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Abstract

Although many signaling situations are best interpreted as repeated games, prior

research often models them as one-shot games. We analyze a class of repeated

signaling games in which the informed player’s type is persistent and the history

of actions are perfectly observable. In this context a large class of possibly complex

sequences of signals can be supported as the separating equilibrium actions of the

“strong type” of the informed player. We characterize the set of such sequences.

We also characterize the sequences of signals in least cost separating equilibria of

these games. We show that these sequences in general have a simple structure.

Moreover, many of them involve costly signaling after beliefs become degenerate.
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1 Introduction

Signaling models have been widely used in economics to explain a variety of phenomena

including uninformative advertising ([17, 14]), limit pricing ([13]), dividends ([3, 8]) and
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warranties ([6, 15]).1 Signaling games model situations where seemingly irrational ac-

tions by an informed player are credible means of communicating information which is

otherwise unverifiable. For instance, uninformative advertising is explained as a credible

way for a producer to tell potential consumers that her product is of high quality, while

limit pricing models a situation where a monopolist sets lower than optimal prices to

prove to potential entrants that she has low costs and hence entry would not be prof-

itable.

Many of the situations modeled as signaling games are abstractions from repeated

situations in reality. For instance, the monopolist would be around for more than one

period, trying to fend off potential entrants and the producer of a high quality product

will have new potential consumers period after period. In spite of this, the literature so

far very often models these situations as one-shot games.

In the context of signaling games, using the analysis of the one-shot game to make

predictions about a dynamic situation would be without loss of generality if one of the

following two were true: firstly, if the realizations of the private information of the

informed player are independent over time, so that actions in earlier periods of the in-

formed player does not carry any hints about the realizations in later periods; secondly

if the history of earlier signaling activity are not observable to the uninformed player in

the later periods. Clearly though, neither independence over time, nor unobservability

of history is a realistic assumption in many situations: it is reasonable to assume that

the current level of costs for the monopolist is not independent of her costs in earlier

dates. Moreover, a potential entrant would observe more than one period’s price and use

the past prices as well as today’s price to form an inference about the cost structure of

the incumbent monopolist. Similarly, the quality of the product of a given producer can

reasonably be assumed to be correlated over time and potential buyers in one period

can reasonably be assumed to have observed earlier advertising by this producer. In

the absence of either of these assumptions, earlier period actions contain information

about private information in later periods, and since they are observable they may be

1For an extensive survey see [21].
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used by the uninformed player to make inferences about the current realization of the

private information. When viewed in the light of this observation, it becomes clear that

equilibria of a repeated signaling game may exhibit very interesting dynamics which are

left out by the approach of using the one-shot game as a proxy. This paper analyzes

such dynamics.

We define repeated signaling games as games with a long-lived informed player who

faces an uninformed player every period. The uninformed player can also be long-lived,

or there can be a sequence of uninformed players each of whom play only for one period.

If the latter is the case, we assume that each of the uninformed players perfectly observe

the whole history of the game. In each period, the informed player acts first, choosing

an action. Then the uninformed player reacts. The strategy spaces and instantaneous

payoff functions are stationary. Moreover, the “type” of the informed player is persis-

tent.

The first question addressed in this paper is “What happens after separation?”. If

there is separation in the first period—i.e. each type of the informed player takes a

different action, thereby fully revealing her type—does the play continue as a full infor-

mation game? Is there any room for further costly signaling? At first blush the answer

seems to be that there can be no costly signaling after separation. After all, if the

player’s type has been revealed, what gain can there be from further costly signaling?

If this reasoning were valid, the repeated signaling game could be analyzed as if it were

a one-shot game, albeit one in which the stakes are higher, because there are more pay-

offs to be gotten in return for being believed to be a good type. Yet, to reach such a

conclusion one would have to argue that once the uninformed player believes for sure

that the informed player is of a certain type, then this conviction will never change. The

argument would go: if something is for sure and there is zero probability that it will

change, nothing should be able to change one’s mind about it. However, such reasoning

is not inherently a part of the perfect Bayesian equilibrium, nor of the sequential equilib-

rium.2 In a perfect Bayesian equilibrium, there are no restrictions over the beliefs after

2In fact, it is shown in Madrigal, et al. [12] and Noldeke and van Damme [19] that imposing this
additional assumption may lead to non-existence of sequential equilibria.

3



an unexpected (off-equilibrium path) action. Therefore, there can be equilibria in which

costly signaling, even after initial separation, may happen, because failing to signal may

lead to very unfavorable beliefs, hence very low payoffs.3 In fact, making use of this full

freedom about off-the-equilibrium path beliefs, it is possible to support many sequences

of actions in a separating equilibrium. More specifically, we show that for a sequence

of signals to be on the path of a separating equilibrium, it is necessary and sufficient

that this sequence satisfy two sets of constraints. First is a set of incentive compatibility

constraints that guarantee that the weak type is not willing to mimic the strong type’s

equilibrium path actions. Second is a set of individual rationality conditions that make

sure that the strong type is getting as much as she can guarantee herself. We spell out

these conditions in Section 4.

It is a well-known fact that multiplicity of equilibrium is an important issue in one-

shot signaling games. The discussion above points to the main source of this multiplicity:

the freedom about off-equilibrium path beliefs. Indeed, formal refinements in the one-

shot setting most often work by restricting these beliefs. In this paper, we do not propose

a formal refinement for repeated signaling games. Instead we focus on the least cost sep-

arating equilibria (LCSE) of the repeated signaling game. We justify our selection by

informal arguments in the spirit of the Cho and Kreps intuitive criterion [4].

It is shown that the equilibrium path actions of the strong type in a LCSE maximize

her total discounted sum of payoffs subject only to a sequence of incentive constraints.

For each point in time, this sequence of constraints guarantees that the weak type does

not mimic the strong type up to that point and then stop mimicking. In Section 4,

we propose a particular belief system that gives this optimization problem a recursive

structure. In doing this, we define a variable which can be interpreted as a measure of

reputation. Given a history, this variable measures the would-be cost for the weak type,

if he had been the one following this history. This can be interpreted as a measure of

3This same intuition is noted by Bagwell and Riordan [2] and used in the analysis of the two period
version of a model of prices as signals of quality. For another application of this reasoning see Vincent
[26] for an analysis of a repeated interaction between trading parties with one-sided persistent private
information.
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reputation because the higher this would-be cost, the less likely it is that we are facing

a weak type. Therefore, the above-mentioned belief system assigns probability 1 to the

strong type when the accumulated reputation is high enough and assigns probability 1

to the weak type otherwise.

In Section 6, we characterize the optimal policies for the recursive problem thus for-

malized, i.e. the LCSE actions of the strong type. Making use of the variable measuring

reputation, we can regard the problem at hand as a production problem in which a

producer decides how to allocate production of reputation over several plants that have

identical production technologies. The different plants in this analogy corresponds to

different periods among which the cost of signaling can be distributed. The solution

of this latter problem, though more familiar, is still not straightforward, because the

production technologies of each plant (induced by the payoff functions of the different

types of the original problem) potentially have non-convexities. To deal with this we use

ironing techniques, which amounts to finding the optimal randomization over levels of

signals that average the requisite amount. This randomization can then be mimicked by

signaling at levels in its support with appropriate frequencies. We show that in general,

the optimal policy involves one or two different levels of signals, so that on the equilib-

rium path of an LCSE, at any point in time the strong type uses one of these signal

levels. These levels are determined by the relative concavities of the payoff functions of

strong and weak types at different levels of the signaling variable, as well as the strength

of the incentives to mimic on the part of the weak type. The timing of the signals is

not completely determined. However, the frequency of the signals has to be such that,

as t → ∞, the average cost of mimicking for the weak type should converge to her

per-period benefit from doing so.

The theme of costly signaling after beliefs have become degenerate is not brand new.

In earlier models, however, such signaling is often driven by technological constraints

that make it impossible to separate in one period.

One instance where separation would not be possible in one period is when the range

of the signaling variable is small enough, i.e. when the cost of signaling for the weak
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type for one period is smaller than the benefit from being perceived as a strong type.

In these instances, separation can be achieved by signaling for several periods, where

further signaling is “enforced” by unfavorable beliefs off the equilibrium path. Such

reasoning has been quite prominent in bargaining literature ([1, 5]) and later in a series

of papers extending Spence’s job market signaling model ([18, 24, 9]). In the models of

these papers, typically, “waiting (or going to school)” is less costly for the “strong” type

of the informed player. Therefore, in a separating equilibrium, the strong type needs to

“wait” a given amount of time. For instance in an equilibrium where the weak type’s

strategy involves no waiting, the separation is achieved as soon as the strong type starts

“waiting”. That is, the beliefs attach probability one to the strong type immediately,

when the waiting starts. However, the strong type cannot stop before the prescribed

amount of time goes by. The strong type has to keep waiting, because stopping would be

an off-equilibrium-path action, and the beliefs may switch back from being degenerate.

In contrast to these models, our model assumes that the signal space is rich enough so

that separation in the first period is possible.

Another technological reason why it may not be possible to achieve separation in

one period is that the signals may not be perfectly observable by the uninformed player

([23]). In this case, of course, if the signals are noisy enough, further signaling may be

necessary to convince the uninformed player. In the current paper, it is assumed that

actions of the informed player (i.e. signals) are perfectly observable by the uninformed

player.

The current paper is also related to the problem of multi-dimensional signals ([14,

27]), where there may be several signaling variables that can be substituted for each

other. Here, signals in different periods are substitutes, albeit not perfect ones. They

are substitutes because, for instance, in a twice-repeated game, all the necessary signal-

ing can be done in the first period or some of the first period signal can be substituted

by the second period signal. They are not perfect substitutes because doing all the

signaling in the last period would not be a credible way of separation. If the equilibrium

prescribed signaling only in the last period, the weak type would choose to imitate the
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strong type until the last period, receive the payoffs for those periods, and then reveal

his type. Therefore, two features separate the current problem from the problem of

static multi-dimensional signals. First is the inability to commit to future actions, and

the second is the fact that receivers react and payoffs are received in each period. A

dynamic problem with commitment or a dynamic problem where the uninformed player

acts only once so that payoffs are received at the end of the game would be analogous

to a static multi-dimensional signals problem.

This paper is organized as follows: Section 2 introduces the model. Section 3 discusses

the issue of multiplicity of equilibrium. Section 4 characterizes the possible separating

equilibrium signals. Section 5 introduces a recursive structure for the problem of finding

the LCSE. Section 6 characterizes the solutions to this recursive problem, which com-

pletely characterize the set of possible equilibrium path signals in a LCSE. Section 7

illustrates some of the results in the framework of two classical applications, namely,

advertising and limit pricing. Section 8 concludes.

2 The Model

A signaling game is a two player game which can be represented as a 6-tuple

Γ = (X,Y, Θ, {u(.|θ)}θ∈Θ, {v(.|θ)}θ∈Θ, µ0)

where X and Y are the strategy spaces for players 1 and 2 respectively; Θ is the space

of possible types for player 1, with a typical element θ; u(.|θ) : X × Y → < is the

payoff function for player 1 of type θ and similarly v(.|θ) : X × Y → < is the payoff

function for player 2 when player 1 is of type θ; µ0 is a probability distribution over Θ

representing the prior distribution of player 1’s types. It is assumed that all these are

common knowledge. At the beginning of the game nature chooses the type of player

1, which is observed by player 1 only. Based on her type, player 1 chooses an action.
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Player 2 updates his beliefs about player 1’s type after observing her action, and reacts.

Throughout this paper we assume the following:

A 1 For every x ∈ X and µ ∈ ∆Θ, there is a unique y ∈ Y that maximizes Eµ[v(x, y|θ)];
where ∆Θ is the space of all probability distributions over Θ and Eµ[.] represents the

expectation under distribution µ.

Assumption A1 allows us to suppress the actions of player 2 when analyzing the game.

To this end we define πθ(x, µ) : X × ∆Θ → < by πθ(x, µ) ≡ u(x, y∗(x, µ)|θ), where

y∗(x, µ) is the maximizer of player 2’s utility. Therefore a (reduced form) signaling

game can be defined as a 4-tuple G = (X, Θ, {πθ}θ∈Θ, µ0). The following are assumed

about the reduced form payoff functions:

A 2 π(x, µ) is continuously differentiable in x.

A 3 For each θ and µ, πθ(x, µ) is strictly quasi-concave with unique maximum at xθ(µ),

where xs(1) ≥ xw(1).

A 4 For all x ≤ xw(1), there exists x′ ≥ xs(1) such that πw(x, 1) ≥ πw(x′, 1) and

πs(x
′, 1) ≥ πs(x).

Assumptions A2 and A3 are technical assumptions, and the assumption that xs(1) ≥
xw(1) is without loss of generality. Assumption A4 guarantees that the least costly

signaling will always involve signaling at levels greater than xs(1). Combined with the

quasi-concavity assumption, this guarantees that the payoff functions are monotonic

over the relevant range.

A T-time repetition of a signaling game Γ, where we allow T = ∞, can be described

as follows: nature chooses the type of player 1 at the beginning of period 1 and the

type remains fixed throughout the T periods. Every period after the action of player 1,

player 2 will update his beliefs based on the whole history of play. After that player 2

will react. As a result, at the end of every period player 1 receives a payoff described by
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her reduced form payoff function.

It is important to note that this description embodies an important implicit assump-

tion. What is being reduced in writing the reduced form payoff functions is the action

of the uninformed player. Saying that the reduced form payoff function as described

above completely determines the current payoff of the informed player means that the

action of the uninformed player which is being reduced is also determined solely by the

arguments of the given function. Therefore this action is not affected by expectations

about the future play. Hence, to be able to continue working with reduced form payoff

functions, we need to focus on situations where player 2 chooses a myopic best response

every period. The way that the uninformed player’s action will depend on future play

may be in one of two ways: first is through the desire to influence player 2’s future

actions if these are contingent on today’s play. This would be the case, for instance, in

a dynamic contracting situation. Second is through the direct effect of expected future

play. This is exemplified by a predation game, where an uninformed firm bases his deci-

sions to exit on his expectations of the future actions of the informed firm, even though

the uninformed firm’s current actions may not influence the future strategy choices of

the informed firm. The first problem will be resolved if player 1 is playing against a

population, so that the actions of each individual player 2 are negligible. This would

be a natural assumption in an advertising example or an example with dividends. Also,

both problems will be resolved if the actions of the informed player do not directly in-

fluence the payoff of the uninformed player, which is the case in a model of limit pricing,

where the signals are prices before the entry of the uninformed player, or in an unin-

formative advertising model. Finally, assuming that the uninformed player is actually a

sequence of short-lived agents will resolve both issues. The latter will be a very natural

assumption, for instance, in a limit pricing model. This would mean that there is a

new potential entrant every period. Once the decision has been made not to enter, the

entrant leaves the game.

Throughout this paper, we assume that θ can take on two values, specifically Θ =

{w, s}. We refer to players 1 with type θ = w and θ = s as the weak and the strong
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type, respectively. Therefore, a belief µ can be represented as an element of [0, 1]. From

now on µ0 will represent the prior probability that player 1 is of the strong type. To

guarantee the existence of separating equilibrium we also assume:

A 5 ∃x ∈ X such that πs(x, 1) ≥ πs(xS(0), 0) and πw(x, 1) ≤ πw(xS(0), 0). At least one

of the inequalities is strict.

Note that assumption A5 is weaker than the “single crossing assumption”, which is a

sufficient condition for a separating equilibrium to exist in the one-shot signaling game.4

Instead, this assumption simply requires that there is a level of signaling that, coupled

with a belief of 1, makes the strong type better off than the best she can get if the belief

was zero, while making the weak type worse off than what he can get if the belief was 0.

Finally, we assume that the signaling space is rich enough so that separation is

possible in one period:

A 6 ∃x ∈ X such that πw(x, 1) + δ πw(xw(1),1)
1−δ

≤ πw(xw(0),0)
1−δ

Before defining the equilibrium concept, it is convenient to define a “time t history”

xt = {x1, x2, ..., xt} as the actions of player 1 up to time t. We assume that for all t, xt

is observed by all players.

2.1 Equilibrium

When analyzing the repeated game we will focus on pure strategy equilibria. The set

of pure strategy perfect Bayesian equilibria (PSPBE) of GT will be denoted by σ(GT )

and a typical element will be a pair σ = ({µt}t=1,...,T , {sθ,t}θ∈{W,S},t=1,...,T ), where µt :

X t → [0, 1] is “the belief system” assigning a posterior probability to the strong type

after every history, and sθ,t : X t → X is the pure strategy of type θ assigning an action

4Note that single crossing is not a necessary condition for existence of separating equilibrium in a
one-shot signaling game either.
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to every history. For every history, xτ , let {xθ
t (x

τ )}t≥τ stand for the continuation action

sequence of type θ. In a PSPBE, after every history, the strategies of each type must be

optimal. That is:

{xθ
t (x

τ )}t>τ ∈ argmax{xt}t>τ

T∑
t=τ+1

δt−τπθ(x
θ
t (x

τ ), µ(.|xτ , xτ+1, ..., xt))

Also, the beliefs should be derived from the strategies via Bayes rule whenever possible.

3 Multiplicity of Equilibria and Equilibrium Selec-

tion

It is a well known fact that signaling games, even in the one-shot setting, possess many

equilibria. There are typically a continuum of separating equilibria in a one-shot signal-

ing game.5 Not surprisingly, the number of equilibria becomes even larger when the game

is repeated. In fact, the dimensionality of the set of separating equilibria increases with

the number of periods. Consider, for instance, the separating equilibria of the twice

repeated game where πs(x, µ) = 2µ− x2 and πw(x, µ) = µ− x2, and δ = 1.The shaded

area in Figure 1 represents all combinations of first and second period signals which can

be supported as strong type’s action in a separating equilibrium. The heavier arc repre-

sents the locus of points such that πs(x1, 1)+πs(x2, 1) = 2πs(0, 0). For any point (x1, x2)

on this arc, the strong type would be just indifferent between achieving separation by

choosing this sequence of actions versus not signaling. Therefore, any combination x1, x2

outside that arc—that is, points that involve more signaling—cannot be supported as

signals in a separating equilibrium. Similarly, the lighter arc is the corresponding indif-

ference curve for the weak type. Combinations of (x1, x2) that are below this arc will

be mimicked by weak type—because for such pairs πw(x1, 1) + πw(x2, 1) > 2πw(0, 0).

5Separating equilibria are equilibria in which types reveal themselves by choosing different actions.
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Figure 1: Separating equilibria of the twice repeated game
X2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X1 

Repetition 
of the Riley 
outcome 

Equilibrium with 
no signaling in 
the second period 

Hence these pairs cannot be the equilibrium signals in a separating equilibrium. Also,

the first period signal should come from the region to the right of the vertical line pass-

ing through the point representing the repetition of the Riley outcome.6 Indeed, at the

Riley outcome of the one-shot game, the weak type is indifferent between mimicking the

strong type and revealing herself. If the first period signal is below this level, the weak

type may adopt the deviation in which she mimics in the first period and stops doing so

in the second. Moreover, the second period signal cannot be above the level marked by

the horizontal line, because the strong type would prefer to revert to her static optimum

rather than signaling that much even if after the former, player 2 puts all probability on

the weak type.

For each of the points in the shaded area, there is a separating equilibrium of the

twice repeated game in which the strong type chooses these levels of signaling as her

period 1 and period 2 actions. Such actions can be supported by beliefs that assign

probability 1 to strong type only at that particular point, and zero elsewhere. The sep-

arating equilibria of the one-shot game, on the other hand can be mapped to the points

at the intersection of the shaded area and the 45-degree line.

6Riley outcome ([20]) is the equilibrium of the one-shot game that achieves separation with minimal
signaling.
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In the literature on one-shot signaling games, most formal refinements put restric-

tions on off-equilibrium path beliefs in order to eliminate equilibria that are driven by

“unreasonable” beliefs. In these restrictions, the implications of single crossing assump-

tions on preference rankings of different types over (action, belief) pairs are used as

criteria. 7 This task of restricting off-equilibrium path beliefs becomes very difficult in

the repeated game because the set of possible beliefs is very large. Any function map-

ping histories into [0, 1] is a belief system, and single crossing is not enough to establish

sufficient implications about preferences over (action, belief system) pairs.

Earlier literature in applications of signaling theory focused on least cost separating

equilibria as a natural refinement of the equilibrium set.8 The reasoning behind this

choice is an intuitive story that can be told to support it. The strong type, after a

deviation which would not have been preferred by the weak type under any belief, can

credibly argue that she is the strong type, because otherwise she would never have done

this deviation and instead would have stuck with the equilibrium. Moreover, if it is

believed that she is the strong type, the strong type will be strictly better off than in

equilibrium. Therefore, such deviations should lead to beliefs that put probability zero

on the weak type. Any separating equilibrium that gives the strong type less than her

LCSE payoff cannot satisfy this criterion, because the strong type can always deviate

to an action that is arbitrarily close to but costlier than her LCSE action, which would

make herself strictly better off if the belief remains at µ = 1, while making the weak

type strictly worse off.

The current paper takes this latter approach. In fact, it is possible to tell a similar

story for the repeated game with some qualifications. Suppose at some point t, after a

history that is on the equilibrium path of the strong type’s strategies, there has been

a deviation. If the true type of the informed player is weak, this has been a t-period

7For instance, after an unexpected action, the Cho and Kreps (intuitive) criterion rules out beliefs
that would attach positive probability to types that would have preferred the equilibrium action no
matter what beliefs are assigned after this deviation ([4]). D1, on the other hand, rules out some types
in the cases when there is another type that would have preferred the deviation for all beliefs that would
make the former type want to deviate ([25]).

8See for example [13, 27, 10, 7, 22]
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deviation, that is the weak type has deviated from her equilibrium path actions starting

from the first period. If it is true that, whatever period t beliefs may be, this t-period

deviation is not worthwhile for the weak type, the strong type can make a speech in the

same lines as above, knowing that at every step in the future she will have to make a

similar speech. It is important to emphasize the qualifier “knowing that she will have

to make a similar speech at every step in the future”. The judgement whether the weak

type would have preferred such deviation very much depends on the continuation play

and continuation beliefs. If a deviation would lead to, for instance, a belief system that

will assign probability 1 to the strong type independent of the play, the weak type may

be willing to go for this deviation at time t, although she would be at a deficit at the

end of period t relative to the equilibrium in which she would have revealed her type.

The requirement that the deviator will have to make the speech every period rules out

such a case. It ensures that at every point, the past has been such that the weak type

would have preferred the equilibrium. With this requirement, it is enough to look at the

history to judge whether the weak type would have preferred the said deviation.

The second part of the “speech” for the one-shot game—namely, the part where the

strong type should argue she is strictly better off than in equilibrium after this deviation,

under favorable beliefs—is a little harder to make in the current setting. It could be

the case that the equilibrium involves little signaling every period, like the repetition of

Riley outcome, but the strong type prefers an equilibrium in which she signals in bigger

chunks earlier. Then, at the end of the first period of deviation, she may be at a deficit.

She needs to be able to show that there is a sequence of signals that she will be doing

that make her eventually strictly better off, such that she can make the above piece of

the speech after every step along this sequence.

Therefore, the corresponding reasoning in the repeated setting would be that the

beliefs should assign probability one to the strong type after a deviation for which the

strong type can make a speech along the lines of the following:

I have deviated and here is the path that I will follow. This path, eventually, gives

me strictly better payoff than I was getting in equilibrium if you believe all along that I
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am the strong type. Moreover, if I were the weak type, no matter what you believed, I

would be strictly worse off, not only on average, but at every step of the way.

Then, no separating equilibrium other than the LCSE can survive this criterion. To

see this assume that a separating equilibrium that is not the LCSE is being played. Let

t be the first period in which the LCSE action of the strong type is different from the

current equilibrium. Then, a deviation at period t by the strong type to a signal that

is slightly stronger than her time t action in the LCSE will have to lead to a belief of

1, by the above criterion. Moreover, proceeding with the LCSE signals in the ensuing

periods will have to leave the belief at 1.

4 Separating Equilibria

This section characterizes the set of separating equilibrium signals for a given repeated

signaling problem. The set of all sequences that can be supported on the equilibrium

path as the actions of the strong type in a separating equilibrium is characterized as the

conjunction of two sets of inequalities.

For a sequence {xt} of signals to be the separating equilibrium actions for the strong

type of player 1, it should satisfy the following series of incentive constraints that ensure

that weak type is not willing to imitate.

∀t :
t∑

k=1

δk−1πw(xk, 1) ≤ 1− δt

1− δ
πw(xw(0), 0) (1)

The right hand side of (1) is initial sums of the equilibrium utility of the weak type in a

separating equilibrium up to time t. The left hand side is the initial sums of the utilities

he would get if he mimics the strong type for the same period. The weak type has the

option of imitating the strong type for a while and then revealing his type after a time

t. Therefore, in a separating equilibrium the earlier actions of the strong type should be

strong enough to deter this kind of a strategy. In other words, the incentive constraints
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require that earlier signals are strong enough.

The following set of constraints, on the other hand, will guarantee that, in a T-time

repeated game, the strong type is willing to continue signaling at every moment in time:

∀t :
T∑

k=t

δk−tπs(xk, 1) ≥ πs(xs(0), 0)
1− δT−t

1− δ
(2)

The left hand side is the equilibrium payoff of the strong type from period t onwards,

discounted to period t. The right hand side is the lowest continuation payoff that the

strong type can guarantee herself if she chooses to deviate.

The following proposition establishes that the constraints in (1) and (2) are necessary

and sufficient for a sequence of signals to be the equilibrium path actions of the strong

type in a separating equilibrium.

Proposition 1 There exists a sequence that satisfies (1) and (2). A sequence satisfies

(1) and (2) if and only if it is the equilibrium path actions of the strong type in a

separating equilibrium.

Proof By assumption 5, there is x such that πs(x, 1) ≥ πs(xS(0), 0) and πw(x, 1) ≤
πw(xS(0), 0).

A sequence {xt} such that xt = x satisfies (1) and (2). Take {x̃t} that satisfies

(1) and (2). The following strategies and beliefs form a PBE of the repeated signaling

game: σw(xt) = xw(0) for all xt; σs(x
t) =





xt+1 if xt follows the sequence{x̃t}

xs(0) otherwise

; and

µ(xt) =





1 if xt follows the sequence{x̃t}

0 otherwise

. This establishes that (1) and (2) are suf-

ficient.

Now, it is obvious that constraints in (1) are necessary. To see that the con-

straints in (2) are also necessary suppose there exists t such that
∑T

k=t δ
k−tπs(xk, 1) <

πs(xs(0),0)(1−δT−t)
1−δ

. Note that πs(xs(0),0)(1−δT−t)
1−δ

is the lowest continuation payoff that the
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strong type can guarantee herself. Therefore, at time t, even if the equilibrium path has

been followed so far, there is always a profitable deviation for the strong type.¤

5 Least Cost Separating Equilibria

In this section we set up the dynamic optimization problem that characterizes the least

cost separating equilibria of the infinitely repeated signaling game. Proposition 1 char-

acterizes the set of all possible separating equilibrium sequences of signals as the con-

junction of inequalities described in (1) and (2). Therefore, the equilibrium path actions

of the strong type in a LCSE will maximize
∑∞

t=1 δt−1πs(xt, 1) subject to these inequal-

ities. In solving this problem we first ignore the series of constraints in (2). Later we

show that they are satisfied.

To give the above maximization problem a recursive structure, we define a state

variable, which essentially is the slack on the incentive constraint of the form in (1)

corresponding to time t. We interpret this variable as a measure of reputation, in

that the larger its value the less likely it is that we are facing a weak type. First set

νθ(x) = πθ(xθ(1), 1)−πθ(x, 1). This is the disutility inflicted upon type θ of the informed

player, with respect to the reference utility πw(xw(1), 1), at time t if time t action is x.9

Or, with our interpretation, it is the additional reputation produced at time t if action

xt is taken. Also, given a history of actions xt, define a state variable qt, recursively, as

follows:

q0 = 0 and qt+1 =
qt −Q + νw(xt)

δ
(3)

where Q = πw(xs(1), 1) − πw(xw(0), 0). In words, Q is the amount of disutility per

period that it takes to deter the weak type from mimicking. Therefore, it is the least

amount of reputation that needs to be produced every period. Given a history xt, qt

9Realize that the choice of the reference utility is arbitrary and does not affect the outcome. However,
choosing it in the given way guarantees that the variable just defined is always non-negative. This is
not essential, but makes the interpretation easier.
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is the “accumulated and unused reputation”. Realize, now, that the constraint (1) is

equivalent to

∀t : qt + νw(xt) ≥ Q (4)

Moreover, maximizing
∑∞

t=1 δt−1πs(xt, 1) is now equivalent to minimizing
∑∞

t=1 δt−1νs(xt).

Therefore, letting V (q) stand for the continuation value for the strong type after a his-

tory that leads to a value q of the state variable, the recursive formulation of the problem

will be:

V (q) = min
x

νs(x) + δV (
q −Q + νw(x)

δ
) subject to q + νw(x) ≥ Q (5)

The following lemma establishes that the constraints in (2) are satisfied by equilibrium

path actions derived from an optimal policy for (5).

Lemma 1 For any q, V (q) > πs(xs(0),0)
1−δ

.

Proof Let x∗ be a level of signaling that satisfies the conditions in assumption (5). One

policy that would satisfy (4) is to choose x∗ for every q, which would create a continuation

value of at least πs(xs(0),0)
1−δ

. If this is an equality, (by assumption) νw(x∗) > Q, therefore

it is possible to choose x∗ − ε every period and still satisfy the constraint.¤
As is clear from the proof of Proposition 1, any optimal policy, say x̃(q), for the

problem (5) can be supported as the least cost separating equilibrium actions of the

strong type, by a belief system assigning probability zero to the strong type everywhere

off the equilibrium path. In such an equilibrium, off the equilibrium path both types

would pick their respective full-information optimal actions since this action has no

effect on beliefs. However, such a belief system is not very appealing because it ignores

almost10 all the information available from the history except the current action. Instead,

10The only information carried over is whether there has been a previous deviation
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consider the following belief system:

µ(xt) =





1 if qt + νw(xt) ≥ Q

0 otherwise

(6)

Given a history, this belief system tentatively assigns probability 1 to the strong

type if there has been enough reputation production so far. This is tentative because

the beliefs switch to zero if the accumulated reputation falls below the necessary level.

Section 6 characterizes the strong type’s optimal actions given this belief system.

The description of the equilibrium actions of the weak type and the proof that these

actions together with the beliefs in (6) form a PBE are deferred to the appendix.

6 Signaling Patterns on the Path of an LCSE

This section analyzes the possible time patterns of signaling in an LCSE of the infinitely

repeated signaling game. This analysis amounts to characterizing the optimal policies

for the problem in (5).

The optimal policies depend on the relative concavities of the payoff functions of
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the two types. Figure 2 illustrates how this effect works in a two-period setting. The

heavy arcs represent the indifference curves for the strong type while the lighter arcs

are the indifference curves for the weak type. In the first panel the least costly way

of separation occurs at the repetition of the Riley outcome. In the second panel, the

LCSE is where all the signaling is done in the first period. Third panel represents an

intermediate case where there is some signaling in both periods but they are not equal.

It turns out that the signals on the optimal path always occur at points where the weak

type’s cost function νw is “more concave” than that of the strong type; that is when

the ratio ν′s(x)
ν′w(x)

is increasing. The concavity of the payoff function can be interpreted as

the preference towards payoff smoothing over time. Therefore, instead of signaling at a

point where ν′s(x)
ν′w(x)

is decreasing, signaling a little stronger in one period and a little less

in the next, while keeping the weak type’s payoff fixed, will increase the strong type’s

payoff.

We now analyze the infinite horizon game. Recall that the equilibrium path actions

of the strong type maximize her discounted sum of payoffs subject to a set of incentive

constraints. With the notation introduced in the previous section, this maximization

problem can be stated as follows:

min
{xt}

∞∑
t=1

δt−1νs(xt) (7)

subject to

∀t :
t∑

k=1

δk−1νw(xt) ≥ 1− δt

1− δ
Q (8)

A convenient way to think of this program is to relate it to the problem of a producer

deciding how to allocate production over time while trying to average at least Q units of

production per period. In this case, νs(x) is the cost of using x units of the input, while

νw(x) is the output produced using these x units. Since the interest rate faced by the

producer as well as the appreciation rate of the product is 1
δ
, the producer is indifferent
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between two production plans that produce the same amount eventually and have the

same support. This observation, allows us to think of the problem as a static problem

where the producer is allocating production among plants with identical production

technologies rather than over time.11 Moreover, since the production technologies of

all plants are identical, the interpretation can be further simplified. It can be seen as

the problem of finding the randomization over outputs, that minimizes the cost subject

to the constraint that the expected production should equal exactly Q. Then, this

randomization should be done in each of the plants. For large δ, any randomization over

the outputs can be approximated by adjusting the frequency over time of producing

each given quantity that is in the support of the randomization.

In what follows, we first give a heuristic solution to the producer’s problem. This

solution provides the intuition necessary to guess the value function and the optimal

policies for the problem in (5). Then, we characterize this value function and optimal

policies for large δ.

6.1 Solving the producer’s problem

Let c(q) represent the smallest cost at which q units of reputation can be produced

within a given period. That is,

c(q) = min
x

νs(x)

subject to

νw(x) = q

11If the discount rates for the two types were not the same, it would still be possible to interpret
the situation as a static problem, but then the plants would have to be thought of as having different
technologies.
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Given the production technology, consider the problem of finding the cheapest random-

ization over output levels that produces a quantity Q on average. For this purpose let

the marginal cost function associated with this technology be MC(q).

Suppose the function MC(q) looks like in the first panel of Figure 3. Let q′ and q′′ in

the figure be such that the areas marked as A and B are equal. Then it is clear that for

producing average quantity q ∈ (q′, q′′), a randomization over the two input quantities

q′, q′′ is always better than producing at the exact amount Q. Therefore, to find the best

randomization, it is convenient to look at the “ironed out” marginal cost curve, depicted

in the second panel of Figure 3.12 The process of ironing, which we make more formal

shortly, converts the original marginal cost schedule into a weakly increasing marginal

cost schedule. The process essentially calculates the best randomization to produce any

given quantity on average. To do this, it gets rid of the piece of the curve that corre-

spond to quantities that are never in the support of an optimal randomization (like the

points between q′ and q′′ in Figure 3) and replaces them with the marginal cost of the

quantities in the support of the optimal randomization that dominates them. Therefore,

if the target average quantity falls in an interval corresponding to a flattened part of the

new curve, optimal randomization involves choosing the quantities at the two ends of the

flat part with appropriate probabilities. On the other hand, if the required quantity is

on an increasing part of the ironed-out marginal cost curve, the optimal randomization

is degenerate and puts all the probability on that quantity. In either case, the total cost

of the randomization is the area under the ironed-out marginal cost curve, up to the

average quantity.

6.1.1 Ironing

As discussed above, ironing process finds the randomization that produces a given quan-

tity Q on average and minimizes the total cost, or equivalently the average cost, of doing

12An early use of this ironing technique can be found in Myerson’s seminal paper on optimal auction
design ([16]).
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this. Realize that each of the quantities in the support of the optimal randomization

should have the same marginal cost. Moreover, given MC∗, each such quantity q should

maximize the expression: q(MC∗ − AC(q)), where AC(q) is the average cost of pro-

ducing q units. This quantity is the area above the marginal cost curve, and under

the horizontal line at MC∗ up to quantity q. This observation allows us to divide this

problem into two sub-problems in the following way: first, for each level of MC find

the quantities that maximize the expression q(MC −AC(q)) and then find the smallest

MC for which the requisite quantity can be averaged using the maximizers of the said

expression.

To formalize this, first define the function Φ : < → < by:

Φ(p) = argmaxq≤Q̄(pq − c(q)) (9)

In words, Φ(p) can be interpreted as the set of optimal productions, below Q̄, of a

producer facing infinite demand at price p.13 In terms of Figure 3, if p is below p1,

the solution to the problem is a unique level less than q′ and for p > p1, it is a unique

level above q′′. For p = p1, the solution includes both q′ and q′′. Now, the “ironed out

13We are interested in the problem with a capacity constraint, because in our original signaling
problem, there is a level of signaling that deters mimicking forever. Therefore, in a LCSE there will
never be signaling above that level.
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marginal cost curve”, denoted MC∗, is defined as:

MC∗(q) = min{p |∃q′ ∈ Φ(p) : q′ ≥ q} (10)

Let c∗(q) =
∫ q

0
MC∗(q̃)dq̃ be the total cost curve associated with the marginal cost

schedule given by MC∗(q). The following lemma enumerates some characteristics of

this function. The proof is deferred to the appendix.

Lemma 2 Let c∗(q) be as defined above. Then, the following are true:

1. c∗ is weakly convex;

2. ∀q, q′, if ∃p such that q, q′ are in the convex hull of Φ(p), then c∗(αq +(1−α)q′) =

αc∗(q) + (1− α)c∗(q′) for all α ∈ [0, 1]; that is c∗ is linear over the convex hulls of

sets Φ(p);

3. ∀q : c∗(q) ≤ c(q), with equality holding if and only if there exists p such that

q ∈ Φ(p).

It is shown in the next subsection that the value function for the strong type’s problem

as defined in Equation (5) is closely related to this function c∗. The characteristics

established in this lemma will be useful in obtaining this result.

6.2 Solution of the strong type’s problem

Going back to the fundamentals of the signaling problem at hand, the marginal cost

for signaling at a level x is ν′s(x)
ν′w(x)

. Strictly speaking, this does not correspond to the

cost function that was analyzed in the previous subsection. This marginal cost curve

maps the level of the input to the marginal cost of producing the unique quantity q

associated with that level of input, rather than mapping the actual quantity to its
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marginal cost. Let M̂C(x) = ν′s(x)
ν′w(x)

and ĉ(x) =
∫ x

xs(1)
ν′s(α)
ν′w(α)

dα. It is possible, now, to make

the change of variable q = νw(x) to obtain the marginal cost and total cost functions

that correspond to the analysis in the previous subsection, i.e. the functions that map

quantities to associated costs. This will give the marginal cost curve to be ironed out as

MC(q) = M̂C(ν−1
w (q)), and the associated total cost as c(q) = ĉ(ν−1

w (q)). 14 15

6.2.1 The value function

Recall that the cost of mimicking per period for the weak type is given by the function

νw(x). On the other hand, the weak type receives a benefit of Q by mimicking the strong

type for one period. Therefore, the discounted sum of costs of signals to the weak type

in all periods must be no less than Q
1−δ

, if she chooses to mimic. Also, recall that the

state variable q is, in a sense, the unused inventory of costs inflicted upon the weak

type. Therefore, for a given level q of the state variable, the costs of signals in the future

should sum to Q
1−δ

− q. This would mean an average production of Q − (1 − δ)q per

period. In Proposition 2 below, we show that for large δ, the optimal value function for

the problem in (5) is:

V ∗(q) =
c∗(Q− (1− δ)q)

1− δ
(11)

This would be the cost of signaling every period at the average level Q − (1 − δ)q, if

the cost of signaling were given by the function c∗(.) rather than c(.). Recall that by

Lemma 2, c∗(q) = c(q) as long as q ∈ Φ(p) for some p. Moreover, c∗(.) is linear over the

convex hull of Φ(p). Therefore, the value function in (11) can be attained by choosing

signals that correspond to values in Φ(MC∗(Q−(1−δ)q)) in an appropriate combination

14The function νw is strictly decreasing over the range [xs(1),∞). This follows from assumption A3.
Moreover, this is the range over which all relevant signaling will occur by assumption A4. Therefore,
this expression is well-defined over the relevant range.

15Although these functions are more convenient for expressing the value function, in computing the
actual LCSE signals for a given signaling problem it is not necessary to work with these which require
inverting the function νw to do the ironing and inverting it back to find the relevant signaling levels.
Ironing the cost function ĉ that maps the signaling levels into costs is equivalent.
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so that the average comes to Q− (1− δ)q.

This can in fact be done for large enough δ. With small δ however, the quantity

Q− (1− δ)q fluctuates a lot as q changes. Therefore, it may not be possible to keep the

target average cost within the convex hull of Φ(p) by choosing values in Φ(p). That is,

it may be impossible to achieve the required average using quantities only from the set

Φ(MC∗(Q − (1 − δ)q)). Here, we deal with the case where δ is large enough.16 First

define q′ = min Φ(MC∗(Q)) and q′′ = min{q ∈ Φ(MC∗(Q))|q ≥ Q}. That is, q′ and q′′

are both in the support of the optimal randomization that produces Q on average; q′

is the smallest quantity in the support, while q′′ is the smallest quantity in the support

that is above Q. The following lemma provides a lower bound on δ so that for discount

rates above this level, the value function will be as described in (11). The proof is by

simple algebra, and is therefore deferred to the appendix.

Lemma 3 Set δ̄ = q′′−q′
Q+q′′−2q′ . Assume that δ > δ̄. Then for all q such that Q−(1−δ)q ∈

(q′, q′′), at least one of the following holds:

q′ + q ≥ Q or Q− (1− δ)
q + q′′ −Q

δ
≥ q′

Moreover, if δ ≥ .5, for all q such that Q − (1 − δ)q < q′, at least one of the following

holds:

Q− (1− δ)
q + q̃′ −Q

δ
≤ q̃′′ or Q− (1− δ)

q + q̃′′ −Q

δ
≥ q̃′,

where q̃′ = min Φ(MC∗(Q − (1 − δ)q)) and q̃′′ = min{q ∈ Φ(MC∗(Q − (1 − δ)q))|q ≥
Q− (1− δ)q}.

16The reason why a large δ is necessary to achieve the value function described in (11)is that for small
δ, there may be values of the state variable q such that starting from this value, it may not be possible
to construct a sequence that uses signals that come from Φ(p) for a unique p and average Q− (1− δ)q.
On the other hand, for given δ ≥ .5, the value function will be as described in (11) if q is large enough.
Hence, even for small δ—as long as it is larger than .5—the tail of the equilibrium sequences of signals
will have similar characteristics to the equilibrium sequences with large δ.
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The first part of the lemma establishes that, for large δ, if the quantity Q− (1− δ)q is in

the convex hull of Φ(MC∗(Q)), then at least one of the two things have to happen: either

there is a low signal in the set Φ(MC∗(Q)) that will leave the state variable still non-

negative, or there is a large signal in the set Φ(Q) that will not increase the state variable

too much, so that the state variable for the next period is still within the convex hull of

Φ(MC∗(Q)). This means that, starting with q such that Q− (1− δ)q ∈ Φ(MC∗(Q)), it

is possible to construct a sequence that uses only signals from Φ(MC∗(Q)), satisfies the

constraint that q is always non-negative, and averages Q− (1− δ)q.

The second part applies to cases where q is large, so that Q− (1− δ)q is not in the

convex hull of Φ(MC∗(Q)). It shows that, as long as δ > .5, there is always a quantity

in Φ(MC∗(Q−(1−δ)q)) so that if the signal that corresponds to that quantity is chosen

at time t, next period’s state variable qt+1 will be such that the quantity Q− (1− δ)qt+1

remains in the convex hull of Φ(MC∗(Q − (1 − δ)q)). That is, starting with a q so

that Q − (1 − δ)q is not in the convex hull of Φ(MC∗(Q)), it is possible to construct

a sequence that uses signals only from an interval over which c∗ is linear, and averages

Q− (1− δ)q.

Note the asymmetry between the two cases: the lower bound on δ is much higher if

the starting q is low. This is because, in this region, the constraint that at every period

qt must be positive, has a bite. However, when q is large enough this constraint does not

bind. Therefore, the necessary average can be obtained with smaller δ. Therefore, the

necessary average is allowed to move within a wider range, and hence it can be achieved

with smaller δ.

Now, we are equipped with all the tools necessary to show that the value function

is in fact as described in (11) when δ is large enough. The convexity of the c∗ function

established in Lemma 2 shows that at any level of the state variable q, the best policy

for the continuation is to pick all quantities from within a single linear portion of this

function. Again, the same lemma establishes that c∗ is a lower bound on the actual cost

function c over the whole domain, and is attained at quantities that are in Φ(p) for some

p. Moreover, c∗ is linear over the convex hull of Φ(p). Therefore, the best that can be
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done is to pick quantities from Φ(p) for a unique p. Finally, Lemma 3 shows that this

is possible when δ is large. The following proposition states this result. The proof is a

formalization of the discussion just given and is included in the appendix.

Proposition 2 Assume that δ ≥ δ̄. Then the optimal value function associated with the

recursive program in (5) is V ∗(q) = c∗(Q−(1−δ)q)
1−δ

. Moreover, if {x̂t} is an optimal policy

for q = 0, then ∀t : νw(x̂t) ∈ Φ(MC∗(Q)).

6.2.2 Optimal policies

Having characterized the optimal value function, next we turn to the optimal policies

that attain this value. These policies for initial value q = 0 are the equilibrium path

actions of the strong type in an LCSE and they will be discussed in more detail in the

next subsection. In this section we provide conditions that are necessary and sufficient

for a given function xt(x
t) to be an optimal policy.

For given history xt, let q(xt) stand for the level of the state variable that is reached

at the end of this history, starting from initial value 0. It is clear that any optimal policy

{x̂t} must satisfy the following equation:

∀t : V ∗(q(x̂t)) = νs(x̂t+1) + δV ∗(q(x̂t+1)) (12)

However, this is not a sufficient condition for {x̂t} to be an optimal policy. To see this

consider a very simple problem where ν′s(x)
ν′w(x)

= 1. This would be the case, for example,

if the payoff functions are separable; i.e. they take the form πθ(x, µ) = aθ(x) + bθ(µ);

and the cost of signaling is the same for both types; i.e. aw ≡ as. Then, by the above

proposition, the value function would be V ∗(q) = Q
1−δ

− q, since c(q) ≡ c∗(q) ≡ q. Then,

(12) becomes Q
1−δ

− q(x̂t) = δq(x̂t+1)− (q(x̂t)−Q) + δ( Q
1−δ

− q(x̂t+1)). It is easy to check

that any sequence {xt} satisfies this equality. Obviously, not all sequences are optimal.

The next proposition provides three conditions on {x̂t} which are necessary and

sufficient for it to be an optimal policy. The proof is given in the appendix.
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Proposition 3 A sequence {x̂t} is an optimal policy for the problem in (5) if it satisfies

the following three conditions:

1. V ∗(q(x̂t)) = νs(x̂t+1) + δV ∗(q(x̂t+1)) (Bellman equation)

2. ∀t : q(x̂t) ≥ 0 (IC)

3. lim inft→∞ δtq(x̂t) ≤ 0 (No excess signaling)

Conditions 1 and 2 in the above proposition need no further explanation. The interpre-

tation for condition 3 is also very intuitive. Note that

δtq(xt) =
t∑

τ=1

(πw(xτ , 1)− πw(xw(0), 0))

Therefore, condition 3 amounts to requiring that the sequence of accumulated reputation

must have a non-positive limit point. This guarantees that although the accumulated

reputation may become high periodically, eventually it all gets used up. That is, there

is no excess signaling.

6.3 Equilibrium path signaling patterns

This subsection discusses what the optimal policies for q = 0 actually look like.

Proposition 2 establishes that when δ is large, for any sequence to satisfy condition 1

of Proposition 3, each element of the sequence should come from the set X∗ = {x|νw(x) ∈
Φ(MC∗(Q))}. This is the set of all signals that correspond to quantities that are in the

support of the optimal randomization that averages Q.

It is intuitive that, for any p, in general the set Φ(p) has one or two elements. Possible

exceptions would have to involve cases like in Figure 4. In the first panel of Figure 4 the

areas marked by letters A,B, C and D are all equal. Therefore, a randomization over
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Figure 4: Examples of MC curves for which |Φ(p1)| > 2

all three quantities q′, q′′ and q′′′ will be exactly as costly as randomizing over q′ and q′′′

to achieve an expected quantity in the interval (q′, q′′). In this case Φ(p1) = {q′, q′′, q′′′}.
The second panel depicts a case where the original marginal cost curve has a flat portion.

In this case the set Φ(p1) is the whole interval [q′, q′′]. It is clear that generically no MC

curve will display either of these characteristics.

Therefore, when δ is large, on the equilibrium path of an LCSE, in general, one or

two different levels of the signal can be observed. If there are two, the path achieves

the necessary production of reputation on average by switching back and forth between

these two levels. However, the timing of these signals is not completely determined. In

fact, as established earlier, any sequence {xt}, which takes on only these values can be

observed on the equilibrium path, as long as it does not involve too little signaling—so

that q(xt) ≥ 0 for all t—or too much signaling—so that lim inf δtq(xt) ≤ 0.

Suppose Φ(MC∗(Q)) has two elements, say q′, q′′, with q′ < Q < q′′. Let x′ and x′′

be such that q′ = νw(x′) and q′′ = νw(x′′). Figure (5) shows three of the possible paths of

signals in an LCSE and the corresponding paths for the state variable q. In panel A, the

signaling path involves signaling at the high level, x′′, for one period, and then staying

at the low level, x′ until the state variable q hits zero. Panel C depicts a case where

there is signaling at x′′ until the state variable q hits Q−νw(x′)
1−δ

, and then reverting to the

low level of signaling. The quantity Q−νw(x′)
1−δ

is such that as long as there is signaling at
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Figure 5: Possible time patterns of signals x and the state variable q on the equilibrium
path of an LCSE, when θ = s.

the level x′ from that point onwards, the state variable will remain at the same level.

Panel B represents an intermediate case.17

It is very intuitive, now, that if the two types of the informed player have slightly

different discount rates, the indeterminacy of the timing of signals will be resolved: If

the strong type is more patient than the weak type, moving the costly signaling to earlier

periods hurts the weak type more than the strong type. Therefore, the optimal sequence

of signals involves signaling at the high level early in time. In terms of the production

analogy, this would mean that the appreciation rate is higher than the interest rate, so

that to have a certain inventory at a given time in the future, it is best to produce early

in time. Conversely, if the weak type is more patient, this would correspond to a case

where appreciation rate is lower than the interest rate, so that it will be optimal to push

production to as far in the future as possible. Therefore, a perturbation of the game

17These figures are in fact drawn for a continuous time interpretation of the model, where the payoffs
are thought of as flow variables. The discrete time structure poses some indivisibility problems. For
instance, consider signalling pattern in the first panel. The amount x′′ of signaling does not necessarily
lead to a q that takes an integer number of periods before it hits zero. Therefore, the strong type, in
general, will have to signal again with x′′ before q hits zero, leading to accumulation of the “remainder”
q over time. This will go on until extra bits of q accumulate enough so that an extra period can go by
with signaling at the level x1. This will create “leap periods” the frequency of which is not necessarily
fixed. For the case depicted in the third panel, in general the number of periods that is required to
bring q exactly to the level Q

1−δ will not be an integer. However, these pictures are included since they
reflect the general pattern of signaling without the complications caused by indivisibility.
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that allows for slightly different discount rates for different types will leave us with the

equilibrium patterns depicted in panels A and C of Figure 5.

7 Applications

This section uses the tools so far developed to analyze two classical applications from

industrial organization theory.

7.1 Limit Pricing

Limit pricing is one of the classical applications of signaling in industrial organization

([13]). Here, we produce a simplified version of the original model and discuss what

kinds of production (or equivalently price) dynamics can be observed in the infinitely

repeated version of the game and what drives these dynamics.

A monopolist faces a series of potential entrants. The monopolist has one of two

possible cost structures cθ : X → <, θ ∈ {s, w}. This is common knowledge among all

players, however the actual cost structure is known only to the monopolist. We will

assume that c′s(x) < c′w(x), for all x. This means that at any level of production, strong

monopolist has a lower marginal cost than the weaker monopolist. The industry inverse

demand curve is given by D(x), and is common knowledge.

Each potential entrant incurs a fixed cost k of entry. After entry, the entrant receives

an average payoff of Eθ per period if the actual type of the incumbent is θ, where

Ew > Es. Therefore, for each k, there exists a cutoff cost k(µ) so that if the probability

of the strong type is µ and the fixed cost k is above this level, the entrant does not enter.

Also, if the entrant enters, the type θ incumbent gets an average per period continuation

payoff of Iθ. The values of Eθ and Iθ are common knowledge, and are derived from the

continuation play which will not be explicitly analyzed here. Each period, the fixed
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Figure 6: The MC curve to be ironed: case of linear demand

cost k is drawn independently from a distribution F (.), with support [k, k̄]. Although

this problem seems to involve two-sided asymmetric information, the latter assumption

and our focus on separating equilibria allow us to use the tools developed so far in its

analysis. We assume that k(1) ≤ k. Therefore there is no entry on the equilibrium path

of a separating equilibrium if the actual type of the incumbent is strong. Finally, the

history of quantity choices are observable to all potential entrants.

The reduced form payoff functions can be formulated as follows:

πθ(x, µ) = (1− F (k(µ)))[xD(x)− cθ(x)] + F (k(µ))Iθ (13)

Strictly speaking, the µ that appears in the instantaneous payoff function for time

t is the belief taking into account signals up to t − 1. This is because the actions of

the entrant today—i.e. his decision to enter or not—effects payoffs of the monopolist

tomorrow, rather than her current period payoffs. In this sense, this does not exactly

match the story of the current paper. However, since we are interested in only the

equilibrium paths of separating equilibria, and in the separating equilibria µ is either

always zero, or always one, our tools are sufficient to analyze this situation.

33



The functions νθ(x), which are fundamental in our analysis take the following form:

νθ(x) = xs(1)D(xs(1))− cθ(xs(1))− xD(x) + cθ(x) (14)

Therefore, the marginal cost curve that needs to be ironed is ν′s(x)
ν′w(x)

= D(x)+xD′(x)−c′s(x)
D(x)+xD′(x)−c′w(x)

.

Depending on the shapes of the marginal cost curves, this ratio can take many different

shapes. Figure 6 depicts two cases with linear demand D(x) = 4 − x and zero mar-

ginal cost for the strong type. In the first panel, the marginal cost for the weak type is

c′w(x) = 2. This configuration leads to a increasing MC curve. Therefore, the ironed-out

marginal cost curve MC∗ coincides with the original curve, hence the LCSE will involve

repetition of the Riley outcome. The second panel plots the ratio for c′w(x) = x2.
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Figure 7: Ironed out MC curve for c′w(x) = x2

In this case, the ironed out

marginal cost curve is illustrated

in Figure 7. Of course, the actual

placement of the horizontal por-

tion depends on the actual value

of x̃∞, which will depend on the

variable Iw. If the value x̃1 occurs

at the flat portion of the curve,

the LCSE would involve signal-

ing only in the first period. If it

occurs at the increasing portion,

the LCSE would involve repeti-

tion of the Riley outcome.

Intuitively, there are two opposing effects that determine the shape of the optimal

sequence of signals. Firstly, having a low marginal cost at each level of output along

with a given inverse demand curve is equivalent to having a shifted-out inverse demand

curve along with higher marginal costs. Therefore, increasing the production in a sin-
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gle period reduces the payoffs for the strong type monopolist proportionally less. This

makes the ratio νs(x)
νw(x)

increasing, and therefore, is a force towards making the optimal

sequence of signals smooth over time. On the other hand, if the cost of production is

more convex for the weak type monopolist, the ratio νs(x)
νw(x)

tends to be decreasing, as

increasing production in a single period becomes increasingly more costly for the weak

type monopolist. This is a force towards making the optimal sequence less smooth. Note

that the second effect takes over at high levels of the signal.

In the first example above where the latter effect is absent (both types have con-

stant marginal cost)—and hence, the ratio νs(x)
νw(x)

is always increasing, the cheapest way

of separation is by perfect smoothing. In the second examples, both effects are present.

When the outside option Ew of the weak type is low enough, the amount of signaling

that needs to be averaged is high. Therefore, the second effect takes over, making the

optimal sequence of prices less than perfectly smooth. However, if this outside option is

high, then the requisite signaling is not too high, and optimal sequence involves perfect

smoothing of payoffs over time.

7.2 Advertising

This section analyzes a simple model of advertising as signal for product quality. In

this setting the advantage of the high quality producer does not stem from potential

repurchases. Instead, it is due to the existence of other ways of getting informed—like

reading the consumer reports magazine—than actually consuming the good.18 For the

informed consumers, the advertising will not create extra information. Therefore, by

advertising, the low quality producer will be able to sell at a higher price but to a

smaller market than the high quality producer can. This effect creates the possibility

for using advertising as signals of product quality.

Then, obviously, the optimal sequence of advertising will be determined by the way

18A similar setting is used by [11] in a static model.
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advertising affects the decisions of consumers to get informed, if at all, and the potentially

differential cost of advertising for different types of the producer.

In the model, the unique producer of a durable good has private information about

the quality, q ∈ {h, l}, of the good he is producing. Every period there is a unit mass

of potential customers for his good, each of whom is willing to pay a price equal to the

expected quality of the good. Every period the producer may choose to spend x dollars

on uninformative advertising. The new potential customers observe the whole history

of advertising. There is also an option of getting fully informed, say through talking

to the previous consumers of the object, or reading reviews, etc. Suppose that every

period a portion α of all potential customers choose to be informed, where α possibly is

a function of x.

The dependence of α on x may be because high spending on advertising leads to

“curiosity” among potential customers so that they want to talk about it to other people,

in particular to people who previously used this product. In this case, α would be an

increasing function of x. On the other hand, it could be that potential customers, seeing

all the uninformative advertisement get “tired” of it and don’t want to inquire further

to get more informed. In this case α would be decreasing in x. Also, it could be a

combination of the two, so that α is first increasing and then decreasing.

In the model we also allow for the possibility that cost of spending x dollars on

advertising may be more than x dollars, due to cash constraints and costs associated

with raising money. We let cθ(x) stand for the cost of raising money for the producer of

the good of quality θ, θ ∈ {l, h}.
Letting p̄(µ) = µh + (1− µ)l, where µ is the probability attached by the customers

to the product being of high quality, and assuming that α(x) is small19 for all x, the

payoff of spending x on advertising and having belief µ to a type h and a type l producer

would be πh(x, µ) = p̄(µ)− ch(x), and πl(x, µ) = (1− α(x))p̄(µ)− cw(x), respectively.

Here, νh(x) = ch(x) and νl(x) = (α(x)−α(0))h+cl(x). Therefore, ν′s(x)
ν′w(x)

=
c′h(x)

α′(x)h+c′l(x)
.

19If α is large, then the high quality producer may choose to sell only to the informed consumers,
rather than trying to signal to the uninformed ones
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Assume, for simplicity, that α′(x)
c′l(x)

> − 1
h

for all x.

First consider the case where ch(x) ≡ cl(x) ≡ x. Now, if α(.) is a concave function of

x—i.e. if the number of people getting informed in response to advertising is decreasing

on the margin,—then the LCSE involves advertising in as small bits as possible. That

is, the repetition of the Riley outcome will be the LCSE—there will be advertising every

period. If on the other hand, the function α is convex, then the LCSE will involve

signaling only once at the beginning. That way, in the first period enough people will

get informed so that it will be undesirable for the low type to go through this period.

Secondly, consider the case where α(x) ≡ α, that is there is a fixed proportion

of potential customers that are informed every period. This can be interpreted as a

situation where a fixed proportion of all buyers have previously purchased the product

and the rest are new buyers. It may be plausible to assume that the producer of the

high quality product has deeper pockets, so that cl is more convex than cs. That is, the

weak type’s cost for raising money increases faster. In this case, the critical ratio will be

decreasing, and hence the optimal sequence of advertising will involve a large amount of

advertising in the first period followed by no advertising.

8 Conclusion

This paper is an analysis of a stylized repeated signaling model. We demonstrate how

the linkages between periods due to persistence in private information and observability

of history creates an opportunity to use actions of early periods to signal about informa-

tion in later periods. That means, it is possible to shift the cost of signaling to earlier

periods. After observing this possibility, we show that, in fact, many times it is less

costly to engage in signaling that involves shifting costs to earlier periods. We develop

tools to characterize the best distribution of signaling costs over time in the sense of

minimizing the total signaling costs.

It is worth mentioning that the methods developed for characterizing least costly

37



separating equilibria can trivially be generalized to the case of multi-dimensional sig-

nals. This generalization would involve an extra step in which we would characterize

the per period “cost function” associated with production of reputation for a technology

that uses multiple inputs. Realize that, in the single-input (single dimensional signaling

variable) case the characterization of this cost function is trivial since there is only one

level of signaling that would produce a given quantity of reputation. Observing that the

results generalize to multi-dimensional signals case makes the applicability of the theory

much wider. For instance, it is now possible to analyze the very famous model of price

and advertising as joint signals of quality in a dynamic framework.

There are several ways in which the model of this paper can be made more general.

In many instances, a natural extension would be the case in which types may switch over

time with positive probability; that is the persistence is imperfect. For instance, if the

private information is quality, the once high quality producer may fail to keep up with

the increasing trend in average quality and become a low type producer. Or conversely,

a low type producer may accomplish an innovation that is not directly observable by

potential consumers. Similar stories can be told for the entry deterrence example. Intro-

ducing the probability that types may change will effect the dynamics of the LCSE in at

least two ways. Firstly, since the beliefs—and hence the payoffs—will be deteriorating

between signals, the LCSE may involve signaling more often. On the other hand, if the

type changes from strong to weak during periods of no signaling, then the weak type

will enjoy high beliefs until the next expected signal. Therefore, signaling strongly at

one time and not having to signal for a while after that is like insurance for the strong

type against the risk of becoming a weak type during the period without signals. This

is a force towards making the signals less frequent in the LCSE.

Finally, it would be interesting to see if the equilibrium refinement arguments pre-

sented here can be formalized, or if certain refinements developed for the one-shot game

can be generalized to the current setting.
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9 Appendix 1

This part of the appendix describes the LCSE actions of the weak type informed player

and proves that these actions coupled with the actions of the strong type described in

Section 6 and beliefs in (6) form a PBE of the repeated signaling game.

Given the beliefs defined by (6), after every history, each type maximizes their payoff.

The strong type’s continuation value from the optimal policy satisfies (5), while the weak

type’s continuation value v(q) solves:

v(q) = min
x





νw(x) + δv( q−Q+νw(x)
δ

) if q + νw(x) ≥ Q

πw(xs(1), 1)− πw(x, 0) + δv( q−Q+νw(x)
δ

) otherwise
(15)

The fact that the weak type gets νw(x) if q + νw(x) ≥ Q is clear. If q + νw(x) < Q,

however the beliefs fall to µ = 0. Therefore in this case, the weak type receives a payoff

of πw(x, 0), which corresponds to a cost of πw(xw(1), 1) − πw(x, 0) with respect to her

reference payoff. The following lemma characterizes the optimal value function for the

weak type’s problem.

Lemma 4 v(q) = Q
1−δ

−max(0, q).

Proof To verify that v(q) above satisfies the recursive equation, one should solve

min
x





νw(x) + δ( Q
1−δ

− ( q−Q+νw(x)
δ

)) if q + νw(x) ≥ Q

πw(xs(1), 1)− πw(x, 0) + δ( Q
1−δ

) otherwise
(16)

or equivalently

min
x





Q
1−δ

− q if q + νw(x) ≥ Q

δ Q
1−δ

+ πw(xs(1), 1)− πw(x, 0) otherwise
(17)

It is always possible to choose x so that the bottom line is Q
1−δ

. Also, this is the lowest

value that the bottom line can have. Therefore, whenever q > 0 the top line is smaller
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than the bottom line. If q < 0, on the other hand, the bottom line is smaller. ¤
There are potentially several policies that achieve the value function of Lemma 2.

This is clear from the fact that the value depends on the current action only through its

effect on the state variable, which in turn effects the value in a non-continuous way. It

is not true that all optimal policies can be equilibrium path actions of the low type in

a separating equilibrium. Note, in particular, that following the optimal actions of the

strong type would be one optimal policy for the weak type when q=0. This is because,

the optimal actions of the strong type in an LCSE leave the weak type indifferent between

mimicking or not. On the equilibrium path of an LCSE, the weak type should be doing

her full information best action. That is to say, when q ≤ 0 she should be choosing

xw(0). One policy that satisfies this condition and achieves the value function in the

above lemma is the following:

x̂(q) =





xw(0) if q ≤ 0

xw(1) if q ≥ Q− νw(xw(1))

x(q) if Q− νw(xw(1)) > q > 0

(18)

where x(q) is defined by νw(x(q)) = Q− q. According to this policy, off the equilibrium

path, when q > 0, weak type does her optimal action in response to a belief that puts

all probability on the strong type, as long as this quantity is enough to keep the level of

the state variable above Q. Otherwise, that is, if q > 0 but not too high, she signals just

enough to bring the belief to 1 for one period. The following proposition summarizes

this discussion.

Proposition 4 Let x̃(q) be an optimal policy for (5) and let x̂(q) be as in (18). The

strategies defined by σw(xt) = x̂(q(xt)) and σs(x
t) = x̃(q(xt)) coupled with the beliefs

µ(xt) defined in (6) form a PBE of the repeated signaling game.

Proof The optimality of the strategies is obvious. For the consistency of beliefs, note

that on the equilibrium path weak type always chooses xw(0) and strong type al-

ways keeps q ≥ 0. Now, νw(xw(0)) = πw(xw(1), 1) − πw(xw(0), 1) < πw(xw(1), 1) −
πw(xw(0), 0) = Q, so that on the equilibrium path it is always true that q < 0.¤
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10 Appendix 2: omitted proofs

Proof of Lemma 2

1. First, note that Φ(p) is weakly increasing, because the function pq − c(q) has

increasing differences in p and q. But then, by definition, MC∗, which is the

derivative of c∗ is also weakly increasing. This proves that c∗ is weakly convex.

2. It is possible to write c∗ as follows:

c∗(q) = qMC∗(q)− v∗(MC∗(q)),

where v∗ is the value function associated with the problem in (9). Let q, q′ ∈ Φ(p)

for some p. Then MC∗(q) = MC∗(q′) = p. Since MC∗ is weakly increasing, for

any q′′ in the convex hull of Φ(p), c∗(q′′) = q′′p− v∗(p). This establishes the claim.

3. Let q′, q′′ ∈ Φ(p) for some p where q′ < q′′. Then p = MC∗(q′) = MC∗(q′′). Also,

by definition of Φ, MC∗(q′)(q′′ − q′) = c(q′′)− c(q′) = c∗(q′′)− c∗(q′). The second

equality follows because c∗ is linear over the convex hull of Φ(MC∗(q′)). This

establishes that ∫ q′′

q′
MC(α)dα =

∫ q′′

q′
MC∗(α)dα,

whenever q′, q′′ ∈ Φ(p), for some p. Moreover, MC∗(q) = MC(q) whenever q ∈
Φ(p) for some p. Let q ∈ Φ(p), for some p. The interval [0, q] can be partitioned

into components so that the infimum and the supremum of a given component

come from Φ(p) for the same p. This establishes that c(q) = c∗(q).

Now, let q 6∈ ⋃
p∈< Φ(p). Then, there exists q′, q′′ with q′ < q < q′′ and q′, q′′ ∈

Φ(MC∗(q)). By definition of Φ, and by the fact that c∗(q′) = c(q′) and c∗(q′′) =

c(q′′), MC∗(q)q′ − c∗(q′) = MC∗(q)q′′ − c∗(q′′) > MC∗(q)q − c(q). But since c∗ is

linear over the convex hull of Φ(MC∗(q)), MC∗(q)q− c∗(q) = MC∗(q)q′− c∗(q′) =

MC∗(q)q′′ − c∗(q′′). It follows that c(q) > c∗(q). ¤
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Proof of Lemma 3 The proof is by simple algebra. Suppose q + q′ < Q and Q −
(1 − δ) q+q′′−Q

δ
< q′. Combining the two inequalities we get, Q − 1−δ

δ
(q′′ − q′) < q′; or

equivalently δ(Q − q′) < (1 − δ)(q′′ − q′), which implies δ < q′′−q′
Q+q′′−2q′ , a contradiction.

For the second part, suppose neither of the inequalities is satisfied. Then it must be

true that (1− δ)q̃′′ + δq̃′ > (1− δ)q̃′ + δq̃′′, which in turn implies δ < .5. This cannot be,

because δ̄ > .5.¤
Proof of Proposition 2 It is easy to show that the operator B defined over the

set of continuous and bounded functions by Bf(q) = minxνs(x) + δf( q−Q+νw(x)
δ

) is a

contraction. Therefore, it has a unique fixed point. Hence it is sufficient to check that

the suggested function is a fixed point. Plugging the suggested value function in (5)

leads to the following problem:

V ∗(q) = min
x

νs(x) +
δ

1− δ
c∗(Q− 1− δ

δ
(q + q′ −Q))

or with the same change of variable as above this can also be written as:

V ∗(q) = min
q̂

c(q̂) +
δ

1− δ
c∗(Q− 1− δ

δ
(q + q̂ −Q))

Recall that for all q, c(q) ≥ c∗(q). Therefore, the following is true:

c(q̂) +
δ

1− δ
c∗(Q− 1− δ

δ
(q + q̂ −Q)) ≥ c∗(q̂) +

δ

1− δ
c∗(Q− 1− δ

δ
(q + q̂ −Q))

Also, since c∗ is weakly convex, we have:

1

1− δ
[(1− δ)c∗(q̂) + δc∗(Q− 1− δ

δ
(q + q̂ −Q))] ≥ 1

1− δ
c∗(Q− (1− δ)q)

The right hand side of the final inequality can be attained by choosing q̂ ∈ Φ(MC∗(Q−
(1−δ)q)), as the function c∗ is linear over the convex hull of Φ(p) for any p and moreover,

∀p,∀q ∈ Φ(p), c(q) = c∗(q). Also, such a choice is feasible, by the above lemma.¤
Proof of Proposition 3 Condition 2 guarantees that x̂t is feasible. By condition 1, we

have the following:

∀t : V ∗(0) =
t∑

τ=1

νs(x̂τ ) + δtV ∗(q(x̂t))
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or equivalently

∀t : V ∗(0) =
t∑

τ=1

νs(x̂τ )− δtq(x̂t) + δtA

where A = Q
1−δ

MC∗(Q)−v∗(MC∗(Q)). By condition 3, lim inf δtq(x̂t)+δtA ≤ 0. Hence,

V ∗(0) ≥ ∑∞
τ=1 νs(x̂τ ). But also V ∗(0) = inf{xt}

∑∞
τ=1 νs(xτ ) ≤

∑∞
τ=1 νs(x̂τ ). Therefore,

{x̂t} attains the infimum.

The necessity of conditions 1 and 2 is obvious. To establish that 3 is also necessary,

suppose that lim inf δtq(xt) = k > 0, where k is potentially ∞. Then, there exists T

such that for all t > T , δtq(xt) > k − ε, where ε is small. But then it is possible to

reduce say xT+1 by a small amount and still satisfy the constraint that q(xt) ≥ 0 for all

t. Therefore, such {xt} cannot be optimal.¤
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