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Abstract

We consider n–person normal form games where the strategy set of each player is a
non–empty compact convex subset of a Euclidean space, and the payoff function of
player i is continuous in joint strategies and continuously differentiable and concave
in player i’s strategy. No further restrictions (such as multilinearity of the payoff
functions or the requirement that the strategy sets be polyhedral) are imposed. We
demonstrate that the graph of the Nash equilibrium correspondence on this domain is
homeomorphic to the space of games. This result generalizes a well–known structure
theorem in Kohlberg and Mertens [7]. It is supplemented by an extension analogous
to the unknottedness theorems in Demichelis and Germano ([3] and [4]): the graph
of the Nash equilibrium correspondence is ambient isotopic to a trivial copy of the
space of games.
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1 Introduction

This paper contributes to the study of the geometry of Nash equilibria. The existing studies
of the geometry of Nash equilibria usually consider mixed strategy Nash equilibria on the
domain of finite games, i.e. games with finitely many pure strategies. This framework,
however, is inadequate for modelling a large number of interesting strategic interactions.
Market games, Cournot oligopoly games, location games are examples of games with a
continuum of pure strategies and non–linear payoffs. In such games, it is the set of equilibria
in pure rather than mixed strategies that is of particular importance to the respective
applications. The purpose of this paper to extend the study of the geometry of Nash
equilibria on a sufficiently rich domain of games that includes these and similar types of
games.

The geometry of Nash equilibria is best understood through the properties of the graph
of the equilibrium correspondence. A number of topological characterizations of the graphs
of various equilibrium correspondences are well–known in the literature. Thus Kohlberg
and Mertens [7] show that the graph of the Nash equilibrium correspondence on the do-
main of finite games is homeomorphic to a Euclidean space. This result is a game–theoretic
analogue of the structure theorem in Balasko [1] who shows that the graph of the Wal-
rasian equilibrium correspondence is homeomorphic to a Euclidean space. A topological
characterization of the pseudo–equilibrium manifold in economies with incomplete markets
is given in Zhou [9]. In Demichelis, Ritzberger, and Swinkels [5] the graph of subgame per-
fect equilibrium correspondence is shown to be homeomorphic with the underlying space
of perfect information games.

This paper provides a topological characterization of the Nash equilibrium correspon-
dence in a very general setup. We consider the space of normal form games as parameterized
by the payoff functions. It is assumed that the strategy set of each player is a non–empty
compact convex subset of a Euclidean space, and the payoff function of player i is contin-
uous in joint strategies and concave and continuously differentiable in the own strategies
of player i. No further restrictions (such as multilinearity of the payoff functions or the
requirement that the strategy sets be polyhedral) are imposed. It is demonstrated that
the graph of the Nash equilibrium correspondence on this domain is homeomorphic to the
underlying space of games. Furthermore, the constructed homeomorphism preserves the
subspace of expected utility functions, implying (the first part of) the structure theorem
in [7] as a corollary.

Multiplicity of equilibria is the main reason why the topological characterizations such
as the one in the present paper are not easy to obtain. Even in one–player games as
considered in Section 2, where a Nash equilibrium is simply a maximum of a payoff function,
the characterization is non–trivial due to the possibility of multiple maxima. In the general
case of more than one player the second source of multiplicity of equilibria appears: the
coordination problem may result in multiple equilibria even if the best responses are always
unique.

It turns out that the geometry of Nash equilibrium in decision problems (i.e. one–player
games) is similar to the geometry of subgame perfect equilibrium on the domain of perfect
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information games (see [5]). Indeed, the only source of multiplicity of equilibria in such
games is the indeterminateness of the best response due to indifferences in the preferences
over terminal outcomes. In both cases the equilibrium correspondence is almost everywhere
a continuous single–valued function that occasionally makes a vertical step and even a small
perturbation of the ambient space is sufficient to make the graphs of these correspondences
look like the graphs of single–valued functions. These results cannot be extended to games
with many players. In the general case, only a sufficiently large perturbation of the ambient
space can deform the graph of the Nash equilibrium correspondence to a graph of a single–
valued map.

The importance of the structure theorems like the one developed in this paper lies in
their extensions and the application to dynamics of equilibria. In Section 4 we develop
an extension of the structure theorem in the spirit of the so–called unknottedness theorem
in Demichelis and Germano [3, 4]. We show that not only does the graph of the Nash
equilibrium correspondence have an intrinsic structure of the space of games, but it can
be continuously deformed within its ambient space (games times strategies) to a graph of
a single–valued function. It follows as a corollary that there exists a proper homotopy of
the the projection map to the identity map, a result analogous to the second part of the
structure theorem in [7]. For finite games the unknottedness result is known to have a
number of important implications for the dynamics whose rest points are equilibria. For
example, it implies that any two Nash dynamics are homotopic within the set of Nash
dynamics and that the degree and the index of any two equilibria are equal. Extending
the results in [3, 4] to larger domains of games such as those studied in this paper is an
interesting direction for future research.

Section 5 develops a version of a structure theorem for a larger domain of games than
that treated in Sections 3 and 4. We abandon the assumption of differentiability of payoffs
and consider the space of games where the payoff function of player i is continuous in
joint strategies and concave in the own strategies of player i. This domain of games
requires different tools than the smaller domain treated in Section 3. In particular, it
makes it necessary that the payoff functions be well–defined on a neighborhood of the
strategy space. Nevertheless the space of games where differentiability is not imposed is
sufficiently interesting to warrant a special consideration. We show that the graph of the
Nash equilibrium correspondence on this domain is homeomorphic to the space of games
and that it is ambient isotopic to a graph of a single–valued function.

2 The one–player case

Let X be a non–empty compact convex subset of some Euclidean space. Let F be the
space of all continuous concave functions on X. The set F is endowed with the compact
open topology. It is a topology generated by the subbase consisting of all sets {f ∈ F |
f(x) ∈ E for all x ∈ C} for C a compact subset of X and E an open subset of R.

In this section we consider one–player games where the player’s strategy set is X and
his payoff function is an element f of the space F . A Nash equilibrium of the game f
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is a strategy that maximizes the payoff function f on the set X. The Nash equilibrium
correspondence assigns to each f ∈ F the set of Nash equilibria of the game f . Thus the
graph of the Nash equilibrium correspondence is the subspace

N = {(f, x) ∈ F ×X | x maximizes f on X}.

of F ×X.
Figure 1 illustrates the Nash equilibrium correspondence on the domain of one–player

games. For a given function f ∈ F the set of maximizers of f is a convex set, and
it is a singleton if f is strictly convex. Thus the Nash equilibrium correspondence is
almost always a continuous single–valued function that occasionally makes a vertical step.
Vertical step occurs whenever a payoff function has a flat section that produces multiple
maxima. It is easy to see that even a small deformation of the graph of the Nash equilibrium
correspondence makes it look like a graph of a single–valued continuous function F −→ X.
A dashed line in Figure 1 illustrates a possible deformation. The deformations of the graph
of the Nash equilibrium correspondence are treated more formally in Section 4.

The possibility of multiple maxima makes the problem of finding a homeomorphism of
N with F non–trivial. For instance, there does not exist a homeomorphism that agrees
with the natural projection on the subspace of strictly concave functions. To illustrate
this point, consider a subspace F̄ of F consisting of all strictly concave functions, and
a subspace N ∩ (F̄ × X) of N denoted by ¯N . Since each function in F̄ has a unique
maximum, the natural projection π̄ : ¯N −→ F̄ that sends a pair (f, x) to the function
f is a homeomorphism. It cannot be extended to a homeomorphism between N and F ,
however: as ¯N is a dense subset of N , the only continuous extension of π̄ to the space
N is the natural projection π : N −→ F that fails to be injective outside F̄ .

Given x ∈ X, let lx ∈ F denote the linear function defined by the equation lx(z) =
〈x, z〉 and let q ∈ F be a strictly concave function given by q(z) = −1

2
〈z, z〉. Consider the

map

N
η

−→ F

(f, x) 7→ f + lx.

Theorem 1 The map η is a homeomorphism. Furthermore, suppose that F̄ is one of the
following subspaces of F : the subspace of linear functions, the subspace of strictly concave
functions, or the subspace of Cr–functions. Let ¯N denote the subspace N ∩ (F̄ ×X) of
N . Then η is a homeomorphism of pairs (N , ¯N ) −→ (F , F̄ ).

Proof. Let the mapping ϕ be defined as follows:

F
ϕ

−→ F ×X
f 7→ (f − lx, x),

where x is the unique maximizer of the strictly concave function (f + q) on the set X.
First we show that ϕ maps into the set N .
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Thus let x be the maximizer of (f+q) on X. We must show that x is a maximizer of the
function (f− lx). Recall that a concave function u : X −→ R attains its maximum at point
x if and only if its directional derivative u′(x; d) at point x in any direction d ∈ X − {x}
is non–positive. A direct computation shows that (f + q)′(x; d) = f ′(x; d) − lx(d) =
(f − lx)

′(x; d). This implies that the function (f − lx) attains its maximum on the set X
at the point x, as desired.

Clearly, η ◦ ϕ is the identity map on the set F . To see that ϕ ◦ η is the identity on
N , let (f, x) be a point in N . Then (ϕ ◦ η)(f, x) = (f + lx − lx̄, x̄), with x̄ being a point
of X where the function (f + lx + q) attains its maximum. By direct computation, the
function (lx + q) attains its maximum at the point x. Furthermore, the function f attains
its maximum at x because (f, x) ∈ N . It follows that the function (f + lx + q) attains its
maximum at x. Because it has only one maximizer, x = x̄, and (ϕ ◦ η)(f, x) = (f, x), as
desired.

The map η is continuous since it is a composite of continuous maps. In particular,
x 7→ lx is a continuous map of X into F and the addition of maps is a continuous
operation with respect to the chosen topology on F . Likewise, the map ϕ is a composite
of continuous maps. In particular, the map that sends each strictly concave function of
F to its unique maximizer on X is a continuous map. Thus we have proved that η is a
homeomorphism, with ϕ being its inverse.

Finally, if the function f is linear (concave, or Cr–differentiable), then so is the func-
tion (f + lx) and the function (f − lx). Thus, both maps η and ϕ preserve the linearity,
strict concavity and Cr– differentiability of the functions. The second part of the theorem
follows.

Given t ∈ [0, 1] consider the map ηt : N −→ F defined by the equation ηt(f, x) =
f + tlx. In particular η0 = π and η1 = η. An argument similar to the proof of Theorem
1 shows ηt to be a homeomorphism for each t ∈ (0, 1]. Thus the projection map can be
arbitrarily closely approximated by homeomorphisms. This property is peculiar to decision
problems and cannot be extended to a general case with many players.

3 The general structure theorem

In this section we develop a structure theorem for n–person games. As in the previous
section, the strategy set of each player is fixed, and the games are parameterized by the
payoff functions. It is required that a payoff function of player i be continuous in the joint
strategies and be concave and continuously differentiable in the own strategy of player i.
We show there is a homeomorphism of the Nash equilibrium set with the underlying space
of games. Furthermore, the constructed homeomorphism preserves the subspace of games
where all payoff functions are expected utility functions. As a corollary, we obtain (the first
part of) Theorem 1 in [7]: the space of games where the payoff functions are all expected
utility functions is homeomorphic to a Euclidean space.

Let the strategy set Xi of player i ∈ N be a non–empty compact convex set of the
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ki–dimensional Euclidean space. Let X denote the product space X1 × · · · × Xn. Let
k = k1 + · · · + kn. Let Fi be the set of payoff functions of player i. This is a set of
continuous functions ui : R

k −→ R such that ui is concave and continuously differentiable
in the own strategy zi of player i. Let dui(xi, x−i) denote the gradient of ui with respect
to zi at point x. The set Fi is endowed with the C1–compact–open topology. Its subbase
consists of all sets {ui ∈ Fi | ui(x) ∈ E and dui(xi, x−i) ∈ E ′ for all x ∈ C} for C a
compact subset of R

k, E an open subset of R and E ′ an open subset R
ki .

We start out with the set of payoff functions defined throughout the space R
k rather

than on X only for mathematical rigor. Insisting that payoffs be defined throughout R
k is

inconsequential as the homeomorphism η of our main theorem preserves the values of the
payoff functions on X. This property of η allows us to carry over our structure theorem
to a setting where two payoff functions are identified as soon as they agree throughout the
set X (Theorem 3).

The graph of the Nash equilibrium correspondence is the subspace of F ×X given by

N =

{

(u, x) ∈ F ×X
∣

∣

∣

x is a Nash equilibrium
of the game u

}

.

A function ui ∈ Fi is said to be linear in the strategy of player m if ui(szm+tz̄m, z−m) =
sui(zm, z−m) + tui(z̄m, z−m) for any reals s and t. It is said to be affine in the strategy of
player m if the equation holds whenever s+ t = 1. Of course, a function ui is linear in zm if
it is affine in zm and in addition ui(0m, z−m) = 0, where 0m is a zero in R

km . For example,
a payoff function that does not depend on zm is affine in that variable, but it linear in zm
only if it is identically equal to zero.

For each i fix a point x0

i in Xi arbitrarily. Given u ∈ F and x ∈ X define the functions
lxi , h

x
i u, giu ∈ Fi by the equations

lxi (z) = 〈xi, zi〉, h
x
i u(z) = 〈dui(xi, x−i) − dui(xi, x

0

−i), (zi − xi)〉 and

giu(zi) = ui(zi, x
0

−i) −
1

2
〈zi, zi〉.

All three functions are independent of the strategies of players other than i. The function
lxi is linear in the strategy of player i, the function hxi u is affine and giu(zi) is strictly
concave in zi. Consider the map η : N −→ F that sends a point (u, x) of N to a point
ū of F where the payoff ūi is given by the equation

ūi = ui + hxi u+ lxi .

In the one–player case we think of the function hxi u as being identically equal to zero, in
which case the map η is the same as that considered in the previous section.

Theorem 2 The map η is a homeomorphism. Furthermore, let F̄i be the subspace of
Cr–functions or the subspace of functions that are affine in the strategy of player m. Let
F̄ = F̄1 × · · · × F̄n, and let ¯N denote the subspace N ∩ (F̄ × X) of N . Then η is a
homeomorphism of pairs (N , ¯N ) −→ (F , F̄ ).
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Proof. Consider a map ϕ : F −→ F ×X that sends a point ū into the pair (u, x), where
xi is the unique maximizer of the strictly concave function giū over Xi and the payoff
function ui is given by the equation ui = ūi − hxi ū− lxi .

First we show that ϕmaps into N . Thus let ū be an element of F and let ϕ(ū) = (u, x).
We must show that xi maximizes the payoff function ūi of player i over the his strategy
set given x−i. Recall that a concave function attains its maximum over Xi at point xi if
and only if its gradient at this point is contained in the normal cone of Xi at xi. Because

ui(zi, x−i) = ūi(zi, x−i) − 〈dūi(xi, x−i) − dūi(xi, x
0

−i), (zi − xi)〉 − 〈xi, zi〉,

we have the equations dui(xi, x−i) = dūi(xi, x
0

−i) − xi = dgiū(xi). Since xi is a maximizer
of the function giū over the set Xi, the gradient dgiū(xi) is in the normal cone of Xi at xi.
Thus dui(xi, x−i) is in the normal cone of Xi, as desired.

To see that η ◦ϕ is the identity on F , let ū ∈ F , ϕ(ū) = (u, x), and η(u, x) = u̇. Then
ui − ūi = −hxi ū− lxi and u̇i − ui = hxi u+ lxi . Thus u̇i − ūi = hxi u− hxi ū. Now

[hxi u− hxi ū](z) =

= 〈dui(xi, x−i) − dui(xi, x
0

−i), (zi − xi)〉 − 〈dūi(xi, x−i) − dūi(xi, x
0

−i), (zi − xi)〉 =

= 〈d(ui − ūi)(xi, x−i), (zi − xi)〉 − 〈d(ui − ūi)(xi, x
0

−i), (zi − xi)〉.

But (ui− ūi) is independent of the strategies of the players other than player i, so the two
terms of the last expression cancel out. Thus hxi u− hxi ū = 0 and u̇i = ūi, as desired.

To see that ϕ ◦ η is the identity on N , let (u, x) be a point in N . Let η(u, x) = ū and
ϕ(ū) = (u̇, ẋ). Then ẋi is a maximizer of the function giū on Xi. Observe that

giū(zi) = gi[ui + hxi u+ lxi ](zi) =

= ui(zi, x
0

−i) + 〈dui(xi, x−i) − dui(xi, x
0

−i), zi − xi〉 + 〈xi, zi〉 −
1

2
〈zi, zi〉,

A direct computation then shows that dgiū(xi) = dui(xi, x−i). As (u, x) ∈ N , the function
ui is maximized at xi given x−i, therefore dui(xi, x−i) is in the normal cone of Xi at point
xi. It follows that the function giū is also maximized at xi. As it has but one maximizer,
xi = ẋi. Now, ūi−ui = hxi u+ lxi and u̇i− ūi = −hxi ū− l

x
i . As in the previous paragraph, the

difference (hxi u− hxi ū) is identically zero, because (ui− ūi) is independent of the strategies
of i’s opponents. This implies that u̇i = ui, as desired.

The maps η and ϕ are the composites of continuous maps. In particular, (u, x) 7→ hxi u
is a continuous map of F ×X into F . Thus η is a homeomorphism, with ϕ its inverse.

The functions hxi u and lxi are affine in each variable. As the sum of affine functions is
an affine function, the functions (ui+hxi u+ lxi ) and (ui−h

x
i u− l

x
i ) are affine in the strategy

of player m whenever ui is and they are Cr–functions whenever ui is. The second part of
the theorem follows.

The space Fi consists of payoff functions defined on all of the Euclidean space R
k. Thus

the map η treats the payoff functions u and ū as different points of F even when differ
only outside X. We now reestablish our main result for a space of games where two payoff
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functions are identified whenever they agree on the set X of joint strategies. To this end
we introduce an equivalence relation on F by letting u ∼ ū whenever each ui agrees with
ūi throughout the set X. The quotient space F/ ∼ is a set of equivalence classes of ∼
endowed with an identification topology. Each equivalence class of ∼ can be represented by
a collection u of continuous functions on X, each ui concave and continuously differentiable
in the own strategy of player i. Indeed, for Ui ∈ Fi the function ui = Ui|X possesses all
these properties, and, conversely, any function ui : X −→ R with these properties can be
extended to a function Ui ∈ Fi. We define an equivalence relation ∼ on N by letting
(u, x) ∼ (ū, x̄) if u ∼ ū and x = x̄.

Theorem 3 The map η induces a homeomorphism (N / ∼) −→ (F/ ∼).

Proof. We must show that the map η and its inverse ϕ both preserve the equivalence
relation ∼. That is η(u, x) ∼ η(ū, x̄) whenever (u, x) ∼ (ū, x̄) and ϕ(u) ∼ ϕ(ū) whenever
u ∼ ū. Thus for u and ū in F suppose that ui|X = ūi|X. Because x0 is a point of X,
gui|X = gūi|X. Furthermore, the scalar product 〈dui(xi, x−i), (zi − xi)〉 is the directional
derivative of ui with respect to the own strategy of player i in the direction of (zi − xi).
For x is an element of X and zi an element of Xi, it is entirely determined by the values
of the function ui on the set X. Therefore hxi u = hxi ū. The result follows.

Corollary 1 Let F ∗

i be the subspace of payoff functions that are affine in each player’s
strategy. Let F ∗ = F ∗

1
×· · ·×F ∗

n , and let N ∗ denote the subspace N ∩ (F ∗×X) of N .
Then η induces a homeomorphism of pairs (N / ∼,N ∗/ ∼) −→ (F/ ∼,F ∗/ ∼).

Corollary 1 follows immediately from Theorems 2 and 3. Its significance lies in the fact
that it encompasses the structure theorem of Kohlberg and Mertens [7]. To see this, let
Xi be a unit simplex, interpreted as a set of probability distributions over some set of ki
pure strategies. Then each equivalence class of F ∗/ ∼ can be represented by a collection
u, where ui : X −→ R is an expected utility function. As an expected utility function
is entirely determined by its values on the set of pure strategies (i.e. the vertices of the
simplex Xi), the space F ∗/ ∼ can be identified with the Euclidean space of dimension
n × k1 × · · · × kn. Thus Corollary 1 tells us that N ∗/ ∼ is homeomorphic with a finite–
dimensional Euclidean space, which is exactly (the first part of) Theorem 1 in [7].

4 An extension

This section provides two extensions of the basic result. The first extension is in the spirit
of the so–called unknottedness theorem in Demichelis and Germano [3, 4]. It says that
the set N can be continuously deformed, within its ambient space, to a trivial copy of
the space of games. The second extension is analogous to the second part of the structure
theorem of Kohlberg and Mertens [7, Theorem 1]. It asserts that the homeomorphism
η : N −→ F is homotopic to the projection map via a proper homotopy.
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Let the spaces X, F and N and the maps η : N −→ F and ϕ : F −→ F ×X be
as in Section 3 and let π : N −→ F be the projection. Let x0 be a point of X and let
F0 = F × {x0} denote a trivial copy of the space of games. Furthermore, for each i let
X ′

i be a compact convex set containing Xi in its relative interior. In applications, we think
of X ′

i as a slightly enlarged copy of Xi. Let X ′ denote the product space X ′

1
× · · · ×X ′

n.
Furthermore, let E ′ denote the product space F ×X ′. With this notation, the main result
of this section is as follows.

Theorem 4 There exist continuous maps ψ, ξ : [0, 1] × E ′ −→ E ′ such that (a) for each
t ∈ [0, 1] the map ψt = ψ(t, ·) : E ′ −→ E ′ is a homeomorphism with ξt = ξ(t, ·) : E ′ −→ E ′

its inverse, (b) for each t ∈ [0, 1] the map ψt is the identity map on F × ∂X ′, (c) ψ0 is
the identity map on E ′, and (d) ψ1 is a homeomorphism of pairs (E ′,N ) −→ (E ′,F0).

We prove theorem 4 in two steps. The first step is to show that the graph of the Nash
equilibrium correspondence can be continuously deformed, within its ambient space E ′ into
a graph of a single–valued continuous function F −→ X. What drives this result is an
obvious observation that the homeomorphism η has an extension to the space F ×X. The
first step is carried out in Proposition 1. The second step is to prove that the graph of
any continuous function F −→ X can be continuously deformed within E ′ into a graph
F0 of a constant function u 7→ x0. This is in fact a property of the spaces X and X ′

and is independent of our construction of the homeomorphism η. This step is carried out
in Proposition 3. Taking the composite of the deformation of Proposition 1 with that of
Proposition 3 yields a desired deformation of N into F0 as in Theorem 4 above. Thus
the maps ψ and ξ of Theorem 4 are defined by letting ψt = ψ′

t ◦ ψ
′′

t and ξt = ξ′t ◦ ξ
′′

t where
ψ′ and ξ′ are as in Proposition 1 and ψ′′ and ξ′′ are as in Proposition 3.

Proposition 1 There exist continuous maps ψ′, ξ′ : [0, 1]×E ′ −→ E ′ such that (a) for each
t ∈ [0, 1] the map ψ′

t = ψ′(t, ·) : E ′ −→ E ′ is a homeomorphism with ξ′t = ξ′(t, ·) : E ′ −→ E ′

its inverse, (b) for each t ∈ [0, 1] the map ψ′

t is the identity map on F × ∂X ′, (c) ψ′

0
is the

identity map on E ′, and (d) ψ′

1
is a homeomorphism of pairs (E ′,N ) −→ (E ′,G ), where

G is a graph of a continuous function F −→ X.

Proof. Let r : X ′ −→ X be a continuous map that is an identity on X (i.e. a retract of
X ′ to X). Let ǫ : X ′ −→ [0, 1] be continuous map such that ǫ(X) = 1 and ǫ(∂X ′) = 0.
Define the map ψ′

t, ξ
′

t : E ′ −→ E ′ by letting

ψ′

t(u, x
′) = (ū, x′), where ūi = ui + sthxi u+ stlxi with x = r(x′) and s = ǫ(x′),

ξ′t(ū, x
′) = (u, x′), where ui = ūi − sthxi u− stlxi with x = r(x′) and s = ǫ(x′).

To see that the map ξ′t ◦ψ
′

t is the identity let (u, x) ∈ E ′ , ψt(u, x
′) = (ū, x′) and ξt(ū, x

′) =
(u̇, x′). Then ūi−ui = sthxi ū+stlxi and u̇i−ui = −sthxi u−stl

x
i . Thus u̇i−ūi = sthxi ū−sth

x
i u.

As in the proof of Theorem 2 one shows that the function (hxi ū− hxi u) is identically zero,
because the function (ūi − ui) only depends on the strategies of player i. It then follows
that u̇i = ūi, as desired. The proof that ψ′

t ◦ ξ
′

t is the identity is similar.
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Clearly, the maps ψt and ξt carry F ×∂X ′ identically to itself. It is also clear that ψ′

0
is

the identity map on E ′. Finally, we must show that G = ψ′

1
(N ) is a graph of a continuous

function. It is easy to see that if (u, x) ∈ N then ψ′

1
(u, x) = (η(u, x), x). In particular,

the set G is entirely contained in the set F ×X. As the map ϕ is the inverse of η, a point
(ū, x) of F ×X is an element of the set G if and only if ϕ(ū) = (u, x) for some function
u ∈ F . This shows that G is a graph of the composite map F −→ F ×X −→ X where
the first map is ϕ and the second map is the projection.

Thus there is a family of sets Nt = ψ′

t(N ) parameterized by t ∈ [0, 1] such that each
Nt is homeomorphic to N with N0 = N and N1 = G . In this sense, the set N can be
continuously deformed, within its ambient space E ′ to a graph of a single–valued function.
The deformation is illustrated in Figure 1 for the case of one player and in Figure 2 for the
general case.

Figure 1 makes it intuitively clear that even a small perturbation suffices to deform N

into a graph of a single–valued function. One can show in fact that the Nt is a graph of
some single–valued continuous function for all t ∈ (0, 1]. Indeed, there is a commutative
diagram

N Nt

F

...........................................................................................................................

.....
..
..
..
.

..............................................................
..
..
.......

..
.
.
.
.
.
.
.
.
.
.ηt

...............................................................
.
.
.
.
.
.
.
.
.
.

.

..
..
.......

where ηt is as defined in Section 2, the horizontal map is defined by ψ′

t and the right–hand
vertical map is the projection. As both ηt for t ∈ (0, 1] and the map N −→ Nt defined by
ψ′

t are homeomorphisms, so is the projection map Nt −→ F . But this means that Nt is a
graph of a single–valued continuous function. This result is peculiar to decision problems
and cannot be extended to a general case with many players. In the general case, only a
sufficiently large perturbation can deform N into a graph of a single–valued function.

Now we proceed with step two of the proof of our main result: we show that the graph
of any continuous function from F to X is ambient isotopic in E ′ to a trivial copy of the
space of games. This requires the following preliminary result.

Proposition 2 There exist continuous maps τi, γi : Xi×X ′

i −→ X ′

i such that (a) for each
xi ∈ Xi the map τxi

i = τi(xi, ·) : X ′

i −→ X ′

i is a homeomorphism with γxi

i = γi(xi, ·) :
X ′

i −→ X ′

i its inverse, (b) τi(xi, ·) is the identity on the relative boundary of X ′

i, (c)
τi(xi, x

0

i ) = xi, and (d) τi(x
0

i , ·) is the identity map of X ′

i.

Proof. First we define the maps τi and γi for the special case where X ′

i is a q–simplex. Let
sd∂X ′

i be the first barycentric subdivision of the boundary of X ′

i. Let K be a subdivision
of X ′

i consisting of all simplices of the form x0

ix
1 · · ·xq for x1 · · ·xq a simplex of sd∂X ′

i.
Similarly, let K ′ be a subdivision of X ′

i consisting of all simplices xix
1 · · ·xq for x1 · · ·xq ∈

sd∂X ′

i. We define τxi

i as a simplicial map of |K| to |K ′| induced by the vertex map x0

i 7→ xi
and xj 7→ xj for a vertex xj of sd∂X ′

i. Then τxi

i is a simplicial homeomorphism. It is
illustrated in Figure 3 for the case of q = 1 and in Figure 4 for the case q = 2. Its inverse
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is a simplicial map γxi

i : |K ′| 7→ |K| induced by a vertex map xi 7→ x0

i and xj 7→ xj for a
vertex xj of sd∂X ′

i.
In the general case there exists a homeomorphism h : X ′

i −→ S of X ′

i with a simplex
S. Of course, this homeomorphism carries the boundary of X ′

i into the boundary of the
simplex S and the set Xi into the relative interior of S. As has been demonstrated in the
previous paragraph there exist maps τi, γi : h(Xi)× S −→ S satisfying the conditions (a)–
(d) for the pair (h(Xi), S). It follows that the maps h−1τi(h, h), h

−1γi(h, h) : Xi×X
′

i −→ X ′

i

satisfy the conditions (a)–(d) for the pair (Xi, X
′

i).

Proposition 3 Let G be a graph of a continuous function φ : F −→ X. There exist
continuous maps ψ′′, ξ′′ : [0, 1] × E ′ −→ E ′ such that (a) for each t ∈ [0, 1] the map
ψ′′

t = ψ′′(t, ·) : E ′ −→ E ′ is a homeomorphism with ξ′′t = ξ′′(t, ·) : E ′ −→ E ′ its inverse, (b)
for each t ∈ [0, 1] the map ψ′′

t is the identity on F × ∂X ′, (c) ψ′′

0
is the identity map on

E ′, and (d) ψ′′

1
is a homeomorphism of pairs (E ′,G ) −→ (E ′,F0).

Proof. Let the maps τi and γi be as in Proposition 2. Let φi denote the composite of φ
with the projection X −→ Xi. Define now the maps ψ′′

t , ξ
′′

t : E ′ −→ E ′ by letting

ψ′′

t (u, x
′) = (u, x̄′), where x̄′i = γi((1 − t)x0

i + tφi(u), x
′

i),
ξ′′t (u, x̄

′) = (u, x′), where x′i = τi((1 − t)x0

i + tφi(u), x̄
′

i).

The maps ψ′′

t and ξ′′t are the inverses of each other, because the maps γi(xi, ·) is the inverse
of τi(xi, ·) for any xi ∈ Xi. They carry the set F × ∂X ′ identically into itself because
γi(xi, ·) and τi(xi, ·) are the identity maps on ∂X ′

i for any xi ∈ Xi. The maps ψ′′

0
and ξ′′

0

are the identity maps, because γi(x
0

i , ·) and τi(x
0

i , ·) are the identity maps of X ′

i.
Finally we must show that ψ′′

1
induces a homeomorphism of G with F0. If (u, x) ∈ G ,

then x = φ(u) ∈ X. Therefore, ψ′′

1
(u, x) = (u, x̄′), where x̄′i = γi(φi(u), xi) = γi(xi, xi) =

x0

i . Thus ψ′′

1
carries G into F0. Conversely, if u ∈ F , then ξ′′

1
(u, x0

i ) = (u, x′), where
x′i = τi(φi(u), x

0

i ) = φi(u). Thus x′ = φ(u) and ξ′′
1

carries F0 into G .

Corollary 2 There exists a proper homotopy map of π to η.

Proof. First we argue that the map ψ of Theorem 4 is a proper map. Consider the maps
Ψ and Ξ of [0, 1] × F ×X ′ to itself defined by the equations Ψ(t, u, x) = (t, ψt(u, x)) and
Ξ(t, u, x) = (t, ξt(u, x)). These maps are continuous and they are the inverses to each other.
Now for a subset K of F ×X ′ we have ψ−1(K) = Ψ−1([0, 1] ×K) = Ξ([0, 1] ×K). If K
is compact, so is the set [0, 1] ×K. Thus ψ−1(K) is compact, as desired.

Define λ as a composite

[0, 1] × N −→ [0, 1] × F ×X ′
ψ

−→ F ×X ′ −→ F ,

where the first map is the inclusion and the third map is the projection. Now the inclusion
map is obviously proper, while the projection F ×X ′ −→ F is a proper map because X ′
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is a compact set. Thus λ is a proper map. Furthermore, λ0 = π, because ψ0 is the identity
map. Furthermore, λ1 = η because ψ1|N = η. Thus λ is a proper homotopy connecting
the map π to η.

In the one–player case the homotopy λ is such that λt = ηt for ηt as in Section 2 and
is a homeomorphism for each t ∈ (0, 1].

Theorem 4 is parallel to the results in Demichelis and Germano [3, 4] where an unknot-
tedness theorem is established for Nash equilibria on the domain of normal–form games
and for Walrasian equilibria on the domain of exchange economies, respectively. In those
settings the unknottedness theorem is known to have a number of important implications
for dynamics whose rest points are equilibria. In particular, it implies that the set of Nash
dynamics is arcwise connected, i.e. any two dynamics are homotopic within the set of Nash
dynamics. This fact in turn implies that an index of any equilibrium is the same for all
dynamics. Theorem 4 thus opens up an interesting direction for future research: obtaining
the analogous of the results for Nash dynamics on larger domains as consider in this paper.

5 A different version of the structure theorem

In this section we develop a version of the structure theorem for a wider domain of games
than that considered in Section 3. Specifically, we drop the assumption of differentiability
of the payoff functions and consider a space of games where the payoff function of player i
is continuous in joint strategies and concave in the own strategy of player i. We show that
the graph of the Nash equilibrium correspondence on this domain is homeomorphic to the
underlying space of games. It is no longer the case, however, that the homeomorphism of
the structure theorem preserves an equivalence relation as defined in the preceding section:
even when two payoff functions are the same on X, their images under the homeomorphism
η maybe different within X.

Let X ′

i be a compact convex set containing Xi in its relative interior. The set Fi of
payoff functions of player i is a set of continuous functions ui : X ′

i −→ R such that ui is
concave in the own strategy zi of player i. The set Fi is endowed with the compact–open
topology, the topology generated by the subbase consisting of all sets {ui ∈ Fi | ui(x) ∈
E for all x ∈ C} for C a compact subset of X ′

i and E an open subset of R. The graph of
the Nash equilibrium correspondence is defined as before.

Let τi and γi be as in Proposition 2. Given an x ∈ X let sxi : X ′ −→ X ′ be a product
of the identity map on X ′

i and of the maps τxm

m for m 6= i. Then sxi is a homeomorphism
and its inverse is a product of the identity map on X ′

i and the maps γxm

m for m 6= i. The
map sx

0

i is the identity map and for each x ∈ X the map sxi

i carries a point (zi, x
0

−i) into
(zi, x−i).

Let the function lxi ∈ Fi and the function giu ∈ Fi be as in Section 3. Consider the
map η : N −→ F that sends a point (u, x) into ū, with the payoff function ūi defined by
the equation

ūi = ui ◦ s
x
i + lxi .
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Thus the payoff function ūi is obtained from ui by using homeomorphic transformations
τxm

m of the strategy of player m for m 6= i and adding a term that depends linearly on i’s
own strategy. In the one–player case the map sxi is the identity map of X ′

i and the map η
is the same as in Section 2.

Theorem 5 The mapping η is a homeomorphism. Furthermore, let F̄i be the subspace of
Fi consisting of functions ui that are linear in zi. Let F̄ = F̄1 × · · · × F̄n, and let ¯N

denote the subspace N ∩ (F̄ × X) of N . Then the mapping η is a homeomorphism of
pairs (N , ¯N ) −→ (F , F̄ ).

Proof. Consider the mapping ϕ : F −→ F ×X that sends a point ū into the point (u, x),
where xi is the unique maximizer of the function giū and the payoff function ūi is defined
by the equation

ui = ūi ◦ [sxi ]
−1 − lxi .

To see that ϕ maps into N , let u be an element of F and let ϕ(u) = (ū, x). Re-
call that a concave function attains its maximum over Xi at point xi if and only if its
subdifferential at xi has a non-empty intersection with the normal cone of Xi at xi. Be-
cause [sxi ]

−1(zi, x−i) = (zi, x0

−i) for all zi, we have ui(z
i, x−i) = ūi(z

i, x0

−i) − 〈xi, zi〉. Thus
∂ui(xi, x−i) = ∂ūi(xi, x

0

−i) − xi = ∂giū(xi). Then ∂ui(xi, x−i) has a point in common with
the normal cone of Xi at xi, because ∂giū(xi) does.

To see that η ◦ ϕ is the identity map on F , let (η ◦ ϕ)(ū) = u. Then

ui = (ūi ◦ [sxi ]
−1 − lxi ) ◦ s

x
i + lxi = ūi − lxi ◦ s

x
i + lxi = ūi,

where the last equality follows from the fact that lxi only depends on zi and sxi is the
identity map on X ′

i.
To see that ϕ ◦ η is the identity on N , let (u, x) ∈ N , η(u, x) = ū and ϕ(ū) = (u̇, ẋ).

The point dotxi is a maximizer of the function giū on Xi. Now

giū(zi) = (ui ◦ s
x
i + lxi )(zi, x

0

−i) −
1

2
〈zi, zi〉 = ui(zi, x−i) + 〈xi, zi〉 −

1

2
〈zi, zi〉.

By direct computation, the function 〈xi, zi〉 −
1

2
〈zi, zi〉 attains its maximum at xi. Fur-

thermore, ui(zi, x−i) reaches a maximum at xi, because (u, x) ∈ N . Thus giū attains a
maximum at xi. As it has only one maximizer, xi = ẋi. It follows that

ūi = (ui ◦ s
x
i + lxi ) ◦ [sxi ]

−1 − lxi = ui.

Thus u̇ = u, as desired.
The maps η and ϕ are continuous as they are the composites of continuous maps. In

particular, the map x 7→ ui ◦ s
x
i is a continuous map of X to Fi. Finally, the mapping

η preserves the linearity and strict concavity of the payoff functions of player i in i’s own
strategy, and so does ϕ. The second part of the theorem follows.

The homeomorphism η does not preserve the relation ∼ as defined in Section 3. Because
sxi does not carry Xi into itself, the functions η(u, x) and η(ū, x) may be different on X,

13



even when the payoff functions u and ū agree throughout X. We do not know if the
quotient space N / ∼ is homeomorphic to the space F/ ∼.

Proposition 4 below states the set N is ambient isotopic with a graph G of a continuous
function X −→ F (In fact, a graph of a composite function F −→ F ×X −→ X, where
the first map is ϕ and the second map is the projection). Combining this isotopy with that
of Proposition 3 yields an exact analogue of Theorem 4.

Proposition 4 There exist continuous maps ψ′, ξ′ : [0, 1]×E ′ −→ E ′ such that (a) for each
t ∈ [0, 1] the map ψ′

t = ψ′(t, ·) : E ′ −→ E ′ is a homeomorphism with ξ′t = ξ′(t, ·) : E ′ −→ E ′

its inverse, (b) for each t ∈ [0, 1] the map ψ′

t is the identity map on F × ∂X ′, (c) ψ′

0
is the

identity map on E ′, and (d) ψ′

1
is a homeomorphism of pairs (E ′,N ) −→ (E ′,G ), where

G is a graph of a continuous function F −→ X.

Proof. Let r : X ′ −→ X be a retract of X ′ to X and ǫ : X ′ −→ [0, 1] be continuous map
such that ǫ(X) = 1 and ǫ(∂X ′) = 0. Define the map ψ′

t, ξ
′

t : E ′ −→ E ′ by letting

ψt(u, x
′) = (ū, x′), where ūi = ui ◦ s

x
i + etlxi with e = ǫ(x′) and x = (1 − et)x0 + etr(x′),

ξt(ū, x
′) = (u, x′), where ui = ūi ◦ [sxi ]

−1 − etlxi with e = ǫ(x′) and x = (1 − et)x0 + etr(x′).

To see that the map ψ′

t ◦ ξ
′

t is the identity let (u, x) ∈ E ′ and (ψ′

t ◦ ξ
′

t)(u, x
′) = (u̇, x′). Then

u̇i = (ui ◦ s
x
i + etlxi ) ◦ [sxi ]

−1 − etlxi = ui + etlxi ◦ [sxi ]
−1 − etlxi = ui,

where the last equality holds because the function lxi depends only on the own strategy
of player i and the function sxi is the identity on the set X ′

i. The proof that ξ′t ◦ ψ
′

t

is the identity is similar. To see that (b) holds take a pair (u, x′) ∈ F × ∂X ′ and let
ψt(u, x

′) = (ū, x′). Then e = ǫ(x′) = 0 and x = x0, and, because sx
0

i is the identity
map, ū = u. A similar argument shows that (c) holds. For condition (d) observe that if
(u, x) ∈ N then ψ′

1
(u, x) = (η(u, x), x). It follows that ψ′

1
(N ) is a graph of the composite

map F −→ F×X −→ X where the first map is ϕ and the second map is the projection.
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Figure 1: The set N (bold) and its deformation G (dashed) in the one–player case.
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Figure 2: The set N (bold) and its deformation G (dashed) in the case of many players.
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Figure 3: The family of homeomorphisms τxi

i = τ(xi, ·) when X ′
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i = τ(xi, ·) when X ′
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