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Abstract

We provide a model to investigate the tension between information aggregation and

spread of misinformation in large societies (conceptualized as networks of agents com-

municating with each other). Each individual holds a belief represented by a scalar.

Individuals meet pairwise and exchange information, which is modeled as both individ-

uals adopting the average of their pre-meeting beliefs. When all individuals engage in

this t3'pe of information exchange, the society will be able to effectively aggregate the

initial information held by all individuals. There is also the possibility of misinformation,

however, because some of the individuals are "forceful," meaning that they influence the

beliefs of (some) of the other individuals they meet, but do not change their own opinion.

The paper characterizes how the presence of forceful agents interferes with information

aggregation. Under the assumption that even forceful agents obtain some information

(however infrequent) from some others (and additional weak regularity conditions), we

first show that beliefs in this class of societies converge to a consensus among all in-

dividuals. This consensus value is a random variable, however, and we characterize its

behavior. Our main results quantify the extent of misinformation in the society by either

providing bounds or exact results (in some special cases) on how far the consensus value

can be from the benchmark without forceful agents (where there is efficient information

aggregation). The worst outcomes obtain when there are several forceful agents and

forceful agents themselves update their beliefs only on the basis of information they

obtain from individuals most likely to have received their own information previously.
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1 Introduction

Individuals form beliefs on various economic, political and social variables ("state")

based on information they receive from others, including friends, neighbors and cowork-

ers as well as local leaders, news sources and political actors. A key tradeoff faced by

any society is whether this process of information exchange will lead to the formation

of more accurate beliefs or to certain systematic biases and spread of misinformation.

A famous idea going back to Condorcet's Jury Theorem (now often emphasized in the

context of ideas related to "wisdom of the crowds") encapsulates the idea that exchange

of dispersed information will enable socially beneficial aggregation of information. How-
ever, as several examples ranging from the effects of the Swift Boat ads during the 2004

presidential campaign to the beliefs in the Middle East that 9/11 was a US or Israeli

conspiracy illustrate, in practice social groups are often swayed by misleading ads, media

outlets, and political leaders, and hold on to incorrect and inaccurate behefs.

A central question for social science is to understand the conditions under which

exchange of information will lead to the spread of misinformation instead of aggregation

of dispersed information. In this paper, we take a first step towards developing and

analyzing a framework for providing answers to this question. While the issue of misin-

formation can be studied using Bayesian models, non-Bayesian models appear to provide

a more natural starting point.-' Our modeling strategy is therefore to use a non-Bayesian

model, which however is reminiscent of a Bayesian model in the absence of "forceful"

agents (who are either trying to mislead or influence others or are, for various rational

or irrational reasons, not interested in updating their opinions).

W'e consider a society envisaged as a social network of n agents, communicating and

exchanging information. Specifically, each agent is interested in learning some under-

lying state 6' G M and receives a signal x, (0) G R in the beginning. We assume that

9 = l/n^"^j Xj(0), so that information about the relevant state is dispersed and this

information can be easily aggregated if the agents can communicate in a centralized or

decentralized fashion.

Information exchange between agents takes place as follows: Each individual is "rec-

ognized" according to a Poisson process in continuous time and conditional on this event,

meets one of the individuals in her social neighborhood according to a pre-specified

stochastic process. We think of this stochastic process as representing an underlying

social network (for example, friendships, information networks, etc.). Following this

meeting, there is a potential exchange of information between the two indi\'iduals, af-

fecting the beliefs of one or both agents. We distinguish between two types of individuals:

regular or forceful. When two regular agents meet, they update their beliefs to be equal

to the average of their pre-meeting beliefs. This structure, tough non-Bayesian, has a

'In particular, uiisinformation can arise in a Bayesian model if an agent (receiver) is unsure of the

type of another agent (sender) providing her with information and the sender happen.s (o be of a type

intending to mislead the receiver. Nevertheless, this type of misinformation will be limited since if the

probability that the sender is of the misleading type is high, the receiver will not change her beliefs

much on the basis of the sender's communication.



simple and appealing interpretation and ensures the convergence of beliefs to the un-

derlying state 6 when the society consists only of regular agents." In contrast, when
an agent meets a forceful agent, this may result in the forceful agent "influencing" his

beliefs so that this individual inherits the forceful agent's belief except for an e weight

on his pre-meeting belief.'^ Our modeling of forceful agents is sufficiently general to nest

both individuals (or media outlets) that purposefully wish to influence others with their

opinion or individuals who, for various reasons, may have more influence with some

subset of the population/ A key assumption of our analysis is that even forceful agents

engage in some updating of their beliefs (even if infrequently) as a result of exchange

of information with their own social neighborhoods. This assumption captures the in-

tuitive notion that "no man is an island" and thus receives some nontrivial input from

the social context in which he or she is situated.^ The influence pattern of social agents

superimposed over the social network can be described by directed hnks, referred to

as forceful hnks, and creates a richer stochastic process, representing the evolution of

beliefs in the society. Both with and without forceful agents, the evolution of beliefs

can be represented by a Markov chain and our analysis will exploit this connection. We
will frequently distinguish the Markov chain representing the evolution of beliefs and

the Markov chain induced by the underlying social network (i.e., just corresponding to

the communication structure in the society, without taking into account the influence

pattern) and properties of both will play a central role in our results.

Our objective is to characterize the evolution of beliefs and quantify the effect of

forceful agents on public opinion in the context of this model. Our first result is that,

despite the presence of forceful agents, the opinion of all agents in this social network

converges to a common, tough stochastic, value under weak regularity conditions. More

formally, each agent's opinion converges to a value given by 7r'x(0), where a;(0) is the

vector of initial beliefs and tt is a random vector. Our measure of spread of misinforma-

tion in the society will be 7f'x(0) — 9 = Z]r=i(^i ~ '^/'n)x,{0), where vf is the expected

value of TT and Tfj denotes its ith component. The greater is this gap, the greater is

the potential for misinformation in this society. Moreover, this formula also makes it

clear that yf, — l/n gives the excess influence of agent i. Our strategy will be to develop

"The apipealing interpretation is tliat tliis tyy^ie of averaging would Ije optimal if both agents had

beliefs drawn from a normal distribution with mean equal to the underlying state and equal precision.

This interpretation is discussed in detail in De Marzo, Vayanos, and Zwiebel [16] in a related context.

^When e = 1/2, then the individual treats the forceful agent just as any otlier regular agent (is

not influenced by him over and above the information exchange) and the only difference from the

interaction between two regular agents is that the forceful agent himself does not update his beliefs. All

of our analysis is conducted for arbitrary e, so whether forceful agents are also "influential'' in pairwise

meetings is not important for any of our findings.

''What we do not allow are individuals who know the underlying state and try to convince others of

some systematic bias relative to the underlying state, though the model could be modified to fit this

possibility as well.

^When there are several forceful ageiu.s and none of them ever change their opinion, then it is

straightforward to see that opinions in this society will never settle into a ''stationary'' distribution.

While this case is also interesting to study, it is significantly more difficult to analyze and requires a

different mathematical approach.



bounds on the spread of misinformation in the society (as defined above) and on the

excess influence of each agent for general social networks and also provide exact results

for some special networks.

We provide three types of results. First, using tools from matrix perturbation the-

ory,^ we provide global and general upper bounds on the extent of misinformation as a

function of the properties of the underlying social network. In particular, the bounds

relate to the spectral gap and the mixing properties of the Markov chain induced by the

social network. Recall that a Markov chain is fast-mixing if it converges rapidly to its

stationary distribution. It will do so when it has a large spectral gap, or loosely speak-

ing, when it is highly connected and possesses many potential paths of communication

between any pair of agents. Intuitively, societies represented by fast-mixing Markov

chains have more limited room for misinformation because forceful agents themselves

are influenced by the weighted opinion of the rest of the society before they can spread

their own (potentially extreme) views. A corollary of these results is that for a spe-

cial class of societies, corresponding to "expander graphs", misinformation disappears

in large societies provided that there is a finite number of forceful agents and no forceful

agent has global impact.^ In contrast, the extent of misinformation can be substantial

in slow-mixing Markov chains, also for an intuitive reason. Societies represented by

such Markov chains would have a high degree of partitioning (multiple clusters with

weak communication in between), so that forceful agents receive their information from

others who previously were influenced by them, ensuring that their potentially extreme

opinions are never moderated.®

Our second set of results exploit the local structure of the social network in the

neighborhood of each forceful agent in order to provide a tighter characterization of the

extent of misinformation and excess influence. Fast-mixing and spectral gap properties

are global (and refer to the properties of the overall social network representing meeting

and communication patterns among all agents). As such, they may reflect properties of

a social network far from where the forceful agents are located. If so, our first set of

bounds will not be tight. To redress this problem, we develop an alternative analysis

using mean (first) passage times of the Markov chain and show how it is not only the

global properties of the social network, but also the local social context in which forceful

agents are situated that matter. For example, in a social network with a single dense

cluster and several non-clustered pockets, it matters greatly whether forceful links are

located inside the cluster or not. We illustrate this result sharply by first focusing

''In partirular, we ck;compose the transiiion matrix of the Marko\' chain into a dotil")ly stochastic

matrix, representing the underl^'ing social networlc, and a remainder matrix, representing a directed

influence graph. Despite the term "pert\irl')ation," this remainder matrix need not be ''small" in any

sense.

^Expander graphs are graphs whose spectral gap remains bounded away from zero as the number

of nodes tends to infinity. Several networks related to the Internet corre.spond to expander graphs; see,

for example, Mihail, Papa.dimitriou. and Saberi [27].

*This result is related to Golub and Jackson [20], where they relate learning to homophily properties

of the social network.



on graphs with forceful essential edges, that is, graphs representing societies in which

a single forceful link connects two otherwise disconnected components. This, loosely-

speaking, represents a situation in which a forceful agent, for example a media outlet or

a pohtical party leader, obtains all of its (or his or her) information from a small group

of individuals and influences the rest of the society. In this context, we establish the

surprising result that all members of the small group will have the same excess influence,

even though some of them may have much weaker links or no links to the forceful agent.

This result is an implication of the society having a (single) forceful essential edge and

reflects the fact that the information among the small group of individuals who are the

source of information of the forceful agent aggregates rapidly and thus it is the average

of their beliefs that matter. We then generalize these results and intuitions to more

general graphs using the notion of information bottlenecks.

Our third set of results are more technical in nature, and provide new conceptual

tools and algorithms for characterizing the role of information bottlenecks. In particular,

we introduce the concept of relative cuts and present several new results related to

relative cuts and how these relate to mean first passage times. For our purposes, these

new results are useful because they enable us to quantify the extent of local clustering

around forceful agents. Using the notion of relative cuts, we develop new algorithms

based on graph clustering that enable us to provide improved bounds on the extent of

misinformation in beliefs as a function of information bottlenecks in the social network.

Our paper is related to a large and growing learning literature. Much of this literature

focuses on various Bayesian models of observational or communication-based learning;

for example Bikchandani, Hirshleifer and Welch [8], Banerjee [6], Smith and Sorensen

[36], [35], Banerjee and Fudenberg [7], Bala and Goyal [4], [5], Gale and Kariv [18], and

Celen and Kariv [12], [11]. These papers develop models of social learning either using

a Bayesian perspective or exploiting some plausible rule-of-thumb behavior. Acemoglu,

Dahleh, Lobel and Ozdaglar [1] provide an analysis of Bayesian learning over general

social networks. Our paper is most closely related to DeGroot [15], DeMarzo, Vayanos

and Zwiebel [16] and Golub and Jackson [21], [20], who also consider non-Bayesian

learning over a social network represented by a connected graph. ^ None of the papers

mentioned above consider the issue of the spread of misinformation (or the tension

between aggregation of information and spread of misinformation), though there are

close parallels between Golub and Jackson's and our characterizations of influence.""^ In

^An important distinction is that in contrast to the ''averaging" model used in these papers, we
have a model of pairwise interactions. We believe that this model has a more attractive economic

interpretation, since it does not have the feature that neighbors' information will be averaged at each

date (even though the same information was exchanged the previous period). In contrast, in the pairwise

meeting model (without forceful agents), if a pair meets two periods in a row. in the second meeting

there is no information to exchange and no change in beliefs takes place.

^°In particular, Golub and Jackson [20] characterize the effects of homophily on learning and influence

in two different models of learning in terms of mixing properties and the spectral gap of gra.phs. In one

of their learning models, which builds on DeGroot [1.5], DeMarzo, Vayanos and Zwiebel [16] and Golub

and Jackson [21], homophil}' has negative effects on learning (and speed of learning) for reasons related

to our finding that in slow-mixing graphs, misinformation can spread more.



addition to our focus, the methods of analj'sis here, which develop bounds on the extent

of misinformation and provide exact characterization of excess influence in certain classes

of social networks, are entirely new in the literature and also rely on the developments

of new results in the analysis of Markov chains.

Our work is also related to other work in the economics of communication, in par-

ticular, to cheap-talk models based on Crawford and Sobel [14] (see also Farrell and

Gibbons [17] and Sobel [37]), and some recent learning papers incorporating cheap-talk

games into a network structure (see Ambrus and Takahashi [3], Hagenbach and Koessler

[22], and Galeotti, Ghiglino and Squintani [19]).

In addition to the papers on learning mentioned above, our paper is related to work

on consensus, which is motivated by different problems, but typically leads to a similar

mathematical formulation (Tsitsiklis [38], Tsitsiklis, Bertsekas and Athans [39], Jad-

babaie, Lin and Morse [25], Olfati-Saber and Murray [29], Olshevsky and Tsitsiklis [30],

Nedic and Ozdaglar [28]). In consensus problems, the focus is on whether the beliefs

or the values held by different units (which might correspond to individuals, sensors or

distributed processors) converge to a common value. Our analysis here does not only

focus on consensus, but also whether the consensus happens around the true value of

the underlying state. There are also no parallels in this literature to our bounds on

misinformation and characterization results.

The rest of this paper is organized as follows: In Section 2, we introduce our model of

interaction between the agents and describe the resulting evolution of individual beliefs.

We also state our assumptions on connectivity and information exchange between the

agents. Section 3 presents our main convergence result on the evolution of agent beliefs

over time. In Section 4, we provide bounds on the extent of misinformation as a function

of the global network parameters. Section 5 focuses on the effects of location of forceful

links on the spread of misinformation and provides bounds as a function of the local

connectivity and location of forceful agents in the network. Section 6 contains our

concluding remarks.

Notation and Terminology: A vector is viewed as a column vector, unless clearly

stated otherwise. We denote by x, or [x]^ the i"^ component of a vector x. When x, >
for all components i of a vector x, we write x > 0. For a matrix A, we write Aij or {A]tj

to denote the matrix entry in the i"' row and j"" column. We write x' to denote the

transpose of a vector x. The scalar product of two vectors x,y G R™ is denoted by x'y.

We use Ijxlio to denote the standard Euclidean norm, ||x||2 =: V-'c'x. We write l|x||oo to

denote the max norm, \\x\\r^ = maxi<j<,n |x,,|. We use e^ to denote the vector with i"'

entry equal to 1 and all other entries equal to 0. We denote by e the vector with all

entries equal to 1.

A vector a is said to be a stochastic vector when a, > for all t and 7], a, = 1.

A square matrix A is said to be a (row) stochastic matrix when each row of /I is a

stochastic vector. The transpose of a matrix A is denoted by A' . A square matrix A is

said to be a doubly stochastic matrix when both A and A' are stochastic matrices.



2 Belief Evolution

2.1 Description of the Environment

We consider a set N = {1, . . . ,n} of agents interacting over a social network. Each

agent i starts with an initial belief about an underlying state, which we denote by

Xi(0) G M. Agents exchange information with their neighbors and update their beliefs.

We assume that there are two types of agents; regular and forceful. Regular agents

exchange information with their neighbors (when they meet). In contrast, forceful agents

influence others disproportionately.

We use an asynchronous continuous-time model to represent meetings between agents

(also studied in Boyd et al. [9] in the context of communication networks). In particular,

we assume that each agent meets (communicates with) other agents at instances defined

by a rate one Poisson process independent of other agents. This implies that the meeting

instances (over all agents) occur according to a rate n Poisson process at times tk,k > 1.

Note that in this model, by convention, at most one node is active (i.e., is meeting

another) at a given time. We discretize time according to meeting instances (since these

are the relevant instances at which the beliefs change), and refer to the interval [ifc,i/c+i)

as the /c"* tivae slot. On average, there are n meeting instances per unit of absolute time

(see Boyd et al. [9] for a precise relation between these instances and absolute time).

Suppose that at time (slot) /c, agent i is chosen to meet another agent (probability

1/n). In this case, agent i will meet agent j G A/" with probability p,j. Following a

meeting between i and j, there is a potential exchange of information. Throughout,

we assume that all events that happen in a meeting are independent of any other event

that happened in the past. Let x,:(fc) denote the belief of agent i about the underlying

state at time k. The agents update their beliefs according to one of the following three

possibilities.

(i) Agents i and j reach pairwise consensus and tlie beliefs are updated according to

• ' ^^lk + l) = x,{k + l) = ^^^^^^^^^.

We denote the conditional probability of this event (conditional on i meeting j)

(ii) Agent j influences agent ?', in which case for some e G (0,1/2], behefs change

according to

x,{k + 1) = ex,{k) + (1 - t)xj{k), and Xj{k + 1) = Xj{k). '
'

(1)

In this case beliefs of agent j do not -change. ^^ We denote the conditional prob-

ability of this event as Q',j, and refer to it as the influence probability. Note that

'^We could allow the self belief weight e to be different for each agent i. This generality does not

change the results or the economic intuitions, so for notational convenience, we assume this weight to

be the same across all agents.



V. e allow e = 1/2, so that agent i may be treating agent j just as a regular agent,

except that agent j himself does not change his beliefs.

(iii) Agents i and j do not agree and stick to their behefs, i.e.,

x,:(/c+ 1) = Xi{k), and Xj{k + 1) = Xj{k).

This event has probabilit}' 7,,^
= 1 — /5,j

— a^j.
'.-

Any agent j for whom the influence probability a-ij > for some i €. Af is referred

.to as & forceful agent. Moreover, the directed link (jj) is referred to as a. forceful Imk}"^

As discussed in the introduction, we can interpret forceful agents in multiple different

ways. First, forceful agents may correspond to community leaders or news media, will

have a disproportionate eff'ect on the beliefs of their followers. In such cases, it is natural

to consider e small and the leaders or media not updating their own beliefs as a result

of others listening to their opinion. Second, forceful agents may be indistinguishable

from regular agents, and thus regular agents engage in what they think is information

exchange, but forceful agents, because of stubbornness or some other motive, do not

incorporate the information of these agents in their own beliefs. In this case, it may be

natural to think of t a.s equal to 1/2. The results that follow remain valid with either

interpretation.

The influence structure described above will determine the evolution of beliefs in

the society. Below, we will give a more precise separation of this evolution into two

components, one related to the underlying social network (communication and meeting

structure), and the other to influence patterns.

2.2 Assumptions

We next state our assumptions on the belief evolution model among the agents. We
have the following assumption on the agent meeting probabilities pi-j.

Assumption 1. (Meetmg Probabilities)

(a) For all i, the probabilities p„ are equal to 0.

(b) For all ?, the probabilities p^j are nonnegative for all j and they sum to 1 over j,

I.e.

Pij > for all i,j, z_.Pi] — ^ fo^" ^1'

-'We refer t.o directed link.s/edges as links and undireeCed ones as edges.



Assumption 1(a) imposes that "self-communication" is not a possibility, though this

is just a convention, since, as stated above, we allow disagreement among agents, i.e.,

7ij can be positive. We let P denote the matrix with entries p^. Under Assumption

1(b), the matrix. P is a stochastic matrix}^

We next impose a connectivity assumption on the social network. This assumption is

stated in terms of the directed graph (A^, £), where £ is the set of directed links induced

by the positive meeting probabilities pjj, i.e.,

£ = {{hj) \Pr:>0}. (2)

Assumption 2. (Connectivity) The graph {J\f,£) is strongly connected, i.e., for all

i,j G M, there exists a directed path connecting •/. to j with links in the set £.

Assumption 2 ensures that every agent "communicates" with every other agent (pos-

sibly through multiple links). This is not an innocuous assumption, since otherwise the

graph {J\f, £) (and the society that it represents) would segment into multiple non-

communicating parts. Though not innocuous, this assumption is also natural for several

reasons. First, the evidence suggests that most subsets of the society are not only con-

nected, but are connected by means of several links (e.g., Watts [40] and Jackson [24]),

and the same seems to be true for indirect linkages via the Internet. Second, if the soci-

ety is segmented into multiple non-communication parts, the insights here would apply,

with some modifications, to each of these parts.

Let us also use dij to denote the length of the shortest path from i to j and d to

denote the maximum shortest path length between any i,j G A^, i.e.,

d = max d,,. (3)

In view of Assumption 2, these are all well-defined objects.

Finally, we introduce the following assumption which ensures that there is positive

probability that every agent (even if he is forceful) receives some information from an

agent in his neighborhood.

Assumption 3. (Interaction Probabilities) For all (i, j) G £, the sum of the averaging

probability P^j and the influence probability a^j is positive, i.e.,

Aj + ctij > for all {i,j) G <£".

The connecti^ity assumption (Assumption 2) ensures that there is a path from any

forceful agent to other agents in the network, implying that for any forceful agent /, there

is a link (z, j) G £ for some j G A/". Then the main role of Assumption 3 is to guarantee

that even the forceful agents at some point get information from the other agents in

13That is. its row sums are equal to 1.



the network.'^ This assumption captures the idea that "no man is an island," i.e., even

the behefs of forceful agents are affected by the beliefs of the society. In the absence of

this assumption, any society consisting of several forceful agents may never settle into

a stationary distribution of beliefs. While this is an interesting situation to investigate,

it requires a very different approach. Since we view the "no man is an island" feature

plausible, we find Assumption 3 a useful starting point. .,
,

Throughout the rest of the paper, we assume that Assumptions 1, 2, and 3 hold.

2.3 Evolution of Beliefs: Social Network and Influence Matri-

ces

We can express the preceding belief update model compactly as follows. Let x{k) —
{xi{k), . . . ,Xn{k)) denote the vector of agent beliefs at time k. The agent beliefs are

updated according to the relation

x{k + l) = W(k)x{k),
'

(4)

where W{k) is a random matrix given by

{Ajj = I - ^'"^^ 2'^'''^^
"^^^^ probability Pij/S^j/n,

Jij = I - [I - e)ej(e, — Cj)' with probabihty Pijaij/n, (5)

/ with probability p,j7jj/n,

for all i.j G A^". The preceding belief update model implies that the matrix W{k) is a

stochastic matrix for all fc, and is independent and identically distributed over all k.

Let us introduce the matrices

$(/,:, s) = W{k)\V{k - 1) • W{s + l)W{s) for all k and s with k > s, (6)

with ^{k,k) — \V[k) for all k. We will refer to the matrices <J>(/c,s) as the transition

matrices. We can now write the belief update rule (4) as follows; for all s and k with

k > s > and all agents j G {1, . . . , n},

n

x,{k + l) = J2mk,s)],,Xj{s). (7)

j=i

Given our assumptions, the random matrix W{k) is identically distributed over all

/c, and thus we have for some nonnegative matrix 1^,

E[W{k)] = W for all A- > 0. (8)

^"'Tliis assumption is stated lor all {i.,j} 6 £, thus fi Forceful agent i receives souie iiiforuiatioii from

any j in his '"neighborhood". This is without any loss of generahty, since wc can always set p^ = for

those j's that are in z's neighl:)orhood but from whom i never obtains information.

10



The matrix, W, which we refer to as the mean interaction matrix, represents the evolu-

tion of beliefs in the society. It incorporates elements from both the underlying social

network (which determines the meeting patterns) and the influence structure. In what

follows, it will be useful to separate these into two components, both for our mathemat-

ical analysis and to clarify the intuitions. For this purpose, let us use the belief update

model (4)-(5) and write the mean interaction matrix W as follows:-'^

n

where .4,j and J,:j are matrices defined in Eq. (5), and the second inequality follows from

the fact that /3jj = 1 - Q'ij
— 7,^ for all i, j G J\f. We use the notation

to write the mean interaction matrix, W, as

W = T + D. (10)

Here, the matrix T only depends on meeting probabilities (matrix P) except that

it also incorporates ')jj (probability that following a meeting no exchange takes place).

We can therefore think of the matrix T as representing the underlying social network

(friendships, communication among coworkers, decisions about which news outlets to

watch, etc.), and refer to it as the social network m.atrix. It will be useful below to

represent the social interactions using an undirected (and weighted) graph induced by

the social network matrix T. This graph is given by (A^, ^), where A is the set of

undirected edges given by
,

,

^={{i,j}|7^, >o},
; ..,

;
: ^ (11)

and the weight Ws of edge e = {i,j] is given by the entry T,j = Tj^ of the matrix T. We
refer to this graph as the social network graph.

The matrix D, on the other hand, can be thought of as representing the influence

structure in the society. It incorporates information about which individuals and links

are forceful (i.e., which types of interactions will lead to one individual influencing the

other without updating his own beliefs). We refer to matrix D as the influence matrix.

It is also useful to note for interpreting the mathematical results below that T is a

doubly stochastic matrix, while D is not. Therefore, Eq. (10) gives a decomposition of

the mean connectivity matrix W into a doubly stochastic and a remainder component,

and enables us to use tools from matrix perturbation theory (see Section 4).

^In the sequel, the notation ^, will be tiseci to denote the double sum Yl^j=\ Yl,",=\-

11



3 Convergence

In this section, we provide our main convergence result. In particular, we show that

despite the presence of forceful agents, with potentially very different opinions at the

beginning, the society will ultimately converge to a consensus, in which all individuals

share the same belief. This consensus value of beliefs itself is a random variable. We
also provide a first characterization of the expected value of this consensus belief in

terms of the mean interaction matrix (and thus social network and influence matrices).

Our analysis essentially relies on showing that iterates of Eq. (4), x{k.), converge to a

consensus with probabiUty one, i.e., x{k) —
> .xe, where x is a scalar random variable

that depends on the initial beliefs and the random sequence of matrices {W{k)}, and e

is the vector of all one's. The proof uses two lemmas which are presented in Appendix

B.

Theorem 1. The sequences {xj(/c)}, 2 G A/", generated by Eq. (4) converge to a consen-

sus belief, i.e., there exists a scalar random variable x such that

lim x,{k) — X for all i with probability one.
k—'oo

Moreover, the random variable x is a convex combination of initial agent beliefs, i.e.,

n

where tt = [vri, . . . , 7r„] is a random vector that satisfies vr^ > for all j, and X]" j tt^ = 1.

Proof. By Lemma 9 from Appendix B, we have

Pl[^{s + n^d- l,s)]y > ^e"'-\ for all z,j| >
( ^ J

for all s > 0,

where $(s + n'^d — l,s) is a transition matrix [cf. Eq. (6)], d is the maximum shortest

path length in graph {Af,S) [cf. Eq. (3)], e is the self belief weight against a forceful

agent [cf. Eq. (1)], and 77 is a positive scalar defined in Eq. (45). This relation implies

that over a window of length n~d, all entries of the transition matrix <I>(s + n~d — 1, s)

are strictly positive with positive probability, which is uniformly bounded awa,y from 0.

Thus, we can use Lemma 6 (from Appendix A) with the identifications

H{k) = W{k), B = n-d, 9 ="]-€"' -\

Letting

M[k) = maxx,(/i:), m.{k) = minx,(/.:)

12



n't ^2
this implies that n^e" ^ < 1 and for all s > 0,

Phl{s + n^d) -m{s + n'^d) < (1 - 717772 e"'~^)(Af(s) - m(s))} >
d\ »

Moreover, by the stochasticity of the matrix \V{k), it follows that the sequence {M{k) —

m{k)} is nonincreasing with probability one. Hence, we have for all s >

E M{s+rrd)-m.{s+rrd) < + ly) (l-n7?72e— ') {M{s)-mis)),

from which, for any /c > 0, we obtain

M{k) - m{k)

This implies that

<

2 2

V \ I v
1 - n'q''/2 e

Tl/-l^

L;;t3J

(M(0) - 7n(0)).

lim M(^') — m{k) = with probability one.
k—*oo

The stochasticity of the matrix W{k) further implies that the sequences {M{k)} and

{m.{k)} are bounded and monotone and therefore converges to the same limit, which we

denote by x. Since we have

it follows that

m{k) < x,{k) < M{k) for all i smd k > 0,

lim Xi{k) = X for all i with probability one,
/c—'OO

establishing the first result. '

.

Letting s = in Eq. (7), we have for all i

n

x,{k) = J][$(fc - 1, 0)],j Xj(0) for all k > 0.

From the previous part, for any initial belief vector x(0), the limit

:i2)

: lim Xi{k) = y lim[$(A;- l,0)],jXj(0)

exists and is independent of i. Hence, for any h, we can choose x[0) = e^, i.e., x/i(0) = 1

and Xj{0) = for all j ^ h, implying that the limit

lim [*(^^- 1,0)],,
fc—»oo

exists and is independent of ?'. Denoting this limit by tt/, and using Eq. (12), we obtain

the desired result, where the properties of the vector jr = [tti, . .
. , 7r„] follows from

the stochasticity of matrix $(/c, 0) for all k (implying the stochasticity of its limit as

k -^ 00). , .

'
^

' D

1.3



The key implication of this result is that, despite the presence of forceful agents,

the society will ultimately reach a consensus. Though surprising at first, this result is

intuitive in light of our "no man is an island" assumption (Assumption 3). However, in

contrast to "averaging models" used both in the engineering literature and recently in

the learning literature, the consensus value here is a random variable and will depend

on the order in which meetings have taken place. The main role of this result for us

is that we can now conduct our analysis on quantifying the extent of the spread of

misinformation by looking at this consensus value of beliefs.

The next theorem characterizes E{x] in terms of the limiting behavior of the matrices

W'' as k goes to infinity.

Theorem 2. Let i be the limiting random variable of the sequences {xj(/c)}, i G A^

generated by Eq. (4) (cf. Theorem 1). Then we have:

(a) The matrix 14'''" converges to a stochastic matrix with identical rows n as k goes

to inlinity, i.e.,

lira W'' = en.
k—'oc

(b) The expected value of x is given by a convex combination of the initial agent values

x,(0), where the weights are given by the components of the probability vector yf,

i.e.,

71

£[X] = ^7f,x,(0) =7f'x(0).

1=1

Proof, (a) This part relies on the properties of the mean interaction matrix established

in Appendix B. In particular, by Lemma 7(a), the mean interaction matrix W is a

primitive matrix. Therefore, the Markov Chain with transition probability matrix W is

regular (see Section 4.1 for a definition). The result follows immediately from Theorem

3(a).

(b) From Eq. (7). we have for all A: >

x{k) = ^{k- 1,0)t(0).

Moreover, since x{k) -^ xe as k ^ oo, we have

E{xe] = E[\im x{k)] ^ lim E[x{k)],

where the second equality follows from the Lebesgue's Dominated Convergence Theorem

(see [31]). Combining the preceding two relations and using the assumption that the

matrices W(k) are independent and identically distributed over all k > 0, we obtain

^[.re] = lira E['^{k - l,0)x(0)] = lira W''x{0).
k—'OO /c—*oC'

which in view of part (a) implies

E[x] = tt'x{0).

D
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Combining Tlieorem 1 and Theorem 2(a) (and using the fact that the results hold for

any 2;(0)), we have vf = ^'[Tr]. The stationary distribution n is crucial in understanding

the formation of opinions since it encapsulates the weight given to each agent (forceful

or regular) in the (limiting) mean consensus value of the society. We refer to the vector

7f as the consensus distribution corresponding to the mean interaction matrix W and its

component Tf^ as the weight of agent i.

It is also useful at this point to highlight how consensus will form around the correct

value in the absence of forceful agents. Let {x(/c)} be the belief sequence generated by

the belief update rule of Eq. (4). When there are no forceful agents, i.e. aij = for all

i,j, then the interaction matrix W{k) for all k is either equal to an averaging matrix

Aij for some i,j or equal to the identity matrix /; hence, W{k) is a doubly stochastic

matrix. This implies that the average value of x{k) remains constant at each iteration,

i.e.,

1 " 1 "
-y^ xAk) = -y^ xAO) • for all fc > 0.

n ^-^ n ^-^
i=\ 1=1

Theorem 1 therefore shows that when there are no forceful agents, the sequences x^{k)

for all f, converge to the average of the initial beliefs with probability one, aggregating

information. We state this result as a simple corollary.

Corollary 1. Assume that there are no forceful agents, i.e., Q',j = for all i.j £ M . We
have - . .

1 " '

'

lira xAk\ = — y Xi(0) = 9 with probability one.
k^oo n ^-^

)=i

Therefore, in the absence of forceful agents, the society is able to aggregate informa-

tion effectively. Theorem 2 then also implies that in this case tt = tt, = 1/n for all i (i.e.,

behefs converge to a deterministic value), so that no individual has excess influence.

These results no longer hold when there are forceful agents. In the next section, we

investigate the effect of the forceful agents and the structure of the social network on

the extent of misinformation and excess influence of individuals.

4 Global Limits on Misinformation

In this section, we are interested in providing an upper bound on the expected value of

the difference between the consensus belief x (cf. Theorem 1) and the true underlying

state, Q (or equivalently the average of the initial beliefs), i.e.,

E[x-^] = E[x]-'0 = ^(^,-^)x,,(O), (13)

(cf. Theorem 2). Our bound relies on a fundamental theorem from the perturbation

theory of finite Markov Chains. Before presenting the theorem, we first introduce some

terminology and basic results related to Markov Chains.

15



4.1 Preliminary Results

Consider a finite Markov Chain with n states and transition probability matrix T.'^ We
say that a finite Markov chain is regular if its transition probability matrix is a primitive

matrix, i.e., there exists some integer k > such that all entries of the power matrix

T'' are positive. The following theorem states basic results on the limiting behavior of

products of transition matrices of Markov Chains (see Theorems 4.1.4, 4.1.6, and 4.3.1

in Kemeny and Sneh [26]).

Theorem 3. Consider a regular Markov Chain with n states and transition probability

matrix T.

(a) The /c"" power of the transition matrix T, T*^, converges to a stochastic matrix T°°

with all rows equal to the probability vector n, i.e.,

lim T'' = T^ = eyr', .
' -.

'

where e is the n-dimensional vector of all ones.

(b) The probability vector tt is a left eigenvector of the matrix T, i.e.,

Tx'T = tt' and ir'e = 1.

The vector tt is referred to as the stationary distribution of the Markov Chain.

(c) The matrix >' = {I — T + T'^)'^ — T°° is well-defined and is given by

DO

fc=0

The matrix Y is referred to as the fundamental matrix of the Markov Chain.

The following theorem provides an exact perturbation result for the stationary dis-

tribution of a regular Markov Chain in terms of its fundamental matrix. The theorem

is based on a result due to Schweitzer [32] (see also HaA'iv and Van Der Heyden [23]).

Theorem 4. Consider a regular Markov Chain with n states and transition probability

matrix T . Let tt denote its unique stationary distribution and Y denote its fundamental

matrix. Let D be an 77 x n perturbation matrix such that the sum of the entries in each

row is equal to 0, i.e.,

rt

^[D]y = for all i.

^^We use the same nota.tion a,s in (10) here, given the close connection between the ma.trices introduced

in the next two theorems and the ones in (10).
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Assume that the perturbed Markov chain with transition matrix T = T + D is regular.

Then, the perturbed Markov chain has a unique stationary distribution tt, and the matrix

/ — DY is nonsingular. Moreover, the change in the stationary distributions, p = n — tt,

is given by
p' ^7r'DY{I - DY)-\

4.2 Main Results

This subsection provides bounds on the difference between the consensus distribution

and the uniform distribution using the global properties of the underlying social network.

Our method of analysis will rely on the decomposition of the mean interaction matrix

W given in (10) into the social network matrix T and the influence matrix D. Recall

that T is doubly stochastic.

The next theorem provides our first result on characterizing the extent of misinfor-

mation and establishes an upper bound on the /cx,-norm of the difference between the

stationary distribution n and the uniform distribution ^e, which, from Eq. (13), also

provides a bound on the deviation between expected beliefs and the true underlying

state, 6.

Theorem 5. (a) Let n denote the consensus distribution. The /oc-norm of the differ-

ence between tt and ^e is given by

1
— e
n

<
1 E^,JP^Ja^.

'In

where (5 is a constant defined by

U. 1 ~ ^'J
, ,„ 1 ~ ^J'

and d is the maximum shortest path length in the graph {M,£) [cf. Eq. (3)].

(b) Let X be the limiting random variable of the sequences {i-j(/c)}, i 6 M generated

by Eq. (4) (cf. Theorem 1). We have
:

n '--^
I 1-0 2n

1=1

Proof, (a) Recall that the mean interaction matrix can be represented as

W = T + D,
•
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[cf. Eq. (10)], i.e., W can be viewed as a perturbation of the social network matrix T
by influence matrix D. By Lemma 10(a), the stationary distribution of the Markov

chain with transition probability matrix T is given by the uniform distribution -e. By
the definition of the matrix D [cf. Eq. (9)] and the fact that the matrices A^., and J^j

are stochastic matrices with all row sums equal to one [cf. Eq. (5)], it follows that the

sum of entries of each row of D is equal to 0. Moreover, by Theorem 2(a), the Markov

Chain with transition probability matrix W is regular and has a stationary distribution

7f. Therefore, we can use the exact perturbation result given in Theorem 4 to write the

change in the stationary distributions ^e and n as

TT- -eV = -e'DY{I - DY)-\
n / n

;i4)

where Y is the fundamental matrix of the Markov Chain with transition probability

matrix T, i.e.,

y = ^(T'^-T°°),
/c=0

with T"^ = -ee' [cf. Theorem 3(c)]. Algebraic manipulation of Eq. (14) yields

-e) -Tf'Dy,
n

implying that

n
< WDY ;i5)

where ||D}'||oo denotes the matrix norm induced by the /^o vector norm.

We next obtain an upper bound on the matrix norm ||D}^||oo- By the definition of

the fundamental matrix Y, we have

DY = Y^ D{T^ ^T°^) = Y^ DT\ ;i6)

fc=0 /c=0

where the second equality follows from the fact that the row sums of matrix D is equal

to and the matrix T°° is given by T°^ = -ee'.

Given any 2(0) G R" with ||2(0)||oo =^ 1, let {;(/i.')} denote the sequence generated by

the hnear update rule

z{k) = T^z{Q) for all A: > 0.

Then, for all fc > 0, we have

DT^z{{)) = Dz{k),

which by the definition of the matrix D [cf. Eq. (9)] implies

(17)

J J
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where the vector z''^{k) G M" is defined as

z'^ik) = [J^J
- A,,j]z{k) for all i, j, and k >0.

By the definition of the matrices J,j and Aij [cf. Eq. (5)], the entries of the vector z^^{k)

are given by

'i-e^{z^{k)-z,ik)) if/ = z,

[z''{k)]i= { ' i(,^.(/c)_^^(fc)) iU =
j,

(18)

otherwise.

This impUes that the vector norm ||2*"'(/c)||oo can be upper-bounded by

for all i.j, and k > 0.
1 r

l2"-^(^)||oo < o max zi{k) - mmzi{k)

Defining M{k) = max/g^v" ~iik) and m{k) = mini^j^ zi{k) for all k > 0, this implies that

\\z'Hk)\U < li^'Hk) - m(/c)) < ^(5'-" (M(0) - ?n(0)) for all ij, and fc > 0,

where the second inequality follows from Lemma 10(b) in Appendix C. Combining the

preceding relation with Eq. (17), we obtain

\\DT'z{Q)\\^ < ^ lY^P.ja.A (5'=(Af(0) -m(0)).

By Eq. (16), it follows that

OC OO - /

\DYzm^ < J2 WDT'zmi^ < E ^ E^
k=0 k=0 \ i.j

p,ja,j \5'{M{0)-m.{0))<
2n(l ~S)

'

where to get the last inequality, we used the fact that < 5 < 1 and M(0) — m(0) < 1,

which follows from ||2(0)||oo = 1- Since 2(0) is an arbitrary vector with ||2(0)||oo = 1,

this implies that -
.

'

\DY\\^ = min \\DYz\\^ <
{^

I
l|z||oo=i}

Combining this bound with Eq. (15), we obtain

1

2/7.(1 - 6)
/ ^ Vij^i]

I

J

TT e
n

<
1 E,.jPuav

1 - 5 In

establishing the desired relation,

(b) By Lemma 2(b), we have

E\x\ = 7f'x(0).
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This implies that

Em - -'E x,(0) = fr'xiO) - -e'x(O) <
!=1

TT e
n

k(0)||c

The result follows by combining this relation with part (a). D

Before providing the intuition for the preceding theorem, we provide a related bound

on the /o-norm of the difference between yf and the uniform distribution -e in terms of^ n

the second largest eigenvalue of the social network matrix T, and then return to the

intuition for both results. /"~^. -..r—
'

Theorem 6. Let tt denote the consensus distribution (cf. Lemma 2). The /2-norm of

the difference between tt and -e is given by

1

TT e
n

<
1 E,.jPuQX

I2
-

1 - X2{T) n

where X2{T) is the second largest eigenvalue of the matrix T defined in Eq. (9).

Proof. Following a similar argument as in the proof of Theorem 5, we obtain

1

IT e
n

< WDY (19)

where |[i?i''||2 is the matrix norm induced by the I2 vector norm. To obtain an upper

bound on the matrix norm ||Z^y'||2, we consider an initial vector 2(0) 6 R" with ||2(0)||2 =
1 and the sequence generated by

ik + l) = Tz{k} foralU->0.

Then, for all A: > 0, we have

DT'ziO)
n Z^P^J^^J '{k), (20)

where the entries of the vector z^^ (k) are given by Eq. (IS). We can provide an upper

bound on the i|~'-'(/v")|li as

\\~''{k)\\l = \{^Ak) - ^rm' =
\
{{^lik) - 5) + {z - z^{k)))\

where z = -Y17=i ~iik) ^i' f^^I ^' (i^ote that since T is a doubly stochastic matrix, the

average of the entries of the vector z{k) is the same for all k). Using the relation

(a + b)~ < 2{a^ + b~) for any scalars a and 6, this yields

\k)\\l<Y.^z,[k)--zf = \\z{k)--ze\\l

20

(21)
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We have

zik + 1) -ze = Tz{k) - ze = T(z{k) - ze\

where the second equahty follows from the stochasticity of the matrix T, implying that

Te = e. The vector z{k) — ze is orthogonal to the vector e, which is the eigenvector

corresponding to the largest eigenvalue Aj = 1 of matrix T (note that Ai = 1 since T
is a primitive and stochastic matrix). Hence, using the variational characterization of

eigenvalues, we obtain

\\z{k + 1) - ze\\l < {z{k) - -zeyr- {z{k) - ze) < \2{Tnz[k) - zeg.

where A2(T) is the second largest eigenvalue of matrix T, which implies

\\z{k) - ze\\l < (a2(T)2) VnO) - ze\\l < X.^iTf':

Here the second inequality follows form the fact that |lc(0)|l2 = 1 and z is the average

of the entries of vector 2(0). Combining the preceding relation with Eq. (21), we obtain

\\z''ik)\\2 < \2[Tf for all k > 0.

By Eq. (20), this implies that - ^ / '

\\DT'z{0)\\2 - ^(^p.ja,j)A2(r)''- for all k > 0,

;
,

'''' ..-, •' ''J :.'!
" •, •.,"

Using the definition of the fundamental matrix 1', we obtain • ^.

oo oo .. .. v-^

||Dr.-(o)tb < E W^THom < E^(Ep.".)A.(r)'- =^^ ^^^^.
fe=0 fc=0 I,]

' ^\ I

for any vector 2(0) with ||2(0)||2 = 1. Combined with Eq. (19), this yields the desired

result. D

Theorem G characterizes the variation of the stationary distribution in terms of the

average influence, —''' '^ '"'

,
and the second largest eigenvalue of the social network

matrix 7", A2(T'). As is well known, the difference 1 — A2(r), also referred to as the

spectral gap, governs the rate of convergence of the Markov Chain induced by the social

network matrix T to its stationary distribution (see [10]). In particular, the larger

1 — A2(T) is, the faster the /c"" power of the transition probability matrix converges to

the stationary distribution matrix (cf. Theorem 3). When the Markov chain converges

to its stationary distribution rapidly, we say that the Markov chain is fast-mixing}''

''We use the terms ''spectral gap of the Markov chain" and "spectral gap of tlie (induced) graph",

and '"fast-mixing Markov chain" and "fast-mixing graph" interchangeably in the sequel.
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In this light, Theorem 6 shows that, in a fast-mixing graph, given a fixed average influ-

ence ^''' '^ '^

, the consensus distribution is "closer" to the underlying 9 = -
X^"=i Xi{0)

and the extent of misinformation is limited. This is intuitive. In a fast-mixing social

network graph, there are several connections between any pair of agents. Now for any

forceful agent, consider the set of agents who will have some influence on his beliefs. This

set itself is connected to the rest of the agents and thus obtains information from the

rest of the society. Therefore, in a fast-mixing graph (or in a society represented by such

a graph), the beliefs of forceful agents wih themselves be moderated by the rest of the

society before they spread widely. In contrast, in a slowly-mixing graph, we can have a

high degree of clustering around forceful agents, so that forceful agents get their (already

limited) information intake mostly from the same agents that they have influenced. If

so, there will be only a very indirect connection from the rest of the society to the beliefs

of forceful agents and forceful agents will spread their information widely before their

opinions also adjust. As a result, the consensus is more likely to be much closer to the

opinions of forceful agents, potentially quite different from the true underlying state 9.

This discussion also gives intuition for Theorem 5 since the constant 5 in that result

is closely linked to the mixing properties of the social network matrix and the social

network graph. In particular, Theorem 5 clarifies that S is related to the maximum
shortest pat-h and the minimum probability of (indirect) communication between any

two agents in the society. These two notions also crucially influence the spectral gap

1 — A2(T'„), which plays the key role in Theorem 6.

These intuitions are illustrated in the next example, which shows how in a certain

class of graphs, misinformation becomes arbitrarily small as the social network grows.

Example 1. (Expander Graphs) Consider a sequence of social network graphs Qri —

{Mm An) induced by symmetric n x n matrices r„ [cf. Eq. (11)]. Assume that this

sequence of graphs is a family of expander graphs, i.e., there exists a positive constant

7 > such that the spectral gap 1 — X2{Tn) of the graph is uniformly bounded away

from 0, independent of the number of nodes n in the graph, i.e.,

7 < 1 — A2(T'„) for all n,

(see [13]) As an example, Internet has been shown to be an expander graph under the

preferential connectivity random graph model (see [27] and [24]). Expander graphs have

high connectivity properties and are fast mixing.

We consider the following influence structure superimposed on the social network

graph Qr,. We define an agent j to be locally forceful if he influences a constant number of

agents in the society, i.e., his total influence, given by ^^ PijCtij, is a constant independent

of n. We assume that there is a constant number of locally forceful agents. Let 7f„ denote

the stationary distribution of the Markov Chain with transition probability matrix given

by the mean interaction matrix W [cf. Eq. (8)]. Then, it follows from Theorem 6 that

7f„ e —> as n —> oo.
n 2
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(a) (b)

Figure 1: Impact of location of forceful agents on the stationary distribution (a) Misin-

formation over the bottleneck (b) Misinformation inside a cluster

This shows that if the social network graph is fast-mixing and there is a constant number

of locally forceful agents, then the difference between the consensus belief and the average

of the initial beliefs vanishes. Intuitively, in expander graphs, as n grows large, the set of

individuals who are the source of information of forceful agents become highly connected,

and thus rapidly inherit the average of the information of the rest of the society. Provided

that the number of forceful agents and the impact of each forceful agent do not grow

with n, then their influence becomes arbitrarily small as n increases.

5 Connectivity of Forceful Agents and Misinforma-

tion

The results provided so far exploit the decomposition of the evolution of beliefs into

the social network component (matrix T) and the influence component (matrix D).

This decomposition does not exploit the interactions between the structure of the social

network and the location of forceful agents within it. For example, forceful agents located

in different parts of the same social network will have different impacts on the extent

of misinformation in the society, but our results so far do not capture this aspect. The
following example illustrates these issues in a sharp way.

Example 2. Consider a society consisting of six agents and represented by the (undi-

rected) social network graph shown in Figure 1. The weight of each edge {i,j} is given

by

where, for illustration, we choose p,j to be inversely proportional to the degree of node

i, for all j. The self-loops are not shown in Figure 1.

We distinguish two different cases as illustrated in Figure 1. In each case, there is

a single forceful agent and a = 1/2. This is represented by a directed forceful link.
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The two cases differ by the location of the forceful link, i.e., the forceful link is over the

bottleneck of the connectivity graph in part (a) and inside the left cluster in part (b).

The corresponding consensus distributions can be computed as

^, = p(1.25, 1.25, 1.25,0.75,0.75,0.75)', ^^ = -(0.82, 1.18, 1, 1, 1, 1)'.

6 6

Even though the social network matrix T (and the corresponding graph) is the same in

both cases, the consensus distributions are different. In particular, in part (a), each agent

in the left cluster has a higher weight compared to the agents in the right cluster, while

in part (b), the weight of all agents, except for the forceful and influenced agents, are

equal and given by 1/6. This is intuitive since when the forceful link is over a bottleneck,

the misinformation of a forceful agent can spread and influence a larger portion of the

society before his opinions can be moderated by the opinions of the other agents.

This example shows how the extent of spread of misinformation varies depending

on the location of the forceful agent. The rest of this section provides a more detailed

analysis of how the location and connectivity of forceful agents affect the formation of

opinions in the network. We proceed as follows. First, we provide an alternative exact

characterization of excess influence using mean first passage times. We then introduce

the concept of essential edges, similar to the situation depicted in Example 2, and provide

sharper exact results for graphs in which forceful links coincide with essential edges. We
then generalize these notions to more general networks by introducing the concept of

information bottlenecks, and finally, we develop new techniques for determining tighter

upper bounds on excess influence by using ideas from graph clustering.

5.1 Characterization in Terms of Mean First Passage Times

Our next main result provides an exact characterization of the excess influence of agent

i in terms of the mean passage times of the Markov chain with transition probability

matrix T. This result, and those that follow later in this section, will be useful both to

provide more informati\'e bounds on the extent of misinformation and also to highlight

the sources of excess influence for certain agents in the society.

We start with presenting some basic definitions and relations (see Chapter 2 of [2]).

Definition 1. Let {Xt,t = 0, 1, 2, . . .) denote a discrete-time Markov chain. We denote

the first hitting time of state i by

T, - inf {/ >
I

A', = i}.

We define the mean first passage time from state i to state j as

m,j = E[Tj
I

A'o = •/],

and the mean commute time between state i and state j as 777.,^ + 7r7j,. Moreover, we

define the 7?7ea77 first return time to a particular state i as

777+=E[T+ \Xo = l],
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where

T+ = mf{t >l\Xt = i].

Lemma 1. Consider a Markov chain with transition matrix Z and stationary distribu-

tion TF. We have:

(i) The mean first return time from state i to i is given by mf = l/7r,.

(ii) The mean first passage time from i to j is given by

rriij =
Y- -Y

where Y = X^^o(^'^ ~ Z^) is the fundamental matrix of the Markov chain.

We use the relations in the preceding lemma between the fundamental matrix of

a Markov chain and the mean first passage times between states, to provide an exact

characterization of the excess influence of agent k.

Theorem 7. Let n denote the consensus distribution. We have:

(a) For every agent k

1 1

TTfc

n
'J

PyQ',j (
(1 - 2e)7r, + TTj

]
{rriiik — 'nijk,

(b) Let Ai denote the set of edges over which there is a forceful link, i.e.,

-41 == |{i,j} G ^
i

cvjj > or ttj, > o|.

Assume that for any {?',j}, [kj] G Aj, we have {?', j} fl {kj] = 0. Then,

p,jQ',j(l - e)

TTfc

n n^ ^ 1 — C,,7'n
1 ,j

"
\m^k - m^ik,

where

vj '^jt + ejPijQ'jj - -Pjiftj,
1 1^ \

rriH,

(22)

and m,j is the mean first passage time from state i to state j of a Markov chain with

transition matrix given by the social network matrix T [cf. Eq. (9)j.
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Proof, (a) Following the same line of argument as in the proof of Theorem 5, we can

use the perturbation results of Theorem '1 to write the excess influence of agent k as

Tffc
- - = TT'D[}f, (23)

n

where V is the fundamental matrix of a Markov chain with transition matrix T. Using

(5), and the definition of D in (9) we have

D\Y] E^ i(y,,-K,,) .f/ = ;,

I

J

I , otherwise.

Hence, we can write right-hand side of Ecj. (23) as follows:

By Lemma l(ii), we have

Yjk-yik = -{mik-m.jk), (25)

where V is the fundamental matrix of the Markov chain with transition matrix T. The
desired result follows by substituting the preceding relation in Eq. (24).

(b) In view of the assumption that all edges in Ai are pairwise disjoint, the perturbation

matrix D decomposes into disjoint blocks, i.e.,

D= Yl Aj + /^,n where A, = ^^K - A„]

.

(26)

{'j}e-4x

For each edge {i,j} G Ai, it is straightforward to show that

;A, + i^,oy)' = (i-^)(A, + i?,,:)r. ,

Using the decomposition in Eq. (26) and the preceding relation, it can be seen that

DY{I-DYr^ = J2[^-f,) A,l
I

J

Combined with the exact perturbation result in Theorem 4, this implies that

^fc-- - ~[e'DY{I-DY)-%
n n

\T.{^-%y\'D.,yv^n '—
' V n-

P-J^U
1 -e

^ \'-Cjn^-
(^^'^^-^'^-)-

"•J

The main result follows by substituting Eq. (2,5) in the above equation. D
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Part (a) of Theorem 7 provides an exact expression for the excess influence of agent

k as a function of the mean first passage times from agent (or state) k to the forceful and

influenced agents. The excess influence of each agent therefore depends on the relative

distance of that agent to the forceful and the influenced agent. To provide an intuition

for this result, let us consider the special case in which there is a single forceful link

{j,i) in the society (i.e., only one pair of agents i and j with ckj^ > 0) and thus a single

forceful agent j. Then for any agent k, their only source of excess influence can come

from their (potentially indirect) impact on the beliefs of the forceful agent j. This is why
rrijk, which, loosely speaking, measures the distance between j and fc, enters negatively

in to the expression for the excess influence of agent k. In addition, any agent who
meets (communicates) with agent i with a high probability will be indirectly influenced

by the opinions of the forceful agent j. Therefore, the excess influence of agent k is

increasing in his distance to i, thus in rriik- In particular, in the extreme case where

rriik is small, agent k will have negative excess influence (because he is very close to the

heavily "influenced" agent i) and in the polar extreme, where rrijk is small, he will have

positive excessive influence (because his views will be quickly heard by the forceful agent

j). The general expression in part (a) of the theorem simply generalizes this reasoning

to general social networks with multiple forceful agents and several forceful links.

Part (b) provides an alternative expression [cf. Eq. (22)], with a similar intuition

for the special case in which all forceful links are disjoint. The main advantage of the

expression in part (b) is that, though more complicated, is not in terms of the expected

consensus distribution ft (which is endogenous). Disjoint forceful link property in part

(b) is also useful because it enables us to isolate the effects of the forceful agents. The
parameter (,*,j in Eq. (22) captures the asymmetry between the locations of agents i and

j in the underlying social network graph. Although the expression for excess influence

in part (a) of Theorem 7 is a function of the consensus distribution yf, each element of

this vector (distribution) can be bounded by 1 to obtain an upper bound for the excess

influence of agent k.

Using the results in Theorem 7, the difference between the consensus distributions

discussed in Example 2 can be explained as foflows. In Example 2(a), the mean flrst

passage time from agent 4 to any agent k in the left cluster is strictly larger than that

of agent 3 to agent k, because every path from agent 4 to the left cluster should pass

through agent 3. Therefore, rriik > i^^k for k = 1, 2, 3, and agents in the left cluster have

a higher consensus weight. In Example 2(b), due to the symmetry of the social network

graph, the mean first passage times of agents 1 and 2 to any agent k f^ 1,2 are the same,

hence establishing by Theorem 7 the uniform weights in the consensus distribution.

In the following we study the effect of the location of a forceful link on the excess

influence of each agent by characterizing the relative mean first passage time Im^k — mjkl,

in terms of the properties of the social network graph.
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5.2 Forceful Essential Edges
, ,

In this subsection, we provide an exact characterization of the excess influence of agent k

expUcitl}' in terms of the properties of the social network graph. We focus on the special

case when the undirected edge between the forceful and the influenced agent is essential

for the social network graph, in the sense that without this edge the graph would be

disconnected. We refer to such edges as forceful essential edges. Graphs with forceful

essential edges approximate situations in which a forceful agent, for example a media

outlet or political leader, itself obtains all of its information from a tightknit community.

We first give the definition of an essential edge of an undirected graph.

Definition 2. Let Q = {J\f,A) be an undirected graph. An edge {i.j} & A is an

essential edge of the graph Q = (A^, A) if its removal would partition the set of nodes

into two disjoint sets N{i,j) C A^" with i G N{i,j), and N{j,2) C .V with j £ N{j,i).

The following lemma provides an exact characterization of the mean first passage

time from state ? to state j, where i and j are the end nodes of an essential edge {i,j}.

Lemma 2. Consider a Markov chain with a doubly stochastic transition probability

matrix T. Let {i,j} be an essential edge of the social network graph induced by matrix

T.

(a) We have

l^'(^J)l
•IJ rp

''J

(b) For every k € N[j,i),

m^k - m^k = rn.iy

Proof. Consider a Markov chain over the set of states A/"' = N{i,j)[j{j}, with transition

probabilities

% = T,,. for all k^l.

For the new chain with stationary distribution rr we have

T T^ ^ 'J — 'J

' T \N{i,j)\ + T,/

where T is the total edge weight in the new chain.

Since {i.j} is essential, every path from i to j should pass through {?, j}. Moreover,

because of equivalent transition probabilities between the new Markov chain and the

original one on A^', the mean passage time mjj of the original Markov chain is equal to

mean passage time m,j of the new chain. On the other hand, for the new chain, we can

write the mean return time to j as

rh^ = 1 + in,
J
= 1 + m^j

,
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which implies [cf. Lemma l(i)]

1 ^^|A^(^J)I

The second part of the claim follows from the fact that all of the paths from i to k

must pass through {?, j}, because it is the only edge connecting N{i,j) to N{j,i). Thus,

we conclude

"T-ifc = rn,j + rrijk.

D

We use the relation in Lemma 2 to study the effect of a single forceful link over an

essential edge on the excess influence of each agent.

Theorem 8. Let fr denote the consensus distribution, Assume that there exists a single

pair {i,j} for which the influence probabihty Oij > 0. Assume that the edge {i,j} is an

essential edge of the social network graph. Then, we have for all k,

- 1 2 ^..(1-^) ^ .,.

where

and

l-'ii[{l + 2e)\N{i.j)\-\N{j,r)\)

Pij OLij

^,,{k)

P»j(l -7tj) +Pjt(l -InY

\N{i..])l keN{j,i),

-|A^(j,Oi, keNii,j).

Proof. Since edge {i,j} is essential, by Lemma 2 we have for every k E N(j,i)

\N{i,j)\ 2n\N{r,j)\
m,k - rrijk = rn,.j = — = — — -,

Similarly, for every k G N{i,j), we obtain

. .
2n\N {j,i)\

'

Combining the preceding relations, we can write for the relative mean passage time

TTiik — TTT-jk = '^
\l/;j(/c). Sincc {i,j) is the only forceful link, we can apply Theorem

7(b) to get -
. ,

'

where Ctj is given by
'

Combining the above relations with Lemma 2(i) establishes the desired result. D
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Theorem S shows that if two clusters of agents, e.g., two communities, are connected

via an essential edge over which there is a forceful link, then the excess influence of

all agents within the same cluster are equal (even when the cluster does not have any

symmetry properties). This implies that the opinions of all agents that are in the same

cluster as the forceful agent affect the consensus opinion of the society with the same

strength. This property is observed in part (a) of Example 2, in which edge {3,4} is

an essential edge. Intuitively, all of the agents in that cluster will ultimately shape

the opinions of the forceful agent and this is the source of their excess influence. The
interesting and surprising feature is that they all have the same excess influence, even if

only some of them are directly connected to the forceful agent. Loosel}' speaking, this

can be explained using the fact that, in the limiting distribution, it is the consensus

among this cluster of agents that will impact the beliefs of the forceful agent, and since

within this cluster there are no other forceful agents, the consensus value among them

puts equal weight on each of them (recall Corollary 1).

5.3 Information Bottlenecks

We now extend the ideas in Theorem 8 to more general societies. We observed in

Example 2 and Section 5.2 that influence over an essential edge can have global effects

on the consensus distribution since essential edges are "bottlenecks" of the information

flow in the network. In this subsection we generalize this idea to influential links over

bottlenecks that are not necessarily essential edges as defined in Definition 2. Our goal

is to study the impact of influential links over bottlenecks on the consensus distribution.

To achieve this goal, we return to the characterization in Theorem 7, which was in

terms of first mean passage times, and then provide a series of (successively tighter)

upper bounds on the key term (m,/,- — rrijk) in Eq. (22) in this theorem. Our first

bound on this object will be in terms of the minimum normalized cut of a Markov chain

(induced by an undirected weighted graph), which is introduced in the next definition.

W^e will use the term cut. of a Markov Chain (or cut of an undirected graph) to denote

a partition of the set of states of a Markov chain (or equivalent ly the nodes of the

corresponding graph) into two sets.

Definition 3. Consider a Markov chain with set of states A/", symmetric transition

probability matrix Z, and stationary distribution it. The minimum normalized cut

value (or conductance) of the Markov chain, denoted by p, is defined as

.
Q{S,S'=)

P-mf^————-, 20
Sc.^ 7r(b)lT{b'^)

where Q(-4. B) = JZieAj^B ^i^u' ^^'^ '^{S) = Z!ie5 ^^ ^^''^ ''^f^^' ^o ^^^^ '^'-•^ that achieves

the minimum in this optimization problem as the minimum normalized cut.

The objective in the optimization problem in (27) is the (normalized) conditional

probability that the Markov chain makes a transition from a state in set 5 to a state
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in set S'^ given that tlie initial state is in S. The minimum normahzed cut therefore

characterizes how fast the Markov chain will escape from any part of the state space,

hence is an appropriate measure of information bottlenecks or the mixing time of the

underlying graph. Clearly, the minimum normalized cut value is larger in more connected

graphs.

The next lemma provides a relation between the maximum mean commute time of

a Markov chain (induced by an undirected graph) and the minimum normalized cut of

the chain, which is presented in Section 5.3 of Aldous and Fill [2]. This result will then

be used in the next theorem to provide an improved bound on the excess influences by

using the fact that \mik — mjk\ < maxjj {mjj, mj,} (see, in particular, proof of Theorem

9).

Lemma 3. Consider an n-state Markov chain with transition matrix Z and stationary

distribution it. Let p denote the minimum normalized cut value of the Markov chain

(cf. Definition 3). The maximum mean commute time satisfies the following relation:

4(1 + log n)
, ,

max{m„' + m,-,} < -^ ^-^. 28)
i,j pmmTTk

We use the preceding relation together with our characterization of excess influence

in terms of mean first passage times in Theorem 7 to obtain a tighter upper bound on the

loo norm of excess influence than in Theorem 5. This result, which is stated next, both

gives a more directly interpretable limit on the extent of misinformation in the society

and also shows the usefulness of the characterization in terms of mean flrst passage times

in Theorem 7.

Theorem 9. Let n denote the consensus distribution. Then, we have

1

TV e
n

2p,ja,j /I + logn

P

where p is the minimum normalized cut value of the Markov chain with transition

probability matrix given by the social network matrix T (cf. Definition 3).

Proof. By Theorem 7 we have for every /c ..
_

•
,

1

TTfc

n
= E
<

«j

E

Pij ^ij

2n2

PijOii]

2n2

((1 - 2e)7r, + TXj)\n\k - m^k\

\m.^k -rnjA-

'j

(29)

< y -—^;- maxjmy + 7rij

J

'J

£ E
'J

2pjjQ,j / 1 + log n

P
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where (29) holds because m,fc < mjj +mjk, and m^fc < rriji + rnik-, and the last mequality

follows from Eq. (28), and the fact that tt = ^e. D

One advantage of the result in this theorem is that the bound is in terms of p, the

minimum normahzed cut of the social network graph. As emphasized in Definition 3,

this notion is related to the strength of (indirect) communication links in the society.

Although the bound in Theorem 9 is tighter than the one we provided in Theorem 5, it

still leaves some local information unexploited because it focuses on the maximum mean
commute times between all states of a Markov chain. The following example shows how
this bound may be improved further by focusing on the mean commute time between

the forceful and the influenced agents.

Example 3. (Barbell graph) The barbell graph consists of two complete graphs each

with n.] nodes that are connected via a path that consists of n2 nodes (cf. Figure 2).

Consider the asymptotic behavior

n —+ oo, n-[/n —> v, n2/n —* \ — 2u,

where n = 2n\ + n2 denotes the total number of nodes in the barbell graph, and <
u < \. The mean first passage time from a particular node in the left bell to a node in

the right bell is 0{n^) as n —> oo, while the mea,n passage time between any two nodes

in each bell is 0[n) (See Chapter 5 of [2] for exact results). Consider a situation where

there is a single forceful link in the left bell.

The minimum normalized cut for this example is given by cut Co, with normalized

cut value 0(l/r!), which captures the bottleneck in the global network structure. Since

the only forceful agent is within the left bell in this example, we expect the flow of

information to be limited by cuts that separate the forceful and the influenced agent,

and partition the left bell. Since the left bell is a complete graph, the cuts associated

with this part of the graph will have higher normalized cut values, thus yielding tighter

bounds on the excess influence of the agents. In what follows, we consider bounds in

terms of ''relative cuts" in the social network graph that separate forceful and influenced

agents in order to capture bottlenecks in the spread of misinformation (for example, cuts

Ci, C2, and C3 in Figure 2).

5.4 Relative Cuts

The objective of this section is to improve our characterization of the extent of misin-

formation in terms of information bottlenecks. To achieve this objective, we introduce

a new concept, relative cuts, and then show how this new concept is useful to derive im-

proved upper bounds on the excess influence of different individuals and on the extent of

misinformation. Our strategy is to develop tighter bounds on the mean commute times

between the forceful and influenced agents in terms of relative cut values. Together with

Theorem 7, this enables us to provide bounds on the excess influence as a function of

the properties of the social network graph and the location of the forceful agents within

it.
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Figure 2: The barbell graf)h with ni = 8 nodes in each bell and rio = 4. There is a single

forceful link, represented by a directed link in the left bell.

Definition 4. Let Q = (N',A) be an undirected graph with edge {?. j} weight given by

w^j. The minimum relative cut value between a and b, denoted by Cab, is defined as

Cab = inf S cM,aeS,b^S}.

We refer to the cut that achieves the minimum in this optimization problem as the

minimum relative cut.

The next theorem uses the extremal characterization of the mean commute times

presented in Appendix D, Lemma 11, to provide bounds on the mean commute times in

terms of minimum relative cut values.

Theorem 10. Let Q = (A^, A) be the social network graph induced by the social network

matrix T and consider a Markov chain with transition matrix T. For any a, 6 G ^f, the

mean commute time between a and b satisfies

n n
:

-- , <mab + m.ba< ,

where Cab is the minimum relative cut vahie between a and b (cf. Dchnition 4).

(30)

Proof. For the lower bound we exploit the extremal characterization of the mean com-

mute time given by Eq. (54) in Lemma IL For any S C J\f containing a and not

containing b, pick the function gs as follows:

5s (0
0, t e S:

1, otherwise.
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The function g is feasible for the maximization problem in Eq. (54). Hence,

VTiah + Vnha >

.

= n['£Y.Z,{gsi2)-gs{j)y

"
for all S CN, a e S,b^S.

The tightest lower bound can be obtained b}' taking the largest right-hand side in the

above relation, which gives the desired lower bound.

For the upper bound, similar to Proposition 2 in Chapter 4 of [2], we use the second

characterization of the mean commute time presented in Lemma 11. Note that any unit

flow from a to b is feasible in the minimization problem in Eq. (55). Max-flow min-cut

theorem imphes that there exists a flow / of size Cab from a to 6 such that [/,*
[

< T,j for

all edges {i,j} G A. Therefore, there exists a unit flow / ~ {f*/cab) from a to b such

that l/ijl < Tij/Cab for all edges {i.j}. By deleting flows around cycles we may assume

that

5^'^^-'l-{ 2,' othe7wise.'
^^^^

Therefore, by invoking Lemma 11 from Appendix D, we obtain

mab + mba<[Y.^^j) Y. Y' ^ ~ Y. I^'^l

9
n

< —

,

Cab

where the last inequahty follows from (31). D

The minimum relative cut for the barbell graph in Example 3 is given by cut Ci with

relative cut value 0(1). An alternative relative cut between the forceful and influenced

agents that partitions the left bell is cut C3, which has relative cut value 0{n), and

therefore yields a tighter bound on the mean commute times. Comparing cut Ci to cut

C3, we observe that C3 is a balanced cut, i.e., it partitions the graph into parts each with

a fraction of the total number of nodes, while cut Ci is not balanced. In order to avoid

unbalanced cuts, we introduce the notion of a normalized relative cut between two nodes

which is a generalization of the normalized cut presented in Definition 3.

Definition 5. Consider a Markov chain with set of states A^, transition probability

matrix Z, and stationary distribution tt. The minimum normalized relative cut value

between a and b, denoted by Pab, is defined as

Pab = mt^ < ,^, ,„.,
\

a e b,b f b
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where Q{A, B) = "^ZieAieB '^i^^j^ ^"^ 7r(5) = ^^,^5 tTj. We refer to the cut that achieves

the minimum in this optimization problem as the 'minimum normalized relative cut.

The next theorem provides a bound on the mean commute time between two nodes

a and 6 as a function of the minimum normahzed relative cut value between a and b.

Theorem 11. Consider a Markov chain with set of states A/", transition probability

matrix Z, and uniform stationary distribution. For any a, 6 G A/", we have

Snlogn
rriab + rriba < ,

Pab

where pab is the minimum normalized relative cut value between a and b (cf. Definition

5).

Proof. We present a generalization of the proof of Lemma 3 by Aldous and Fill [2], for

the notion of normalized relative cuts. The proof relies on the characterization of the

mean commute time given by Lemma 11 in Appendix D. For a function < g < 1 with

g{a) = and g{b) = 1, order the nodes as a = 1, 2, . . . ,n = 6 so that g is increasing.

The Dirichlet form (cf. Definition 8) can be written as

£{9,9) = X^X^7r,Z,fc(5(A:) -5(i))

i k>i

^ mm ^^z,k{9u + 1) - 9U)f
I k>i i<j<fc

n-1

= ^(50 + i)-50))'(3(A,>i;-)

n-l

...
> 53(ffO- + l)-50-))W(A,>(/l^^), (32)

j=i

where Aj = {1, 2, . .
. , j}, and the last inequality is true by Definition 5. On the other

hand, we have '

.

' ' :" '
'

' '

n-l

1 = g{b) - g{a) = J] (g(j + 1) - gij)){p,,niAM-W (P-^^i^^M^'j))''

Using the Cauclw-Schwartz inequality and Eq. (32), we obtain

£{g.9) ~ Po6^7r(.4J^(^p'

But 7t{Aj) = j/n, because the stationary distribution of the Markov chain is uniform.

Thus, . ,
.

,

,

n — l - n— 1 o
1 v-^ 71-^

T.^i^{AM^)-T.^W^)^''''°^''-

35



Therefore, by applying the above relation to Eq. (33) we conclude

1 3n log n
<

£{g,9) pab

The above relation is valid for every function g feasible for the maximization problem

in Eq. (54). Hence, the desired result follows from the extremal characterization of the

mean commute time given by Lemma 11.
'

'

, D

Note that the minimum normalized cut value of a Markov chain in Definition 3 can

be related to normalized relative cut values as follows;

Therefore, the upper bound given in Theorem 1 1 for the mean commute time is always

tighter than that provided in Lemma 3.

Let us now examine our new characterization in the context of Example 3. The
minimum normalized relative cut is given by cut C2 with (normalized relative cut) value

0(1). Despite the fact that C2 is a balanced cut with respect to the entire graph, it

is not a balanced cut in the left bell. Therefore, it yields a worse upper bound on

mean commute times compared to cut C3 [which has value 0{n)]. These considerations

motivate us to consider balanced cuts within subsets of the original graph. In the

following we obtain tighter bounds on the mean commute times by considering relative

cuts in a subset of the original graph.

Definition 6. Consider a weighted undirected graph, {.\f,A), with edge {?, j} weight

given by w,j. For any S C A^, we define the subgraph of {M,A) with respect to S as

a weighted undirected graph, denoted by {S,As), where As contains all edges of the

original graph connecting nodes in S with the following weights

The next lemma uses the Monotonicity Law presented in Appendix D, Lemma 12 to

relate the mean commute times within a subgraph to the mean commute times of the

original graph.

Lemma 4. Let G = (^V, .4) be an undirected graph with edge {i,j} weight given by

Wij. Consider a Markov chain induced by this graph and denote the mean first passage

times between states i and j by ?ri,j. We fix nodes a, b E. N, and S C N containing a

and b. Consider a subgraph of (A'^, A) with respect to 5 (cf. Definition 6) and let fh.,j

denote the mean first passage time between states i and j for the Markov chain induced

by this subgraph. We have,

w . _ ,

mab + mia < —-^{m.ab + riiba),
w(S)

where w is the total edge weight of the original graph, and w{S) is the total edge weight

of the subgraph, i.e., w{S) = X],^^ I2ja,Kf^v-
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Proof. Consider an undirected graph (A/", A) with modified edge weights Wij given by

w^j, i^ j e S, or ly^ j e S"
;

0, i£S,jeS';

'^ii + J^keS^^'^k, ^ = j-

Hence, Wij < Wij for all i "^ j, but the total edge weight w remains unchanged. By
Monotonicity Law (cf. Lemma 12), the mean commute time in the original graph is

bounded by that of the modified graph, i.e.,

rnab + rriba <rhab + fhha- (34)

The mean commute time in the modified graph can be characterized using Lemma
11 in terms of the Dirichlet form defined in Definition 8. In particular.

{rhab + rhba) ^ = ^ini^^ <^-- J2 w^j{g{i) - g{j))' : g{a) = 0,g{b) = ij

= o<]<i{^S^'^^^^')"^^^'))'^
5(a) = 0,9(6) = l}

. - .

^ W 0<g<l I -^ w(S)
' ' • 'jes

, ^
,-,....

'

'

'

J.
', wis) , _ - s-l

'

= [mab + 'mba) ,

w

where the second equality holds by definition of w, and the last equality is given by

definition of w, and the extremal characterization of the mean commute time in the

subgraph. The desired result is established by combining the above relation with (34).

Theorem 12. Let Q = {N". A) be the social network graph induced by the social network

matrix T and consider a A4arkov chain with transition matrix T. For any a.b £ M, and

any S C Af containing a and b, we have
.

3nlog|5|
:

.

mab + m.ba< -7;^,
Pab[S)

where PabiS) is the mmim.um normalized cut value between a and b on the subgraph of

{J\f,A) with respect to S, i.e., -
.

'

-
'

t c\ e ici^'SS',j€5\S' -^u fr,c,\
p..(5)= mfjg|

^s'\.\S\S'\ ^^^y
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Proof. By Lemma 4, we have , ,:
•

: , ,, • :
,

w , _ _ ,

' '

w(S)

= Tn>('n'^ab + rh.ba), (36)

where ntab is the mean first passage time on the subgraph {S,As)-

On the other hand, Definition 6 impfies that for the subgraph (5,^45), we have for

every i e S

k€S l''eS\{i] fcGA" freA"

Hence, the stationary distribution of the Markov chain on the subgraph is uniform.

Therefore, we can apply Lemma 11 to relate the mean commute time within the subgraph

{S,As) to its normalized relative cuts, i.e.,

. _ 3|5|log|5i
\ ,

-
rn.ab + rnba <

Pab{S)

where Pab{S) is the mniimum normalized cut between a and b given by Definition 5 on

the subgraph. Since the stationary distribution of the random walk on the subgraph is

uniform, we can rewrite Pab{S) as in (35). Combining the above inequality with Eq. (3G)

establishes the theorem. D

Theorem 12 states that if the local neighborhood around the forceful links are highly

connected, the mean commute times between the forceful and the influenced agents

will be small, implying a smaller excess influence for all agents, hence limited spread of

misinformation in the society. The economic intuition for this result is similar to that for

our main characterization theorems: forceful agents get (their limited) information intake

from their local neighborhoods. When these local neighborhoods are also connected

to the rest of the network, forceful agents will be indirectly influenced by the rest of

the society and this will limit the spread of their (potentially extreme) opinions. In

contrast, when their local neighborhoods obtain most of their information from the

forceful agents, the opinions of these forceful agents will be reinforced (rather than

moderated) and this can significantly increase their excess influence and the potential

spread of misinformation.

Let us revisit Example 3, and apply the result of Theorem 12 where the selected

subgraph is the left cluster of nodes. The left beU is approximately a complete graph.

We observe that the minimum normalized cut in the subgraph would be of the form of

Cs in Figure 2, and hence the upper bound on the mean commute time between i and j

is 0(n log n), which is close to the mean commute time on a complete graph of size n.

Note that it is possible to obtain the tightest upper bound on mean commute time

between two nodes by minimizing the bound in Theorem 12 over all subgraphs S of the

social network graph. However, exhaustive search over all subgraphs is not appealing
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from a computational point of view. Intuitively, for any two particular nodes, the goal

is to identify whether such nodes are highly connected by identifying a cluster of nodes

containing them, or a bottleneck that separates them. In the following section we present

a hierarchical clustering method to obtain such a cluster using a recursive approach.

5.4.1 Graph Clustering

We next present a graph clustering method to provide tighter bounds on the mean
commute time between two nodes a and h by systematically searching over subgraphs S
of the social network graph that would yield improved normalized cut values. The goal

of this exercise is again to improve the bounds on the term [m-ik — 'm-jk) in Eq. (22) in

Theorem 7.

The following algorithm is based on successive graph cutting using the notion of

minimum normalized cut value defined in Definition 3. This approach is similar to

the graph partitioning approach of Shi and Malik [34] applied to image segmentation

problems.

Algorithm 1. Fix nodes a, b on the social network graph {J\f , A). Perform the following

steps:

1, k = 0. Sk = A^.

2. Define pk as

Pk = inf \Sk
Z-^iesjeSk\s ^v

with SI as an optimal solution. '

'

'

3. If a, be S;, then Sk+i = Sl; k^ k + 1; Goto 2.
,

.'
'

, : .

I If a, be Sk \ SI, then Sk+i = Sk \ SI; k^k + l; Goto g. ,

.

,

. , / ,

.

5, Return 3lLl££^. / "

- •

^

Figure 3 illustrates the steps of Algorithm 1 for a highly clustered graph. Each of the

regions in Figure 3 demonstrate a highly connected subgraph. We observe that the global

cut given by Si does not separate a and 6, so it need not give a tight characterization of

the bottleneck between a and b. Nevertheless, S] gives a better estimate of the cluster

containing a and h. Repeating the above steps, the cluster size reduces until we obtain

a normalized cut separating a and b. By Theorem 12, this cut provides a bound on

the mean commute time between a and b that characterizes the bottleneck between

such nodes. So far, we have seen in this example and Example 2 that graph clustering

via recursive partitioning can monotonically improve upon the bounds on the excess

influence (cf. Theorem 12). Unfortunately, that is not always the case as discussed in

the following example. In fact, we need further assumptions on the graph in order to

obtain monotone improvement via graph clustering.
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Figure 3: Graph clustering algorithm via successive graph cutting using normalized

mininnmi cut criterion.

Figure 4: Social network graph with a central hub
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Example 4. Consider a social network graph of size n depicted in Figure 4. The central

region is a complete graph of size n/2. Each of the k clusters on the cycle is a complete

graph of size n/(2/c), which is connected to the central hub via edges of total weight h.

Moreover, the clusters on the cycle are connected with total edge weight r.

If r > kh/8, then Co would be the minimum normalized cut rather than cuts of the

form C\. Hence, po in step 2 of Algorithm 1 is given by

kh Akh

2 2 "

After removing the central cluster, we obtain C2 as the minimum normalized cut

over the cycle, with the following value

Pi

16r

2 - •
" n"44 "

Therefore, we conclude that pi < po if and only if ^ < r < ^, i.e., the upperbound

obtained by Algorithm 1 on the mean commute time between a and b, is not smaller than

that of Lemma 3. That is because by removing the central cluster, we have eliminated

the possibility of reaching the destination via shortcuts of the central hub, and the only

way to reach the destination is to walk through the cycle.

Next, we show that the bounds given by Algorithm 1 are monotonically improving,

if the successive cuts are disjoint.

Definition 7. Consider an undirected graph (A^, ^). The cuts defined by 51,52 Q N"

are disjoint with respect to M if

.,
.

5{S^)r\5[S2) = 0, •

'^

where

5(5) = {{z,j}G^h:G5,j€5=}.

Theorem 13. Let pk and Sk be generated by the /c"* iteration of running Algorithm

1 on the social network graph (^V, ^). If the cuts corresponding to Sk+\ and Sk+2 are

disjoint with respect to 5^., then pk+i > pk-

Proof. By definition of pk in step 2 of Algorithm 1 , we have for Sk+2 Q S\k

Pk - Pfcl-fc
\—ic \ c r - I'^'^ITc

1—ic \ c T' ^'^'l
\Jk+l\ \Jk \ Jk+l\ \Jk+2\ Pfc \ ^^+21

But Sk+i and 5^+2 are disjoint with respect to Sk, and 5^+2 C Sk+i C Sk- It is

straightforward to show that

[{t,j} EA\ie Sk+2,j G Sk \ 5,+i} c 5iSk+i) n SiSk+2) = 0,
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which impUes
'

•

i€Sk+2d^Sk\Sk+2 i65t+2jeSfc\S)c+i te5fc+2,jeS'(t-|.i\Sfc+2 tGSfc+2.jeSfc^i\Sfc+2

Therefore, by combining the above relation with (37) and the definition of p^+ii we

obtain .....
, , , .

pk+\

Pk .

~ V \Sk+ 2\ |5a-+ i \ Sk+2\ J V l'S'/:+ 2! \Sk\ Sk+ 2

_ \Sk+i\ \Sk \ Sk+2\ _ I'S'fc+ild-S'fc \ Sk+i\ + \Sk+i \ Sk+2\

I'S'fcl
• i5/,+i \ 5a-+2| |5fc+i \ 5fc+2!(|5fe+i| + |5a. \ 5a-+i1

(38)

I'S'fc+i \ Sk+2\J V I'S'/c+il^
' > 1-

where (38) holds because 5^+2 C 5^+1 C Sk, and the last inequality is true because

Sk+i \ Sk+2 C Sk+i, and 5^+2 is nonempty. D

6 Conclusions

This paper analyzed the spread of misinformation in large societies. Our analysis is

motivated by the widespread differences in beliefs across societies and more explicitly,

the presence of many societies in which beliefs that appear to contradict the truth can

be widely held. We argued that the possibility that such misinformation can arise and

spread is the manifestation of the natural tension between information aggregation and

misinformation spreading in the society.

We modeled a society as a social network of agents communicating (meeting) with

each other. Each individual holds a belief represented by a scalar. Individuals meet

pairwise and exchange information, which is modeled as both individuals adopting the

average of their pre-meeting beliefs. When all individuals engage in this type of infor-

mation exchange, the society will be able to aggregate the initial information held by all

individuals. This effective information aggregation forms the benchmark against which

we compared the possible spread of misinformation.

Misinformation is introduced by allowing some agents to be "forceful," meaning that

they influence the beliefs of (some) of the other individuals they meet, but do not

change their own opinion. When the influence of forceful agents is taken into account,

this defines a stochastic process for belief evolution, and our analysis exploited the fact

that this stochastic process (Markov chain) can be decomposed into a part induced by

the social network matrix and a part corresponding to the influence matrix.

Under the assumption that even forceful agents obtain some information (however

infrequent) from some others, we first show that beliefs in this class of societies converge
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to a consensus among all individuals (under some additional weak regularity conditions).

This consensus value is a random variable, and the bulk of our analysis characterizes its

behavior, in particular, providing bounds on how much this consensus can differ from

the efficient information aggregation benchmark.

We presented three sets of results. Our first set of results quantify the extent of mis-

information in the society as a function of the number and properties of forceful agents

and the mixing properties of the Markov chain induced by the social network matrix.

In particular, we showed that social network matrices with large second eigenvalues, or

that correspond to fast-mixing graphs, will place tight bounds on the extent of misinfor-

mation. The intuition for this result is that in such societies individuals that ultimately

have some influence on the beliefs of forceful agents rapidly inherit the beliefs of the rest

of the society and thus the beliefs of forceful agents ultimately approach to those of the

rest of the society and cannot have a large impact on the consensus beliefs. The extreme

example is provided by expander graphs, where, when the number and the impa,ct of

forceful agents is finite, the extent of misinformation becomes arbitrarily small as the

size of the society becomes large. In contrast, the worst outcomes are obtained when
there are several forceful agents and forceful agents themselves update their beliefs only

on the basis of information they obtain from individuals most likely to ha\'e received

their own information previously (i.e., when the graph is slow-mixing).

Our second set of results exploit more explicitly the location of forceful agents within

a social network. A given social network will lead to very different types of limiting

behavior depending on the context in which the forceful agents are located. We provided

a tight characterization for graphs with the forceful essential edges, that is, graphs

representing societies in which a forceful agent links two disconnected clusters. Such

graphs approximate situations in which forceful agents, such as media outlets or political

leaders, themselves obtain all of their information from a small group of other individuals.

The interesting and striking result in this case is that the excess influence of all of the

members of the small group are the same, even if some of them are not directly linked

to forceful agents. We then extended these findings to more general societies using the

notion of information bottlenecks.

Our third set of results provide new efficient graph clustering algorithms for comput-

ing tighter bounds on excess influence.

We view our paper as a first attempt in quantifying misinformation in society. As

such, we made several simplifying assumptions and emphasized the characterization re-

sults to apply for general societies. Many areas of future investigation stem from this

endeavor. First, it is important to consider scenarios in which learning and information

updating are, at least partly, Bayesian. Our non-Bayesian framework is a natural start-

ing point, both because it is simpler to analyze and because the notion of misinformation

is more difficult to introduce in Bayesian .models. Nevertheless, game theoretic models

of communication can be used for analyzing situations in which a sender may explicitly

try to mislead one or several receivers. Second, one can combine a model of communica-

tion along the lines of our setup with individuals taking actions with immediate payoff

consequences and also updating on the basis of their payoffs. Misinformation will then
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have short-run payoff consequences, but whether it will persist or not will depend on

how informative payoffs are and on the severity of its short-run payoff consequences.

Third, it would be useful to characterize what types of social networks are more robust

to the introduction of misinformation and how agents might use simple rules in order to

avoid misinformation.

Finally, our approach implies that the society (social network) will ultimately reach

a consensus, even though this consensus opinion is a random variable. In practice, there

are widespread differences in beliefs in almost all societies. There is little systematic

analysis of such differences in beliefs in the literature at the moment, and this is clearly

an important and challenging area for future research. Our framework suggests two

fruitful lines of research. First, although a stochastic consensus is eventually reached in

our model, convergence can be very slow. Thus characterizing the rate of convergence

to consensus in this class of models might provide insights about what types of societies

and which sets of issues should lead to such belief differences. Second, if we relax the

assumption that even forceful agents necessarily obtain some (albeit limited) information

from others, thus removing the "no man is an island" feature, then it can be shown that

the society will generally not reach a consensus. Nevertheless, characterizing differences

in opinions in this case is difficult and requires a different mathematical approach. We
plan to investigate this issue in future work.
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Appendix A
Preliminary Lemmas, Sections 3 and 4

This appendix presents two lemmas that will be used in proving the convergence of

agent beliefs (i.e., Theorem 1) and in establishing properties of the social network matrix

T in Appendix C.

The first lemma provides conditions mider which a nonnegative n x n matrix M is

primitive, i.e., there exists a positive integer k such that all entries of the /c''' power of

M, M^, are positive (see [33]). The lemma also provides a positive uniform lower bound

on the entries of the matrix M'' as a function of the entries of M and the properties

of the graph induced by the positive entries of matrix M. A version of this lemma was

established in [28]. We omit the proof here since it is not directly relevant to the rest of

the analysis.

Lemma 5. Let H he & nonnegative n x n matrix that satisfies the following conditions:

(a) The diagonal entries of H are positive, i.e., H^i > for all ?'.

(b) Let S denote a set of edges such that the graph {J\f, £) is connected. For all

(i, j) G (f, the entry Hij is positive, i.e., £ C {{i,j)
\

H,j > 0}.

Let d denote the maximum shortest path length between any i, j in the induced graph

{J\f,£), and /y > be a scalar given by . .

?7 = min < min //,j, min H,.

Then, we have

::-V

'

• -V . [H%,j > if for alH,j.

The second lemma considers a sequence z{k) generated by a linear time-varying

update rule, i.e., given some ^(0), the sequence {z{k)} is generated by

'

^
- z{k)^ Hik)z{k-1) for all /t > 0, ,.

.

'

where H{k) is a stochastic matrix for all k > 0. We introduce the matrices ^{k,s) =
H{k)H{k - 1) . . . H{s) to relate z{k + 1) to z{s) for s < /c, i.e.,

z{k+l) = ^{k,s)z{s).

The lemma shows that, under some assumptions on the entries of the matrix $(/c, s), the

disagreement in the components of z{k), defined as the difference between the maximum
and minimum components oi z{k), decreases with A; and provides a bound on the amount

of decrease.
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Lemma 6. Let {H{k)} be a sequence of n x n stochastic matrices. Given any z{0) 6 M"

,

let {^(/c)} be a sequence generated by the hnear update rule

, . z{k) = H{k)z{k - 1) for ah ^^ > 0. (39)

Assume that there exists some integer B > and scalar 9 > such that

[^{s + B - l,s)],j >9 for alH,j, and s > 0.

For all k > 0. define M{k) € R and 'm{k) € K as follows: : .

Af(fc) = max 2,(/c), m{k) = mm z,{k). ' (40)

Then, for all s > 0, we have n9 < 1 and

M{s + B)-m{s + B) <{l-7i9){Mis) -m{s)).

Proof. In view of the linear update rule (39), we have for all i,

n

2^(s + B) = ^^[^(s + B- l,s)],jZj(s) for ah s > 0.

We rewrite the preceding relation as
'

-

T! n

J=l J=l

where [<l>(s + B — l,s)],j = [$(s + 5 - l,s)]u ~ ^ ^^^ ^^^ '''J- Since by assumption

[$(5 + 5-1, s)]ij > 9 for all i, j, we have

[l>(s + S - l,s)]y > forall?,j.

Moreover, since the matrices H{k) are stochastic, the product matrix <l>(s + S — 1, s) is

also stochastic, and therefore we have

n

J2[^{s + B -1, s)],j = 1 - n9 for all i.

From the preceding two relations, we obtain 1 — 716' > and

77

(1 -n9)m{s) < ^[<|)(s + B- l,s)ljZj{k) < (1 -n9)M{s),
j=i
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where m{s) and A4{s) are defined in Eq. (40). Combining this relation witli Eq. (41),

we obtain for all i

n

(1 - ne)m.{s) <z,{s + B)-Y^ ez,{s) < (1 - n9)M{s).

Since this relation holds for all i, we have

n

(1 - ne)mis) <m{s + B)-Y2 ^-jis),

n

M[s + B) -Y^ezj{s) < (1 -nd)M{s),

from which we obtain

M[s + B)- m{s + B) <{1- 7i0)(M(s) ~ m{s)) for all s > 0.

n

Appendix B
Properties of the Mean Interaction and Transition Matrices,
Sections 3 and 4

We establish some properties of the mean interaction matrix W and the transition

matrices <&(fc, s) mider the assumptions discussed in Section 2.2. Recall that transition

matrices are given by - - •

^{k,s) = W{k)W{k-l)---W{s + l)W{s) for ah /t and s with k > s, (42)

with $(/c,/c) — W{k) for all k. Also note that the mean interaction matrix is given by

W = E[W{k)] for all k. In view of the belief update model (4)-(5), the entries of the

matrix W can be written as follows. For all i E A^, the diagonal entries are given by

m. ^ ^
T.J^^iPv+PJ^

n

1

n

l3,.

J2P'^ (^ + °''J^ + 7^J + ^Pjr (^ + a
J, + 7j,

PJ^

iT^l Jt-i

and for all / 7^ j £ M , the ofi'-diagonal entries are given by

m^ = zn Pu [^ + (^^A'^ - ^)) +Pj^-f

(43)

(44)

Using the assumptions of Section 2.2, Lemma 5, and the explicit expressions for the

entries of the matrix W, we have the following result.
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Lemma 7. Let d be the maximum shortest path length between any z, j in the graph

{J\f,£) [cf. Eq. (3)], and ry be a scalar given by

77 = min <^ min[W]i,, min [VV']„ ^ ,
(45)

[cf. Eqs. (43) and (11)].

(a) The scalar ?/ is positive and we have

- -

./''~ [W%j > T]'' for alH,j.

(b) We have -
,

--
-

•_

pU^{s + d- l,s)]y > y| > y for ah s > 0, i, and j.

Proof, (a) We show that under Assumptions 1 and 3, the mean interaction matrix W
has positive diagonal entries and the set £ [cf. Eq. (2)] is a subset of the link set induced

by the positive elements of W. Together with the Connectivity assumption, part (a)

then follows from Lemma 5.

By Assumption 1, we have for all ?', Ylj^iPij — ^ ^^d Pij > for all j. This implies

that J2,^,Pji < n — 1 and therefore -
-

^
J2J^^iP^:+PT>

> for all i.

Since X],-i,Ptj = 1 for all i, there exists some j such that Ptj > 0, i.e., {i,j) G £. Li view

of the information exchange model, we have pij > or a^j > or 7,^ > 0, implying that

Combining the preceding two relations with Eq. (43), we obtain

[WU > for all /. (46)

We next show that for any link {i.j) in the set £, the entry [W]jj is positive, i.e.,

£c{{i,j)
I

[inj>o}.

For any (z, j) G £", we have p,j > 0, and therefore /3y + q-jj > (cf. Assumption 3). This

imphes that . - .

p^. (y + "u(i-0) >o,
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which by Eq. (44) jdelds [W]ij > 0. Together with Eq. (46), this shows that the scalar

q defined in (45) is positive. By Assumption 2, the graph {J\f,£) is connected. Using

the identification H = W in Lemma 5, we see that the conditions of this lemma are

satisfied, establishing part (a),

(b) For all i,j and s > 0, we have

'' dq
P{[*(s + d-l,s)],j > ^} = P{l-[*(s + a!-l,s)],, < 1

= l-F{l-[<l>(5 + d-l,s)],,>l-|^}. (47)

2

The Markov Inequality states that for any nonnegative random variable Y with a finite

mean E\Y\, the probability that the outcome of the random variable Y exceeds any

given scalar 5 > Q satisfies

?{Y>5]<^.

By applying the Markov inequahty to the random variable 1 — [$(s + d — 1, s)]ij [which

is nonnegative and has a finite expectation in view of the stochasticity of the matrix

$(s + d — 1, s) for all s > 0], we obtain

7?^ ^ E[l-ms + d-l,s)],,]
P|l-[$(s + d-l,s)]„ > 1-y} <

1 - 'rj'^/2

Combining with Eq. (47), this yields

7?^^^ E[l-ms + d-hs)]
P{[$(s + d-l,s)]„>^}>l 'Ji

1 - r/'^/2

By the definition of the transition matrices [cf. Eq. (42)], we have • :•
,

E[^{s + d-l. s]] = E[Wis + d~ l)W{s + d - 2) Wis)] = IV^ '

"^

where the second equality follows from the assumption that ]V{k) is independent and

identically distributed over k. By part (a), this implies that

.
.- [E[<^{s + d-l,s)]],j>ri'^ foralH,j, .

_
,.

which combined with Eq. (48) yields

V ^
''^- 2J - l-ryV2 1 - 7/V2

~ 2

establishing the desired result. D

The next two lemmas establish properties of transition matrices.

Lemma 8.
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(a) [<I>(/c, s)]n > e'^
*''"'

for all k and s with k > s, and all i £ J\f with probability one.

(b) Assume that there exist integers K,B > 1 and a scalar ^ > such that for some

s > and A: € {0, . . . , K] , we have

[$(s + (/c + 1)B - Ls + /v:B)],j > ^ for some z,j.

Then,

[$(s + A'S - 1, s)]ij > ^e^"^ with probabiUty one.

Proof, (a) We let s be arbitrary and prove the relation by induction on k. By the

definition of the transition matrices [cf. Eq. (42)], we have ^{s,s) = W{s). Thus, the

relation [$(/i':, s)]jj > e'^~''+^ holds for k = s from the definition of the update matrix

W{k) [cf. Eq. (5)]. Suppose now that the relation holds for some k > s and consider

[$(/c+ l,s)]„. We have

[<^{k + l,s)]„ = J2i^Vik + l)],,[$(fc,s)],, > [W{k + l)]„[$(fc,5)]„ > k-s-\-2

/i=i

where the first inequahty follows from the nonnegativity of the entries of $(A:,s), and

the second inequality follows from the inductive hypothesis,

(b) For any s > 0, we have

n

[$(s + KB - 1, s)],, = ^[$(5 + KB^hs + {k + l)B)],ft [$(s + (fc + 1)5 - 1, s)]nj

> [<^{s + KB -l,s + ik + l)B)]„[<^{s + {k + l)B ~l,s)],j

> f(^-^-»S[$(s + (fc+l)B-l,s)],,,

where the last inequality follows from part (a). Similarly,

n

[$(s + {k + 1)5-1, s)],j = J][$(s + (fc + 1)5 - 1, s + A:5)],,[<l>(s + A:5 - 1, s)]^,

h=l

> [*(s+(/c + l)5- l,s + A:5)],j[*(s + fc5- l,s) UJ

where the second inequahty follows from the assumption [$(s+(A:+l)5 — 1, s+ A:5)].j, > ^

and part (a). Combining the preceding two relations yields the desired result. D

Lemma 9. We have

pl[<P{s + n^d- l,s)]y > ye"'"\ for &\\i,j\ > (\j for all s > 0,

where the scalar 77 > and the integer d are the constants defined in Lemma 7.
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Proof. Consider a particular ordering of the elements of an n x n matrix and let kij e

{0, ... ,n' — 1} denote the unique index for element {i,j)- From Lemma 8(b), we have

p{ms + n^d-l,s)],j>'^e"'-\ foralH,j}

r v'^
> P< [^{s + [k,j + l)(i - 1, s + hjd)\,j > -^, for all i,]

=
J] P[^s + ih, + l)d - 1, s + hjd)],, > |-}

Here the second equality follows from the independence of the random events

|*(s + (/c + !)£/- l,s + kd)],j >
yj

over all /c = 0, . . . ,n^ — 1, and the last inequality follows from Lemma 7(b). D

Appendix C
Properties of the Social Network Matrix, Section 4

The next lemma studies the properties of the social network matrix T. Note that

the entries of the matrix T can be written as follows: For all i G J\f, the diagonal entries

are given by i,i ,
;

s^,.,-,
,..-'

[Th = 1

—

— h-
n n

1 - ft]

+ Tu) +J2pJ'
1 -l]^

+ Ijz

J#^

(49)

and for all i y^ j E Af, the off-diagonal entries are given by

[^1^. = Z
l-lr

+ Pj
1 - 7jt

(50)

Lemma 10. Let T be the social network matrix [cf. Eq. (9)]. Then, we have:

(a) The matrix T'^ converges to a stochastic matrix with identical rows ^e as k goes

to infinity, i.e.,

lim T'-' = -ee'.

(b) For any 2(0) G R", let the sequence z{k) be generated by the linear update rule

• z{k) = Tz{k- 1) for all A; > 0. .

'
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For all k > 0, define M{k) E M. and m{k) G M as follows:

M{k) = max z,(k), m{k) = min Zi{k).

Then, for all /c > 0, we have

M{k) - m{k) < S''{M{Q) - m{0)).

Here (5 > is a constant given by

X mm
(ij)es I 71 2 2

and d is the maximum shortest path length in the graph {J\f,8) [cf. Eq. (3)].

Proof, (a) By Assumption 1, we have for all z, '^,j,^Pij = 1 and p^j > for all j. This

implies that Xlj^i Pji ^ n — 1 and therefore

J2,^^iP^J + Pp)
> for all i. (51)

Since X!,-iPu ~ -^ ^"^^ ^^^ ' there exists some j such that p,^ > 0, i.e., (?', j) € £". By
Assumption 3, this implies that /3,j + a,j = 1 — 7jj > 0, showing that T^ > for all i.

Similarly, for any [i.j] G £', we have p,j > and therefore 1 — 7.^ > 0. showing that

T,j > for all (z,j) 6 £. Using Eq. (51) in Eqs. (49) and (50), it follows that for all i

[T]„ > T,j for all j.

Thus, we can use Lemma 5 with the identification

X = mm <
-

(..j)sf In

1 - T.j, 1 - 7ji

P^j ^7^ + Pp ^TT- (52)

and obtain

[T^.yx' foran?-,j. (53)

i.e., T is a primitive matrix and therefore the Markov Chain with transition probability

matrix T is regular. It follows from Theorem 3(a) that for any :(0) £ IR", we have

lim r'-'z(O) = 62,
k—*oo

where z is given by z = 7r'c(0) for some probability vector tt. Since T is a stochastic and

symmetric matrix, it is doubly stochastic. Denoting z{k) = T''"c(0), this implies that

the average of the entries of the vector z{k) is the same for all k, i.e.,

-y^ z,(k) = -y^ z,{0) for all A: > 0.

n '^—^ n ^-^
i=l 2=1
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Combining the preceding two relations, we obtain

lim -J2zr{k) = z = ~Y^Zi{0),
fc— CXI n ^-^ n ^—^

establishing the desired relation.

(b) In view of Eq. (53), we can use Lemma 6 with the identifications

H{k) = T, B = d, e = x',

where x is defined in Eq. (52), and obtain

M{k) - m{k) < (1 - nx'^)^(M(0) - m,(0)).

D

Appendix D
Characterization of the Mean Commute Time, Section 5

First, we characterize the mean commute time between two nodes for a random walk

on an undirected graph using Dirichlet principle and its dual, Thompson's principle.

Definition 8. Consider a random walk on a weighted undirected graph {J\f,A) with

weight Wjj associated to each edge {?, j}. Define the Dirichlet form £, as follows. For

functions ^ : A/" ^ M write -:'

where w = ^^ , w^j is the total edge weight. . _ :> /

Lemma 11. Consider a random walk on a weighted undirected graph with weight Wij

associated to each edge [i,]]- For mean commute time between distinct nodes a and b

we have,

mab + rriba = ^^P
) 77 r ^ < 5 < 1, 5(") = 0,^(6) = 1 I (54)

= uj inf < - y^ —^ : / is a unit flow from a to 6 >

,

(55)

where mah is the mean iirst passage time from a to 6, and w is the total edge weight.

Proof. See Section 7.2 of [2]. D
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It is worth mentioning that the two forms of the mean commute time characterization

in Lemma 11 are dual of each other. The first form is a coroUary of Dirichlet principle,

while the second is immediate result of Thompson's principle. Using the electric circuit

analogy, we can think of function g{i) as potential associated to node i, and flow /,j as

the current on edge {i,j} with resistance :~. The expressions in (55) are equivalent

descriptions of minimum energy dissipation in such electric network. Hence, we can

interpret the mean commute time between two particular nodes as the effective resistance

between such nodes in a resistive network. This allows us to use Monotonicity Law to

obtain simpler bounds for mean commute time.

Lemma 12. (Monotonicity Law) Let Wij < u;,j be the edge-weights for two undi-

rected graphs. Then,

ruav + rriya < (
—

) {^av + rhya), for all a, v,

where w = J2ij ^'jj ^^d w —
"^^ij 'i^ij are the total edge weight.

Proof. Let /* and /* be the optimal solutions of (55) for the original and modified

graphs, respectively. We can write

where the first inecjuality follows from optimality of /*, and feasibility of /'. D

By the electric network analogy, Lemma 12 states that increasing resistances in a

circuit increases the effective resistance between any two nodes in the network. Mono-

tonicity law can be extremely useful in providing simple bounds for mean commute
times.

54



References

[1] D. Acemoglu, Munther Dahleh, Ilan Lobel, and A. Ozdaglar, Bayesian learning in

social networks, Preprint, 2008.

D. Aldous and J. Fill, Reversible Markov chains and random walks on graphs, Mono-

graph, http://www.stat.berkeley.edu/ aldous/RWG/book.html, 2002.

[3] A. Ambrus and S. Takahashi, Multi-sender cheap talk with restricted state spaces,

Theoretical Economics 3 (2008), no. 1, 1-27.

[4] V. Bala and S. Goyal, Learning from neighbours, Review of Economic Studies 65

(1998), no. 3, 595-621.

, Conformism and diversity under social learning. Economic Theory 17

(2001), 101-120.

[6] A. Banerjee, A simple model of herd behavior, Quarterly Journal of Economics 107

(1992), 797-817. :
' - '.

;,.
'

,,
•

[7] A. Banerjee and D. Fudenberg, Word- of-mouth learning, Games and Economic

Behavior 46 (2004), 1-22.

[8] S. Bikchandani, D. Hirshleifer, and I. Welch, A theory of fads, fashion, custom, and

cultural change as information cascades. Journal of Political Economy 100 (1992),

; 992-1026. ^ ..:-.,-- _:

[9] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Gossip algorithms: Design, analy-

sis, and applications, Proceedings of IEEE INFOCOM, 2005.

[10] P. Bremaud, Markov chains: Gibbs fields, Monte Carlo simulation, and queues.

Springer, New York, 1999. -' •

[11] B. Celen and S. Kariv, Distinguishing informational cascades from, herd behavior m
the laboratory, The American Economic Review 94 (2004), no. 3, 484-498.

[12] , Observational learning under imperfect information. Games and Economic

Behavior 47 (2004), no. 1, 72-86.

[13] F.R.K. Chung, Spectral grpah theory, American Mathematical Society, Providence,

Rhode Island, 1997.

[14] V.P. Crawford and J. Sobel, Strategic information transmission, Econometrica 50

(1982), no. 6, 1431-1451.

[15] M.H. DeGroot, Reaching a consensus. Journal of the American Statistical Associ-

ation 69 (1974), no. 345, 118-121.



[16] P.M. DeMarzo, D. Vayanos, and J. Zwiebel, Persuasion bias, social influence, and

unidimensional opinions, The Quarterly' Journal of Economics 118 (2003), no. 3,

909-968. ; .'

J. Farrell and R. Gibbons, Cheap talk with two audiences, American Economic

Review 79 (1989), 1214-1223.-

[18] D. Gale and S. Kariv, Bayesian learning in social networks, Games and Economic

Behavior 45 (2003), no. 2, 329-346.

[19] A. Galeotti, C. Ghiglino, and F. Squintani, Strategic information transmission in

networks, Preprint, 2009.

[20] B. Golub and M.O. Jackson, How homophily affects diffusion and learning in net-

works, Preprint, 2008. .
-

[21] , Naive learning m social networks: Convergence, influence, and the wisdom

of crowds, forthcoming in American Economic Journal: Microeconomics, 2008.

199]

^'

J. Hagenbach and F. Koessler, Strategic communication networks, Preprint, 2009.

[23] M. Haviv and L. \ an Der Heyden, Perturbation bounds for the stationary probabil-

ities of a finite Markov chain, Advances in Apphed Probability 16 (1984), no. 4,

804-818.

[24] M.O. Jackson, Social and economic networks, Princeton University Press, Prince-

ton, New Jersey, 2008.
'

[25] A. Jadbabaie, J. Lin, and S. Morse, Coordination of groups of mobile autonomous

agents using nearest neighbor rules, IEEE Transactions on Automatic Control 48

(2003), no. 6, 988-1001.

[26] J.G. Kemeny and J.L. Snell, Finite Markov chains, Van Nostrand, New York, NY,
1960.

M. Mihail, C. Papadimitriou, and A. Saberi, Internet is and expander. Proceedings

of IEEE Symposium on Foundations of Computer Science (FOCS), 2003.

[28] A. Nedic and A. Ozdaglar, Distributed subgro-dient methods for multi-agent opti-

mization, forthcoming in IEEE Transactions on Automatic Control, 2008.

[29] R. Olfati-Saber and R.M. Murray, Consensus problems in networks of agents with

switching topology and time-delays, IEEE Transactions on Automatic Control 49

(2004), no. 9, 1520-1533.

[30] A. Olshevsky and J.N. Tsitsiklis, Convergence speed in distributed consensus and

averaging, forthcoming in SIAM Journal on Control and Optimization, 2008.

56



[31] W. Riidin, Real and complex analysis, McGraw-Hill, New York,NY, 1987.

[32] P.J. Schweitzer, Perturbation theory and finite Markov chains, J. Applied Probabil-

ity 5 (1968), no. 2, 401-413.

[33] E. Seneta, Nonnegative matrices and Markov chains, Translated from Russian by

K.C. Kiwiel and A. Ruszczynski, Springer, Berlin, 1985.

(34] J. Shi and J. Malik, Normulized cuts and image segmentation, IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI) 22 (2000), no. 8, 888-905.

[35] L. Smith and P. Sorensen, Rational social learning with random sampling, unpub-

lished manuscript, 1998.

[36] , Pathological outcomes of observational learning, Econometrica 68 (2000),

no. 2, 371-398.

[37] J. Sobel, Encyclopedia of complexity and system science, ch. Signaling Games,

Springer, 2009.

[38] J.N. Tsitsiklis, Problems in decentralized decision making and computation, Ph.D.

thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Insti-

tute of Technology, 1984.

[39] J.N. Tsitsiklis, D.P. Bertsekas, and M. Athans, Distributed asynchronous deter-

ministic and stochastic gradient optimization algorithms, IEEE Transactions on

Automatic Control 31 (1986), no. 9, 803-812.

[40] D. Watts, Six degrees: The science of a connected age, W.W. Norton and Company,

2003.

57


