
there may be unreasonable equilibria in undominated strategies. Con-
sider the strategy σ′ = (λa + (1 − λ)b, a) with λ ∈ [0, 1). It is difficult
to justify that a player of type 1 will stick to the prescribed strategy. A
rational player should not risk his equilibrium payoff, even more when
there is no possible expected benefit from such behavior. Suppose there

7Notice that the utility functions that we use in this example, and in some of
the following ones are not bounded, as we assumed in the general description of
Poisson games made in Section 2. The main features of all the examples discussed
are preserved if we put an upper bound on utilities, that is to say, if utilities are given
by ũt(y, x) = min{ut(y, x),K}, where K is a sufficiently large number with respect
to n. However, we maintain the unbounded functions for the sake of simplicity.
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was an unexpected deviation from σ′ toward c, placing weight in the
action b would pay off to players of type 1 if and only if such a deviation
was drastic and it would hurt otherwise.

Since not all perfect equilibria are undominated and not all undom-
inated equilibria are perfect, we would like to have available an equi-
librium concept that implies both. At this early stage, we do not
want to go very far apart from the perfect equilibrium concept. We
notice, nevertheless, that the equilibrium discussed in Example 3 is
also proper, for a straightforward extension of this concept to Poisson
games,8 since every player has only two possible choices.9 Strictly per-
fect equilibrium, does not help either. As argued above, the strategy
σ = 1/2a + 1/2b is an equilibrium of the Poisson game described in

8A completely mixed strategy σε is an ε -proper equilibrium if it satisfies:

Ut(c, σ
ε) < Ut(d, σε), then σε

t (c) ≤ εσε
t (d) for all t ∈ T.

A strategy σ is proper if it is a limit point of a sequence {σε}ε→0, where σε is
an ε-proper equilibrium of Γ, for all ε.

9As it should be expected, not every perfect equilibrium is proper. Consider
the Poisson game Γ = {n, T, r, C, u}, with expected number of players n = 2, two
possible types that are equally probable, i.e. T = {1, 2} and r(1) = r(2) = 1/2, set
of choices C = {a, b, c, d} and utility function:

u1(x, a) = 0 ∀x

u1(x, b) = x(d) − x(c)

u1(x, c) = −1 ∀x

u1(x, d) = −2 ∀x

u2(x, a) =

{

1 if x(b) = 1

0 otherwise

u2(x, b) = e−1 ∀x

u2(x, c) = −1 ∀x

u2(x, d) = −2 ∀x

The action a is dominated for players of type 2 by action b. The strategy σ =
(σ1, σ2) = (b, a) is perfect. To see this consider the sequence of ε-perfect equilibria:

σε
1

= 1

3
εa + (1 − ε)b + 1

3
εc + 1

3
εd

σε
2

= (1 − ε − 2ε2)a + εb + ε2c + ε2d

For every type, action d is always strictly worse than actions c, hence, in any
ε-proper equilibrium, the former is played with strictly less probability than the
latter. Therefore, a player of type 1 plays the action b with a probability less than
ε times the probability that she gives to a. Hence, in no proper equilibrium she
plays b with positive probability.
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Example 2. Notice that this equilibrium uses completely mixed strate-
gies, and consequently, it is a strictly perfect equilibrium (again, using
a straightforward extension of the concept to Poisson games).10

Examples 2 and 3 suggest that we may also demand robustness
against perturbations other than trembles. (In Example 2, the pay-
off e−2 coincides with the probability that x(a) = x(b) = 1 under the
strategy σ = 1/2a + 1/2b. In example 3 the payoff e−1 coincides with
the probability that x(a) = 1, also that x(b) = 1, under the strategy
σ = (σ1, σ2) = (a, b).) Specifically, perturbations in the Poisson param-
eter n seem like the natural candidate as the model is of population
uncertainty. Let us study the following equilibrium concept.

Definition 5. The strategy σ is a perfect∗ equilibrium of the Poisson
game Γ = (n, T, r, C, u) if there exists a ξ > 0 such that σ is a perfect
equilibrium of the Poisson game Γ̃ = (ñ, T, r, C, u) for all ñ ∈ (n −
ξ, n + ξ).

A perfect∗ equilibrium is a perfect equilibrium, not only of the orig-
inal game, but also of every game that is obtained by small perturba-
tions in the expected number of players. Notice that we cannot rely
exclusively on perturbations in the expected numbers of players. One
can easily construct examples that do not pose any restriction in the
number of players with unreasonable Nash equilibria. See for instance
Example 1.

Let us analyze why the perfect∗ equilibrium concept is not adequate
by means of the following example.

Example 4. Consider the family of Poisson games with expected num-
ber of players equal to n > 4

7
,11 with only one type, set of choices

10In addition strictly perfect equilibrium does not satisfy existence. To see this,
consider a Poisson game with expected number of players n > 0, only one possible
type, four different choices C = {a, b, c, d} and utility function:

u(a, x) = 1 + x(c)

u(b, x) = 1 + x(d)

u(c, x) = 0 ∀x

u(d, x) = 0 ∀x.

Notice that there is no equilibrium that is “robust” to every possible tremble.
11It is enough that n is such that ln n > −n.
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C = {a, b}, and utility function:

u(a, x) = x(b)

u(b, x) =

{

1 if x(a) = x(b) = 0

2x(a) otherwise.

Every game has a unique equilibrium and it depends on n.12 Conse-
quently, it does not have a perfect∗ equilibrium.

This example prompts us to discard the previous equilibrium concept
and reveals that demanding stability against variations in the Poisson
parameter n forces to tolerate, at least, smooth variations of the equi-
librium strategy if we want to retain existence. Therefore, if σ is a
perfect equilibrium of Γ, we may want any game that only differs from
Γ in that it has a slightly different number of expected players to have
a perfect equilibrium that is not far away from σ.

As the next example shows, this relaxation would bring back domi-
nated equilibria.

Example 5. Let Γ be a Poisson game with expected number of players
equal to n = 6, two different types T = {1, 2} with r(1) = 2/3 and
r(2) = 1/3, set of available choices C = {a, b, c, d}, and utility function:

u1(h, x) = 0 ∀x ∈ Z(C),∀h ∈ C

u2(a, x) =

{

1 if x(c) = x(d) = 1

0 otherwise

u2(b, x) = e−2 ∀x ∈ Z(C)

u2(h, x) = −1 ∀x ∈ Z(C), h = c, d.

Notice first that the number of players with type 1 is a Poisson random
variable of parameter 4. The strategy σ = (σ1, σ2) = (1/4a + 1/4b +
1/4c + 1/4d, a) implies that the event x(c) = x(d) = 1 occurs with
probability e−2. The strategy σ is a perfect equilibrium where players
of type 2 play dominated strategies. Take g to be a small number.
The Poisson game Γg = {n + g, T, r, C, u} has a dominated perfect
equilibrium very close to σ where players of type 1 play action (1/4 +
κ, 1/4 + κ, 1/4 − κ, 1/4 − κ), for κ = g/(24 + 4g), and players of type
2 play action a. On the other hand, the Poisson game Γg = {n −
g, T, r, C, u} also has a dominated perfect equilibrium very close to σ,
where players of type 1 play action (1/4−κ′, 1/4−κ′, 1/4+κ′, 1/4+κ′),
for κ′ = g/(24 − 4g), and players of type 2 play action a.

12The unique equilibrium is σ = αa + (1− α)b, where α =
(

1 − 1

nen

)

/
(

3 − 2

en

)

.
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So far we have provided a number of results and examples that show
that some equilibrium concepts proposed for normal form games do
not retain either admissibility or existence when extended to Poisson
games. In the next section we propose an equilibrium concept that
shows that, in this setting, these properties are not incompatible.

5. Undominated Perfect Equilibria

The same arguments that in normal form games compel to dispose of
the undominated equilibria that are not perfect are also well founded
here. Perfection is a weak requirement, it asks for stability against
one single perturbation, not against every possible perturbation. As a
result, equilibria that are not perfect are very unstable.

The main difference in the current setting is that there are perfect
equilibria that are not undominated. We want to put forward a strong
version of admissibility for games with population uncertainty. Such a
definition comprises items α and γ from the list of possible concepts
of admissibility provided by Mertens (2004) and listed at the end of
Section 3.

Definition 6. θ is an admissible best response against σ if it is undom-
inated and there exists a sequence of completely mixed σk converging
to σ such that θ is a best response against each (σk).

Accordingly, we may say that the strategy σ is admissible if for
every t, σt is an admissible best response against σ. Therefore, if σ
is an admissible strategy it is a perfect equilibrium, and we may talk
about the set of admissible equilibria.

We want to propose an equilibrium concept that satisfies admissi-
bility and that generates a nonempty set of equilibria for any game.
Such a concept is introduced in Definition 7, the admissibility property
will come directly from the definition and the existence result is offered
in Proposition 4. The following Proposition shows that every Poisson
game has an equilibrium in undominated strategies. It could have been
proposed as a corollary of our main existence result. However, we pre-
fer to invert the order of presentation so that the argument of the main
proof can be more easily followed.

We proceed to prove that every Poisson game has an equilibrium in
undominated strategies. Notice that the set of undominated strategies
is not convex and, hence, we could not show existence of undominated
equilibria using a standard fixed point argument in this set. A con-
structive proof shows that:
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Proposition 3. Every Poisson game has a Nash equilibrium in un-

dominated strategies.

Proof. Consider a Poisson game Γ, with set of choices C and utility
vector u. Recall that if θ is an action, C(θ) denotes the carrier of θ.
Notice that if C(θ) ⊆ C(θ′) then there exist a λ ∈ (0, 1) and an action
θ′′ such that θ′ = λθ+(1−λ)θ′′. If θ is dominated for players of type t,

there exists a θ̃ that dominates it, and a σ̂ such that Ut(θ, σ̂) < Ut(θ̃, σ̂).
Moreover, if C(θ) ⊆ C(θ′) then θ′ = λθ + (1 − λ)θ′′ is dominated by

θ̃′ = λθ̃ + (1 − λ)θ′′ and Ut(θ
′, σ̂) < Ut(θ̃′, σ̂).

This implies that we can talk about dominated carriers and that,
given a dominated carrier C there exists a strategy σ̂ such that any
action with carrier that contains C is dominated by an action that is a
strictly better response to σ̂.

Consider the set of all possible carriers, and call Dt the finite set of
all dominated carriers for players of type t. For each minimal element
of Dt, say dt, let σdt

be a strategy such that any action with carrier that
contains dt is dominated by an action that is a strictly better response
to such a strategy. Let Mt be the set of minimal elements of Dt.

For λ > 0, define a new Poisson game Γλ, with utility vector given
by

uλ
t (c, x) = ut(c, x) + λ

∑

dt∈Mt

Ut(c, σdt
)

which implies expected utilities,

Uλ
t (θt, σ) = Ut(θt, σ) + λ

∑

dt∈Mt

Ut(θt, σdt
).

This new Poisson game has an equilibrium. Moreover, no dominated
action of the original game is used with positive probability in that
equilibrium. Take a sequence of λ → 0. There exists a subsequence of
equilibria {σλ}λ that converges to some σ̄. By continuity of the utility
function, σ̄ is an equilibrium in undominated strategies of the original
game. �

In section 4 we have defined perturbed Poisson games. In a perturbed
game (Γ, η) an action θ ∈ Σt(ηt) is dominated for type t if there exists
an alternative action θ′ ∈ Σt(ηt) such that Ut(θ, σ) ≤ Ut(θ

′, σ), for
every possible strategy σ ∈ Σ (η) and Ut(θ, σ

′) < Ut(θ
′, σ′) for at least

one σ′ ∈ Σ (η).
We could strength the definition of perfection (Definition 4), asking

the equilibria in the sequence to be undominated:
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Definition 7. A strategy σ is an undominated perfect equilibrium of
a Poisson game Γ if it is the limit point of a sequence {ση}η→0 where
ση is an undominated equilibrium of (Γ, η) for all η.

Every perturbed Poisson game has an undominated equilibrium.13

Moreover, for η close to zero the sets of dominated carriers in Γ and
in (Γ, η) coincide for every possible type. Hence, every undominated
perfect equilibrium is perfect and undominated (i.e., it satisfies our
strong version of admissibility). Since every perturbed Poisson game
has an undominated equilibrium and since this equilibrium is contained
in the compact set (∆(C))T it follows:14

Proposition 4. Every Poisson game has an undominated perfect equi-

librium.

The definition appears to be stronger than requiring separately per-
fect equilibrium and undominated strategies because it poses restric-
tions in the sequence of equilibria of the associated perturbed Poisson
games. The next Proposition shows that both definitions are equiva-
lent. This fact, in view of Lemma 2, simplifies the analysis of undomi-
nated perfect equilibrium in Poisson games.

Proposition 5. The set of undominated perfect equilibria coincides

with the intersection of the set of undominated equilibria with the set

of perfect equilibria.

Proof. Let σ belong both to the set of perfect equilibria and to the set
of undominated equilibria of Γ. Since σ is perfect it is the limit point
of a sequence {ση}η→0 where ση is an equilibrium of (Γ, η). Because
σ is undominated, its carrier is not a dominated one. Moreover, for η
close to zero the sets of dominated carriers in Γ and in (Γ, η) coincide
for every possible type. For each η, let η′ be defined by:

η′

t(c) =

{

ση
t (c) if σt(c) = 0

ηt(c) otherwise
for all c, t.

Then ση′

= ση is an undominated equilibrium of (Γ, η′). Moreover the
sequence of η′ converges to zero. Hence, σ is the limit point of the
sequences {ση′

}η′→0 of undominated equilibria for (Γ, η′). �

13To see this, a modification of the proof of Proposition 3 would do, where the
carrier of an action is defined as the set of pure actions that receive strictly more
probability than the minimum weight imposed by η.

14See footnote 4.
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