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Abstract

Let G = 〈I, J, g〉 be a two-person zero-sum game. We examine the
two-person zero-sum repeated game G(k, m) in which player 1 and 2
place down finite state automata with k, m states respectively and the
payoff is the average per stage payoff when the two automata face off.

We are interested in the cases in which player 1 is “smart” in
the sense that k is large but player 2 is “much smarter” in the sense
that m � k. Let S(g) be the value of G were the second player is
clairvoyant, i.e., would know the player 1’s move in advance.

The threshold for clairvoyance is shown to occur for m near min(|I|, |J |)k.
For m of roughly that size, in the exponential scale, the value is close
to S(g). For m significantly smaller (for some stage payoffs g) the
value does not approach S(g).
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1 Introduction

Let G = 〈I, J, g〉 be a two-person zero-sum game; I and J are the finite
action sets of player 1 and player 2 respectively, and g : I × J → R is the
payoff function to player 1. The repeated game where player 1’s, respectively
player 2’s, possible strategies are those implementable by automata of size k,
respectively size m, and the payoff is the average per-stage payoff, is denoted
G(k,m). Ben-Porath [1] proves that the value of G(k, m) converges to the
value of the stage game G as k goes to infinity and log m

k
+ log k

m
goes to 0.

It follows that in order to have an asymptotic nonvanishing advantage
in the repeated game with finite state automata an exponentially larger au-
tomata size is needed. [2] proves that if lim infk→∞

log mk

k
> log |J | then the

value of G(k,mk) converges, as k goes to infinity, to the max min of the stage
game where player 1 maximizes over his pure stage actions i ∈ I and player
2 minimizes over his pure stage actions j ∈ J . Applying this result to the
special case where for some function r : I → J the stage-payoff function is
g(i, j) = −1 if j = r(i) and g(i, j) = 0 if j 6= r(i) we obtain the following:
if lim infk→∞

log mk

k
> log |r(I)|, then, for sufficiently large k, player 2 has a

strategy (in G(k,mk)) such that for every strategy of player 1 the expected
empirical distribution of the action pairs (i, j) is essentially supported on the
set of action pairs of the form (i, r(i)).

The main result of the present paper is a complete characterization of
the asymptotic relation between k and mk such that player 2 can effec-
tively predict the moves of player 1 in G(k, mk), namely, no matter what
the stage-game payoff function g, the values of the games G(k, mk) con-
verge to the max min (maxi∈I minj∈J g(i, j)). This asymptotic relation is
lim infk→∞

log mk

k
≥ min(log |I|, log |J |).

The “matching pennies” game provides a good example. Here I = J =
{0, 1} and g(x, y) = −1 when x = y and g(x, y) = +1 when x 6= y. From
[2] when m > (2.001)k then G(k,m) → −1. The second player is so much
“smarter” than the first player that the second player can effectively predict
the first player’s move. Our new result says essentially that there is not
a phase transition at 2k. When m ∼ (1.999)k then the value of G(k,m) is
strictly more but quite close to −1. We note that our proof for general games
G was first done for the matching pennies game and that, indeed, the basic
ideas of the general proof can be derived from this particular example.

An open problem (see [2]) is the quantification of the feasible “level of
prediction” when the limit of log mk

k
equals θ and 0 < θ < min(log |I|, log |J |).
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It is conjectured in [2] that for every, but at most one, value of θ > 0, if
log mk

k
→k→∞ θ then the value of G(k,mk) converges as k goes to infinity.

More explicitly, there is a nonincreasing function v : (0,∞) → R and θ0 > 0
such that v is continuous at all θ 6= θ0 and such that if log mk

k
→k→∞ θ > 0

and θ 6= θ0 then the value of G(k, mk) converges to v(θ) as k goes to infinity.
Our result shows (in particular) that such a discontinuity cannot happen

at θ0 = min(log |I|, log |J |). More explicitly, we prove that for every ε > 0
there is δ > 0 such that if k is sufficiently large and log m > k(log |J | − δ)
then the value of G(k, m) is ≤ maxi∈I minj∈J g(i, j) + ε.

2 Preliminaries

Fix a two-person zero-sum stage game G = 〈I, J, g〉. A finite history of the re-
peated game G∗ is an element of (I×J)∗, i.e., all finite strings (i1, j1, . . . , it, jt)
(including the empty string ∅). A pure strategy σ of player 1 is a func-
tion σ : (I × J)∗ → I and a pure strategy τ of player 2 is a function
σ : (I × J)∗ → J . A pair of pure strategies (σ, τ) induces a play (i1, j1, . . .),
defined inductively as follows: i1 = σ(∅), j1 = τ(∅), it+1 = σ(i1, j1, . . . , it, jt),
and jt+1 = τ(i1, j1, . . . , it, jt). The average payoff per stage is defined as
limT→∞

∑T
t=1 g(it, jt) whenever the limit exists, and if the play is induced by

the strategy pair (σ, τ) we denote this average per-stage payoff by g(σ, τ).
An automaton of player 2 consists of a set of states M , an action function

α : M → J , a transition function β : M × I → M , and an initial state
m∗ ∈ M . The size of an automaton A = 〈M, m∗, α, β〉 is the number |M | of
states.

An automaton A = 〈M, m∗, α, β〉 for player 2 defines a strategy τ = τA

as follows. Define the sequence of states (mt)t≥1 by m1 = m∗ and mt+1 =
β(mt, it). Note that mt is a function of i1, j1, . . . , it−1, jt−1. Define

τ(s1 = (i1, j1), . . . , st−1 = (it−1, jt−1)) = α(mt)

Analogously one defines an automaton for player 1.
The set of all automata of size m of a player, as well as the set of all

his/her strategies implementable by automata of size m, are denoted A(m).
We denote by [k] the set {1, . . . , k} if k is a positive integer and [η] also

denotes the integer part of η (the largest integer ≤ η). No confusion should
result.
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3 The main result

The deterministic play induced by a pure strategy σ ∈ A(k) of player 1 and
a pure strategy τ ∈ A(m) of player 2 enter a cycle (of length ≤ km) and
therefore the average payoff per stage is well defined and is denoted g(σ, τ). A
mixed strategy σ ∈ ∆(A(k)) of player 1 and a mixed strategy τ ∈ ∆(A(m))
induce a random play, which is a mixture of periodic plays, and therefore the
expected average payoff per stage is well defined and denoted g(σ, τ).

Theorem 1 Fix a two-person zero-sum stage game G = 〈I, J, g〉 and set
v∗ = maxi∈I minj∈J g(i, j). Then, ∀ε > 0 ∃δ > 0 and k0 such that if k > k0

and log m > k(min(log |I|, log |J |)− δ) then v∗ ≤ Val G(k,m) < v∗ + ε.

Proof. Obviously, Val G(k, m) ≥ v∗. In order to prove the other inequality
we assume without loss of generality that |J | ≤ |I|. Fix ε > 0. Let K > 0 be
a sufficiently large constant so that 2‖g‖/K < ε where ‖g‖ = maxi,j |g(i, j)|.
For 0 < x < 1 we denote by H(x) the entropy of the probability vector
(x, 1 − x), namely, H(x) = −x log2 x − (1 − x) log2(1 − x). The following
properties of the entropy function are used in the sequel: H(x)/x → ∞ as
x → 0+, H is strictly increasing on (0, 1/2), and if mk/k →k→∞ x ∈ (0, 1)
then 1

k
log

(
k

mk

)
→k→∞ H(x).

As H( δ
3K

)/δ →δ→0+ ∞ we can choose δ > 0 sufficiently small so that
H( δ

3K
) > 3δ + δ log |J |.

Let n = [(1 + δ)k] and ¯̀ = [2k(log |J |−δ)]. For every list (j`
t )t,`, (t

`
1, t

`
2)`,

where j`
t ∈ J , 1 ≤ t ≤ n, 1 ≤ ` ≤ ¯̀, and t`1, t

`
2 ∈ [n] with 1 ≤ t`1 < t`2 ≤ n, we

define an automaton [(j`
t )t,`, (t

`
1, t

`
2)`] with state set

M = {(`, t, r) | 1 ≤ ` < 2k(log |J |−δ), t ≤ t`2, 0 ≤ r < n},

initial state (1, 1, 0), and action function

α(`, t, r) = j`
t .
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The transition function is as follows.

β((`, t, r), i) =



(`, t + 1, r) if t < t`1
(`, t + 1, r) if t`1 ≤ t < t`2 and g(i, jt) > v∗

(`, t + 1, r + 1) if t`1 ≤ t < t`2 and g(i, jt) ≤ v∗

(`, t`1 + 1, 1) if t = t`2, g(i, jt) ≤ v∗, and

r ≥ (t`2 − t`1)(1− 1/K)

(` + 1, 1, 0) if t = t`2 and eithere g(i, jt) > v∗ or

r < (t`2 − t`1)(1− 1/K)

If ` + 1 > 2k(log |J |−δ) we identify ` + 1 with 1.
The size of the automaton, |M |, is ≤ 3k22k(log |J |−δ). Therefore,

log |M |
k

≤ (log |J | − δ) +
2 log k + log 3

k
.

Note that if in the play induced by a pure strategy of player 1 and the
automaton, the states of the automaton of player 2 never visit the automaton
state (¯̀, 1, 0), then the states of the automaton enter at some state (`, t`1+1, 1)
a cycle of length t`2 − t`1 and the average per-stage payoff over each cycle is
≤ (1− 1/K)v∗ + ‖g‖/K ≤ v∗ + ε.

We prove that if τ is the mixed strategy of player 2 defined as a random
selection of the automaton [(j`

t )t,`, (t
`
1, t

`
2)`], where j`

t are uniform iid (1 ≤ ` ≤
¯̀ and 1 ≤ t ≤ n) and (j`

t )t,` independent of the uniform iid pairs (t`1, t
`
2)`

(with 1 ≤ t`1 < t`2 ≤ n), then for every automaton of player 1 with ≤ k states
the probability of entering a cyclic play with average payoff per stage ≤ v∗+ε
is close to 1.

Let j : I → J be a function such that g(i, j(i)) ≤ v∗. For every sequence
y = (j1, . . . , jn) of actions of player 2 and every pure strategy σ of player 1
we denote by S(σ, y) the set of all stages 1 ≤ t ≤ n with jt 6= j(it) where
i1, . . . , in is the sequence of actions of player 1 when the pure strategy σ
plays against the fixed sequence of actions j1, . . . , jn of player 2; i1 = σ(∅)
and it = σ(i1, j1, . . . , it−1, jt−1).

A subset S of [n] is called (δ,K)-admissible if |S| ≤ δn
3K

and |s− t| > 2K
for every two elements t, s ∈ S. Fix a pure strategy σ of player 1. First, let
us count the number of sequences y = (j1, . . . , jn) ∈ Jn such that S(σ, y) is
(δ,K)-admissible.

5



The number of (δ,K)-admissible subsets S ⊂ [n] is at least the number
of subsets of no more than δn

3K
elements of a set with [n − δn

3K
(2K + 1)] ≥ k

elements, and thus at least
(

k
[ δn
3K

]

)
, which is ≥ 2H( δ

3K
)k for sufficiently large

k. If |S| ≤ [ δn
3K

] then the number of sequences y = (j1, . . . , jn) such that
S(σ, y) = S equals (|J | − 1)|S|. We deduce that for every pure strategy σ of
player 1 the number of sequences y = (j1, . . . , jn) ∈ Jn such that S(σ, y) is

(δ,K)-admissible is ≥ (|J | − 1)[ δn
3K

]2H( δ
3K

)k.
For every subset S of [n] we denote by S(K) the set of all 1 ≤ t ≤ n with

|t − s| ≤ K for some s ∈ S. Note that |S(K)| ≤ |S|(2K + 1). Therefore, if
|S| ≤ δn

3K
then n− |S(K)| ≥ k.

Therefore, if A is an automaton of player 1 of size ≤ k, and m1, . . . ,mn

are the sequence of states of the automaton A when playing against the
sequence y = (j1, . . . , jn), and |S(σA, y)| ≤ δn

3K
, then there are two distinct

stages t1 < t2 in [n] \ S(σA, y)(K) with mt1 = mt2 .
Therefore, the probability that the random play defined by the pair of

strategies σA of player 1 and τ of player 2 will enter at the (random) stage
t11 a cycle of length t12 − t11 is

≥ 1

2k2
2H( δ

3K
)k2− log |J |k(1+δ) ≥ 2k(2δ−log |J |)

where the last inequality (uses the inequality H( δ
3K

) > 3δ + δ log |J | and)
holds for k sufficiently large so that 1

2k2 > 2−δk.
The same computation shows in fact that if t(`) is the first stage where

the automaton of player 2 reaches state (`, 1, 0) then conditional on t(`) < ∞
and conditional on (j`′

t )`′<` and (t`
′

1 , t`
′

2 )`′<` the probability that the random
play defined by the pair of strategies σA of player 1 and τ of player 2 will
enter at the (random) stage t(`) + t`1 − 1 a cycle of length t`2 − t`1 is

≥ 1

2k2
2H( δ

3K
)k2− log |J |k(1+δ) ≥ 2k(2δ−log |J |)

where the last inequality holds for k sufficiently large so that 1
2k2 > 2−δk.

Therefore, if ¯̀= [2k(log |J |−δ)], then the probability that t(¯̀) < ∞ is

≤ (1− 2k(2δ−log |J |))
¯̀−1 → 0.

This completes the proof. �
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Theorem 2 Let I and J be two finite sets. There exists a stage-game payoff
function g : I × J → {0,−1} with maxi∈I minj∈J g(i, j) = −1 such that
∀ε > 0 ∃δ > 0 and k0 sufficiently large such that if k > k0 and log m <
k min(log |I|, log |J |)− kε then the value of G(k,m) (where G = 〈I, J, g〉) is
≥ −1 + δ.

Proof. Let I∗ be a subset of I with |I∗| = min(|I|, |J |) and r : I∗ → J a 1-1
function. Define the stage-game payoff function g by g(i, j) = 0 for i ∈ I∗

and j 6= r(i) and g(i, j) = −1 otherwise. Let p be the uniform distribution
on I∗, and let Q(p, θ) be the set of all distributions Q ∈ ∆(I × J) with
marginal p on I (i.e., QI = p) and H(QI) + H(QJ) − H(Q) ≤ θ. Note
that if θ < log |I∗| then for every Q ∈ Q(p, θ) we have EQg(i, j) > −1.
As the set Q(p, θ) is closed we deduce that minQ∈Q(p,θ) EQg(i, j) > −1. It
follows from [4] that if log mk ≤ θ < log |I∗| then lim infk→∞ Val G(k,mk) ≥
minQ∈Q(p,θ) EQg(i, j) > −1. �

Theorem 1 and Theorem 2 imply

Corollary 1 Let I and J be the the stage-strategy sets of player 1 and 2
respectively. A necessary and sufficient condition so that, for every stage-
game payoff function g : I × J → R, the values of G(k,mk) converge to
maxi∈I minj∈J g(i, j) as k goes to infinity is lim infk→∞

log mk

k
≥ min(log |I|, log |J |).

Obviously, for a given stage-game payoff function g, a weaker asymptotic
relation may suffice for the values of G(k, mk) to converge to maxi∈I minj∈J g(i, j).
The characterization of the necessary and sufficient asymptotic relation cor-
responding to a given stage-game payoff function is left open.

4 Applications and open problems

Let G = 〈I, J, g1, g2〉 be a two-person non-zero-sum game. The set F = F (G)
of feasible payoffs in the repeated game equals the convex hull of the set of
single-stage payoffs {(g1(i, j), g2(i, j)) : i ∈ I, j ∈ J}. The set of feasible
payoffs of the game G(k,m) is a subset of F that converges to F as k and m
go to infinity.

Let G1 and G2 be the two-person zero-sum games 〈I, J, g1〉 and 〈I, J,−g2〉
respectively. Assume that for a given θ ≥ 0, for all sequences mk ≥ k with
limk→∞

log mk

k
→k→∞ θ the values of the games G1(k,mk) and G2(k, mk)
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converge to v1(θ) and −v2(θ). Note that [1] proves that this assumption
holds for θ = 0, [3] proves that it holds for θ > log |J | (and thus also for
θ > min(log |J |, log |I|), and the present paper proves (in particular) that it
holds for θ ≥ min(log |J |, log |I|).

In [2] it is conjectured that the assumption holds for all θ ≥ 0 with the
possible exception of one value θ = θ0 > 0. If the assumption holds for some
θ ≥ 0 we obtain the following folk theorem: the set of equilibrium points of
the game G(k, mk) converges, as mk ≥ k → ∞ and log mk

k
→k→∞ θ, to the

set of all points x = (x1, x2) in F with x1 ≥ v1(θ) and x2 ≥ v2(θ).
The folk theorem that corresponds to θ ≥ min(log |J |, log |I|) asserts that

the set of equilibrium points of the game G(k, mk) converges, as k →∞ and
lim infk→∞

log mk

k
≥ min(log |J |, log |I|), to the set of all points x = (x1, x2) in

F with x1 ≥ maxi∈I minj∈J g1(i, j) and x2 ≥ mini∈I maxj∈J g2(i, j).
The result of the present paper is insufficient for the complete asymptotic

characterization of the equilibrium points of the finitely repeated (T -stage)
game GTk(k, mk) when log mk

k
→ log |J |. This is because we have not quanti-

fied how long it takes the smarter player to outguess the actions of the other
player. Such quantification can be formulated by the properties of the value
of the game GTk(k,mk). It is known that the value of GTk(k,mk) (where G
is a two-person zero-sum game 〈I, J, g〉) converges to maxi∈I minj∈J g(i, j) as
k →∞, whenever k log k = o(Tk) and mk is sufficiently large, e.g., mk = ∞
or mk > |I|Tk (see [5]), and it is conjectured in [2] that it converges to
the value of the stage game (= maxp∈∆(I) minj∈J

∑
i∈I p(i)g(i, j)) whenever

Tk = o(k log k) and mk = ∞. A positive answer to this conjecture, together
with [3], results in a complete asymptotic characterization of the equilibrium
payoffs of the game GTk(k, mk), when mk ≥ k ≥ (1 + ε)Tk.
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