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1 Introduction

In many important examples in multi-contracting mechanism design, several

principals (attempt to) contract with a common agent to influence her choice.

Such a common agency model has been the focus of much of the recent

research in incentive theory.1

In the common agency model, principals offer a menu of contracts to the

agent, who chooses one contract from the ones being offered. Although one

could imagine more general communication channels between the principals

and the agent, Martimort and Stole (2002), Page and Monteiro (2003), Peters

(2001) and Peters (2003) have shown that such a procedure of offering menus

of contracts is enough to characterize the set of equilibrium allocations. In

fact, as Martimort (2006) points out, “what matters per se is not the kind

of communication that a principal uses with his agent but the set of options

that this principal makes available to the agent.” This result, known as

the delegation principle, implies that the common agency problem can be

analyzed through a menu game.

However, in order for the delegation principle to be meaningful, an equi-

librium must exist. In this paper, we present a solution to this problem by

establishing a general existence theorem for menu games.

In our approach, a menu game is modeled through a game with incom-

plete information. In its extensive form, Nature moves first, choosing the

agent’s type. Following this choice, the first principal chooses a menu of con-

tracts (defined as a closed subset of the contract space) without observing

the agent’s type. Then, the second principal offers his menu of contracts, ob-

1See Martimort (2006) for a survey.
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serving neither the agent’s type nor the menu offered by the first principal.

After all principals have made their offers, the agent chooses one contract (or

one contract of each principal), knowing her type and the menus offered by

the principals.

Since a menu game is a game with incomplete information, we focus on

sequential equilibria. As we allow for a Polish space of types and a com-

pact metric space of contracts, its extensive form will, typically, be infinite.

Despite this technical difficulty, it is easy to define the notion of sequential

equilibrium of a menu game. In fact, each principal has a unique informa-

tion set and all of the agent’s information sets are singletons. Therefore, an

assessment, i.e. a pair of beliefs and strategies, is consistent if beliefs are de-

fined using the strategy and Bayes’ rule. Moreover, a consistent assessment

is sequentially rational if: (1) the agent optimizes at every possible type and

vector of menus and (2) each principal optimizes given the strategy of the

other principals and the strategy of the agent.2

We can rephrase the above description of sequential equilibria in menu

games in the following way. Note that a strategy for the agent induces a

normal-form game between the principals. In fact, this is a game where

each principal has the set of all possible menus as his own pure strategy set

and his payoff is determined by the choice of all principals together with

the agent’s strategy. Thus, a sequential equilibrium consists of the beliefs

described above, an optimal strategy for the agent and a Nash equilibrium

for the normal-form game induced by such strategy.

2Thus, the set of sequential equilibrium strategies coincides with the set of perfect

Bayesian equilibria.
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The above description of a sequential equilibrium is useful because we can

regard the family of normal-form games induced by the agent’s strategies as

a game with an endogenous sharing rule as in Simon and Zame (1990) and,

therefore, use their existence theorem to establish the existence of sequential

equilibria in menu games. In fact, a vector of menus defines a subset of

payoffs for the principals, each of which corresponds to a particular strategy

of the agent. This clearly defines a correspondence from principals’ strategies

into payoffs as required for a game with an endogenous sharing rule.

In order to use Simon and Zame’s theorem in our setting, we need to

generalize it along two dimensions. The first is relatively straightforward and

amounts to allowing the payoff correspondence to depend on the agent’s type.

Using a similar approach as in Simon and Zame (1990), we show that any

such generalized game with endogenous sharing rules has a solution provided

that, on top of their assumptions, the payoff correspondence is measurable.

A second generalization is needed in order to obtain a sequential equilib-

rium from a solution. A solution for a (generalized) game with an endogenous

sharing rule is a strategy for the principals and a measurable selection from

the payoff correspondence such that the strategy is a Nash equilibrium of the

normal-form game with that selection as its payoff function. Hence, an an-

swer to our problem can be obtained by addressing the following question: is

there a measurable selection from the agent’s optimal choice correspondence

such that, when composed with the principals’ payoff function, equals the

selection from the payoff correspondence which is part of a solution? Our

second generalization addresses this question, showing that when the pay-

off correspondence is the composition of players’ payoff functions with some
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correspondence (interpreted as the optimal choice correspondence of players

whose behavior is not explicitly modeled), then every measurable selection

from the payoff correspondence can be obtained as the composition of play-

ers’ payoff function and a measurable selection of this other correspondence.

Combining our two generalizations, we show that every menu game satisfying

enough continuity properties has a sequential equilibrium.

The existence of equilibrium in menu games has also been addressed by

Page and Monteiro (2003) and Monteiro and Page (2005). The main differ-

ence between our approach and theirs is that they focus on a normal-form

game played by the principals. In Monteiro and Page (2005), they fixed ex-

ogenously an optimal strategy for the agent, and then proceed to address

the existence of a Nash equilibrium in the resulting normal-form game. A

similar approach is used in Page and Monteiro (2003), although there the

payoff function used by the principals is defined differently and cannot, in

general, be induced by an optimal strategy of the agent. Due to those differ-

ences, we were able to find examples of equilibria in their sense there are not

part of any sequential equilibrium, and also, examples of sequential equilib-

rium strategies for the principals that are not equilibria in their sense (see

Carmona and Fajardo (2006)).

Nevertheless, in menu games with exclusivity (i.e., in which the agent

chooses only one principal) and no fixed costs (i.e., a principal receives a

zero payoff if not chosen by the agent), we show in Carmona and Fajardo

(2006) that every equilibrium in the sense of Monteiro and Page (2005) is

part of a sequential equilibrium. Thus, for this class of games, their main

result provides a solution to the existence question that has the advantage of
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allowing for principals’ payoff functions that are only upper semicontinuous

and integrably bounded and not continuous and bounded, as required by our

existence result. In contrast, our existence result can be applied in general

menu games, requiring neither the exclusivity and no-fixed-cost assumptions

nor the particular payoff functions for both the agent and the principals used

by Monteiro and Page (2005).

The paper is organized as follows. In Section 2 we present the model.

Then, we present the definition and characterization of sequential equilib-

ria in Section 3. We establish our existence result in Section 4. Section 5

concludes.

2 Menu Games

Consider a game with m principals who can offer contracts to a single agent.

The set of contracts that principal i can offer is denoted by Ki and we assume

that Ki is a compact metric space. Each principal offers a menu of contracts

to the agent. A menu of contracts for principal i ∈ I = {1, . . . ,m} is just a

nonempty closed subset Ci of Ki.

In Martimort and Stole (2002) for example, the set of contracts that a

principal can offer equals the set of probability measures over the allocations

controlled by him. Under the assumption that the set of these allocations is

finite, it follows that each principal’s contract space is compact. They allow

each principal i to offer a mechanism to the agent, consisting of a message

space Mi and an outcome function gi : Mi → Ki. If Mi is compact and gi

is continuous, then the menu gi(Mi) induced by (Mi, gi) is a closed subset
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of Ki. Thus, in this setting, assuming that menus are closed subsets of Ki

amounts to assuming that principals use mechanisms with compact message

spaces and continuous outcome functions.

Let Pi be the collection of all nonempty, closed subsets of Ki. It is well

known that Pi is a compact metric space when endowed with the Hausdorff

metric. Let P = P1 × · · · × Pm and C = (C1, . . . , Cm) denote a profile of

menus.

Let K denote the pure action space of the agent. We assume that K is

a compact metric space and we let k denote a generic element of K. There

are two particular cases for K in which we are interested. One, considered

in Page and Monteiro (2003), is KPM = {(i, f) ∈ I × ∪m
i=1Ki : f ∈ Ki},

where I = {1, . . . , m}. Here, the agent chooses the principal with whom she

wishes to contract and chooses one contract from this principal. Implicitly,

the assumption is that contracts are exclusive.

A second particular case, considered in Martimort and Stole (2002), is

KMS = K1 × · · · ×Km. In this case, contracts are not exclusive and so the

agent can choose a contract from each principal.

These two cases can be combined in a hybrid model in which a subset

Ie ⊆ I of principals only allows for exclusive contracts. In this case, let

KH = {(i, f) ∈ Ie × ∪i∈IeKi : f ∈ Ki} ×
∏

i∈Ic
e
Ki.

3 It is clear that KPM ,

KMS and KH are compact.

The agent’s payoff depends on her type, which is described by an element

of a Polish space T (i.e., T is a complete separable metric space). We endow

3In all the above models, we can let some f ∈ Ki denote no contracting, following Page

and Monteiro (2003).
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T with its Borel σ – algebra and let µ describe the probability measure on

the set of types.4 The agent’s utility function is v : T × K → R and we

assume that v is a Carathéodory function.5

The agent’s problem is as follows. Knowing t ∈ T and given a menu

profile C offered by the principals, she can choose a mixed strategy over

K. A mixed strategy is a Borel probability measure on K and we let ∆(K)

denote the space of all such probability measures. The set of available mixed

strategies is described by a nonempty compact convex set ϕ(t, C) ⊆ ∆(K).

Furthermore, we assume that the correspondence ϕ : T × P ⇒ ∆(K) is

continuous.

The idea behind the constraint correspondence ϕ is that the agent can

choose only among the contracts being offered, i.e., she can only choose a

contract fi ∈ Ci from principal i. Therefore, we have three possible specifi-

cations for ϕ corresponding to the above particular cases for K:

ϕPM(t, C) = {λ ∈ ∆(KPM) : λ(∪m
i=1({i} × Ci)) = 1}

in the exclusivity case,

ϕMS(t, C) = {λ ∈ ∆(KMS) : λ(C) = 1}

in the non-exclusivity case and

ϕH(t, C) = {λ ∈ ∆(KH) : λ(∪i∈Ie({i} × Ci)×
∏
i∈Ic

e

Ci) = 1}

4Throughout the paper, we endow all metric spaces we consider with their Borel σ –

algebra. Therefore, we abbreviate Borel-measurable by measurable.
5If (S, Σ) is a measurable space, X and Y are topological spaces and f : S ×X → Y is

a function, then f is a Carathéodory function if it is measurable in s and continuous in x.

8



in the hybrid case. Lemma 7 in Appendix shows that ϕPM , ϕMP and ϕH are

continuous with nonempty, convex and compact values.

Hence, given t ∈ T and C ∈ P , the agent’s problem is

max
λ∈ϕ(t,C)

∫

K
v(t, k)dλ(k).

Let Λ : T × P ⇒ ∆(K) denote the correspondence of optimal choices. A

strategy for the agent is then a measurable function σ : T ×P → ∆(K), and,

clearly, σ is an optimal strategy if and only if it is a selection of Λ.

We now turn to the principals’ problem. Principals choose simultaneously.

For all i ∈ I, principal i’s choice set is ∆(Pi), the set of mixed strategies on

Pi and his profit function is denoted by πi : T ×K→ R. We assume that πi

is a bounded Carathéodory function.6

If the principals offer a menu C = (C1, . . . , Cm) ∈ P and the agent uses

a strategy σ : T × P → ∆(K), then principal i’s payoff is

Fi(t, C; σ) =

∫

K
πi(t, k)dσ(k|t, C).

Since σ is measurable, then so is the real-valued function Fi on T×P . Finally,

if principals choose strategies α = (α1, . . . , αm) and the agent chooses a

strategy σ,

Fi(α; σ) =

∫

P

∫

T

Fi(t, C; σ)dµ(t)dα(C) (1)

denotes principal i’s payoff.

A menu game is denoted by G and we use GPM , GMS and GH to denote

particular menu games for the corresponding choices of K and ϕ mentioned

6Note that we are strengthening the assumptions made by Page and Monteiro (2003)

since they have only assumed that t 7→ πi(t, k) is measurable, k 7→ πi(t, k) is upper

semicontinuous and that πi is µ – integrably bounded.
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above. We say that a menu game G is continuous if it satisfies all the above

assumptions.

3 Sequential Equilibrium

We can think of a menu game as being played in the following way. First,

nature chooses a type for the agent and then, without knowing this, principals

simultaneously choose a menu. Finally, the agent knowing her type and the

menu choices of every principal, chooses an element of K.

We can use an extensive form to describe a menu game G. Each initial

note corresponds to a choice of a type for the agent by nature, and so, we

index those nodes by t ∈ T . Principal 1 is the first to choose. Since he does

not observe the type of the agent, principal 1’s information set H1 consists of

the set of initial nodes; thus, slightly abusing notation, we write H1 = T . At

H1, principal 1 chooses a menu C1 ∈ P1, which is not observed by principal

2. Therefore, principal 2’s information set H2 is equal to {(t, C1) : t ∈
T and C1 ∈ P1} = T×P1. Proceeding in this way, let Hi = T×P1×· · ·×Pi−1.

Finally, the agent observes her type and the choice of each principal and so

the family of her (singleton) information sets is {(t, C) : t ∈ T and C ∈ P}.
She chooses an element k ∈ K and a terminal node is reached. Payoffs are

then determined using the agent’s and principals’ payoff functions.

Since we represent a menu game by a game with incomplete information,

it is natural to use sequential equilibrium as the solution concept (see Kreps

and Wilson (1982)). Recall that an assessment is a pair of beliefs ν and

strategies (α, σ) and that a sequential equilibrium is a consistent sequen-
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tially rational assessment. Since there are (possibly) an infinite number of

information sets, we must explicitly require that strategies — functions from

information sets into actions — be measurable.

Consistent assessments (ν, (α, σ)) are easy to characterize in a menu game.

First, since each of the agent’s information sets is a singleton, her belief there

must assign probability one to that single point. Second, if νi denotes the

belief in principal i’s information set Hi, and B is a measurable subset of Hi,

then νi(B) = µ× α1 × · · · × αi−1(B). This follows because if the probability

distribution induced by (α, σ) on the nodes of the extensive form is denoted

by Pα,σ, then Pα,σ(Hi) = 1 and so

νi(B) = Pα,σ(B|Hi) = Pα,σ(B) = µ× α1 × · · · × αi−1(B). (2)

Using these beliefs, sequential equilibria of menu games are characterized

in the following remark.

Remark 1 An assessment (ν, (α, σ)) is a sequential equilibrium of a menu

game G if and only if

1. νi = µ× α1 × · · · × αi−1 for all i ∈ I,

2. σ is a measurable selection of Λ and

3. Fi(α; σ) ≥ Fi(ᾱi, α−i; σ) for all i ∈ I and ᾱi ∈ ∆(Pi).

Thus, in a sequential equilibrium of G, beliefs are determined by Bayes’

rule, the agent optimizes for all possible types and menus offered, and each

principal optimizes given the strategy of the other principals and the strategy

of the agent.
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4 Existence of Sequential Equilibrium

Our main result is the following existence theorem.

Theorem 1 A sequential equilibrium exists for all continuous games G.

Since the frameworks of Page and Monteiro (2003) and Martimort and

Stole (2002) are particular cases of ours, we have the following corollary.

Corollary 1 All continuous games GH , GPM and GMS have a sequential

equilibrium.

In order to establish Theorem 1 we first generalize the theorem in Simon

and Zame (1990) by allowing the payoff correspondence to depend on the

agent’s type. We then use this result to prove the existence of a sequential

equilibrium in any continuous menu game. This last argument uses Lemma

2, below, which shows how to obtain a sequential equilibrium from a solution

of a (generalized) game with an endogenous sharing rule.

4.1 A Generalization of Simon and Zame’s Theorem

A generalized game with an endogenous sharing rule is G = (P1, . . . , Pm, T, Q)

satisfying Pi is a compact metric space for all i, T is a Polish space and

Q : T × P ⇒ Rm is measurable, bounded, has nonempty, convex and com-

pact values and is upper hemi-continuous in C for all t ∈ T (i.e., C 7→ Q(t, C)

is upper hemi-continuous for all t ∈ T ).

A solution for G is a pair (q, α) such that q is a measurable selection of

Q, αi ∈ ∆(Pi) and
∫

P

∫

T

qi(t, C)dµ(t)dα(C) ≥
∫

P

∫

T

qi(t, C)dµ(t)d(βi × α−i)(C)
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for all i and all βi ∈ ∆(Pi).

Theorem 2 A solution exists for all generalized games with an endogenous

sharing rule.

The proof of Theorem 2 follows closely the one in Simon and Zame (1990)

and is presented in Appendix A.1.

4.2 Proof of Theorem 1

The proof of Theorem 1 proceeds as follows: first, we define a generalized

game with an endogenous sharing rule, essentially, defining the payoff corre-

spondence by composing principals’ payoff functions with the optimal choice

correspondence of the agent. We then use Theorem 2 to obtain a solution to

that generalized game with an endogenous sharing rule. Then, we use Lemma

2 to show that the measurable selection from the payoff correspondence can

be written as the composition between the principals’ payoff function and a

measurable selection from the agent’s optimal choice correspondence (i.e., an

optimal strategy for the agent). Finally, we show that this strategy together

with the principals’ strategies that are part of the solution for the generalized

game with an endogenous sharing rule form a sequential equilibrium strategy.

Let h : T × P ×∆(K) → Rm be defined by

h(t, C, λ) =

∫

K
π(t, k)dλ(k). (3)

Note that if σ : T ×P → ∆(K) is a strategy for the agent, then F (t, C; σ) =

h(t, C, σ(t, C)) for all t ∈ T and C ∈ P . Also, note that h is independent of
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C, λ 7→ h(t, C, λ) is continuous and (t, C) 7→ h(t, C, λ) is measurable. Hence,

h is a Carathéodory function. Define Q : T × P ⇒ Rm by

Q(t, C) = {h(t, C, λ) : λ ∈ Λ(t, C)}. (4)

Lemma 1 The correspondence Λ is measurable and has compact values. The

correspondence Q is measurable, bounded, upper hemi-continuous in C for all

t ∈ T and has nonempty, convex and compact values.

It follows by Lemma 1 that G = (P1, . . . , Pm, T, Q) is a generalized game

with an endogenous sharing rule. Hence, by Theorem 2, there exists a solu-

tion (q, α) for G.

In order to obtain a sequential equilibrium from the solution (q, α), we

use the following lemma.

Lemma 2 Let S be a measurable space, X be a compact metric space, g :

S × X → Rm a Carathéodory function and Θ : S ⇒ X a compact valued,

measurable correspondence.

If Q : S ⇒ Rm is defined by

Q(s) = {g(s, x) : x ∈ Θ(s)}

for all s ∈ S and q is a measurable selection of Q, then there exists a mea-

surable selection α of Θ such that q(s) = g(α(s)) for all s ∈ S.

Since T × P is a measurable space, ∆(K) is a compact metric space

and Λ is compact valued and measurable, then by Lemma 2, there exists

a measurable selection σ from Λ such that q(t, C) = h(t, C, σ(t, C)) for all
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t ∈ T and C ∈ P . Hence,

Fi(α; σ) =

∫

P

∫

T

hi(t, C, σ(t, C))dµ(t)dα(C) =
∫

P

∫

T

qi(t, C)dµ(t)dα(C) ≥
∫

P

∫

T

qi(t, C)dµ(t)d(βi × α−i)(C) =
∫

P

∫

T

hi(t, C, σ(t, C))dµ(t)d(βi × α−i)(C) = Fi(βi, α−i; σ)

(5)

for all i and all βi ∈ ∆(Pi). It then follows that, if ν is as in Remark 1, then

(ν, (α, σ)) is a sequential equilibrium of G.

5 Conclusions

We have shown that a sequential equilibrium exists in all continuous menu

games. Compared with the results of Page and Monteiro (2003) and Monteiro

and Page (2005), our existence theorem has the advantage of dispensing with

the exclusivity and the no-fixed-cost assumptions made in those papers.

Our approach also has the advantage of being simpler than the one used

by Monteiro and Page (2005). In fact, they choose an optimal strategy

for the agent and then proceed by studying the challenging problem of the

existence of a Nash equilibrium for the resulting normal-form game played by

the principals. In contrast, we proceed by determining the agent’s strategy

endogenously, which, as Simon and Zame (1990) have pointed out, simplifies

the existence problem considerably.

Our approach relies heavily on the ideas of Simon and Zame (1990). In

fact, the proof of our existence result is straightforward once we extend their

theorem, first, to the case in which the principals’ payoff correspondence

depends on the agent’s type and, second, to the case where it equals the
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composition of the agent’s optimal choice correspondence and principals’

payoff functions. This second result allows us to obtain an equilibrium in the

usual sense from a solution in the sense of Simon and Zame (1990).

We hope that these two results prove to be useful in analyzing similar

problems, for instance, the principal-agent relationship with an informed

principal of Maskin and Tirole (1990) and its generalization to a common

agency problem considered in Martimort and Moreira (2006).

A Appendix

In the appendix, we prove Theorem 2, and Lemmas 1 and 2. Also, we prove

that the correspondences ϕPM , ϕMS and ϕH are continuous with nonempty,

convex, compact values.

A.1 Proof of Theorem 2

Our proof of Theorem 2 follows the one in Simon and Zame (1990). Indeed,

we start by modifying their Lemma 2 and then proceed by adapting the six

steps of their proof to our setting.

Both their Lemma 2 and our version of it applies to vector-valued mea-

sures defined as follows. If S is a Polish space, q is a bounded, measur-

able function from S into Rm and ψ is a probability measure on S, define

qψ ∈ ∆(S) by

qψ(B) =

∫

B

qdψ (6)

for all measurable subsets B of S. The following two lemmas consider the

special case where S = T × P and ψ = µ × α for some α ∈ ∆(P ). They
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establish some properties of q(µ× α) that are useful in our version of Simon

and Zame’s Lemma 2.

Lemma 3 If α ∈ ∆(P ) and q : T × P → Rm is bounded and measurable,

then

q(µ× α) = µ× qα.

Proof. Let A and B be measurable subsets of T and P , respectively.

Then,

q(µ× α)(A×B) =

∫

A

(∫

B

qdα

)
dµ

=

∫

A

qα(B)dµ

= µ(A)qα(B).

Hence, the result follows from Hildenbrand (1974, Theorem 24, p. 47).

Let q : T × P → Rm be bounded and measurable and define q̂ : P → Rm

by

q̂(C) =

∫

T

q(t, C)dµ(t). (7)

If X and Y are metric spaces and ν is a measure on X × Y , νY denotes the

marginal distribution of ν on Y .

Lemma 4 If q : T ×P → Rm is bounded and measurable, then q̂ is measur-

able and

q̂α = q(µ× α)P .

Proof. Since q is bounded and measurable, the integral exists. The

measurability of q̂ follows from Fubini’s Theorem (see Aliprantis and Border

(1999, Theorem 11.26, p. 411)).
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We turn to the second claim. Let B be a measurable subset of P . It

follows that

q̂α(B) =

∫

B

q̂dα =

∫

B

∫

T

qdµdα =
∫

T×B

qd(µ× α) = q(µ× α)(T ×B) = q(µ× α)P (B).

Thus, the lemma follows.

After these preliminaries, we turn to our version of Lemma 2 in Simon

and Zame (1990). There, we allow for the case where S is the product of a

Polish space (i.e., a complete separable metric space) and a compact metric

space and Q is measurable but only upper hemi-continuous in the second

variable. However, we assume that all the measures involved are finite.

Lemma 5 Let {νn} be a sequence of probability measures on P converging

weakly to ν and let Q : T × P ⇒ Rm be a bounded, measurable correspon-

dence, upper hemi-continuous in C for all t ∈ T and with compact, convex,

nonempty values. For each n, let qn be a measurable selection from Q.

If the sequence {qn(µ × νn)} of vector-valued measures converges weakly

to a vector-valued measure ξ, then there exists a measurable selection q from

Q such that ξ = q(µ× ν).

Proof. Note that {µ× νn} converges weakly to {µ× ν} by Hildenbrand

(1974, Theorem 27, pg. 49). Therefore, the boundedness of Q implies, as in

Simon and Zame (1990, Lemma 2), that there exists a measurable function

q : T × P → Rm such that ξ = q(µ× ν).

Let H = {(t, C) ∈ T × P : q(t, C) 6∈ Q(t, C)}. Since both q and Q are

measurable, then H is measurable. In fact, let S = T × P for convenience,
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f = (idS, q) and δ : S × Rm → R be defined by δ(s, x) = maxz∈Q(s) ||x− z||.
Clearly, f is measurable since q is also measurable. Since Q is measurable,

then Q is weakly measurable by Theorem 17.2 in Aliprantis and Border

(1999, p. 559). Then, δ is a Carathéodory function by Theorem 17.5 in

Aliprantis and Border (1999, p. 562) and thus measurable since Rm is sep-

arable (see Aliprantis and Border (1999, Lemma 4.50, p.151)). It follows

that the function g : S → R defined by g = δ ◦ f is measurable and that

H = {s ∈ S : g(s) > 0} is a measurable subset of S.

Let t ∈ T and Ht = {C ∈ P : (t, C) ∈ H}. Since H is a measurable

subset of T × P , then Ht is a measurable subset of P (see Aliprantis and

Border (1999, Lemma 4.45, p. 148)). Since P is compact and c 7→ Q(t, c) is

upper hemi-continuous, it follows by the arguments of Simon and Zame that

ν(Ht) = 0. Thus,

µ× ν(H) =

∫

T

ν(Ht)dµ(t) = 0

by Fubini’s Theorem. This completes the proof since we can correct q in H,

obtaining a function that is still measurable.

We turn to the proof of Theorem 2, showing that the same arguments

used by Simon and Zame extend to our setting, with minor changes.

Step 1: Finite approximations. Recall that P is a compact metric

space. As in Simon and Zame (1990), discretize P in order to obtain, for

all r ∈ N, a finite action space P r
i for all players i = 1, . . . , m, a measurable

selection qr from Q and a solution (αr
1, . . . , α

r
m) for Gr = (P r

1 , . . . , P r
m, T,Q).

Let αr = αr
1 × · · · × αr

m.

Step 2: Limits. Since ∆(Pi) is compact, then we may assume that {αr
i}
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converges for all i = 1, . . . , m. Thus, {αr} converges. Letting α = limr αr, it

follows that {µ× αr} converges to µ× α.

Similarly, we may assume that {qrαr} converges. This, together with

Lemma 3, implies that {qr(µ × αr)} = {µ × qrαr} converges. Let ξ =

limr qr(µ× αr).

Step 3: Selections. By Lemma 5, there exists a measurable selection

q from Q such that ξ = q(µ× α).

Step 4: Better responses. Recall that ĝ : P → Rm is defined by

ĝ(C) =
∫

T
g(t, C)dµ(t) for all bounded and measurable functions g : T×P →

Rm.

By Lemma 4, q̂ is measurable and αr is a Nash equilibrium of the normal-

form game (P r
1 , . . . , P r

m, q̂) for all r ∈ N. Since q̂α = q(µ×α)P and, similarly,

q̂rαr = qr(µ× αr)P , it follows that {q̂rαr} converges to q̂α.

If X is a metric space and x ∈ X, let δx denote the probability measure

on X degenerate on x. Letting

Hi =

{
Ci ∈ Pi :

∫

P

∫

T

qidµd(δCi
× α−i) >

∫

P

∫

T

qidµd(αi × α−i)

}
, (8)

it follows from Simon and Zame (1990, Step 4) that

αi(Hi) = αi

({
xi ∈ Pi :

∫

P

q̂id(δCi
× α−i) >

∫

P

q̂id(αi × α−i)

})
= 0.

Step 5: Perturbation. As in Step 5 of Simon and Zame (1990), for all

i, let pi : T × P → Rm be any measurable selection from Q which minimizes
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the ith component. Let Y = {C ∈ P : Ci ∈ Hi for at least two indices i}
and define f : T × P → Rm as follows:

f(t, C) =





pi(t, C) if C ∈ Hi × P−i but C 6∈ Y,

q(t, C) otherwise.
(9)

Since α(Hi × P−i) = 0 for all i ∈ I, then
∫

P

∫

T

fdµdα =

∫

P\∪m
i=1(Hi×P−i)

∫

T

qdµdα =

∫

P

∫

T

qdµdα.

Therefore, ∫

P

f̂dα =

∫

P

q̂dα. (10)

Let i ∈ I. If xi 6∈ Hi, then

q̂i(C) = f̂i(C) (11)

except possibly for C ∈ [{Ci} × P−i] ∩ [∪j 6=i(Hj × P−j)]. Finally, we also

have that

p̂i
i(C) = f̂i(C) (12)

for all C ∈ Hi × P−i and C 6∈ Y .

Step 6: Solution. Note that pi
i : T × P → R is lower semi-continuous

in C for all t ∈ T , as in Simon and Zame (1990, step 6). Thus, it follows from

Fatou’s Lemma (see Aliprantis and Border (1999, Theorem 11.19, p. 407))

that p̂i
i : P → R is lower semi-continuous. Because of equations (10), (11)

and (12), it follows from Simon and Zame (1990, Step 6) that α is a Nash

equilibrium of the normal-form game (P1, . . . , Pm, f̂). Since f̂ =
∫

T
fdµ, it

follows that (f, α) is a solution of G = (P1, . . . , Pm, T,Q).

This completes the proof of Theorem 2.
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A.2 Proof of Lemma 1

For convenience, let S = T ×P . Note first that Λ is measurable by Theorem

17.18 in Aliprantis and Border (1999, p. 570) and has nonempty, convex and

compact values. Furthermore, by Berge’s Maximum Theorem (see Berge

(1997, p. 116)), the correspondence C 7→ Λ(t, C) is upper hemi-continuous

for all t ∈ T .

Then, Q is bounded since π is bounded and Q is nonempty valued since

Λ is also nonempty valued. Since for all s ∈ S, Λ(s) is compact, Q(s) =

h(s, Λ(s)) and λ 7→ h(s, λ) is continuous, then Q(s) is compact. Thus, Q is

compact valued.

Since Λ is convex valued, then Q is convex valued as well. Indeed, if

s ∈ S, x1, x2 ∈ Q(s) and a ∈ (0, 1), then there exists λl ∈ Λ(s) such that

xl = h(s, λl) for all l = 1, 2. Then, aλ1+(1−a)λ2 ∈ Λ(s) and ax1+(1−a)x2 =

h(s, aλ1 + (1− a)λ2) imply that ax1 + (1− a)x2 ∈ Q(s).

Since C 7→ Λ(t, C) is upper hemi-continuous and C 7→ h(t, C) is contin-

uous for all t ∈ T , then C 7→ Q(t, C) is upper hemi-continuous.

Finally, we show that Q is measurable. Note first that h is measurable by

Lemma 4.50 in Aliprantis and Border (1999, p. 151) since ∆(K) is a compact

metric space. Define Ξ : S ⇒ S ×∆(K) by Ξ(s) = {(s, λ) : λ ∈ Λ(s)}.
We claim that Ξ is measurable. Since Ξ is compact valued, then it is

enough to show that Ξ is weakly measurable (see Aliprantis and Border (1999,

Lemma 17.2, p. 559)). Let A and B be measurable subsets of S and ∆(K),

respectively. Then, Ξ`(A×B) = {s ∈ S : Ξ(s) ∩ (A×B) 6= ∅} = A ∩ Λ`(B)

is measurable since Λ is measurable. Therefore, if V = ∪∞k=1(Ak × Bk) and

Ak and Bk are measurable subsets of S and ∆(K), respectively, for all k ∈ N,
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then Ξ`(V ) = ∪∞k=1Ξ
`(Ak × Bk) is measurable. Therefore, if V is an open

subset of S×∆(K), then there exist sequences {Ak} and {Bk} of open subsets

of S and ∆(K) such that V = ∪∞k=1(Ak × Bk) since both S and ∆(K) are

second countable. Thus, Ξ`(V ) is measurable and so Ξ is weakly measurable.

Since Ξ is measurable, then Q is measurable as well. In fact, let B be a

measurable subset of Rm. Then, h−1(B) is a measurable subset of S×∆(K)

and so Q`(B) = {s ∈ S : Ξ(s) ∩ h−1(B) 6= ∅} = Ξ`(h−1(B)) is measurable.

This completes the proof of Lemma 1.

A.3 Proof of Lemma 2

In order to prove Lemma 2, we need the following result.

Lemma 6 Let (S, Σ) be a measurable space, X be a compact metric space

and f : S ×X → Rm be a Carathéodory function. Then, the correspondence

ζ : S ⇒ X defined by

ζ(s) = {x ∈ X : f(s, x) = 0}

is measurable.

Proof. The lemma corresponds to Aliprantis and Border (1999, Corollary

17.8, p. 563) when m = 1. To extend it to an arbitrary m ∈ N, simply

substitute the absolute value (in R) used in the proof of that corollary by a

norm in Rm.

We next turn to the proof of Lemma 2. Consider H : S ⇒ X defined by

H(s) = {x ∈ X : g(s, x) = q(s)}. (13)
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If there exists a measurable selection σ from H ∩ Θ, then q(s) = g(s, σ(s))

for all s ∈ S. So, it is enough to show that H ∩Θ has a measurable selection.

Note that H ∩ Θ is nonempty valued. This is so because q(s) ∈ Q(s) =

{g(s, x) : x ∈ Θ(s)}. Since x 7→ g(s, x) is continuous for all s ∈ S, then H(s)

is a closed subset of X, hence compact. Thus, H is compact valued, and so

is H ∩Θ.

Let f : S ×X → Rm be defined by

f(s, x) = g(s, x)− q(s). (14)

Then, f is measurable in s and continuous in x. Note that H(s) = {x ∈
X : f(s, x) = 0} for all s ∈ S. Since S is a measurable space (with its

Borel σ – algebra) and X is a compact metric space, it follows by Lemma 6

that H is measurable. Then, H ∩Θ is measurable by Aliprantis and Border

(1999, Lemma 17.4.3, p. 560). Then, H∩Θ is weakly measurable (Aliprantis

and Border (1999, Lemma 17.2.1, p. 559)) and so by the Kuratowski-Ryll-

Nardzewski Theorem (see Aliprantis and Border (1999, Theorem 17.13, p.

567)) H ∩Θ has a measurable selection.

A.4 Properties of ϕ

In this appendix, we establish the properties of the agent’s constraint corre-

spondences ϕPM , ϕMS and ϕH . In all these cases, the result is a consequence

of the following Lemma.

Lemma 7 If φ : P ⇒ K is continuous with nonempty compact values, then

ϕ : T × P ⇒ ∆(K) defined by

ϕ(t, C) = {λ ∈ ∆(K) : λ(φ(C)) = 1}
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is continuous and has nonempty, convex, compact values.

Proof. It follows from Aliprantis and Border (1999, Theorem 16.14,

p. 530) that ϕ is upper hemi-continuous with nonempty, compact, convex

values.

We claim that ϕ is also lower hemi-continuous. In order to prove this

claim, let {tn}∞n=1 be a convergent sequence in T , {Cn}∞n=1 be a convergent

sequence in P , t = limn tn, C = limn Cn and λ ∈ ϕ(t, C). We need to

prove that there exists a subsequence {nj}∞j=1 of indexes and elements λnj
∈

ϕ(tnj
, Cnj

) such that λnj
converges to λ.

By Aliprantis and Border (1999, Theorem 16.16, p. 531), the function Φ

from P into the space of all nonempty, compact subsets of K endowed with

the Hausdorff metric defined by Φ(C) = φ(C) is continuous. Thus, letting

dH denote the Hausdorff metric, it follows that dH(φ(Cn), φ(C)) converges

to zero.

For all j ∈ N, let nj ∈ N be such that dH(φ(Cnj
), φ(C)) < 1/j. Let j be

fixed. Since dH(φ(Cnj
), φ(C)) < 1/j, then φ(C) ⊆ ∪k∈φ(Cnj )B1/j(k). Since

φ(C) is a compact subset of K, then there exists {k1, . . . , kM} ⊆ φ(Cnj
) such

that φ(C) ⊆ ∪M
m=1B1/j(km).

Finally, define B1 = B1/j(k1), Bm = B1/j(km) \ ∪m−1
l=1 Bl for all m =

2, . . . ,M , and λnj
by setting λnj

(km) = λ(Bm) for all m = 1, . . . , M .

Since λ(φ(C)) = 1, then λnj
(φ(Cnj

)) = 1 and, arguing as in the proof

of Parthasarathy (1967, Theorem II.6.3), it follows that λnj
converges to λ.

Therefore, ϕ is lower hemi-continuous.

As a consequence, we obtain the following corollary.
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Corollary 2 The correspondences ϕPM , ϕMS and ϕH are continuous with

nonempty, convex, compact values.

Proof. In the case of ϕMS, simply define φMS : P ⇒ KMS by φMS(C) =

C. Clearly, φMS is continuous and has nonempty compact values.

In the case ϕPM , we define for all i ∈ I, φi : P ⇒ KPM by φi(C) = {i}×Ci

and φPM : P ⇒ KPM by φPM(C) = ∪m
i=1φi(C). Clearly, φPM has nonempty

and compact values and φi is continuous for all i ∈ I. Since the finite union of

continuous correspondences is continuous (see Aliprantis and Border (1999,

Theorem 16.27, p. 537)), then φPM is continuous.

In the hybrid case, we define for j = 1, 2, φj : P ⇒ KH , by φ1(C) =

∪i∈Ie{i} × Ci and φ2(C) =
∏

i∈Ic
e
Ci. These correspondences are continuous

and have nonempty and compact values. Finally, define φH : P ⇒ KH by

φH(C) = φ1(C) × φ2(C). Since the finite product of continuous correspon-

dences with compact values is continuous (see Aliprantis and Border (1999,

Theorem 16.28, p. 537)), then φH is continuous and has nonempty and

compact values as well.

In all cases the conclusion follows from Lemma 7.
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