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Abstract

I study a budget-constrained, private-valuation, sealed-bid sequential auction with

two incompletely-informed, risk-neutral bidders in which the valuations and income

may be non-monotonic functions of a bidder’s type. Parameters permit the existence

of multiple equilibrium symmetric bidding functions that differ in allocation, efficiency

and revenue. The sequence of sale affects the competition for a good and therefore

also affects revenue and the prices of each good in a systematic way that depends

on the relationship among the valuations and incomes of bidders. The sequence of

sale may affect prices and revenue even when the number of bidders is large relative

to the number of goods. If a particular good, say α, is allocated to a strong bidder

independent of the sequence of sale, then auction revenue and the price of good α is

higher when good α is sold first.
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Budget-Constrained Sequential Auctions with Incomplete Information

1 Introduction

Much of the existing theoretical work on auctions concentrates on the allocation of a single

good1. However, in actual auctions, several heterogeneous goods are often allocated sequen-

tially. If there is no link among the goods then one may be able to apply the single-good

analysis repeatedly. However, such a link may arise if budget constraints limit a bidder’s

ability to bid for later goods when earlier prices deplete limited resources.

Individual bidders whose valuations derive from consumption (rather than resale) may

clearly be budget-constrained. But the relevance of budget constraints extends well beyond

this case. There is a theoretical literature that argues generally that the existence of agency

problems implies that firms are effectively budget constrained in their investment decisions2.

There is also an empirical literature that supports this idea3. Thus, theoretical and empirical

foundations support the existence of budget constraints. In the context of auctions, for

example, even firms that are buying to re-sell may effectively be budget-constrained if the

cost of borrowing increases with the amount borrowed4 (as it is standard to assume in the

finance literature) or if capital market imperfections result in budgets for projects being

determined on a yearly basis, so that the firms allocate only a fixed amount of capital5

for the completion of a project. Engelbrecht-Wiggans (1987) shows that budget constraints

effectively arise if a bidder is the agent of a principal.

When investments are relatively large then capital market imperfections can mitigate the

ability of even a large firm to borrow funding. The historic auction of radio spectrum by the

FCC in the USA is a good example of an auction in which the investments are relatively large.

Cramton (1994) finds it realistic to assume that all firms in PCS (personal communicating

services) auctions face budget constraints6. As he explains, bidders must raise funds before

the auction starts when they do not know exactly how much they will need. Given that

1 See, for example, Maskin and Riley (1984), Myerson (1981), Harris and Raviv (1981), Riley and Samuelson
(1981), Chatterjee and Samuelson (1983), Myerson and Satterthwaite (1983), Leininger, Linhart, and Radner
(1986), Milgrom and Weber (1982), and Wilson (1984). For a survey of the literature, see Milgrom (1987),
McAfee and McMillan (1987) and Klemperer (1999).
2 See Lewis and Sappington (1989a, 1989b), Hart and Moore (1995) and Clementi and Hopenhayn (2003).
3 See Fazzari and Athey (1987), Fazzari, Hubbard and Petersen (1988), Whited (1992), Fazzari and Petersen
(1993), Love (2003) and Clementi and Hopenhay (2003) for empirical corroboration of budget constraints.
4 See Cramton (1995) for a discussion of the budget constraints faced by firms making large investments in
the nationwide narrowband PCS auction held in the United States in July 1994.
5 See Hendricks and Porter (1992) for empirical evidence of capital constraints in land lease auctions.
6 As do Burguet and McAfee 2005.
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fund-raising is time-consuming and costly, he states that it is reasonable to assume that

firms that come to such auctions are budget-constrained. In addition, only forty per cent

of narrow band PCS spectrum was for sale in the first spectrum auction held by the FCC;

so that, though each spectrum auction was simultaneous, goods were allocated sequentially

across auctions as well as simultaneously within an auction.

The paper analyzes a private value sequential auction with imperfect information in

which bids are continuous. However, that the order of sale affects prices and revenues can be

illustrated in a common value auction with complete information and discrete bids. Consider

an auction in which two bidders compete (under 2nd price sealed bid rules for which the bids

are in multiples of 1’s) for two goods whose values are 200 and 60 respectively. Suppose that

the income of one bidder is 130 and that of the other is 60. Note that once good 1 is sold,

the income of the winner of good 1 is reduced by the price of good 1. Bidder i’s equilibrium

bid7 for good 2 is the minimum of i’s valuation for good 2 and i’s depleted income. The price

of either good can be at most 60 since 60 is the income of one of the bidders. Let bidders

and goods be denoted by their initial incomes and values. Bidder 130 has more than enough

income to pay 60 for each good. This implies that bidder 60 is willing to pay 60 for whatever

good is brought up for sale first since the value of each good is at least 60 and bidder 60 has

no option to win good 2 since bidder 130 has at least 70 to bid on good 2 no matter who is

allocated good 1 in equilibrium. The maximum that bidder 130 is willing to pay for good 1

depends on the order of sale.

Consider the order of sale equal to 200, 60. Bidder 130 faces a price of 60 on good 60

if bidder 60 loses good 200. Thus, if bidder 130 pays a price of p for good 200 then bidder

130’s payoff is 200− p. If instead, bidder 130 allows bidder 60 to obtain good 200 for a price

of p ≤ 60 then bidder 60 has 60 − p to bid on good 60. In this case bidder 130 receives a

payoff of p. Since 200 − p > p when p ≤ 60, bidder 130 is willing to pay more than 60 for

good 200 when it is brought up for sale first. So, when the order is 200, 60, each good is

allocated to bidder 130 at a price of 60 and revenue equals 120.

Now consider the order of sale 60, 200. Bidder 130 is no longer willing to obtain good

60 at any price less than or equal to 60. If bidder 130 obtains good 60 at a price of p ≤ 60,

then bidder 130 also obtains good 200 at a price of 60 so that bidder 130’s payoff is 200− p.

However, if bidder 130 lets bidder 60 obtain good 60 at a price of p ≤ 60 then bidder

130 obtains good 200 at a price of 60 − p so that bidder 130’s payoff is 140 + p. Since

7 For the details of solutions to auctions of complete information with two budget-constrained bidders and
two goods see Benoit and Krishna 2000, Pitchik and Schotter 1988, and Pitchik and Schotter 1986.
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140 + p > 200− p for p > 30, bidder 130 prefers to let bidder 60 obtain good 60 if the price

is p > 30. Thus, bidder 130’s best response to a bid of 60 by bidder 60 is a bid of 59. (Recall

that bids are multiples of one.) Thus, when the order of sale is 60, 200, bidder 60 obtains

good 60 at a price of 59, bidder 130 obtains good 200 at a price of 1 and the revenue is

60. Bidder 130 prefers to obtain good 200 at a low price under the order 60, 200 than to

obtain both goods at relatively high prices under the order 200, 60. The prices and revenue

generated by the order 200, 60 are higher than that generated by the order 60, 200.

The order of sale affects revenue and prices whether information is perfect and bids are

discrete or whether information is imperfect and bids are continuous. The intuition derives

from the fact that once good 1 is sold, there is an option to win good 2. The value of the

option depends on the depleted income of all bidders and on the value of the good 2. The

depleted income depends on the order of sale. The above example might lead one to believe

that selling the more highly valued good first always generates the highest revenue. In fact,

Benoit and Krishna (1998) show that in a complete information common value auction of

two goods and three budget-constrained bidders, this is always the case. Their result extends

to two goods and n budget-constrained bidders since it is only the top three incomes that

are relevant when analyzing the equilibria of a budget-constrained auction of two goods in a

complete information common value auction with two or more bidders. However, it is easy

to generate budget-constrained sequential common value auctions in which selling the most

highly valued of 3 goods does not generate the highest revenue8.

A more plausible proscription for revenue maximization might exist if a good is highly-

valued enough and incomes are low enough. In this case, selling the highly valued good first

maximizes revenue9. (Thus, you might want to sell a Rembrandt before selling a ten year old

Honda Accord if you are selling both in a sequential auction.) What is not clear is whether

there are any systematic rules that govern the relationship among the prices of a good, the

revenue, and the order of sale when the valuations are similar and when the income covers

the valuation of each good. If Toyota Camrys are sold in an auction that also sells Honda

Accords, then does the order of sale still affect prices and revenue?

I study a budget-constrained version of the benchmark model of a private-valuation

sealed-bid sequential auction of two goods in which two risk-neutral bidders are drawn from

8 One complete information example is that in which 3 bidders (with incomes of 60, 80 and 80) compete for
3 goods (with common values of 80, 60 and 100) using second price rules in which bids are multiples of one.
The order of sale 80, 60, 100 generates a revenue of 130 while each of the other orders generates a revenue
of 120. Benoit and Krishna (1998) provide another example in which two perfectly and completely informed
budget-constrained bidders compete for three goods with valuations A ≥ B ≥ C.
9 I show such a result in Section 7 for a restricted set of auctions.
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a single population and the information is incomplete10. When information is complete,

revenue is affected, in a systematic way11, by the price formation rule (i.e. the rule that

specifies the price as a function of the bids). Essentially, budget constraints impose an odd

sort of risk aversion and risk aversion causes revenue to depend on the price formation rule.

Assuming information is incomplete does not change this. In order to isolate the pure effect

of the budget-constraints on the prices of goods relative to their order of sale and the price

formation rule, I restrict to a world in which the expected revenue is invariant with respect

to a class of price formation rules that includes 1st and 2nd price rules. In this world, I

find that the auction revenue depends on the sequence of sale and that the price of a good

depends on its position in the sequence of sale in an intuitive way.

In the literature on auctions for one good, authors restrict the search for an equilibrium

among symmetric bidding functions that increase in a bidder’s type. In a budget-constrained

sequential auction of two goods, I restrict attention to symmetric bidding functions but do not

assume monotonicity. I find that it is possible for there to exist two symmetric equilibrium

bidding functions that differ with respect to efficiency, revenue and allocation. Whether

revenue is maximized or the allocation is efficient depends on the relationship between the

bidding function and the valuation and income functions and not on the price rules.

Theorem 2 and its Corollary 3 can be used to compare the expected revenue and efficiency

when heterogenous goods α and β say, are sold in the order α, β to that when they are sold

in the order β, α. Revenue is maximized when the bidding function is ordinally equivalent

to the income function. The allocation is efficient when the bidding function is ordinally

equivalent to the difference in valuation functions. In particular, if the valuation and income

functions are increasing then revenue is maximized and the allocation is efficient when the

good whose valuation increases more rapidly in a bidder’s type is sold first. Thus, even when

there are only two goods, selling the highest valued good first need not generate the highest

revenue. In particular, if one is auctioning the contents of a household, then selling a wall

painting by an unknown artist (whose value may be highly variable) before the used ride-on

lawn mower (whose value may be high but publicly known) maximizes revenue.

Theorem 4 compares the prices of good 1 with that of good 2. If the goods are identical for

each type of bidder and the bidding function is ordinally equivalent to the income function,

then the expected price of a good is higher the later it is sold. Though the price of identical

10Benoit and Krishna (2000) consider budget constrained buyers with complete information. Che and Gale
(1993) consider budget constrained buyers in one-good auctions. Pitchik and Schotter (1986), Pitchik and
Schotter (1988) and Pitchik (1989) considers budget constrained buyers with incomplete information.
11See Benoit and Krishna (2000), Pitchik and Schotter (1988), and Pitchik and Schotter (1986).
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goods increases in the order of sale, each bidder expects to pay a constant price for any good

that is won (Theorem 6) so that there is no room for arbitrage.

The price formation rule may affect the price of a good even if it does not affect rev-

enue (Theorem 7). In addition, auction revenue and allocation may differ across symmetric

equilibrium bidding functions (Theorems 8 and 9).

When I restrict attention to 1st and 2nd price rules I obtain the following results. Theorem

10 finds that the expected price of good 1 is higher under 2nd price rules than under 1st price

rules. Theorems 11 and 12 compare the price of good α when heterogeneous goods α and

β are sold in the order α, β to the price of good α when goods α and β are sold in the

order β, α. Whether the price of good α is higher when it is sold first than when it is sold

second depends on how competition for the good is affected by its position in the order of

sale. Competition for a good depends on the bidding function as well as the price formation

rules. Theorem 11 echoes the results of Theorem 4. Under either first or 2nd price rules, if

the bidding function is ordinally equivalent to the income function, then good 1 is always

sold to the bidder with the higher income so that there can be no disadvantage in obtaining

the good 1. Otherwise, the more advantaged bidder could always mimic the less advantaged

one if there was a gain to doing so. As a consequence, under either price formation rule,

identical goods fetch different prices if they are sold in sequence. The expected price of a

good is higher the later it is sold. By contrast, the results of Theorem 12 show that the

results may depend on the price formation rule. If income is constant and the equilibrium

bidding function is ordinally equivalent to the difference in valuations of the goods then the

allocation is efficient and independent of the sequence of sale. This allows for variation in

how cautious bidders are in bidding for good 1. 2nd price rules allow bidders to bid up the

price with greater impunity. Under 2nd price rules the price of a good is higher when it is

sold first rather than second. The bidder who loses good 1 may bid up its price in order to

obtain good 2 for a lower price. Under 1st price rules, the price of a good is higher when it

is sold second. The bidder who loses good 1 fears bidding up the price due to the possibility

of obtaining the good at too high a price.

The fact that the sequence of sale affects both the prices and revenue means that the

interests of a seller who may wish to maximize the price of a good may conflict with those

of an auctioneer who may wish to maximize long run auction revenue. A change in the form

of the auction may change the number of bidders who are attracted by the mechanism, a

consideration that does not enter my model12.

12McAfee (1993) and Peters and Severinov (1993) study competition among auctioneers.
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Theorems 4, 11, and 12 imply that the law of one price does not hold for similar goods in

a budget-constrained sequential auction. If the goods α and β are identical and the bidding

function is ordinally equivalent to the income function, then the expected price is higher the

later it is sold. If the goods α and β are similar (with a common mean) but the value of

one good is even slightly more variable than the other and income is constant across types

of bidders, then the expected price is higher the earlier it is sold under 2nd price rules; under

1st price rules, it is higher the later it is sold.

In an auction of multiple identical goods, some assumption is required in addition to

those of the standard multi-good auction model to obtain the result that the price of an

object depends on its position in the order of sale13. Weber (1983) shows that in a standard

private valuation sequential auction in which bidders are risk neutral and goods are not

linked in any way, prices of identical objects do not depend on their position in the sequence

in which they are sold when each bidder wants only one unit of the good. McAfee and

Vincent (1993) show that in the absence of risk neutrality, decreasing prices for identical

goods in a standard auction requires non-decreasing absolute risk aversion. Black and De

Meza (1993) show that, under 2nd price rules, expected prices increase with respect521to the

order of sale when bidders value additional purchases.

Ashenfelter (1989) and Ashenfelter and Genesove (1993) provide empirical evidence that

ex ante identical goods fetch prices that depend on their position in the order of sale. Ashen-

felter (1989) finds that in about half of the cases the price of a good is about twice as likely

to be lower than to be higher than the price of an identical good sold earlier, while in the

remaining cases the price does not change over time. In addition, Genesove (1993) suggests

that credit-rationing of new and used car dealers may explain the empirical evidence that

the sequential position of sale affects the price of a car in wholesale used car auctions. When

goods are similar, a corollary of my results offers an explanation of the evidence in terms of

the existence of a link between the goods, specifically a budget constraint that causes the

willingness and ability to pay for a good to depend not only on some absolute valuation of

the good but also on the opportunity cost of paying for good 1 when there is a subsequent

possibility of buying good 2. As the income constraints change over the course of a sequential

auction, the intensity of competition for later goods changes. A change in the order of sale

affects the opportunity cost of winning a good.

Black and De Meza (1993) obtain declining expected prices in a sequential auction of

two identical goods under 2nd price rules when each of two bidders has access to a buyer’s

13See Black and De Meza (1993), Weber (1983), and McAfee and Vincent (1993).
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option14 and marginal utility is declining. When there are more than two bidders, the result

also requires some restrictions on the distribution of values. Bernhardt and Scoones (1993)

and Gale and Hausch (1992) obtain declining expected prices in a sequential auction of two

goods under 2nd price rules when bidders are risk neutral. Two assumptions that drive

Bernhardt and Scoones’ result are that no bidder can evaluate good 2 until the first has been

allocated and that no bidder is allowed to obtain more than one good. In my model the

goods may be heterogeneous and the auction form is not restricted to 2nd price rules. The

price of a good depends on the order of sale and the interaction among the valuations and

income of bidder types. Each bidder obtains no more than one good in equilibrium, but the

bidders are not constrained ex ante from obtaining both goods independent of the prices and

bids; further, bidders know their valuations of both goods at the beginning of the auction.

In addition, the valuations and income may be non-monotonic. Other work15 deals with the

allocation of multiple goods to multiple bidders, but none of which I am aware specifically

analyzes the allocation of multiple goods auctioned sequentially to a set of incompletely-

informed, budget-constrained bidders with private valuations. The aim of the paper is to

understand how the relationship between auction revenue, allocation, prices and the order

of sale may vary within the context of a single model as a function of the relationship among

the parameters of the model and the price formation rule.

Previous models in the literature use varying assumptions to drive the relationship be-

tween the price of a good and its order of sale so that the various results are hard to compare

within the context of a single model. When I restrict to similar goods in my model, whether

the price increases or decreases with its position in the order of sale depends, in a systematic

way, on the relationship between the bidding function and the valuation and income func-

tions as well as on the price formation rules. The relationship among valuations and income

as well as the price formation rule govern the relationship between the order of sale and both

the price of a good and the revenue of the auction.

I present the model in Section 2. I relate the price of a good to its position of sale in

Section 3 and to the price formation rule in Section 4. I consider the existence of multiple

equilibrium bidding functions in Section 5. I restrict to 1st and 2nd price rules in Section 6.

I consider the robustness of the results in Section 7.

14In a sequential auction with identical goods a buyer’s option enables the bidder who wins the first unit to
purchase as many units as are available at the price of the first unit.
15See Benoit and Krishna (2000), Bernhardt and Scoones (1993), Bulow and Klemperer (2002), Engelbrecht-
Wiggans and Weber (1979), Engelbrecht-Wiggans and Menezes (1993), Gale and Hausch (1992), Gale and
Stegeman (2001), Krishna (1990,1993), McAfee and Vincent (1993), Menezes (1993), Ortega-Reichert (1968),
Palfrey (1980), Pitchik and Schotter (1986,1987), von der Fehr (1994), Weber (1983) and Swinkels (1989).
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2 The Model

There is a single population from which bidders 1 and 2 are drawn. Two heterogeneous

goods, α and β, are to be sold sequentially. The first good sold (good 1) may be either

α or β. A bidder’s privately known type is independently and randomly drawn according

to the publicly known distribution H from the interval [0, 1]; I assume that H is atomless,

continuously differentiable, and increasing on its support [0, 1]. The income and valuations

of a bidder of type t for good γ = α, β are denoted I(t) and vγ(t), γ = α, β respectively. I

assume that vγ, γ = α, β, and I are continuously differentiable functions on [0, 1].

I also assume that either v′

1
− v′

2
+ I ′ �= 0 on a set of positive Lebesgue measure or that

v′

1
− v′

2
�= 0 on a set of positive Lebesgue measure. (Note that although each individual’s

income and valuations may be perfectly correlated in the case that valuations and income

increase in t, the income and valuations of one individual are not correlated with those of

any other individual. I do not assume monotonicity of the valuation or income functions.)

In order that the valuations are meaningful I assume that for each type, income is at

least equal to each valuation; in order that the budget constraint be effective I assume that,

for each type, income is at most the sum of the valuations. Precisely,

vγ(t) ≤ I(t) ≤ vα(t) + vβ(t) for γ = 1, 2 and t ∈ [0, 1] (1)

where the first inequality is strict for t ∈ (0, 1).

This assumption has two implications. (1) Individual t is willing and able to pay up to

I(t) in exchange for both goods. I call the maximum amount that an individual is willing

and able to pay for a good, the individual’s de facto valuation of the good. Thus, income is

an individual’s de facto valuation of holding both goods. (2) A bidder’s de facto valuation

of good 2 is the minimum of v2 and any income remaining after any payment for good 1 is

made. A bidder’s de facto valuation of good 1 takes into account the fact that the higher

the price paid by the winner of good 1 the lower the winner’s de facto valuation of good 2.

Thus, losing good 1 at a higher price may enable a bidder to obtain good 2 at a lower price.

A bidder of type t is constrained not to spend more than I(t) (t’s income) in the auction.

All units (i.e. bids, budgets and valuations) are restricted to be non-negative. Ties are

broken by the flip of a fair coin. The above is common knowledge among the bidders.

The sealed bid sequential auction works as follows. Two bidders are selected at random

from the population. In the first stage, good 1, which may be α or β, is brought up for sale.

Each participant submits a bid for good 1 that lies in [0, I(t)]. The bidder who submits the
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higher bid obtains good 1. The price paid for the good depends on the price formation rule

in effect. After good 1 is sold, the winner’s budget is reduced by the price paid for good 1

and the winning bid is revealed. Bidders then bid on good 2 ({α, β} = {1, 2}).

In the second stage of the game, the de facto valuation for good 2 of a bidder of type t is

the minimum of t’s initial valuation and t’s remaining income. I assume that once good 1 is

allocated, the price paid for good 1 along with the income of the winner of good 1 is public

knowledge. In this case, it is reasonable to assume that the equilibrium outcome in this

second stage is that in which the bidder with the higher de facto valuation obtains the good

at the lower de facto valuation, so that the price of good 2 is the lower de facto valuation.

Replacing the second stage of the game by the equilibrium payoffs in this standard equilib-

rium outcome we obtain a one-stage Bayesian16 game G that depends on the distribution of

valuations and resources for each population of bidders. This Bayesian game G is the game

that I study. The strategy set of a bidder of type t in G is [0, I(t)], the set of feasible bids

on good 1. The rules of G are the auction rules that allocate good 1 given bids; I restrict

attention to rules under which the individual who makes the higher bid obtains good 1 and

pays a price that is a non-decreasing function of the bids. (This includes but is not limited

to 1st and 2nd price formation rules.) I consider a symmetric Bayesian equilibrium of G; that

is, I look for a function B : [0, 1] → � that assigns a bid to each type with the property that

(B,B) is a Nash equilibrium of G.

It is known that the price formation rule can affect the revenue of an auction when

information is complete and so also when information is incomplete. I want to isolate the

effect of the sequence of sale on the price of a good and therefore restrict to parameters

for which revenue is independent of the price formation rule. In order to avoid looking at

special cases, and in order to consider auctions in which the revenue is independent of the

price formation rule, I assume that, in equilibrium, a bidder’s income is large enough to

cover expenses and that no bidder is allocated both goods in equilibrium. Moreover, since

no individual is allocated both goods in equilibrium, the price of good 2 is the de facto

valuation for good 2 of the winner of good 1.

3 The Sequence of Sale Affects Revenue and Prices

In a standard private value auction of only one good, the valuation of the good (which

coincides with a bidder’s de facto valuation) increases in a bidder’s type and the maximum

16See Fudenberg and Tirole (1991).
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private valuation indicates the maximum revenue that an auction can generate. A bidding

function that increases in a bidder’s type maximizes the revenue generated and allocates the

good in an efficient manner to the bidder who values the good more highly. The literature

typically restricts the search to symmetric equilibrium bidding functions that increase in a

bidder’s type. In budget-constrained sequential auctions, the willingness to pay for good 1

depends on the valuations for both goods and on income. In addition, a bidding function that

increases in this willingness to pay may not maximize revenue or allocate goods efficiently.

I first discuss a bidder’s de facto valuation for good 1.

In a budget-constrained sequential auction, individual t’s de facto valuation of good 1

depends on the type of t’s opponent. As shown in the example computed in the introduction,

losing good 1 at a high price may enable a bidder to obtain good 2 at a low price. This may

be preferred to winning both goods at high prices. Let V (t, s) denote the de facto valuation

for good 1 of a bidder of type t who faces another bidder of type s. If a bidder of type t

faces a bidder of type s, then it must be the case that bidder t is willing to pay up to

v1(t)− v2(t) + I(s)

2

for good 1, since, at such a price, whether the individual wins or loses good 1, the payoff of

individual t is
v1(t) + v2(t)− I(s)

2

Thus, the de facto valuation of bidder t who faces bidder s equals

V (t, s) =
v1(t)− v2(t) + I(s)

2

Define the critical value v(t) = V (t, t) to be the de facto valuation for good 1 of a bidder of

type t who faces another bidder of type t. In the auction literature for one good, the critical

value is synonymous with the bidder’s valuation for the good.

Suppose that f and g are real-valued functions on a domain S. I say that f is ordinally

equivalent (denoted ORD-equivalent) to g on S whenever the set of indifference curves and

"better than" sets are common for f and g on S. In particular, any strictly monotonically

increasing function is ORD-equivalent to any other strictly monotonically increasing function.

I say that f is ordinally reversed (denoted ORDR-equivalent) to g whenever there is one

common set of indifference curves but the "better than" set of one function is the "worse

than" set of the other function. In particular, any strictly monotonically increasing function

is ORDR-equivalent to any strictly monotonically decreasing function.
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In a standard auction, the literature restricts to a symmetric equilibrium bidding function

that is ORD-equivalent to the valuation function. I consider symmetric equilibrium bidding

functions that are ORD-equivalent to the critical value. However, unlike in the private

valuation auction literature for one good, a bidding function that is ORD-equivalent to

the critical value does not necessarily allocate the goods and income efficiently. It turns

out (Theorem 2) that a symmetric equilibrium bidding function that is ORD-equivalent to

v1−v2 allocates the goods and income efficiently. Thus, I also consider symmetric equilibrium

bidding functions that are ORD-equivalent to v1 − v2 so as to obtain an efficient allocation

of the goods and income. There exist parameters for which there exists two non-equivalent

equilibrium bidding functions that differ in their allocation of the goods.

In order to show that the set of parameters that satisfy the assumptions is not empty, I

offer a condition that satisfies the assumptions. One condition that would allow one to avoid

looking at special cases, and to consider auctions in which the revenue is independent of the

price formation rule, is that, for all t ∈ [0, 1]

max
s

V (t, s) ≤ I(t) ≤ min
s

V (t, s) + min
s

v2(s) (2)

This condition satisfies the two assumptions since no bidder is willing to pay more than the

highest critical value and no equilibrium price of good 1 can be lower than the lowest critical

value. The second inequality of (2) says that, in equilibrium, any income remaining to the

winner of good 1 must be less than or equal to the lowest valuation of good 2. But this

implies that the loser of good 1 must obtain good 2 in equilibrium. Moreover, the income of

the winner of good 1 is depleted to below the winner’s valuation of good 2. It follows that

the price of good 2 is the depleted income of the winner of good 1. But then, in equilibrium

Revenue = income of the winner of good 1 (R)

It is immediate that a bidding function that is ORD-equivalent to the income function

maximizes auction revenue.

In the theorem below I consider budget-constrained sequential auctions in which income

and valuations satisfy all assumptions (this may happen for example if the parameters satisfy

(1) and (2)) and whose price formation rules satisfy the following conditions.

(S1) Bidders are treated anonymously (prices do not depend on the identity of bidders).

(S2) A good is sold to the higher bidder at a price that does not decrease in the bids.

(S3) Good 2 is sold to the bidder with the current higher de facto valuation at a price equal

to the current lower de facto valuation.

11
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(S4) There is a common symmetric equilibrium bidding strategy B for good 1.

Whether revenue is maximized or the allocation is efficient depends on the equivalence

between the bidding function and the functions v1 − v2, I and v1 − v2 + I. In a standard

auction of one good, the efficient allocation is that in which the good is allocated to the

bidder with the highest valuation. This is because, without budget constraints, a bidder

is always willing and able to bid up to the bidder’s valuation. An allocation in a budget-

constrained auction is efficient if there are no Pareto improving trades but the willingness

and ability of an individual to pay for a good depends not only on the bidder’s valuation for

the good but also on the bidder’s remaining income. In any auction allocation of goods and

money let type tθ denote the type allocated good θ and income Rθ for θ ∈ (α, β).

Criterion 1 The allocation ((tα, Rα), (tβ, Rβ)) is efficient if and only if

vα(tβ) ≤ vα(tα) or Rβ ≤ vα(tα)

vβ(tα) ≤ vβ(tβ) or Rα ≤ vβ(tβ)

and

either vα(tα)− vβ(tα) ≥ vα(tβ)− vβ(tβ)

or
Rβ ≤ vα(tα)− vβ(tα)
Rα ≤ vβ(tβ)− vα(tβ)

We next explore when an allocation is efficient and revenue is maximized. All proofs not

in the text are in the Appendix.

Theorem 2 In any budget-constrained sequential auction, the expected revenue is indepen-
dent of the price formation rules and depends only on the shape of the equilibrium bidding
function B. Whenever B(t) is ORD-equivalent to I(t), expected revenue is maximized. More-
over, such a revenue-maximizing sequential auction reaps more revenue than any auction in
which both goods are bundled and allocated simultaneously to one of the bidders. Whenever
B(t) is ORD-equivalent to v1(t)− v2(t), the allocation of goods and money is efficient.

The Corollary follows immediately from Theorem 2.

Corollary 3 If B, vi(t)− vj(t) and I are ORD-equivalent, then revenue is maximized and
the goods are allocated efficiently when good i is sold first.

Bernard and Scoones [1993] consider a 2nd price sequential auction of two stochastically

independently valued goods (denoted by A and B). Bidders are restricted to bidding on

one good only and do not know their own valuation of good 2 until after good 1 has been

12
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allocated. They find that the seller’s revenues are greater when object A is auctioned first

if the distribution of valuations for A has more dispersed order statistics than that of the

distribution of valuations for B. By contrast, the above theorem and corollary hold for any

auction form under consideration for which the income constraints are binding. In particular,

the proof here does not require the explicit calculation of equilibrium bidding functions, the

bidders know their valuations ex ante, and the bidders may bid on more than one good.

Thus, if there is a book value for one good that is highly valued but the value for the other

good is relatively low but highly variable then revenue is maximized when the good with the

book value is sold last. This predicts that, in estate auctions, heavy equipment (for example,

ride on lawn mowers) will be sold later than an item whose value may depend more heavily

on taste (for example, used bedspreads).

Note that I do not consider auctions in which all surplus is always extracted from the

winner of good 2. One such case is that in which good 1 is allocated via an auction mechanism

and good 2 is awarded to the loser of good 1 at the loser’s valuation (which can be achieved

if the bidding function is monotonic and the auctioneer knows the bidding function and

therefore knows the valuations for good 2 once good 1 is allocated). In this case, it can

be shown that the expected revenue is independent of the auction mechanism under which

good 1 is awarded; the maximal expected revenue is the expected value of min{v1(t1) +

v2(t1), v1(t2) + v2(t2)}. However, this method of allocation requires a lot of information on

the part of the auctioneer. Competition among auctioneers mitigates against its use and

increases the surplus available to bidders.

The next result shows that the law of one price need not hold for identical goods. We

see that, in any auction under consideration, the expected prices of identical goods depend

on the sequence of sale. Income constraints are enough to imply that the expected price

of identical units of a good increases the later it is sold. By contrast, Black and De Meza

[1993] analyze a model in which two units of a good are sold sequentially in a 2nd price sealed

bid auction to n bidders whose incomes are not constrained. In their model, a consumer’s

valuation of a unit depends on how many units the consumer has already bought. Under

some assumptions on valuations17, the expected price of the second unit sold is higher than

that of the first. The result below is not restricted to 2nd price rules.

Theorem 4 If the equilibrium bidding function B(t) is ORD-equivalent to v1(t)−v2(t)+I(t)
and I(t), then the expected price of good 1 is less than that of good 2 whenever v2(w1) −

17The valuation b of the first unit bought by a consumer is drawn independently from a common distribution.

The valuation of the second unit bought is kb where k is fixed and common to each bidder.
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v1(w1) ≥ 0 where w1 denotes the expected type for which

v1(w1)− v2(w1) + I(w1) = expmax(v1(t1)− v2(t1) + I(t1), v1(t2)− v2(t2) + I(t2))

It follows immediately that whenever each bidder considers the two goods to be identical,

the expected price of the good 1 sold is higher than that of good 1.

Corollary 5 If vα(t) = vβ(t) for all t and the equilibrium bidding function is ORD-equivalent
to I, then the expected price of good 2 sold is higher than that of good 1.

In particular, the expected prices differ if the goods are identical across bidder types. I

now explore opportunities for arbitrage in this case.

Theorem 6 If vα(t) = vβ(t) = v(t) for all t and the equilibrium bidding function is ORD-
equivalent to I, then the expected price that any one bidder expects to pay in the auction is
constant across bidders.

Theorems 4 and 6 state that when vα(t) = vβ(t) for all t and the bidding function is ORD-

equivalent to I, the expected price of good 1 is less than that of good 2 even though the

expected price that any one bidder expects to pay in the auction is constant across bidders.

To see how this result is possible, let p∗ be the common expected price that a bidder expects

to pay in the auction. Since good 1 is allocated to the bidder with the higher bid and good

2 is allocated to the bidder with the lower bid, the bidder whose type is associated with the

highest bid obtains good 1 for sure at a price of p∗, while the bidder whose type is associated

with the lowest bid obtains good 2 for sure at a price of p∗. Since the price paid for a good

is increasing in the bids, p∗ is the highest price paid for good 1 and the lowest price paid

for good 2. A bidder whose type is associated with a bid between the highest and lowest

bids sometimes obtains good 1 for a price lower than p∗ and sometimes obtains good 2 for

a price higher than p∗ but on average obtains a good for a price of p∗.Thus, the price that

any single bidder expects to pay in the auction is constant across bidders even though the

expected price of good 1 is lower than that of good 2. A violation of the law of one price

does not imply opportunities for arbitrage.

4 The Expected Price of a Good Depends on the Price

Formation Rule

Theorem 2 shows that the revenue can be affected by the sequence of sale when income

varies with type. It follows that, if income varies, then the sequence of sale can also affect
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the prices of the goods. However, as shown below, the price formation rule may affects the

prices even in the case that income is constant across types. In addition, the price formation

rule may affect the way in which the price of a good depends on the sequence of sale.

Let B be an equilibrium bidding function. Since (B,B) is an equilibrium of G, the

“truthful” strategy profile in which each type t chooses t is an equilibrium of the associated

game G(B) in which each bidder’s strategy set is the set [0, 1] of types and the payoff of

type t when s is announced is that which type t obtains in G when type t bids B(s). I

study equilibria of G(B) for any continuous bidding function B that is not constant over any

interval. Riley and Samuelson (1981) study only continuous bidding functions that increase

in t since the valuation of the single good is continuous and increases in t. They find that

the equilibrium price (and therefore revenue) is independent of the price formation rule. By

contrast, even though the expected revenue is independent of the price formation rule, the

equilibrium price of good 1 varies with the rule.

Theorem 7 The equilibrium price of good 1 depends on the price formation rules.

Thus, even though the world is restricted to be one in which the expected revenue is

independent of the price formation rule, the expected prices do vary with the rules. Che and

Gale [1993] show that in a budget-constrained auction of one good, the expected price of the

single good (which is equivalent to revenue in this case) is higher under 1st price rules than

under 2nd price rules. In the auctions that we consider, revenue is constant across price rules

but the price of each good varies across rules.

5 Relationship between Bidding Function and Exoge-

nous Functions

In this section, we analyze the relationship between the shape of the equilibrium bidding

function and either v1−v2+I or v1−v2. We first show that the existence of a non-monotonic

equilibrium bidding function is tied to the existence of a non-monotonic v1 − v2.

Theorem 8 If there exists S1 ⊂ [0, 1] and S2 ⊂ [0, 1]\S1 and a function x̂ : S1 −→ S2

for which the equilibrium bidding function B satisfies B(t) = B(x̂(t)) for t ∈ S1, then the
difference in the value functions satisfies v1(t)− v2(t) = v1(x̂(t))− v2(x̂(t)) for t ∈ S1.

We say that a function is S-monotonic on an interval T if, for t ∈ T , the indifference curve

through t is the singleton {t}. We now show that the existence of an S-monotonic equilibrium

bidding function on an interval T is tied to the existence of a monotonic v1 − v2 + I.

15



Budget-Constrained Sequential Auctions with Incomplete Information

Theorem 9 Suppose thatD12P (t, s) = D21P (s, t) = 0 for all s, t and either one ofD1P (t, s)
and D2P (s, t) equals zero or D2P (t, s) = γD1P (s, t) for γ > 0. If an equilibrium bidding
function B is S-monotonic on an interval T , then sign(B′) = sign(v1 − v2 + I) on T .

We note that when P is not a member of the class of price rules assumed by Theorem 9,

then B may or may not be ORD-equivalent to v1−v2+ I when B is monotonic18. Theorems

8 and 9 indicate the possible existence of multiple bidding functions that differ with respect

to allocation, revenue and efficiency19.

6 1
st and 2

nd Price Rules

I now restrict attention to 1st and 2nd price formation rules. Theorem 10) generalizes a

theoretical and experimental complete information result in Pitchik and Schotter (1988).

Theorem 10 If the equilibrium bidding function under 1st price rules is ORD-equivalent to
the equilibrium bidding function under 2nd price rules, then the expected price of good 1 is
higher under 2nd price rules than under 1st price rules.

Intuitively, under 1st price rules, a bidder is worried about being allocated good 1 at a

relatively high price and so makes a relatively conservative bid. Under 2nd price rules, a

bidder is worried about not winning the good at a relatively low price.

Theorem 4 implies that when the goods are identical, the expected price of a good is

higher the later it is sold under general price rules. Theorems 11 and 12 below compare the

price of a good when it is sold first to the price of the good when it is sold second under 1st

and 2nd price rules. There are two cases to consider.

When income is an index of an individual’s ability to use the good profitably, then we

expect that v1 − v2 + I to be ORD-equivalent to I independent of the order of sale since,

then, the value of a good changes less rapidly than the value of income. Denote by Bθγ the

equilibrium bidding function when the order of sale is (θ, γ) for {θ, γ} = {α, β}.

Theorem 11 If vα − vβ + I, vβ − vα + I, I, are ORD-equivalent to the equilibrium bidding
functions Bα,β and Bβ,α then the expected revenue is independent of the sequence of sale and
the expected price of a good is higher, the later it is sold.

18If P (s, t) = P (t, s) =
√
B(s)B(t), then the assumptions of Theorem 9 are violated. Equation (4) is solved

by the increasing B(t) = (t+ 1)
2
if either v1(t)− v2(t) + I(t) = 3t2 + 6t+ 1

2
(is increasing) and H(t) = t or

if v1(t)− v2(t) + I(t) = 10

3
t2 + 8t− 8

3
t1/2 + 2 (is non-monotonic) and H(t) = t1/2.

19Two bidding functions B and ̂B exist if v1 − v2 + I and I increase on [0, 1] but v1 − v2 increases on [0, a],
is concave on [a, 1] such that v1(a)− v2(a) = v1(1)− v2(1). B, that is S-increasing on [0, 1], allocates good

one to the bidder with the higher income and maximizes revenue. ̂B, that is S-increasing on [0, a] and is
ORD-equivalent to v1 − v2 on [a, 1], allocates the goods efficiently but does not maximize revenue.
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Thus, if income varies widely relative to the value of either good (as might happen when

the goods are economy cars) then the expected price of the good is higher the later it is sold.

When the valuation for one good is highly variable because of vagaries of taste or because

of the existence of imperfect markets and the random nature of private information, then we

expect vα − vβ to be ORDR-equivalent to vβ − vα. We would like to compare the price of

goods as a function of the sequence but in order to do so we need to keep revenue constant.

In the case that the shape of the critical value function depends on the sequence in which

the goods are sold, the expected revenue is independent of the sequence only if the income is

independent of type. In this case, either sequence maximizes revenue. If income is constant

across types and vα− vβ + I is ORDR-equivalent to vβ − vα+ I, then the expected prices of

the goods depend on the sequence and on the price formation rules as stated next.

Theorem 12 Suppose that v1−v2+I is ORD-equivalent to the bidding function under either
order but that vα − vβ + I is ORDR-equivalent to vβ − vα + I and I(t) = I is constant. (1)
Under 1st price rules the expected price of a good is higher the later it is sold. (2) Under 2nd

price rules the expected price of a good is higher the earlier it is sold.

Clearly whether the price of a good increases or decreases with its order in the sequence

of sale depends on the price formation rules in this case20. The reason the results in Theorem

12 are so different from those of Theorems 4 and 11 is as follows. As the variation in the

differences in valuation for each good are essentially dwarfed by that of income in Theorems

4 and 11, income plays the following role in determining the allocation of each good. The

individual with the higher income obtains good 1 under either sequence and under any price

formation rule. Thus, the results do not depend on the price formation rule and the allocation

varies with the sequence. However, in Theorem 12, the variation in the valuation of good

α say dwarfs that of good β and income combined so that both the valuation and position

(whether first or second) of good α play a role in determining the price of each good. In

this case, under any price formation rule and under any sequence, the individual who values

good α more highly obtains good α.

Now suppose that the value of one good, α say, varies with a bidder’s type while the

income and the value of the other good, say β, is independent of the bidder’s type. Further

suppose that the values share a common mean. In this case, Theorem 12 implies that the

price of similar goods decreases with its position in the order of sale as the auction proceeds

under 2nd price rules. Under 2nd price rules, a bidder is able to bid up the price of good 1 in

order to obtain good 2 at a lower price than otherwise.

20generalizing theoretical and experimental complete information results in Pitchik and Schotter (1988).
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7 Robustness

I consider the robustness of the results with respect to 2nd price rules in this section. Pre-

viously, I have assumed that bidders draw their types from a common pool and that the

number of bidders and goods equal two. I have also assumed that each valuation is less than

income and that no individual obtains both goods in equilibrium. My aim in this section is

to show that revenue and prices can be affected by the sequence in which the goods are sold

even when these assumptions are relaxed. In particular, I consider two possibilities below.

In the first, the number of bidders is larger than the number of goods and the income is less

than the valuations. In the second, one bidder may obtain both goods in equilibrium.

I first provide an example in which the order of sale in a sequential auction of two goods

can affect the revenue of an auction and the price of a good even in the presence of many

bidders who each have a common income. Consider an auction of two goods α and β to n > 2

bidders. Suppose that I(t) = I and vα(t) > (n − 1)(vβ(t) − I) + I > vβ(t) − I > I > 0 for

t ∈ [0, 1] so that each individual has constant income that is less than the valuation of either

good and each individual highly values good α relative to good β and income. Note that,

since each bidder is endowed with a common fixed income that is less than the valuation of

either good, no bidder obtains more than one good in equilibrium. I want to compare the

price of each good if the order of sale is αβ to that when the order of sale is βα. If the order

of sale is αβ then each individual’s equilibrium bidding function for good α is21 B(t) = I.

Thus, the expected equilibrium price of good α is I. Since n > 2 there are still at least two

individuals with an income of I who compete for good β. So, when the goods are sold in the

order αβ, the price of good α is I; that of good β is I since n > 2. If instead, the goods are

sold in the order βα then I claim that the expected price of β is less than I. The reason is

as follows. Suppose that the expected price of β is I. In this case, at least two individuals

bid I. Let m ≥ 2 be the number of individuals who bid I. The payoff to each who bids I is

(vβ(t)− I)/m+ [(m− 1)/m](vα(t)− I)/(n− 1) while the payoff to anyone who bids just less

than I is (vα(t)− I)/(n− 1). By assumption vα(t)− I > (n− 1)(vβ(t)− I), so that it cannot

be that m ≥ 2 bidders bid I in equilibrium. Thus, the equilibrium price of β must be less

than I. It follows that when the goods are sold in the order βα the expected equilibrium

price of β is less than I as claimed. Thus, revenue is highest when α is sold first and the

price of β increases with its position in the order of sale. The reason is that when β is sold

second, there are always at least two individuals who are willing and able to pay I for β so

21A bid of I results in the payoff vα(t)/n+vβ(t)(n−1)/n(n−1)−I. A bid less than I results in vβ(t)/(n−1)−I.
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that competition is intense when β is sold second; when β is sold first, competition is not as

intense since each bidder wants to have income to bid on good α.

The above illustrates that the revenue and prices of goods may depend on the sequence

in which the goods are sold even when there are many bidders and only two goods. Under

the above assumptions, revenue is maximized when the more valuable good is sold first.

I now analyse the model when there are asymmetries among the bidders as well as

changes to the assumptions on income relative to valuations so that a bidder may obtain

both goods in equilibrium. Let’s assume that the valuations of the two goods are fixed such

that vα(t) = A, vβ(t) = B < A. Suppose that there are two pools of bidders. Bidder one is

richer than bidder two, although neither is rich relative to the value of good α. Specifically,

let’s assume that I1(t) ∈ [c1, d1] and that I2(t) = I where A > d1 > c1 > 2I > B > I so that

bidder 1 has enough income to buy both goods since bidder 2 is relatively and absolutely

poor. If the goods are auctioned in the order α, β then each bidder is willing to pay at least

I for α so that bidder one obtains good α at a price of I in equilibrium. Once good α is

allocated, each bidder is willing to pay at least I for good β. Since bidder one has more

than double the income of bidder two and since good α is relatively highly valued, bidder

one obtains both goods in equilibrium when the order of sale is αβ. The equilibrium price of

each good equals I and the equilibrium revenue is 2I. However, now suppose that the goods

are sold in the order β, α. In this case, bidder one is not willing to pay I for good β. The

payoff to bidder one is A− (I − p) if bidder one gives up good β to bidder two at a price of

p. If instead, bidder one wins good β at a price of p then bidder one receives B − p+A− I.

It follows that the most that bidder one is willing to pay for good β is B/2 < I. Bidder

two is willing to pay up to I for good β since otherwise, bidder two receives nothing. In the

equilibrium allocation when the goods are sold in the order βα, bidder two obtains good β

and bidder one obtains good α. The equilibrium price of β is B/2 and that of α is I −B/2.

The equilibrium revenue is I. In summary, the revenue is higher when α (the more highly

valued good) is sold first; the price of good α (the good that is allocated to the rich bidder

independent of its order of sale) is higher when α is sold first; the price of good β (the good

that is allocated to the rich bidder only when it is sold second) is higher when β is sold

second. That revenue is higher when α is sold first is consistent with the implications of

Theorem 2 in which the revenue is higher when good 1 is sold to the rich bidder. Under the

assumptions of Theorem 12, α is allocated to the rich bidder, independent of the order of

sale and the price of α is higher the earlier it is sold under 2nd price rules. In our example,

α is allocated to the rich bidder independent of the order of sale and the price of α is higher
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the earlier it is sold. That the price of good α is higher when sold first in our example is

therefore consistent with Theorem 12. Under the assumptions of Theorem 11 the price of a

good is higher the later it is sold when the competition for the good is higher the later it is

sold. In our example, β is allocated to the rich bidder only when it is sold second so that

competition for β is higher when it is sold second. That the price of good β is higher when

sold second is consistent with Theorem 11.

Thus, even when one bidder is relatively rich, revenue and price may depend on the order

of sale. If there is one good that is highly valued by all and there is a clearly strong bidder

then revenue is higher when the more valuable good is sold first; the more valuable good

is allocated to the stronger bidder independent of its position of sale and its price is higher

when it is sold first; the less valuable good is allocated to the stronger bidder only if it sold

second and its price is higher when it is sold second. Whether the price of a good increases

or decreases with its position in the order of sale depends on how the order of sale affects

the competition for the good.

The price of a good is affected by the order of sale. How it is affected depends on the

valuations. In one case, the price is higher when a good is sold earlier. In another case, the

price is higher when a good is sold later. It depends on whether, in equilibrium, good 1 goes

to the stronger bidder independent of which good is sold first or whether a designated good

goes to the stronger bidder. When good 1 goes to the stronger bidder independent of the

order of sale, then there is no disadvantage in obtaining good 1 because, if there were, the

stronger bidder would just mimic the weaker bidder. In this case, the price of a good must

increase with its position in the order of sale. When a designated good goes to the higher

bidder, then the competition for the good is higher when it is sold first and so price decreases

with its position in the order of sale.

8 Conclusion

In the presence of budget constraints there may exist two symmetric equilibrium bidding

functions that differ with respect to allocation, prices and revenue. Prices depend on the

price formation rules. In addition, even in the absence of arbitrage possibilities, identical

goods may fetch different prices. The sequence of sale affects the expected revenue through

the allocation of the goods. Whenever the winner of good 1 is the bidder with the higher

income, expected revenue is maximized. Under 1st and 2nd price rules, whenever, independent

of the sequence, the winner of good 1 is the bidder with the higher income, the expected
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price of a good is no lower the later it is sold. Intuitively, if good 1 is always sold to the

stronger bidder, then there can be no disadvantage in winning good 1. This happens when

the goods are similar enough and income is relatively variable. By contrast, if, independent

of the sequence, the stronger bidder is allocated a designated good (that may be good 1 or

good 2), the expected price of a good decreases under 2nd price rules and increases under 1st

price rules. Intuitively, under 2nd price rules, there is an incentive for the loser of good 1 to

bid up its price, depleting the winner’s income, in order to obtain good 2 at a lower price.

Thus, when the allocation of the goods is independent of the sequence and 2nd price rules

prevail, the expected price of a good declines with its position in the order of sale. Under 1st

price rules, a higher bid of the loser does not affect the price of good 1 and may adversely

affect the payoff of the loser so that bids are more conservative.

Basically, the price of a good is higher whenever competition for the good is higher. If

bidders are drawn from populations that differ according to income, then goods that are

always allocated to the richer bidder fetch a higher price when sold first. Goods that are

sold to the richer bidder only when sold second fetch a higher price when sold second.

Other links between the goods can have the same effect as do budget-constraints. For

example, if firms with limited plant capacities bid on projects let by the government, the

results of letting any given contract will depend on the available capacity of firms in the

industry. The results should not be qualitatively different in this case.

9 Appendix

Proof of Theorem 2: By (R), expected revenue equals the expected income of the winner

of good 1. If B(t) is ORD-equivalent to I(t) under any price formation rule then good 1 is

allocated to the bidder with the higher income so that, by (R), the expected revenue is the

expected value of the higher income. Thus, the expected revenue is independent of the price

formation rules and depends only on the shape of the equilibrium bidding function.

We now compare revenue in the revenue-maximizing sequential auction to that in an

auction in which both goods are sold simultaneously. When both goods are sold simulta-

neously to one of the bidders, rather than sequentially, an individual t’s de facto valuation

of holding both goods is I(t) by assumption (1). Thus, the auction in which both goods

are sold simultaneously is equivalent to an auction in which one good is sold whose value to

individual t is I(t). The result follows since no auction of a single good can yield an expected

revenue equal to the expected value of the highest valuation (Riley and Samuelson [1981]).
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In the case that the bidding function is ORD-equivalent to v1 − v2, the individual who

obtains good 1 (say type t1) has the higher v1 − v2 while the individual who obtains good 2

(say type t2) has the lower v1− v2. By assumption, in equilibrium, the remaining income R1

of the individual t1 is less than v2(t2), the valuation for good 2 of individual t2. Thus, if the

bidding function B is ORD-equivalent to v1 − v2, then the allocation is efficient.

Proof of Theorem 4: The de facto valuation of good 1 for a bidder of type t who faces a

bidder of type s is V (t, s) = (v1(t)−v2(t)+I(s))/2. Since B is ORD-equivalent to v1−v2+I

and I, the average price that a bidder of type t expects to pay for good 1 is strictly less than

bidder t’s critical value v(t) = (v1(t)−v2(t)+I(t))/2. In this case the expected price of good

1 must be strictly less than the critical value of the expected winner. Thus, the expected

price of good 1 must be strictly less than

v1(w1)− v2(w1) + I(w1)

2

However, by (R), the expected revenue is I(w1). Thus, the expected price of good 2 must

be strictly greater than
v2(w1)− v1(w1) + I(w1)

2

and therefore the difference between the expected price of good 2 and that of good 1 is

strictly greater than v2(w1)− v1(w1) as required.

Proof of Theorem 6: If the other bidder uses the equilibrium strategy B(t), let ∆(x) be

the probability that a bidder of type t who pretends to be type x wins good 2 and let P̃ (x)

be the expected payment made by such a bidder. The expected payoff Π(t, x) of such a bidder

equals the expected benefit minus the expected payment

Π(t, x) = v1(t)(1−∆(x)) + v2(t)(∆(x))− P̃ (x)

Let D′

i denote the partial derivative operator with respect to the ith variable. In equilibrium,

D′

2
Π(t, x) equals 0 when x = t so that

−(v1(t)− v2(t)∆
′(t) = P̃ ′(t) (3)

Since v1(t) = v2(t), (3) implies P̃ ′(t) = 0 for all t as required.

In order to prove the next Theorem, we need to develop further the expected payment

made by an individual of type t who pretends to be of type x. Let P ∗(x) denote the expected

price that an individual (who claims to be of type x) pays for good 1 and P∗(x) denote

the expected price that an individual (who claims to be of type x) pays for good 2. Thus,
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P̃ (t, x) = P ∗(x) + P∗(x). Let P (x, z) denote the price that an individual who claims to be

of type x pays for good 1 if the other individual claims to be of type z. It is also necessary

to define the circumstances under which an individual might win good 2. Recall that the de

facto valuation of good 2 of a bidder of type t is the minimum of t’s valuation for good 2 and

any income remaining to t from the auction of good 1. The individual with the higher de

facto valuation obtains good 2 at the lower de facto valuation. There are two ways in which

individual t may obtain good 2. Either individual t wins good 1 and has enough income

remaining to win good 2 as well; or, individual t loses good 1 and t’s valuation of good 2 is

higher than the remaining income of t’s opponent.

Let σ1(t, x) be the set of opponents who lose good 1. Of these, some may also lose good

2. Denote this latter set by σ12(t, x). Let σ2(t, x) denote the set of opponents who lose only

good 2. Thus, if s ∈ σ12(t, x) then individual t obtains good 1 at the price P (x, s) and

obtains good 2 at the price v2(s); if s ∈ σ1(t, x), then individual t obtains good 1 at the

price P (x, s) and may or may not obtain good 2; if instead s ∈ σ2(t, x) then individual t

loses good 1 and obtains good 2 at the price min{v2(s), I(s)− P (s, x)}. In equilibrium, the

expected payoff must be maximized when x = t. By assumption, no bidder wins both goods

in equilibrium so that, in equilibrium, σ12(t, t) = ∅ (which implies that σ1(t, t)+σ2(t, t) = 1)

and v2(s) > I(s) − P (s, t) for s ∈ σ2(t, t). If s(x) is an upper end point of an interval in

σ1(t, x) that varies with x then s(x) is a lower end point of an interval in σ2(t, x) so that the

derivative (evaluated at x = t) of
∫
σ1(t,x)

H ′(s)ds with respect to x equals the the negative of

the derivative (evaluated at x = t) of
∫
σ2(t,x)

H ′(s)ds with respect to x. Thus, in equilibrium,

P̃ (t) = P ∗(t) + P∗(t) =

∫
σ1(t,t)

P (t, s)H ′(s)ds+

∫
σ2(t,t)

(I(s)− P (s, t))H ′(s)ds

Proof of Theorem 7: In equilibrium, P (s, t) = P (t, t) for all endpoints s of intervals in

σ2(t, t) that depend on t. Since, in equilibrium,

P̃ ′(t) =

∫
σ1(t,t)

D′
1P (t, s)H ′(s)ds−

∫
σ2(t,t)

D′
2P (s, t)H ′(s)ds−2P (t, t)∆′(t)+

d

dt

∫
σ2(t,t)

I(s)H ′(s)ds

(3) implies that 2P (t, t)∆′(t)

= (v1(t)−v2(t))∆
′(t)+

d

dt

∫
σ2(t,t)

I(s)H ′(s)ds−

∫
σ2(t,t)

D2P (s, t)H ′(s)ds+

∫
σ1(t,t)

D1P (t, s)H ′(s)ds

(4)

So, since

P ∗′(x) =

∫
σ1(t,t)

D′
1P (t, s)H ′(s)ds− P (t, t)∆′(t)

23



Budget-Constrained Sequential Auctions with Incomplete Information

we can substitute for P (t, t)∆′(t) from (4) to obtain

P ∗′(x) =
−(v1(t)− v2(t))∆

′(t)− δ′(t) +
∫
σ2(t,t)

D2P (s, t)H ′(s)ds +
∫
σ1(t,t)

D1P (t, s)H ′(s)ds

2
(5)

The left-hand side of (5) is the expected price of good one and the right-hand side of (5)

depends on the price formation rule22. The result follows.

Proof of Theorem 8: Equation (4) implies that, for t ∈ S1∫
σ2(t,t)

D2P (s, t)H ′(s)ds−

∫
σ1(t,t)

D1P (t, s)H ′(s)ds+ 2P (t, t)
d

dt

∫
σ2(t,t)

H ′(s)ds (6)

= (v1(t)− v2(t))
d

dt

∫
σ2(t,t)

H ′(s)ds+
d

dt

∫
σ2(t,t)

I(s)H ′(s)ds

and for t ∈ S2∫
σ2(t,t)

D2P (s, t)H ′(s)ds−

∫
σ1(t,t)

D1P (t, s)H ′(s)ds+ 2P (t, t)
d

dt

∫
σ2(t,t)

H ′(s)ds (7)

= (v1(t)− v2(t))
d

dt

∫
σ2(t,t)

H ′(s)ds+
d

dt

∫
σ2(t,t)

I(s)H ′(s)ds

If instead of t varying in S2, we have t varying in S1 and x̂(t) varying in S2, we can

rewrite (7) for t ∈ S1, as∫
σ2(x̂(t),x̂(t))

D2P (s, x̂(t))H ′(s)ds−

∫
σ1(x̂(t),x̂(t))

D1P (x̂(t), s)H ′(s)ds (8)

+2P (x̂(t), x̂(t))
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds (9)

= (v1(x̂(t))− v2(x̂(t)))
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds +
d

dt |t=x̂(t)

∫
σ2(t,t)

I(s)H ′(s)ds

If we then multiply both side of (8) above by x̂′(t) we obtain that, for t ∈ S1,∫
σ2(x̂(t),x̂(t))

D2P (s, x̂(t))x̂′(t)H ′(s)ds−

∫
σ1(x̂(t),x̂(t))

D1P (x̂(t), s)x̂′(t)H ′(s)ds (10)

+2P (x̂(t), x̂(t))x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds

= (v1(x̂(t))− v2(x̂(t)))x̂
′(t)

d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds + x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

I(s)H ′(s)ds

22The analog of equation (5) in the standard one good auction is P ∗′(t) = v(t)H ′(t) which is independent of
the price formation rules.
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However, by definition of x̂(t), σ2(t, t) = σ2(x̂(t), x̂(t)), σ1(t, t) = σ1(x̂(t), x̂(t)), P (s, t) =

P (s, x̂(t)),D2P (s, t) = D2P (s, x̂(t))x̂′(t), P (t, s) = P (x̂(t), s),D1P (t, s) = D2P (x̂(t), s)x̂′(t),

P (t, t) = P (x̂(t), x̂(t)), and

d

dt

∫
σ2(t,t)

H ′(s)ds = x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds

d

dt

∫
σ2(t,t)

I(s)H ′(s)ds = x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

I(s)H ′(s)ds

so equation (10), for t ∈ S1, is equivalent to∫
σ2(t,t)

D2P (s, t)H ′(s)ds−

∫
σ1(t,t)

D1P (t, s)H ′(s)ds+ 2P (t, t)
d

dt

∫
σ2(t,t)

H ′(s)ds(11)

= (v1(x̂(t))− v2(x̂(t)))
d

dt

∫
σ2(t,t)

H ′(s)ds+
d

dt

∫
σ2(t,t)

I(s)H ′(s)ds

Thus, (6) and (11) must hold for t ∈ S1 which implies the result.

Proof of Theorem 9: If B is S-increasing on T then σ2(t, t) = (t, 1) and σ1(t, t) = (0, t)

so that, since D12P (t1, t2) = D21P (t1, t2) = 0, (4) implies that

D2P (t, t)(1−H(t))−D1P (t, t)H(t)− 2P (t, t)H ′(t) (12)

= −(v1(t)− v2(t) + I(t))H ′(t) for t ∈ T

In the case that one ofD1P (t, s) orD2P (s, t) equals zero, then, sinceD1P (t, t)+D2P (t, t) =

DP (t, t), (12) implies that either

DP (t, t)(1−H(t))− 2P (t, t)H ′(t) = −(v1(t)− v2(t) + I(t))H ′(t)

or

DP (t, t)H(t) + 2P (t, t)H ′(t) = (v1(t)− v2(t) + I(t))H ′(t)

so that either

P (t, t)(1−H(t))2 =

∫ t

1

(v1(s)− v2(s) + I(s))
d(1−H(s))2

2

implies

P (t, t) =
v1(t)− v2(t) + I(t)

2
−

∫ t

1
(1−H(s))2

2
(v′1(s)− v′2(s) + I ′(s))ds

(1−H(t))2

and

DP (t, t) =
2H ′(t)

∫ 1

t

(1−H(s))2

2
(v′1(s)− v′2(s) + I ′(s))ds

(1−H(t))3
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or

P (t, t)(H(t))2 =

∫ t

0

(v1(s)− v2(s) + I(s))
d((H(s))2)

2
ds

implies

P (t, t) =
(v1(t)− v2(t) + I(t))

2
−

∫ t

0
(H(s))2

2
(v′1(s)− v′2(s) + I ′(s))ds

(H(t))2

and

DP (t, t) =

∫ t

0
(H(s))2

2
(v′1(s)− v′2(s) + I ′(s))ds

(H(t))3

Thus, when one ofD1P (t, s) orD2P (s, t) equals zero, the sign ofDP equals that of v′1−v′2+I ′.

However, since P (t, t) is ORD-equivalent to B(t), and since B is S-increasing on T , this

implies that v1 − v2 + I is increasing on T .

In the case that D2P (t, s) = γD1P (s, t) for γ > 0, D1P (t, t)+ D2P (t, t) = DP (t, t), (12)

implies that

DP (t, t)

(
γ

1 + γ
−H(t)

)
− 2P (t, t)H ′(t) = −(v1(t)− v2(t) + I(t))H ′(t)

so that

P (t, t)

(
γ

1 + γ
−H(t)

)2

=

∫ t

H−1( γ

1+γ )
(v1(s)− v2(s) + I(s))

d
(

γ

1+γ
−H(t)

)2

2

implies

P (t, t) = (v1(t)− v2(t) + I(t))−

∫ t

H−1( γ

1+γ )
(1−H(s))2

2
(v′1(s)− v′2(s) + I ′(s))ds(

γ

1+γ
−H(t)

)2

which implies

DP (t, t) = −

∫ t

H−1( γ

1+γ )
(1−H(s))2

2
(v′1(s)− v′2(s) + I ′(s))ds(

γ

1+γ
−H(t)

)3

so that again to v1 − v2 + I is increasing on T . Analogous arguments show that the results

remain when B is S-decreasing on T .

The following lemmas are used to prove Theorems 10, 11, and 12.
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Lemma 13 Let W : [0, 1] −→ [0, 1] be onto and continuous. Let J be the union of intervals
over which the cover of W is strictly monotonic on J. Let W−1(0) = c, W−1(1) = d where
c < d or d < c are the endpoints of J. Let

F (t) = W (t) lnW (t)−
(2W (t)− 1)2

4

G(t) = 2(1−W (t))2 ln(1−W (t))−
(2W (t)− 1)2

2

Then

F (t) ≤ −
1

4
, G(t) ≥ −

1

2

If L is ORD-equivalent to W , then∫
(c,d)∩J

L′(t)F (t)dt ≤ −
1

4

∫
(c,d)∩J

L′(t)dt∫
(c,d)∩J

L′(t)G(t)dt ≥ −
1

2

∫
(c,d)∩J

L′(t)dt

If L is ORDR-equivalent to W and W ′ > 0, then∫
(c,d)∩J

L′(t)F (t)dt ≥ −
1

4

∫
(c,d)∩J

L′(t)dt

Proof. We first note that F (c) = −1/4 = F (d), G(c) = −1/2 = G(d).

F ′(t) = W ′(t) (lnW (t) + 2− 2W (t)) = W ′(t)J(t)

G′(t) = 2W ′(t) (−2(1−W (t) ln(1−W (t))−W (t)) = 2W ′(t)K(t)

where

J ′(t) = W ′(t)

(
1

W (t)
− 2

)
K ′(t) = W ′(t) (2 ln(1−W (t)) + 1)

Since W ′ > 0 if and only if c < d, as t increases along (c, d)∩J , F (t) decreases then increases

while G(t) increases then decreases which proves the first pair of results.

Let L be ORD-equivalent to W . In this case, W ′ > 0 implies L′ > 0, c < d which implies∫
(c,d)∩J

L′(t)F (t)dt ≤ −
1

4

∫
(c,d)∩J

L′(t)dt∫
(c,d)∩J

L′(t)G(t)dt ≥ −
1

2

∫
(c,d)∩J

L′(t)dt
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and W ′ < 0 implies L′ < 0, d < c which implies∫
(c,d)∩J

L′(t)F (t)dt = −

∫
(d,c)∩J

L′(t)F (t)dt ≤
1

4

∫
(d,c)∩J

L′(t)dt = −
1

4

∫
(c,d)∩J

L′(t)dt∫
(c,d)∩J

L′(t)G(t)dt = −

∫
(d,c)∩J

L′(t)G(t)dt ≥
1

2

∫
(d,c)∩J

L′(t)dt = −
1

2

∫
(c,d)∩J

L′(t)dt

Let L be ORDR-equivalent to W and W ′ > 0. c < d and L′ < 0 implies the last result.

Given any bidding function B and its associated probability ∇(t) = 1−∆(t), there is a

monotonic cover of B. Denote by J the union of intervals over which the cover is strictly

monotonic and let c = ∇−1(0), d = ∇−1(1) denote the end-points of J . Either the cover

is strictly increasing over J and c < d or the cover is strictly decreasing over J and d < c.

Even though there may be gaps in J , by nature of a cover, the values of the bidding function

form a continuous range as t ranges over J . Below, the subscripts indicate the price rule.

Lemma 14 If the equilibrium bidding function under 1st price rules is ORD-equivalent to
that under 2nd price rules, then

B1(t) = B2(t)−

∫
(c,t)∩J

B′

2(t)∇(s)ds

(∇(t))2

Proof. Since B1 and B2 are ORD-equivalent there are ORD-equivalent monotonic covers

of B1 and B2 with a common associated J and ∇. Since ∇(t) = 1−∆(t), (4) implies

B ′

2(t)(1−∇(t))− 2B2(t)∇
′(t) = −(v1(t)− v2(t))∇

′(t) + δ′(t)

B ′

1(t)∇(t) + 2B1(t)∇
′(t) = (v1(t)− v2(t))∇

′(t)− δ′(t)

so that

(B′

1(t)−B′

2(t))∇(t) + 2 (B1(t)−B2(t))∇
′(t) = −B′

2(t)

which implies that, for t ∈ J ,

B1(t) = B2(t)−

∫
(c,t)∩J

B′

2(t)∇(s)ds

(∇(t))2

The next two Lemmas restrict to 1st (denoted by a = 0) and 2nd price rules (denoted by

a = 1). Let the subscripts on B denote the order of sale.

Lemma 15 If va − vβ + I, vβ − vα + I and I are each ORD-equivalent to the equilibrium
bidding function under order α, β and under order β, α then, for t ∈ J

Bα,β(t) +Bβ,α(t) = I(t)− a

∫
(d,t)∩J

(1−∇(s))2I ′(s)ds

(1−∇(t))2
− (1− a)

∫
(c,t)∩J

∇2(s)I ′(s)ds

∇2(t)
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Proof. Since Bα,β and Bβ.α are ORD-equivalent, the associated J and ∆ are common.

Since ∇(t) = 1−∆(t), (4) and the fact that I is ORD-equivalent to both bidding functions

imply the next three equations

B′

α,β(t) (a(1−∇(t))− (1− a)∇(t))− 2Bα,β(t)∇
′(t) = −(vα(t)− vβ(t) + I(t))∇′(t)

B′

β,α(t) (a(1−∇(t))− (1− a)∇(t))− 2Bβ,α(t)∇
′(t) = −(vβ(t)− vα(t) + I(t))∇′(t)(

B′

α,β(t) +B′

β,α(t)
)
(a(1−∇(t))− (1− a)∇(t))−2 (Bα,β(t) +Bβ,α(t))∇

′(t) = −2I(t)∇′(t)

Lemma 16 If va − vβ + I is ORDR-equivalent to vβ − vα + I and each bidding function is
ORD-equivalent to its associated critical value v(t) then, if I(t) = I

Bα,β(t) +Bβ,α(t) = I +

∫
(c,t)∩J

(
aB′

α,β(s) + (1− a)B′

β,α(s)
)
∇α,β(s)ds

∇2
α,β(t)

for t ∈ J

Proof. Since ∇(t) = 1−∆(t), (4) implies that

B′

α,β(t) (a(1−∇α,β(t))− (1− a)∇α,β(t))− 2Bα,β(t)∇
′

α,β(t) = −(vα(t)− vβ(t) + I)∇′

α,β(t)

B′

β,α(t) (a(1−∇β,α(t))− (1− a)∇β,α(t))− 2Bβ,α(t)∇
′

β,α(t) = −(vβ(t)− vα(t) + I)∇′

β,α(t)

By assumption, ∇α,β(t) +∇β,α(t) = 1 so that after adding the two equations, we obtain(
a(B′

α,β(t) +B′

β,α(t)) + (1− a)(B′

α,β(t) +B′

β,α(t))
)
∇α,β(t) + 2(Bα,β(t) +Bβ,α(t))∇

′

α,β(t)

= 2I∇′

α,β(t) + aB′

α,β(t) + (1− a)B′

β,α(t)

which implies the result where ∇α,β(c) = 0, ∇α,β(d) = 1, c, d ∈ J where ∇α,β is ORD-

equivalent to Bα,β on J which is ORDR-equivalent to Bβ,α on J .

Proof of Theorem 10: By assumption, there is a common ∇ and J . Since the expected

price of good 1 under 2nd price rules is

exp p21 = 2

∫
(c,d)∩J

B2(t)(1−∇(t)∇′(t)dt

and the expected price of good 1 under 1st price rules is

exp p11 = 2

∫
(c,d)∩J

B1(t)∇(t)∇′(t)dt

the expected difference in the price of good 1 under 1st and 2nd price rules is

exp p11 − exp p21

= 2

∫
(c,d)∩J

B1(t)∇(t)∇′(t)dt− 2

∫
(c,d)∩J

B2(t)(1−∇(t)∇′(t)dt
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After using Lemma 14 and grouping terms we obtain that exp p11 − exp p21 equals∫
(c,d)∩J

B2(t)d
(2∇(t)− 1)2

2
− 2

∫
(c,d)∩J

∫
(c,t)∩J

B ′

2(s)∇(s)dsd ln(∇(t))

After integrating by parts (noting that ∇(c) = 0, ∇(d) = 1), we obtain exp p11−exp p21 equals

2

(
B2(d)

4
−

B2(c)

4

)
+ 2

∫
(c,d)∩J

B′

2(t)

(
∇(t) ln∇(t)−

(2∇(t)− 1)2

4

)
dt

By Lemma 13 using ∇(t) = W (t) is ORD-equivalent to L = B2 we obtain

exp p11 − exp p21 ≤ 2

(
B2(d)

4
−

B2(c)

4

)
−

2

4

∫
(c,d)∩J

B′

2(t)dt = 0

Proof of Theorem 11: If vα−vβ+I, vβ−vα+I, I, are ORD-equivalent to the equilibrium

bidding functions Bα,β and Bβ,α then the expected income of the bidder with the higher bid

is independent of the sequence of sale so that the expected revenue is independent of the se-

quence of sale. Since the sum of the expected prices of the goods equals expmax{I(t1), I(t2)},

the difference expβ,αα − exp pα,βα in the expected price of good α under sequence β, α and the

expected price under sequence α, β is

2

∫
(c,d)∩J

I(t)∇(t)∇′(t)dt− 2a

∫
(c,d)∩J

(Bβ,α(t) +Bα,β(t))∇
′(t) (1−∇(t)) dt

−2(1− a)

∫
(c,d)∩J

(Bβ,α(t) +Bα,β(t))∇
′(t)∇(t)dt

After using Lemma 15 and grouping terms, we obtain that expβ,αα − exp pα,βα equals

a

∫
(c,d)∩J

I(t)d

(
(2∇(t)− 1)2

2

)
− 2a

∫
(c,d)∩J

(∫
(d,t)∩J

(1−∇(s))2I ′(s)ds

)
d (ln (1−∇(t)))

+2(1− a)

∫
(c,d)∩J

∫
(c,t)∩J

∇2(s)I ′(s)dsd (ln∇(t))

After integrating by parts (noting that∇(c) = 0, ∇(d) = 1), we obtain that expβ,αα − exp pα,βα

equals

a
I(d)

2
− a

I(c)

2
+ a

∫
(c,d)∩J

I ′(t)

(
2 (ln (1−∇(t))) (1−∇(t))2 −

(2∇(t)− 1)2

2

)
dt

−2(1− a)

∫
(c,d)∩J

ln∇(t)∇2(t)I ′(t)dt
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By Lemma 13 using ∇ = W, I = L, we obtain that expβ,αα − exp pα,βα ≥

a
I(d)

2
− a

I(c)

2
−

a

2

∫
(c,d)∩J

I ′(t)ds− 2(1− a)

∫
(c,d)∩J

ln∇(t)∇2(t)I ′(t)dt

= −2(1− a)

∫
(c,d)∩J

ln∇(t)∇2(t)I ′(t)dt ≥ 0

Proof of Theorem 12: WLOG, I focus on α and assume Ba,β strictly increases on J .

The expected price of good α under order β, α minus that under order α, β is

exp pα
β,α − exp pα,βα

= I − 2a

(∫
(d,c)∩J

Bβ,α(t)(1−∇β,α(t))∇
′

β,α(t)dt+

∫
(c,d)∩J

Bα,β(t)(1−∇α,β(t))∇
′

α,β(t)dt

)
−2(1− a)

(∫
(d,c)∩J

Bβ,α(t)∇β,α(t)∇
′

β,α(t)dt +

∫
(c,d)∩J

Bα,β(t)∇α,β(t)∇
′

α,β(t)dt

)
After using Lemma 16, ∇α,β(t) +∇β,α(t) = 1, I(t) = I and grouping terms, we obtain that

exp pα
β,α − exp pα,βα equals

2 a

(∫
(c,d)∩J

Bα,β(t)d

(
(2∇α,β(t)− 1)2

4

)
−

∫
(c,d)∩J

∫
(c,t)∩J

B′

α,β(s)∇α,β(s)dsd ln∇α,β(t))

)
+2(1− a)

(∫
(c,d)∩J

Bβ,α(t)d

(
(2∇α,β(t)− 1)2

4

)
−

∫
(c,d)∩J

∫
(c,t)∩J

B′

β,α(s)∇α,β(s)dsd ln∇α,β(t))

)
After integrating by parts (noting that ∇α,β(c) = 0, ∇α,β(d) = 1) we obtain that exp pα

β,α−

exp pα,βα equals

2a

(
Bα,β(d)

4
−

Bα,β(c)

4
+

∫
(c,d)∩J

B′

α,β(t)

(
ln∇α,β(t)∇α,β(t)−

(2∇α,β(t)− 1)2

4

)
dt

)
+2(1− a)

(
Bβ,α(d)

4
−

Bβ,α(c)

4
+

∫
(c,d)∩J

B′

β,α(t)

(
ln∇α,β(t)∇α,β(t)−

(2∇α,β(t)− 1)2

4

)
dt

)
By Lemma 13, since Bα,β is ORD-equivalent to ∇α,β and Bβ,α is ORDR-equivalent to ∇α,β,

exp pα
β,α − exp pα,β ≤ 2

(
Bα,β(d)

4
−

Bα,β(c)

4
−

1

4

∫
(c,d)∩J

B′

α,β(t)dt

)
= 0

under 2nd price rules (a = 1) and

exp pα
β,α − exp pα,β ≥ 2

(
Bβ,α(d)

4
−

Bβ,α(c)

4
−

1

4

∫
(c,d)∩J

B′

β,α(t)dt

)
= 0

under 1st price rules (a = 0) which proves the result.
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