
Perfect Implementation

By Sergei Izmalkov, Matt Lepinski, and Silvio Micali∗

January 7, 2010

Abstract

Privacy and trust affect our strategic thinking, yet they have not been precisely modeled in mechanism
design. In settings of incomplete information, traditional implementations of a normal-form mechanism
—by disregarding the players’ privacy, or assuming trust in a mediator— may fail to reach the mechanism’s
objectives. We thus investigate implementations of a new type.

We put forward the notion of a perfect implementation of a normal-form mechanism M: in essence, a
concrete extensive-form mechanism exactly preserving all strategic properties of M, without relying on a
trusted mediator or violating the privacy of the players.

We prove that any normal-form mechanism can be perfectly implemented by a verifiable mediator using
envelopes and an envelope-randomizing device (i.e., the same tools used for running fair lotteries or tallying
secret votes). Differently from a trusted mediator, a verifiable one only performs prescribed public actions,
so that everyone can verify that he is acting properly, and that he never learns any information that should
remain private.

1 Introduction

A game consists of a context —describing the outcomes, the players (including their types and beliefs), and the
players’ preferences over the outcomes— and a mechanism (or a game form), describing the actions available
to the players, and the way in which actions lead to outcomes. The usual goal of mechanism design consists
of finding a mechanism that, for a given class of contexts, defines a game whose equilibria yield a desired
outcome. While contexts can be arbitrarily complex, mechanism design strives to find simple mechanisms.
A normal-form mechanism consists of a set of reports (or messages) for each player, and an outcome function
mapping these reports to outcomes.

Normal-form mechanisms can enjoy valuable theoretical properties. As defined, however, they are ab-
stractions. Outcome functions do not spontaneously evaluate themselves on players’ reports. To be useful in
real strategic settings, normal-form mechanisms are concretely implemented with the help of a mediator. But
such concrete implementations present theoretical difficulties that are far from being understood. Indeed, we
argue that

Unless they satisfy several new goals, not achieved and often not addressed so far, concrete mediated
implementations of normal-form mechanisms not only are not very meaningful, but fail to enjoy the
very properties achieved by their abstract counterparts.

We contend that without a rigorous and sufficiently powerful theory of concrete implementation, the practical
meaningfulness of normal-form mechanisms is at risk. Providing such a theory is the very purpose of this
paper. Let us now articulate our two main goals.
∗We would like to thank participants to numerous seminars, and especially Ran Canetti, Dino Gerardi, Sergiu Hart, Bart

Lipman, and Dave Parkes, for their comments. We are grateful to the NSF grant SES-0551244 for financial support.

1

1.1 The Goal of Maximum Privacy (and Minimum Trust)

Among auctions in the private-value setting, the famous second-price sealed-bid mechanism is a normal-form
mechanism whose reports consist of numerical bids —one for each player— and whose outcome function re-
turns the player with the highest bid as the winner, and the value of the second-highest bid as the price. The
characteristic property of this mechanism is economic efficiency achieved in dominant strategies. Indeed,
because it is optimal for each player to report his true valuation no matter what the others may report,
one can expect that the player with the highest valuation wins the item for sale. We shall use this mecha-
nism to illustrate the problems of privacy and trust when abstract normal-form mechanisms are concretely
implemented with the help of a mediator.

Trusted vs. Verifiable Mediators. Consider the following two mediated implementations,M1 andM2,
of the second-price sealed-bid mechanism.

M1 (With a Trusted Mediator): The players seal their bids into envelopes and hand them to the mediator,
who then privately opens them, privately evaluates the outcome function, and finally publicly announces
the winner and the price.

M2 (With a Verifiable Mediator): The players seal their bids into envelopes and hand them to the mediator,
who then publicly opens all of them, so as to enable everyone to compute the winner and the price.

Notice that the mediators of these two implementations are asked to perform different types of actions. The
mediator of M1 is asked to perform private actions, so that only he knows whether he has performed the
right actions. By contrast, the mediator of M2 only performs public actions, so that everyone can verify
that the right actions have been performed. Accordingly, these two implementations are at opposite ends
with respect to privacy and trust. On the one extreme, implementation M1 reveals nothing more than the
announced outcome, but requires total trust in the mediator. Indeed, the players cannot verify whether the
mediator announces the correct outcome, nor whether he will keep all bids secret after the auction is over.1

On the other extreme, M2 guarantees the correctness of the outcome, but makes the entire players’ reports
public knowledge. In sum, M1 requires total trust and offers total privacy, while M2 requires no trust and
offers no privacy.

To be sure, a verifiable mediator is still trusted, but in a different, “public” sense: he is trusted to really
perform whatever public actions he is asked to perform. For instance, in implementation M2 he is trusted
not to open just the first half of the envelopes and destroy the other half. Clearly such trust is much milder:
because any deviation from prescribed public actions is immediately observed, a public mediator can be kept
accountable.

Privacy and Trust as Strategic Problems. Privacy-valuing players may avoid participating in imple-
mentation M2, and distrustful players in implementation M1. Such reduced participation not only causes
the seller to fetch lower prices, but negatively affects economic efficiency. Indeed, the requirement that, in an
auction, “the item for sale be won by the player who values it the most” applies to all potential bidders, not
just the ones trusting a given mediator. Thus, no implementation that deters some players from bidding can
be economically efficient in a general sense. In addition, whenever (for lack of other ways of getting a desired
item) distrustful players participate in M1 or privacy-valuing players participate in M2, neither mechanism
can be economically efficient, even with respect to just the participating players. Let us explain.

• InM1, a player who truly distrusts the mediator may fear that the price will always be artificially close
to the winner’s bid.2 Such a player will not find it optimal to report his true valuation to the mediator;

1According to Rothkopf, Teisberg and Kahn (1990), such concerns explain why second-price auctions are rarely used in
practice.

2If player i bids $1000 dollars and the mediator announces that i is the winner and must pay $999 dollars, it is impossible for
i to know if there was really a bid of $999. Certainly, the mediator has incentives to manipulate the outcome (e.g., if he receives
a percentage of the generated revenue for his services) and to betray a player’s secret (e.g., if he is bribed for disclosing it).

2

instead, he will have a strong incentive to “underbid.” Thus, the item for sale might very well go to
another player, who values it less but trusts the mediator more. Therefore, concrete implementation
M1 may not be efficient.
• In M2, a player truly valuing the privacy of his valuation receives, by definition, some negative utility

from its publicity. But then the only way for him to prevent his true valuation from becoming pub-
lic is to bid a different value, perhaps in a randomized fashion. This distortion may make concrete
implementation M2 inefficient as well.

More generally, privacy and trust affect the players’ strategic thinking, making it unclear whether mediated
implementations satisfy the strategic properties of the abstract mechanisms they purportedly implement.

Novelty and Relative Nature of the Problem. In the second-price auction context, to preserve M2’s
economic efficiency, one may be tempted to handle privacy-valuing players by (a) monetizing —somehow—
privacy loss; (b) revising the players’ valuations accordingly; and then (c) relying on the traditional Vickrey
machinery. In so doing, however, the resulting auction would at best be efficient in the “revised” valuations,
while Society’s interest is that it be economically efficient in the “original” valuations. Integrating privacy and
strategic concerns in the design of concrete implementations of normal-form mechanisms is a new problem,
and requires new techniques and conceptual frameworks.

At a closer look, not even the abstract second-price auction itself may be perfectly efficient in a private-
value setting. For instance, even in a magic world where the outcome function evaluates itself on players’
reports, everyone is bound to learn that the winner’s valuation is higher than the price; and this small loss of
the winner’s privacy may suffice to miss the target of efficiency in its purest form. But if the abstract second-
price auction itself does not achieve perfect efficiency, what goal can we set for its concrete implementations?
We answer this question with the strongest possible relativism:

A concrete implementation of the second-price mechanism should always enjoy economic efficiency to
exactly the same degree (whatever it may be) as the abstract mechanism.

More generally, any normal-form mechanism implies some loss of privacy. This is the case because the
outcome itself (being a function of the players’ reports) contains information about these reports. We regard
this loss of privacy (which potentially affects all kinds of strategic concerns) as inherent, and do not wish to
rectify or modify this —or any other— property of a normal-form mechanism. In sum, we advocate that

A mediated implementation of a normal-form mechanism M should preserve exactly all of M’s theoret-
ical properties (including its privacy properties!) without trusting the mediator at all.

1.2 The Goal of Strategic Equivalence

Even with respect to strategic aspects alone, we wish to “raise the bar” for concrete implementation. Mecha-
nisms are typically designed to guarantee a given property at equilibrium, and equilibria are typically defined
with respect to “single-player deviations”. Accordingly, researchers have often considered the following mini-
mal requirement for a concrete implementationM′ of an abstract mechanismM: “ensuring thatM′ possesses
an equilibrium E′ equivalent to a given mechanism E ofM.” Notably, this is the very requirement of all prior
pre-play implementations of correlated equilibrium. Unfortunately, such a notion of implementation is quite
weak: since M′ is free to introduce additional equilibria (that is, equilibria not having any counterparts in
M), a play of M′ may be quite different from a play of M.

A more demanding notion (often referred to as “full implementation”) requires that each equilibrium of
M′ is pay-off equivalent to some equilibrium ofM, and viceversa. However, even whenM′ fully implements
M, a play of M may still be dramatically different from a play of M′. A main reason for this is due to
collusion. In particular, one may not worry about collusion in the normal-form mechanism M, because the
players by definition do not have the means to coordinate their strategies. By contrast, M′ may provide
two or more players with a golden opportunity to collude successfully. And if such players have the means

3

and the incentives to jointly deviate from their equilibrium strategies, the actual play of M′ may not be an
equilibrium at all. So, beyond just preserving all equilibria, we advocate that

A concrete implementation of a normal-form mechanism should not give any additional power to any
subset of players.

1.3 The Goal of Efficiency Preservation

Consider the following mediated implementation of a deterministic two-player normal-form mechanism, whose
outcome function g has k-bit inputs. The implementation aims at maximizing privacy while minimizing trust.

Concrete Implementation Naive

1. A mediator publicly generates a 2k× 2k matrix of envelopes as follows. For each possible pair of reports
(mi,mj), a mediator publicly seals g(mi,mj) into a separate envelope, and makes it the (i, j) item of
the matrix. The mediator then hands the entire “envelope matrix” to Player 1.

2. Player 1 secretly permutes the rows, so that the jth row of envelopes becomes the first row if his secret
report is j, and hands the permuted matrix to Player 2.

3. Player 2 secretly permutes the columns, so that his intended report corresponds to the first column, and
hands the further permuted matrix to the mediator.

4. The mediator publicly opens the top-left corner envelope of the matrix to reveal the outcome.

Although conceptually very simple and relying on a verifiable mediator, Naive requires 22k envelopes and a
matching number of envelope operations, whether or not g is easy to compute. When k = 150 (less than the
number of bits required to describe the players’ “types” in many practical contexts), even though g could
be computed in, say, 2k = 300 bit operations, Naive requires 2300 envelopes. Since 2300 is higher than the
total number of elementary particles in the universe, there simply is not enough “matter” to manufacture so
many envelopes. This efficiency loss is typical of most pre-play implementations, as they treat an outcome
function g as the ordered list of all its possible outputs, rather than as an algorithm. Treating functions this
way is as conceptually trivial as operationally hopeless. Without ruling out such concrete implementations,
any theory of concrete implementation would remain just ... “theory.”

What to do? Of course, no mechanismM′ concretely implementing an abstract normal-form mechanism
M can hope to be more efficient than M, but we should prevent it to be much worse. That is, once more,
we have a “relative” goal: namely,

M′ should preserve M’s efficiency, whatever it may be, as much as possible.

1.4 The (Informal) Notion of a Perfect Implementation

Let us now explain how our notion of a perfect implementation dovetails with our goals.
Informally, we say that an (abstract) normal-form mechanismM is perfectly implemented by a (concrete)

mechanism M′ with a verifiable mediator (i.e., one taking only public actions, so that all can verify that he
takes the right ones), if the following properties hold:

• Strategy Equivalence: There exist an outcome-preserving bijection between the players’ strategies inM
and the players’ strategies in M′.
• Privacy Equivalence: For any strategy profile σ of M, and any subset of the players, the information

learnable by these players in an execution of M under σ coincides with that learnable by the same
players in an execution of M′ under the corresponding strategy profile σ′.
• Complexity Equivalence: There exists an integer constant c > 0 such that, if the outcome function ofM

requires K bit-operations to be evaluated, then an execution of M′ requires at most c ·K elementary
operations.

4

Consequently, from a strategy/privacy/complexity perspective, individual players as well as arbitrary subsets
of the players are indifferent, for any context C, between playing the games G = (C,M) and G′ = (C,M′). In
particular, the two games enjoy identical solutions. Indeed, althoughM′ may be of extensive-form, strategy
equivalence states thatM andM′ have identical —up to renaming and reordering of strategies— normal-form
representations. Of course, all traditional equilibrium concepts (such as Nash, Bayesian, dominant strategy,
ex-post, undominated Nash, and trembling-hand Nash equilibria) and set-valued solution concepts (such as
rationalizability and iterated elimination of dominated strategies) are invariant to isomorphic transformations
of normal-forms. In particular, therefore, perfect implementations preserve all traditional equilibria and set-
valued solutions.

1.5 A Macroscopic View of Our Construction

We constructively prove that every normal-form mechanismM is perfectly implemented by a concrete mech-
anism M′ with a verifiable mediator. Let us provide here the very high-level view of our construction.

Our Physical Operations. Mechanism M′ works on ballots of one of two sizes. Ballots of the smaller
size are also called ”envelopes,” and ballots of the bigger size are also called ”super-envelopes.” Envelopes are
indistinguishable among each other, and super-envelopes are undistinguishable among each other. (Envelopes
are quite commonly used in the pre-play literature, and super-envelopes have been used by Ben-Porath (1998)
and Krishna (2006).) In our case, an envelope contains an integer between 1 and 5, while a super-envelope
contains at most 5 envelopes. Each ballot preserves both the integrity and secrecy of its content.

For such ballots we envisage traditional elementary operations (such as making a ballot, opening it, and
destroying it), but we add the following one that indeed characterizes or construction:

Randomly permuting a given sequence of ballots (via a bingo-like machine which we call the ballot box).

A 3-Stage Construction. Our construction consists of 3 stages.
1. The input Stage. Here each player simultaneously hands over to the verifiable mediator a sequence of

envelopes whose contents encode —in a very special way— his intended message.
2. The computation stage. Here the verifiable mediator performs a uniquely determined sequence of public

operations on the received sequences of envelopes so as to (a) obtain a final sequence of envelopes whose
contents are guaranteed to encode the correct outcome, and (b) reveal absolutely nothing about the
original messages of the players.

3. The output stage. Here the verifiable mediator opens all final envelopes so as to enable everyone to learn
what the outcome is (and solely that).

Thus a perfect implementation enjoy the same “logical structure” of the traditional interaction of the players
with a trusted mediator, but avoids the correctness, privacy, and strategy problems of the latter interaction.
This logical structure in particular implies that the players cannot signal. Indeed, after they simultaneously
submit the envelopes containing their messages, the take no further actions.

1.6 A Microscopic View of Our Construction

The above high-level description of our construction suffices to get an idea of how strategy and privacy
equivalence might be achieved, but it does not provide any clue about complexity equivalence. Let us now
fill this gap.

A Complexity Theoretic Fact. It is well known —for instance, see Goldreich (2008), Section 1.2.4.1—
that each probabilistic finite function f can be computed by a finite sequence of NOT , AND, DUPLICATE
and COIN operations, where NOT maps a bit b to the bit b̄ = 1 − b; AND maps two bits b1 and b2 to

5

1 if b1 = b2 and to 0 otherwise; DUPLICATE maps a bit b to the pair of bits (b, b); and COIN is the
elementary probabilistic function that, on no input, generates a random bit b.

Accordingly, f is efficient if it is computable by a sufficiently short sequence ofNOT , AND, DUPLICATE
and COIN operations. (Disregarding constant factors, f ’s efficiency does not depend on this specific “basis”
of elementary functions.3)

Our Use of This Fact. For each elementary function X ∈ {NOT,AND,DUPLICATE,COIN}, we
prove that there exists an “enveloped version” of X. For example, in the case of AND, we show that there
exists a sequence SAND of verifiable ballot operations satisfying the following properties. Given two sequences
of 5 envelopes each, the contents of the first encoding a secret bit b1 and the contents of the second encoding
a secret bit b2, the ballot operations of SAND progressively transform these initial 10 envelopes into a final
sequence of just 5 envelopes whose contents are guaranteed to encode the bit b1∧b2. Moreover, although they
include publicly opening some envelopes, the ballot operations in SAND do not reveal any information about
b1 and/or b2. Constructing the “enveloped versions” of our four bit-functions is the heart of our construction.
The rest is easy. In fact, the input, computation, and final stages of our construction can be conceptually
expanded as follows:

1. Assume that in the normal-form mechanism M, each player i wishes to select a binary strategy (i.e.,
string) si. Then, in the input stage of M′, for each bit b in si, player i hands to the verifiable mediator
a sequence of 5 envelopes whose content encodes b.

2. Let f be the outcome function of mechanismM and f̄ a sequence of NOT , AND, DUPLICATE, and
COIN operations computing f . Then, in the computation stage ofM′, the mediator publicly performs
the verifiable ballot operations of the “enveloped version” of each elementary function X in f̄ , each time
making sure to use the proper envelopes. At the end, therefore, for each bit c in in f(s1, . . . , sn), the
mediator has verifiably produced a sequence of 5 envelopes whose content is guaranteed to be c. At the
same time, since no enveloped version of our basic operations reveals any information about its inputs
or its outputs, no information about the strategy profile (s1, . . . , sn) is revealed.

3. In the final stage, the verifiable mediator publicly opens all final envelopes, so that, after decoding every
bit, every one learns the desired (and correct) outcome f(s1, . . . , sn).

Intuitive Achievement of Strategy, Privacy, and Complexity Equivalence. Assume, without loss
of generality as we shall argue, that in the normal-form mechanism M we want to implement each player
strategy consists of a k-bit string. Then, in our construction, each player delivers to the verifiable mediator
5k sealed envelopes. Let us now sketch why our construction is a perfect implementation of M.

• Strategic equivalence holds for the following intuitive reason. In our construction, the strategy of a
player i consists solely of the contents of his 5k envelopes. In fact, no player takes any action after the
input stage. Assume now that each player i hands to the mediator 5k envelopes correctly encoding a
k-bit string. Then, there obviously is a one-to-one correspondence between the strategies of i in M
and in our construction.

Note. Realistically, however, nothing prevents a player i to put into his 5k envelopes contents
that do not correspond to any encoding to a k-bit string, so that i also has a much larger number
of “illegal” strategies. But we shall prove —in section 3.2— that such behavior can be formally
and practically dealt with. In essence, our final construction ensures that any illegal strategy of a
player i can be detected without compromising the privacy of any other player.

3 Of course, rather than NOT , AND, DUPLICATE, and COIN , one may choose a different finite basis B of elementary
functions from which to compute any finite function f . A proper choice of B may reduce the number of new elementary operations
required to compute a given f , but not by more than a constant factor C. In fact, by themselves being a basis, NOT , AND,
DUPLICATE, and COIN can be used to implement any function in B, and thus C is just the minimum number of NOT s,
ANDs, DUPLICATEs, or COINs sufficient to implement any function in B.

6

• Privacy equivalence holds for three reasons. First, no privacy is lost in the input stage, because each
player i is the only one who knows the contents of his own envelopes: any one else only sees 5k identical
envelopes. Second, in the computation stage the verifiable mediator publicly executes a sequence of
enveloped versions of NOT , AND, DUPLICATE, and COIN operations, and each one of them (as
we shall prove) reveals no information about its inputs and/or outputs. Third, in the output stage the
mediator publicly opens the final envelopes, but these (as we shall prove) only contain an encoding of
the proper outcome, that needs to be learned by definition.

• Complexity equivalence holds because each enveloped version of NOT , AND, DUPLICATE, and
COIN consists of a fixed number of elementary ballot operations, and thus if the outcome function
can be computed by k of our bit functions, our construction requires at most O(k) elementary ballot
operations.

1.7 Pros and Cons of the Ballot Box

Our construction can be viewed as replacing trust in a mediator with trust in a ballot randomizer. It should
be appreciated that this is a considerable advantage, not only from a theoretical point of view (the one
relevant for this paper), but also from a practical point of view. Indeed, trusting a mediator requires trusting
a lot of different things. To begin with, we must trust that he is actually capable of correctly performing a
prescribed computation on the data he receives. Next, we must trust that he is capable of performing his
computations in a private environment. (This actually entails a plethora of separate trusts: for instance, (1)
if he uses pen and paper, we must trust that he does not perform his computations next to a window; (2) if he
uses a computer, we must trust that he uses a computer that is virus-free and not connected to the Internet;
and (3) we must trust that he is capable of identifying and erasing all tracks of his computations —hitting
the “delete key” on a computer hardly qualifies. The list could actually go on.) Finally, we must trust
that until his death he will never reveal the data he learned. By comparison, trusting a ballot randomizing
device is a much simpler conceptual requirement. Moreover, from a practical point of view, plenty of players
routinely trust such devices. Indeed high-stake lotteries routinely use bingo-like machines to select winners,
and casinos routinely use card-shufflers in high-stake card games.4

On the “cons” side, the physical nature of the ballot box requires the players to be physically present
in the same location. This said, we note that this same requirement arises in any implementation requiring
envelopes —and thus in most of the pre-play literature— since the players must watch that no one sneakily
opens them.5

1.8 Relation to Prior Work

Pre-Play. Pre-play aims at constructing a concrete communication game G′, using a suitable commu-
nication channel, having an equilibrium payoff-equivalent to a special equilibrium of an abstract game G.
(Much of the pre-play literature has been devoted to implementing correlated equilibrium, see in particular
the works of Bárány (1992), Forges (1990), Ben-Porath (1998), Aumann and Hart (2003), Urbano and Vila
(2002), Ben-Porath (2003), Gerardi (2004), Dodis, Halevi and Rabin (2000), Gerardi and Myerson (2007),
Krishna (2006).) Pre-play, therefore, does not aim at nor achieves the strategic equivalence of G and G′. (It
is thus not surprising that G′ may end up having equilibria with no counter-parts in G.)

4Note that cards essentially are ballots with an identical upper side, safekeeping a given value on their other side.
5In addition, to be overly precise, physical presence cannot be easily dismissed. In particular, the abstract notion of a normal-

form mechanism requires the final outcome y to be common knowledge, and broadcasting y —e.g., via e-mail or via radio— does
not quite work if the goal is to avoid trust. In fact a player receiving y via e-mail does not know for sure that the others received
y too. Even receiving y by radio one may worry to be the single target of a rather “dedicated” broadcast. In the end, witnessing
y in the presence of the other players may remain the best practical approximation of making y common knowledge.

7

Zero Knowledge and Secure Computation. The study of privacy and correctness without trust started
two decades ago, in theoretical computer science, with the zero-knowledge proofs of Goldwasser, Micali
and Rackoff (1985). Closer to our concerns is secure computation, as introduced by Goldreich, Micali and
Wigderson (1987), improving on earlier results of Yao (1986). In essence, a secure computation of a finite
function f with n inputs consists of a communication protocol Pf such that, whenever the majority of n
players honestly stick to Pf ’s instructions, f can be evaluated by the players alone so as to match the privacy
and correctness achievable with the help of a trusted mediator. The problem, however, is that Pf makes any
subset of the players with cardinality > n/2 “omnipowerful,” that is capable of arbitrarily and undetectably
forcing the output of f to be any value in f ’s range of their choice.6 Thus implementing the outcome function
f of a normal-form mechanism with Pf does not, in particular, satisfy strategic equivalence.

Spreading trust. Some works, in particular that of Naor, Pinkas and Sumner (1999), rather than putting
trust on a single mediator, distribute it onto multiple mediators. (Thus, correctness and privacy hold only
in so far these mediators do not collude with each other, nor signal information that they are not supposed
to.) By contrast, our emphasis is on removing all trusted parties.

Impossibility results. Whether or not a trusted mediator can be replaced by an unmediated interaction
of the players alone crucially depends on the means of interaction available to the players. Because such
a replacement is counter-intuitive, we informally expect it to be impossible in most interaction models.
Indeed, this replacement has been proved impossible, in a formal sense, in many specific interaction models,
even for a restricted class of contexts and outcome functions. Notably, Aumann and Hart (2003) prove
that two players cannot reach any non-trivial correlated equilibrium via “cheap talk,” so long as the players
communicate essentially by broadcasting messages. Brandt and Sandholm (2004) argue the impossibility
of “unconditionally privacy-preserving second-price auctions” in many interaction models. By contrast, we
prove that there exists a reasonable model of interaction (via ballots and a ballot box) in which dispensing
with a trusted mediator is possible for all outcome functions and all contexts.

2 Verifiable Ballot Computation

In this section we show that a verifiable mediator can, given a sequence of envelopes containing by hypothesis
(the encoding of) a secret input to a function g, produce a sequence of envelopes guaranteed to contain (the
encoding of) g’s correct output, without anyone learning anything about g’s inputs or outputs.

2.1 Working with Physical Ballots

Ballots. We envisage the players and the verifiable mediator to seat around a sufficiently large table, and
having at their disposal a sufficiently large number of initially empty ballots of two kinds: envelopes and
super-envelopes. Externally, all ballots of the same kind are identical, but super-envelopes are slightly larger
than envelopes. Each envelope may contain an integer between 1 and 5, and each super-envelope may contain
a sequence of at most 5 envelopes. Once made, that is, filled with a proper content for the first time, an
envelope perfectly hides and guarantees the integrity of the integer it contains, until it is opened. Once made,
a super-envelope tightly packs the envelopes it contains, and thus keeps them in the same order in which
they were inserted.

The content of a sequence of envelopes E = E1, . . . , Ek is defined to be be the concatenation of the
contents of all Ei. By saying that the string c1 · · · ck is the content of E we imply that ci is the integer
contained in Ei.

6A weaker notion of secure computation, also introduced by Goldreich et al. (1987), does not any subset of < n players to
control the outcome, but restricts the players to efficient computation only, and enable a deviating player in Pf to be the only
one to learn the correct output of f .

8

Ready Ballots. A properly made ballot ready to be operated upon is placed on a portion of the table
never previously occupied, where it can be observed by everyone. Each time that a ballot becomes ready for
the first time, or ready again, it automatically receives a new, unique, and public identifier. Such an identifier
can be thought of as a specification of the ballot position on the table.

Note that only ballots directly in touch with the table surface are considered ready. If inside a super-
envelope S on the table, an envelope cannot be directly operated upon, and does not have its own identifier.
But, once S is opened, each of its inner envelopes is put back on the table, receives a new identifier, and
becomes ready once more.7

Ballot Operations. We need 5 types of (atomic) operations on ready ballots.
1. Publicly make a sequence of 5 new envelopes E1, . . . , E5 with content c1 · · · c5.

(Each such envelope Ei is now ready to be operated upon.)
2. Publicly open a sequence of 5 envelopes E1, . . . , E5 so as to reveal its content c1 · · · c5 to all players.

(Each such Ei is no longer ready. We refer to c1 · · · c5 as a public record.)
3. Publicly make a new super-envelope S containing a sequence E1, . . . , Ek of envelopes, where 2 ≤ k ≤ 5.

(S is now ready, but E1, . . . , Ek no longer are.)
4. Publicly open a super-envelope S to expose its inner envelopes E1, . . . , Ek.

(S is no longer ready, but each Ei now is.)
5. Ballot-box a sequence B1, . . . , Bk of at most 5 ballots of the same kind to obtain the sequence of ballots
B′1 . . . , B

′
k.

(Essentially, there exists a secret —randomly selected by Nature— bijection β between B1, . . . , Bk

and B′1 . . . , B
′
k. The content of the former Bi and the current β(Bi) coincide for each i. The ballots

B1, . . . , Bk cease to be ready, while B′1 . . . , B
′
k become ready.)

For simplicity only, we further envisage three additional types of operations on ready ballots:

6. Publicly reorder a sequence of 5 ballots B1, . . . , B5 of the same kind to get the new ready ballots
B′1, . . . , B

′
5.

(Essentially, the positions on the table of the ballots Bi are publicly switched. Since in effect these
ballots are not becoming ready or ready again just now, they do not receive new identifiers. Rather,
their identifiers are “renamed” via a publicly chosen permutation π.)

7. Publicly destroy a ballot B.
(B, and if it is a super-envelope each of its inner envelopes, no longer is ready and never will be.)

8. Do nothing.
(All ballots, their contents, and their identifiers remain the same.)

The identifier of any operation O includes O’s type and the sequence of the (identifiers of) the ballots O acts
upon. If O is of type 1, O’s identifier further includes the content c1 · · · c5 of the new sequence of envelopes;
if it is of type 6, the permutation π. (If O is of type-2, its public record is an “effect,” not an identifier.)

Operations of type 1, 2, and 6 involve exactly 5 ballots only to simplify describing our constructions.

2.2 Verifiable Ballot Mediators and Verifiable Ballot Computers

A verifiable ballot mediator essentially is an elementary program to be run on a sequence of envelopes. This
program is “straight-line,” in the sense that it does not make use of loops (such as “until X is true, do Y”):

7A ballot B can be formalized as a triple (i, b, c); where i, B’s identifier, is a positive integer; b, B’s kind, is a bit (0 in case
of an envelope, and 1 in case of a super-envelope); and c, B’s content, is an integer between 1 and 5 if B is an envelope, and a
sequence of envelope identifiers if B is a super-envelope. Our ballot operations can be formalized as acting on a proper set of
such triplets, a sequence of public records, and a sequence of secret records, with the help of a few global variables —such as
the maximum identifier in existence so far. We prefer however to stick to a physically intuitive treatment of ballots and ballot
operations in this already quite technical paper.

9

it consists of a fixed-length sequence of verifiable ballot operations, each chosen based on the contents of the
envelopes opened so far. A verifiable ballot mediator thus is a rather syntactic object. A verifiable ballot
computer is instead a verifiable ballot mediator satisfying a semantic constraint: namely, given a sequence
on envelopes containing a string x, it produces a sequence of envelopes containing a string y guaranteed to
be a pre-specified function of x. Let us now be more formal.

Definition 1. A (m-operation) verifiable ballot mediator M is a sequence of m functions, M = f1, . . . , fm,
where each fi, on inputs

1. (the identifiers of) a sequence S of ready ballots;
2. a sequence E of ballot identifiers; and
3. a (possibly empty) string R of public records,

outputs (the identifier of) a ballot operation Oi involving solely ballots in S.
Letting E correspond to a sequence of initially ready envelopes, M is executed as follows: for i = 1, . . . ,m,

(a) Set Oi = fi(Si, E,R), where

• Si coincides with E if i = 1, and otherwise with the currently ready ballots —in the order in which
they have become ready— that

(a) have become ready after the performance of the ballot operation O1, or
(b) have identifiers in E.

• R is the sequence of public records generated by performing O1, . . . , Oi−1

(b) Perform Oi on its specified ballots.

We say that such an M is p-to-q if, at the end of any execution of M in which the envelope sequence E
has length p, all the (currently) ready ballots that have been generated by M consist solely of envelopes, and
these, considered in the order in which they have been made ready, form a final sequence of length q.

We say that a verifiable ballot mediator M is no-ballot-left-behind for envelope sequences of length x if,
at the end of any execution of M on a sequence E of x envelopes, none of the (currently) ready ballots has
been generated by M .

Remarks.
• Any spectator can verify whether the execution of a verifiable ballot mediator M on a sequence of

envelopes E has been properly carried out. Indeed, at any point in time, any spectator knows which
types of operations have been performed on which ballots, and which public records (if any) have been
produced. And from all such information he can easily compute what the next operation of M should
be.8

• A verifiable ballot mediator may have multiple executions. Let us explain. If the operation returned
by one of its functions fi consists of ballot-boxing k ballots, then there are k! ways of reordering the
given ballots. Although no visible difference can be immediately detected, the execution may continue
in visibly different ways. For instance, if the k ballots in question were envelopes, and some of these
envelopes are later on publicly opened, then it is possible for different public records to be observed.
And different public records may, in turn, cause different operations to be subsequently executed.
• A verifiable ballot mediator, executed of a sequence of envelopes E part of a larger sequence of ballots
B, will never touch a ballot of B that is not in E. This property facilitate the modular composition of
such mediators, on which we indeed rely in our construction.

8The fact that no one observes the permutation actually involved in a ballot-box operation is not a problem. Since a ballot-box
is assume to be an act of Nature, to verify that a sequence of ballots has been randomly permuted it suffices to observe that
the proper ballots have been inserted in the bingo-like machine, and that this has been “cranked up” the prescribed number of
times.

10

Definition 2. Let f : Xs → Y be a probabilistic finite function (where X,Y ⊂ {1, . . . , 5}k for some integer
k > 0), and M a sk-to-k verifiable ballot mediator. We say that M is a verifiable ballot computer for f if there
exists a distribution D of sequences of public records such that, in a random execution of M on a sequence
S of sk envelopes, the first k containing x1 ∈ X, the second k containing x2 ∈ X, and so on, the following
properties hold:

• Correctness. The content of M ’s final sequence of k envelopes is distributed as in f(x1, . . . , xs); and
• Privacy. The sequence of public records generated by M is distributed as in D.

The correctness property guarantees that, “under the envelopes’ cover, M properly computes f all the
time.” In particular, consider the case when f is deterministic. In this case, fixing (x1, . . . , xs) ∈ Xs, there
is a single value y = f(x1, . . . , xs). Yet, a verifiable ballot computer M for such f may still have multiple
executions (because M may need —and in fact must, in order to satisfy the privacy property— use the ballot
box). But if even a single one of these executions did not have y as the content of the final sequence of
envelopes F , the distribution of F ’s content could not coincide with “y with probability 1.”

On the other hand, the privacy property guarantees that no information about the content of the envelope
sequence S may be revealed. In fact, since M is fixed and public knowledge, the only information that may be
gained in a random execution of M consists of the sequence of public records produced. But this information
is randomly drawn according to the same, fixed distribution D, independently of which element in Xs the
sequence of envelopes S may contain. In other words, the privacy property guarantees that all information
revealed during M ’s correct computation is “random and independent noise.”

Note that M does not have any correctness/privacy constraints when S’s content does not belong to Xs.

2.3 Verifiable Ballot Computers for Three Special Functions

Our Representation of Permutations of 5 Elements. The symmetric group of 5 elements, S5, is central
to our construction. If σ ∈ S5, then we identify the permutation σ with the string of integers σ(1) · · ·σ(5).
(For example, the string 13542 is identified with the permutation mapping 1 to 1, 2 to 3, 3 to 5, 4 to 4, and
5 to 2; in symbols, 1→ 1, 2→ 3, 3→ 5, 4→ 4, 5→ 2.) Accordingly, 12345 is the identity element of S5. If σ
and τ are members of S5, then by στ we denote the product of σ and τ , that is, the permutation mapping
each integer i ∈ {1, . . . , 5} to σ(τ(i)).

In this subsection we show that verifiable ballot computers indeed exist for the following 3 functions:

1. Permutation Inverse, mapping a permutation p ∈ S5 to p−1.
2. Permutation Product, mapping a pair of permutations (p, q) ∈ S5 × S5 to pq; and
3. Permutation Clone, mapping a permutation p ∈ S5 to the pair of permutations (p, p).

Lemma 1. There exists a 14-operation verifiable ballot computer for permutation inverse.

Proof. Consider the following verifiable ballot mediator INV . Given a sequence of envelopes A1, . . . , A5:

(1) Publicly make a sequence of 5 envelopes B1, . . . , B5 whose content is 12345.
(2) For ` = 1 to 5: make a new super-envelope S` containing the pair of envelopes (A`, B`).
(3) Ballot-box the sequence of super-envelopes S1, . . . , S5 to obtain the new sequence S′1, . . . , S

′
5.

(4) For ` = 1 to 5: open super-envelope S′` to expose the envelope pair (A′`, B
′
`).

(5) Publicly open the sequence of envelopes A′1, . . . , A
′
5 to reveal the content α.

(6) Publicly reorder B′1, . . . , B
′
5 according to α−1, if α ∈ S5, and according to the identity permutation

otherwise, to produce the final envelope sequence B′′1 , . . . , B
′′
5 .

Clearly INV is a 14-operation 5-to-5 verifiable ballot mediator. (Only for clarity is INV described by 6
conceptual steps rather than a sequence of 14 functions, f1, . . . , f14.) Let us now prove that it is a verifiable
ballot computer for permutation inverse as desired. Assume that A1, . . . , A5 contain a permutation σ ∈ S5.

11

By definition, the sequence of envelopes S′1, . . . , S
′
5 is obtained in Step 3 by permuting the super-envelopes

S1, . . . , S5 of Step 2 according to a random and secret permutation ρ ∈ S5. “Because inside the bingo-like
machine the inner envelopes Ai and Bi traveled together within Si (keeping their original relative order),”
once the super-envelopes S′i are opened in Step 4, we deduce that the sequences of envelopes A′1, . . . , A

′
5 and

B′1, . . . , B
′
5 have been obtained by reordering the respective envelope sequences A1, . . . , A5 and B1, . . . , B5

according to the same random and secret permutation ρ. Since the content of B1, . . . , B5 originally was
the identity permutation 12345, the content of B′1, . . . , B

′
5 necessarily is the permutation ρ. And since the

content of A1, . . . , A5 originally was, by hypothesis, the permutation σ, the content of A′1, . . . , A
′
5 necessarily

is the permutation ρσ; that is, α = ρσ. Since ρσ is the only public record of an entire execution of INV , and
since ρ is a random and secret permutation, then, no matter what σ might be, this public record consists
of a randomly and independently selected permutation in S5. Thus, letting D be the uniform distribution
over S5, it is easily seen that INV enjoys the required privacy property of a ballot computer. Finally,
because the sequence of envelopes F1, . . . , F5 has been obtained by publicly permuting B′1, . . . , B

′
5 according

to α−1 = (ρσ)−1 = σ−1ρ−1, the content of INV ’s final sequence of evenvelopes B′′1 , . . . , B
′′
5 necessarily is

σ−1ρ−1ρ = σ−1. Thus INV enjoys the required correctness property of a verifiable ballot computer for
permutation inverse.

Lemma 2. There exists a 27-operation verifiable ballot computer for permutation product.

Proof. Consider the following verifiable ballot mediator MULT . Given a sequence of 10 envelopes, where
A1, . . . , A5 are the first 5 envelopes and B1, . . . , B5 the next five:

(1) Execute the ballot computer INV (of the proof of Lemma 1) on A1, . . . , A5 so as to obtain a final
sequence of envelopes C1, . . . , C5 (which therefore are guaranteed to contain a permutation in S5).

(2) For ` = 1 to 5: make a new super-envelope S` containing the pair of envelopes (B`, C`).
(3) Ballot-box the sequence of super-envelopes S1, . . . , S5 to obtain the new sequence S′1, . . . , S

′
5.

(4) For ` = 1 to 5: open super-envelope S′` to expose the envelope pair (B′`, C
′
`).

(5) Publicly open the sequence of envelopes C ′1, . . . , C
′
5 to reveal the content α ∈ S5.

(6) Publicly reorder B′1, . . . , B
′
5 according to α−1 to produce the “output” envelope sequence B′′1 , . . . , B

′′
5 .

It is clear that MULT is a 27-operation 10-to-5 verifiable ballot mediator. (Only for clarity is MULT
described by 6 conceptual steps rather than a sequence of 27functions, f1, . . . , f27.) Let us now prove that
it is a verifiable ballot computer for permutation product as desired. Assume that the content of A1, . . . , A5

is σ ∈ S5 while that of B1, . . . , B5 is τ ∈ S5. Then by construction and by Lemma 1, at the end of Step 1
the sequence of envelopes C1, . . . , C5 contains the permutation σ−1. By definition, the sequence of envelopes
S′1, . . . , S

′
5 is obtained in Step 3 by permuting the super-envelopes S1, . . . , S5 of Step 2 according to a new,

random, independent, and secret permutation ρ ∈ S5. Thus, also the sequences of envelopes B′1, . . . , B
′
5 and

C ′1, . . . , C
′
5 have been obtained by reordering the respective envelope sequences B1, . . . , B5 and C1, . . . , C5

according to ρ. Accordingly, the content of B′1, . . . , B
′
5 necessarily is the permutation ρτ and the content

of C ′1, . . . , C
′
5 necessarily is the permutation ρσ−1 = α. The latter permutation is revealed in Step 4, and

actually is the only public record generated by MULT in Steps 2 through 6. This public record is thus a
permutation randomly and independently selected in S5. In particular, it is independent of the only other
public record of an execution of MULT : the single public record of the execution of INV of Step 1 (which
itself was randomly and independently selected member of S5). Thus, letting D be the uniform distribution
over S5, MULT enjoys the required privacy property. Finally, because B′1, . . . , B

′
5 contained ρτ and have

been reorder in Step 6 according to α−1 = (ρσ−1)−1 = σρ−1, the content of MULT ’s final sequence of
envelopes B′′1 , . . . , B

′′
5 necessarily is σρ−1ρτ = στ , as required for MULT to enjoy the correctness property.

Lemma 3. There exists a 30-operation verifiable ballot computer for permutation clone.

Proof. Consider the following verifiable ballot mediator CLONE. Given a sequence of envelopes A1, . . . , A5,

12

(1) Execute the verifiable ballot computer INV (of the proof of Lemma 1) on A1, . . . , A5 so as to obtain a
final sequence of envelopes B1, . . . , B5 (which therefore contains a permutation in S5).

(2) Publicly make two sequence of 5 envelopes C1, . . . , C5 and D1, . . . , D5 with content 12345.
(3) For ` = 1 to 5: make a new super-envelope S` containing the triple of envelopes (B`, C`, D`).
(4) Ballot-box the sequence of super-envelopes S1, . . . , S5 to obtain the new sequence S′1, . . . , S

′
5.

(5) For ` = 1 to 5: open super-envelope S′` to expose the triple of envelopes pair (B′`, C
′
`, D

′
`).

(6) Publicly open the sequence of envelopes D′1, . . . , D
′
5 to reveal the content δ ∈ S5.

(7) Publicly reorder B′1, . . . , B
′
5 and C ′1, . . . , C

′
5 according to δ−1 to produce the two final envelope sequences

B′′1 , . . . , B
′′
5 and C ′′1 , . . . , C

′′
5 .

It is clear that CLONE is a 30-operation 5-to-10 verifiable ballot mediator. (Only for clarity is CLONE
described by 7 conceptual steps rather than a sequence of 30 functions, f1, . . . , f30.) Let us now prove
that it is a verifiable ballot computer for permutation clone as desired. Assume that A1, . . . , A5 contained
σ ∈ S5. Then, by construction and by Lemma 1, at the end of Step 1 the sequence of envelopes B1, . . . , B5

contains the permutation σ−1. By definition, the sequence of envelopes S′1, . . . , S
′
5 is obtained in Step 4 by

permuting the super-envelopes S1, . . . , S5 of Step 3 according to a new, random, independent, and secret
permutation ρ ∈ S5. Thus, also the sequences of envelopes B′1, . . . , B

′
5, C ′1, . . . , C

′
5, and D′1, . . . , D

′
5 have been

obtained by respectively reordering B1, . . . , B5, C1, . . . , C5, and D1, . . . , D5 according to ρ. Accordingly, the
contents of B′1, . . . , B

′
5, C ′1, . . . , C

′
5 and D′1, . . . , D

′
5 necessarily and respectively are ρ, ρ, and ρσ−1 = δ. The

latter permutation is revealed in Step 6, and actually is the only public record generated by CLONE in
Steps 2 through 7. This public record is thus a permutation randomly and independently selected in S5. In
particular, it is independent of the only other public record of an execution of CLONE: the single public
record of the execution of INV of Step 1 (which itself was randomly and independently selected member
of S5). Thus, letting D be the uniform distribution over S5 × S5, CLONE enjoys the required privacy
property. Finally, because B′1, . . . , B

′
5 and C ′1, . . . , C

′
5 contained ρ and have been reorder in Step 7 according

to δ−1 = (ρσ−1)−1 = σρ−1, the content of both B′′1 , . . . , B
′′
5 and C ′′1 , . . . , C

′′
5 necessarily is σρ−1ρ = σ, as

required for CLONE to enjoy the correctness property.

2.4 Verifiable Ballot Computers for (the Encodings of) Four Basic Binary Functions

We show that, relative to a special encoding, there exists a verifiable ballot computer for each of the elementary
binary functions discussed in Section 1.6: namely, NOT , AND, DUPLICATE, and COIN .

S5 Encodings. The S5 encoding of a binary string z = b1, . . . , bk, denoted by z, is b1 · · · bk, where

0 = 12345; 1 = 12453.

The S5 encoding of a set X of binary strings is the set X defined as follows: X = {x : x ∈ X}.
The S5 encoding of a function h : {0, 1}a → {0, 1}b is a function h : {0, 1}a → {0, 1}b defined as follows:

h(z) = h(z) for all z ∈ {0, 1}a.

If s = z for some binary string z, the S5 decoding of s, is defined to be z.

The following two identities of Barrington (1986) enable one to evaluate the S5 encodings of the functions
NOT and AND by means of a fixed sequence of inverse and product operations.

Barrington’s Identities. For all bits a and b:
• NOT (a) = 12354 a 12435
• AND(a, b) = 13245 a 34125 b 34125 a−134125 b−1 24135.

Lemma 4. There exists a 56-operation verifiable ballot computer for NOT .

13

Proof. The lemma follows from Barrington’s first identity and our Lemmas 1 and 2. Indeed, the desired
verifiable ballot computer for NOT can be informally described as follows.

Given a sequence x of 5 envelopes containing the S5 encoding of a bit a:
(1) publicly make two sequences of 5 envelopes, the first containing the permutation 12354 and the second

the permutation 12435 (for a total of 2 ballot operations), then
(2) apply twice, to the proper sequences of envelopes, MULT , our 27-operation verifiable ballot computer

for permutation product, (for a total of 54 ballot operations) so as to compute a final sequence of 5 envelopes
whose content is guaranteed to be 12354 a 12435, and thus the the S5 encoding of the negation of bit a.

Lemma 5. There exists a 309-operation verifiable ballot computer for AND.

Proof. The lemma follows from Barrington’s second identity and our Lemmas 1, 2, and 3. Indeed the desired
verifiable ballot computer for AND can be informally described as follows.

Given a sequence of 10 envelopes, the first five containing a and the next five containing b:
(1) publicly make 5 sequences of 5 envelopes each, respectively containing the permutations 13245, 34125,

34125, 34125, and 24135 (for a total of 5 ballot operations);
(2) use twice CLONE, our 30-operation verifiable computer for permutation clone, in order to generate

two sequences of 5 envelopes both containing a, and two sequences of 5 envelopes both containing b (for a
total of 60 ballot operations);

(3) use twice INV , our 14-operation verifiable ballot computer for permutation inverse, in order to
transform one of the envelope sequence containing a into an envelope sequence containing a−1, and one of
the sequences containing b into a sequence containing b−1 (for a total of 28 ballot operations); and finally

(4) use 8 times MULT , our 27-operation verifiable ballot computer for permutation product, in order to
compute a sequence of envelopes whose content is guaranteed to coincide with

13245 a 34125 b 34125 a−134125 b−1 24135

(for a total of 216 ballot operations).

Lemma 6. There exists a 30-operation verifiable ballot computer for DUPLICATE.

Proof. A trivial corollary of Lemma 3: because DUPLICATE is a restriction of permutation clone, any
verifiable ballot computer for permutation clone also is a verifiable ballot computer for DUPLICATE.

Lemma 7. There is a 7-operation verifiable ballot computer for COIN .

Proof. The following fixed sequence of steps is a compact description of the desired verifiable ballot computer:
(1) Publicly make two envelope sequences A1, . . . , A5 and B1, . . . , B5 with respective contents 0 and 1.
(2) Publicly make 2 new super-envelope S and T respectively containing A1, . . . , A5 and B1, . . . , B5.
(3) Ballot-box S and T to obtain super-envelopes S′ and T ′.
(4) Publicly destroy S′ and publicly open T ′ to expose the final sequence of envelopes R1, . . . , R5.
The computer’s correctness is trivial, and, because it does not generate any public record, so is its privacy.

Verifying the total number of ballot operations is trivial.

2.5 Verifiable Ballot Computers for (the S5 Encoding of) Any Binary Finite Functions

Computation is very “local.” That is, the computation of every function f can be broken into that of properly
chosen elementary functions. Theoretically —see, for instance, Goldreich (2008), Section 1.2.4.1— it suffices
to consider the above discussed four elementary functions: NOT , AND, DUPLICATE, and COIN (if f
is probabilistic). A bit more precisely,

14

Basic Fact For any probabilistic finite function f : ({0, 1}a)n → {0, 1}a, there exists a sequence of functions
f̃ = f̃1, . . . , f̃k (where each f̃i is either NOT , AND, DUPLICATE, or COIN) such that:

• Each input bit of f̃i coincides with (a) one bit of f ’s inputs or (b) one output bit of some function f̃h

for h < i ;
• Each input bit of f (each output bit of each f̃i) appears at most once as an input of somef̃j ; and
• Exactly a outputs of the functions f̃i are not inputs of any f̃j and (after all functions f̃i have been

orderly evaluated on their proper inputs) each one of them coincides with one output bit of f .

We refer to such f̃ as a Boolean circuit for f . We say that f has complexity (at most) c if f has a Boolean
circuit of length c.

Theorem 1. For every probabilistic, finite, binary function f of complexity c, there exists a 309-operation
verifiable ballot computer for f .

Proof. Let f̃ = f̃1, . . . , f̃c be a Boolean circuit for f . Then a desired verifiable ballot computer for f can be
obtained by replacing each f̃i (that is, each occurrence of NOT , AND, DUPLICATE, and COIN in f̃) by
its corresponding verifiable ballot computer for NOT , AND, DUPLICATE, and COIN of, respectively,
Lemma 4, Lemma 5, Lemma 6, or Lemma 7, ensuring that each one of them operates on the right sequences
of envelopes. Since the number of ballot operations of each of these four (sub)computers is at most 309, the
total number of ballot operations of the so constructed verifiable ballot computer for f is at most 309c. (To
ensure that the number of operations is exactly 309c, one can always resort to our “do nothing” operation.)

3 Perfect Ballot Implementations of Normal-Form Mechanisms

We are now ready to state and prove that any normal-form mechanism can be perfectly implemented by a
ballot-box mechanism. We do so in two steps: first, in an idealized setting, where the players of a ballot-box
mechanism are assumed to use only “legitimate strategies,” and then in a realistic setting, where the players
are also free to use “illegitimate strategies” if they so want.

3.1 The Idealized Setting

We start by recalling the classical notion of a normal-form mechanism in a form convenient to our goals.

Definition 3. A n-k idealized normal-form mechanism M has

• {1, . . . , n} as its set of players;
• X = {0, 1}k as the strategy set of each player;
• Y = {0, 1}k as its outcome set; and
• a function g : ({0, 1}k)n → {0, 1}k as its outcome function.

Such a mechanism is played as follows:

1. each player i, simultaneously with the others, privately chooses a strategy mi;
2. g is privately and correctly evaluated on the strategy profile (m1, . . . ,mn); and
3. the outcome y = g(m1, . . . ,mn) is publicly announced.

The complexity of M is defined to be c if g has complexity c.

15

Remark. In general, in a finite normal form mechanism, a player i is assumed to have his own, arbitrary
set Mi of binary strings, and the outcome function g maps M1×· · ·×Mn to an arbitrary set of binary strings
Y . Yet it is easy to see that our formulation does not cause any loss of generality.9

Let us now define ballot-box mechanisms in the idealized setting.

Definition 4. A n-k idealized ballot-box mechanism M′ has
• {1, . . . , n} as its set of players;
• {0, 1}k as the strategy set of each player;

• Y = {0, 1}k as its outcome set;
• a verifiable ballot mediator G that is no-ballot-left-behind for sequences of 5kn envelopes;
• an interpretation function I mapping arbitrary strings to Y .

Such a mechanism is played as follows:

1. Each player i privately chooses a strategy mi. Correspondingly, a sequence Ei of 5kn envelopes is
privately made having mi as its content.

2. G is publicly executed on the the 5kn-envelope sequence E —whose first 5k-envelope subsequence is Ei,
the next is E2, and so on— producing a sequence of public records R.

3. The outcome is declared to be the string y = I(R).

The complexity of M′ is defined to be k if G is k-operation.

In the definition above, we of course interpret the envelopes in each Ei as made by i himself, and G as run
by a “verifiable third party” in front of the players. Of course too, M′ is idealized because nothing prevents
a player i from making a sequence of 5k envelopes that do not contain the S5 encoding of a bit. (We shall
lift this assumption in the next subsection).

We insist on “no-envelope-left-behind” to ensure that all concerns about privacy are restricted to the
sequence of public records R generated by the envelopes opened by G.

Notation If s is a strategy profile of a mechanism M, of any form, then by M(s) we denote the distribution
over M’s outcomes generated by playing M under s.

Definition 5. We say that an n-k idealized ballot-box mechanism M′ perfectly implements a n-k idealized
normal-form mechanism M if, for each player i, there exists a bijection ψi between i’s strategies in M and
i’s strategies in M′ such that, for all strategy profiles (m1, . . . ,mn) of M, the following properties hold:

• Strategy Equivalence: M(m1, . . . ,mn) =M′(ψ1(m1), . . . , ψn(mn)).
• Privacy Equivalence: For any subset S of the players, the information available to S, about the strategies

of the other players, is the same in a random play of M under (m1, . . . ,mn) and in a random play of
M′ under (ψ1(m1), . . . , ψn(mn)).
• Complexity Equivalence. If the complexity of M is c, then that of M′ is (at most) 309c+ 5k.
9 Indeed, any such general-looking mechanism can be put in our format as follows. Let z be the cardinality of the largest

set among M1, . . . , Mn, and Y . Choose k = dlog(z)e. Letting ci be the cardinality of message set Mi, encode the elements of
Mi as the lexicographically first ci strings in {0, 1}k and consider any string x ∈ {0, 1}k lexicographically greater than ci as
an alternative encoding of the first element of Mi. Analogously encode the outcome set Y as elements of {0, 1}k. Define now
g′ : ({0, 1}k)n → {0, 1}k to be the following function: if x′i is an encoding of xi ∈ Mi for all i ∈ N , and if y′ is an encoding of
y ∈ Y , then g′(x′1, . . . , x

′
n) = y′ if and only if g(x1, . . . , xn) = y.

16

Remarks.
• A specific definition. Note that we have formalized our notion of perfect implementation for ballot-box

mechanisms, rather than for “generic” concrete mechanisms. This is actually made necessary by the
fact that, without precisely knowing how a concrete mechanism operates, one cannot express properties
such as privacy equivalence in a formal way. One may, however, apply the essence of our definition to
any other sufficiently specified class of concrete mechanisms. (Ensuring that the definition is achievable
of course puts additional constrains on concrete mechanisms.)
• About strategy equivalence. Note that requiring a bijection ψ between the strategy profiles of M and

those of M′ is a less stringent and less satisfactory requirement than our “player-by-player bijection.”
Consider asking a player i about to play M with a strategy mi whether he would mind playing M′
instead. IfM′ satisfied our stringent condition, he would have no substantial objections: he could easily
switch from playing mi in M to playing ψi(mi) in M′ and be guaranteed to be in the same strategic
position. But if M′ satisfied instead the above, less stringent condition, because the player does not
know what the strategies of the others may be, he could not take advantage of the existence of an
“overall bijection” ψ to figure out what strategy to switch to in order to be in an equivalent strategic
position.
• About privacy equivalence. A weaker notion of privacy consists of stating that no single player learns

anything about the strategies of the others beyond what is implicitly revealed by the outcome itself. We
find such a notion insufficient because we realistically assume that people collude whenever there is any
advantage to be gained. And violating another player’s privacy may be important enough to collude.
• About complexity equivalence. Complexity equivalence aims at guaranteeing that the “physical com-

plexity of M′ is essentially comparable to the computational complexity of M.” Of course, there is
nothing magic about the expression “309c+ 5k”. (This expression is actually far from being optimized
on one hand, and dependent on our specific choice of ballot operations on the other.) But in light of
the exponential blow ups of previous implementations, it is important, and perhaps surprising, that the
relation between the two complexity can be linear.

Theorem 2. For every n-k idealized normal-form mechanismM there is a n-k idealized ballot-box mechanism
M′ perfectly implementing M.

Proof. Let g be the outcome function of M, and g̃ a Boolean circuit for g of length c. Then, let M′ be an
n-k idealized ballot-box mechanism having

• a verifiable ballot mediator consisting of the concatenation of two mediators: (1) a verifiable ballot
computer G for g constructed, as in our proof of Theorem 1, using g̃ as the underlying Boolean circuit
for g; and (2) a verifiable ballot mediator O that opens all the envelopes left unopened by G; and
• an interpretation function consisting of a function that, when given a sequence of public records R,

computes the substring R′ comprising the last 5k records (i.e., the contents of the final envelopes of G
that are subsequently opened), and then S5 decodes R′ (i.e., computes a k-bit string y such that y = R′).

Such an M′ exists in virtue of Theorem 1; of the fact that, for any initial sequence of envelopes and any
execution of G, the identifiers of all final envelopes are always the same (else, the desired O would be hard to
come by); and the fact that the concatenation of two verifiable ballot mediators is a verifiable ballot mediator.
Let us now prove thatM′ perfectly implementsM. (To begin with, note that, by construction, the mediator
of M′ is indeed no-ballot-left-behind when executed on a sequence of 5kn envelopes.)

Strategy equivalence follows straightforwardly from the fact that G is a verifiable ballot computer for g
and the definitions of S5 encoding and decoding. To see this, just let each ψi be the function mapping any
k-bit string s to s.

Privacy equivalence holds because the total information available to a subset S of the players in a random
execution of M under (m1, . . . ,mn) consists of (1) their own strategy subprofile mS , and (2) an outcome y
drawn from the distribution g(m1, . . . ,mn); while, in a random execution ofM′ under (m1, . . . ,mn), consists

17

of (1′) their own strategy profile mS and thus, equivalently, mS , (2′) an outcome y drawn from the distribution
g(m1, . . . ,mn), and (3′) “random noise”, as guaranteed by G’s privacy property.

Complexity equivalence holds because Theorem 1 guarantees that G is 309c-operation, and M′ requires
only 5k additional ballot operations in order to open all the final envelopes generated by G.

3.2 The Realistic Case

Normal-form mechanisms would remain an abstraction even if outcome functions would magically and spon-
taneously evaluate themselves on the players’ strategies as soon they are chosen in the players’ minds. This
is so because it is very hard in real life to constrain a player to choose a string in a predetermined set:
typically there are plenty of “alternative strategies.” For instance, a player could kill another player, or prefer
to commit suicide rather than choosing a k-bit string as expected from him. Presumably when modeling a
real strategic situation as a normal-form mechanism, one feels entitled to disregards such alternative strate-
gies because they lead to “bad outcomes,” so that no rational player would ever need to consider them.
Yet, without envisaging what would happen in these alternative scenarios, a concrete mechanism would be
under-specified and could not be properly analyzed, let alone proved equivalent to a normal-form one that
does not have any room for any “alternatives.” Indeed, even if one were willing to implement a normal-form
mechanism with the help of a trusted mediator, he would have to decide what would happen if a player,
rather then handing to the mediator a k-bit string as prescribed, handed him no string or a longer string.

We refer to any “alternative strategy” as an aborting strategy. To enable to measure meaningfully and
precisely how close ballot-box mechanisms may get to normal-form ones, we include in the latter mechanisms
a single, abstract, aborting strategy. That is, we chose to enlarge the strategy set of each player of a normal-
form mechanism with a distinguished string, abort, having the following effect. If no player chooses abort,
then the outcome is chosen as usual, else the outcome only consists of identifying the set of all players who
chose abort. This choice does not compromise the privacy of the other players, and leaves room for dissuading
players from aborting in a variety of ways —for instance, by imposing a suitably large fine to the aborting
players.

We stress that, while players of a normal-form mechanism can abort in a quite abstract and controlled
way, the players of a concrete ballot-box mechanism can abort in any way they want. Yet, we shall state and
prove that perfect implementation of “slightly more realistic” normal-form mechanisms by means of “much
more realistic” ballot-box ones is still possible.

Note that aborting strategies in a ballot-box mechanism do not present a great difficulty when a player
shoots another player of displays some other public deviant behavior. When “public aborting strategies”
are employed, it is trivial to identify the aborters, halt the ballot-box mechanism outputting the set of all
aborting players, and thus enforce (the properly enhanced versions of) strategic, privacy and complexity
equivalence.

What is more difficult to handle is a player that privately prepares an envelope sequence that does
not contain the S5 encoding of a k-bit string. For instance, such a player may make a subsequence of 5
envelopes containing the string 22233, or the string 54321.10 Such “secret alternative strategies” are in fact
not detectable right away, and left unchecked may in principle cause some ballot-box mechanisms to be
ultimately quite different from their still quite abstract counterparts, and possibly reward the so deviating
players.

For the reasons put forward in the above two paragraphs, in the remainder of this section, we shall
consider only “secret alternative strategies.”

3.2.1 Formalization

Definition 6. A n-k realistic normal-form mechanism M has
10Moreover, as we shall soon see, we do not need to consider the possibility of making an envelope with a content, like “7” or

“$”, that is not an integer between 1 and 5. Such deviations do not present any additional problems, except notational ones.

18

• N = {1, . . . , n} as its set of players;
• {0, 1}k ∪ {abort} as the strategy set of each player;
• {0, 1}k ∪ {(abort, S) : S ⊂ N} as its outcome set; and
• a function g : ({0, 1}k)n → {0, 1}k as its outcome function.

Such a mechanism is played as follows:

1. Each player i, simultaneously with the others, privately chooses a strategy mi;
2. The set of players S = {i : mi = abort} is computed.
3. An outcome is publicly announced as follows: (abort,S), if S is non-empty, and y = g(m1, . . . ,mn)

otherwise.

The complexity of M is defined to be the complexity of g.

Definition 7. A n-k realistic ballot-box mechanism M has
• {1, . . . , n} as its set of players;
• {1, . . . , 5}5k (that is, 5k integers between 1 and 5) as the strategy set of each player;
• Y = {0, 1}k ∪ {(abort, S) : S ⊂ N} as its outcome set;
• a verifiable ballot mediator G that is no-ballot-left-behind for envelope sequences of 5kn envelopes;
• an interpretation function I mapping arbitrary strings to Y .

Such a mechanism is played as follows:

1. Each player i privately chooses a strategy si. Correspondingly, a sequence Ei of 5k envelopes is made
with si as its content.

2. G is publicly executed on the the 5kn-envelope sequence E —whose first 5k-envelope subsequence is Ei,
the next is E2, and so on— producing a sequence of public records R.

3. The outcome is declared to be the string y = I(R).

The complexity of M′ is defined to be the number of ballot operations in G.

Definition 8. We say that an n-k realistic ballot-box mechanism M′ perfectly implements a n-k realistic
normal-form mechanism M if, for each player i and each string xi ∈ {1, . . . , , 5}5k \ {0, 1}k, there exists a
bijection ψxi

i between {0, 1}k ∪ {abort} and {0, 1}k ∪ {xi} such that, for all strategy profiles (m1, . . . ,mn) of
M, the following properties hold:

• Strategy Equivalence: M(m1, . . . ,mn) =M′(ψx1
1 (m1), . . . , ψxn

n (mn)).
• Privacy Equivalence: For any subset S of the players, the information available to S, about the strategies

of the other players, is the same in a random play of M under (m1, . . . ,mn) and in a random play of
M′ under (ψx1

1 (m1), . . . , ψxn
n (mn).

• Complexity Equivalence. If the complexity of M is c, then that of M′ is at most 309c+ 151nk.

3.2.2 Solution

The key to prove that every realistic normal-form mechanism is perfectly implementable by a realistic ballot-
box mechanism is constructing the following special type of a verifiable ballot mediator.

Definition 9. We say that a 5-to-5 verifiable ballot mediator M is a bit-checker if there exist a predicate
P, mapping sequences of public records to {0, 1}, and a distribution D, over sequences of public records, such
that, respectively denoting by E and F the initial and the final envelope sequence of M , the following two
properties hold:

1. Correctness. For any bit b, in any execution of M in which E’s content is b, F ’s content is also b.

19

2. Privacy. For any bit b, in a random execution of M in in which E’s content is b the the final sequence
of public records is distributed according to D.

3. Public exposure. Let R1 (respectively, R0) be the final sequence of public records of an execution of M
in which E’s content is (respectively, is not) the S5 encoding of a bit. Then P(R1) = 1 and P(R0) = 0.

Consider now the following verifiable ballot mediator

BC

Given a sequence of envelopes A1, . . . , A5, produce a final sequence of envelopes K1, . . . ,K5 as follows:

(A) Execute on A1, . . . , A5 the verifiable ballot computer INV of the proof of Lemma 1 to obtain a final
sequence 5 envelopes, F1, . . . , F5.

Claim A: If A1, . . . , A5 originally contained a permutation σ ∈ S5, then (1) F1, . . . , F5 now contains
σ−1, and (2) the public record so far consists of a sequence of permutations in S5. Else, one of the
public records produced in Step a is not a permutation in S5.

Comment: In light of Claim 1, in all the steps and claims below we assume that A1, . . . , A5 contained
a permutation in S5, from now on consistently denoted by σ.

(B) Execute INV on F1, . . . , F5 to obtain a final sequence of envelopes G1, . . . , G5.

Claim B: G1, . . . , G5 contains the same permutation σ originally contained in A1, . . . , A5.

(C) Replace G1, . . . , G5 with the final sequences of envelopes I1, . . . , I5, J1, . . . , J5, and K1, . . . ,K5 obtained
by executing the verifiable ballot computer CLONE of the proof of Lemma 3 twice: first on G1, . . . , G5,
to generate the envelope sequences H1, . . . ,H5 and I1, . . . , I5, and then on H1, . . . ,H5, to generate
J1, . . . , J5 and K1, . . . ,K5.

Claim C: I1, . . . , I5, J1, . . . , J5 and K1, . . . ,K5 contain the same permutation σ ∈ S5 originally contained
in A1, . . . , A5.

(D) Execute the verifiable ballot computer for NOT described in the proof of Lemma 4 on I1, . . . , I5 so as
produce the envelope sequence L1, . . . , L5.

Claim D: If the permutation σ originally contained in A1, . . . , A5 was b for some bit b, then both J1, . . . , J5

and K1, . . . ,K5 contain b, and L1, . . . , L5 contain 1− b. Else, none of J1, . . . , J5, K1, . . . ,K5, and
L1, . . . , L5 contain the S5 encoding of a bit.

(E) Publicly make a new super-envelope S containing the sequence of envelopes K1, . . . ,K5, and a new
super-envelope T containing L1, . . . , L5.

Ballotbox S and T to obtain the super-envelopes S′ and T ′.

Publicly open S′ to expose the sequence of envelopes X1, . . . , X5, and publicly open T ′ to expose the
envelope sequence Y1, . . . , Y5.

Finally, publicly open each envelope in X1, . . . , X5 to reveal a content x and each envelope in Y1, . . . , Y5

to reveal a content y.

Claim E: If x and y are the S5 encodings of opposite bits, then: A1, . . . , A5 contained b for some bit b,
and the same b is now the content of the final envelope sequence J1, . . . , J5. Else, A1, . . . , A5 did not
contain the S5 encoding of any bit.

Lemma 4: BC is a 151-operation bit-checker.

Proof. To begin with, note that BC indeed is a 5-to-5 verifiable ballot mediator. (This is so because it is the
concatenation of a few verifiable ballot mediators, chosen from INV , NOT , and CLONE, which can always

20

be executed so as to produce their prescribed final sequences of envelopes no matter what the contents of
their initial envelope sequences are.) Moreover, it is immediately seen that BC indeed transforms an initial
sequence of 5 envelopes to a final sequence of 5 envelopes. Let us now prove that each of Claims A through
E holds.

Proof of Claim A. If A1, . . . , A5 contained a permutation σ ∈ S5, then F1, . . . , F5 contain σ−1 because
INV is a verifiable ballot computer for permutation inverse.

If the content of A1, . . . , A5 is not a permutation in S5, then neither is the content α publicly revealed in
Step 5 of INV . �

Thus, the predicate P, demanded by the definition of a bit-checker, can utilize α to differentiate the
sequences of public records arising when the initial envelopes A1, . . . , A5 contain the S5 encoding of a bit
from those arising when A1, . . . , A5 do not contain such an encoding. Accordingly, as per our comment, we
can indeed assume below that A1, . . . , A5 originally contained a permutation in S5, denoted by σ. By Claim
A, therefore, F1, . . . , F5 contain σ−1.

Proof of Claim B. Trivially true, since INV is a verifiable ballot computer for permutation inverse. �
Proof of Claim C. Trivial, in light of the fact that CLONE is a verifiable ballot computer forDUPLICATE. �
Proof of Claim D. The “if part” follows trivially from the fact that we are running a verifiable ballot

computer for NOT . Let us now argue the “else part.” To this end, recall that we have already argued that
the sequences I1, . . . , I5, J1, . . . , J5, and K1, . . . ,K5 all contained the same permutation σ originally contained
in A1, . . . , A5. Thus if σ is not the S5 encoding of a bit, neither is the content of J1, . . . , J5 or K1, . . . ,K5. The
same is true for the content of the sequence L1, . . . , L5. In fact, as we have already noted, our verifiable ballot
computer for NOT is the product of specific permutations, dictated by the first Barrington identity, and thus
itself a bijection between S5 and S5. And since this bijection maps {12345, 12453} into {12345, 12453}, it
cannot map any other other permutation in S5, including our σ, to either 12345 or 12453. �

Proof of Claim E. Since Step e leaves the envelope sequence J1, . . . , J5 alone, and ultimately opens
K1, . . . ,K5 and L1, . . . , L5, Claim E is trivially implied by Claim D. �

In sum, therefore, the correctness property of BC follows trivially from Claims A through E.
The public-exposure property follows from Claims A and E. In fact, the predicate P, demanded by the

definition of a bit-checker, can be trivially constructed by using the content of α of K1, . . . ,K5 and L1, . . . , L5

to distinguish execution of BC in which the initial sequence of envelopes contained a permutation in {0, 1}
from those whose initial envelopes contained a permutation in S5 \ {0, 1}.

The privacy property holds too. To this end notice that, whenever A1, . . . , A5 contain the S5 encoding of
a bit b, then, no matter whether b = 0 or b = 1, every public record of a random execution of BC consists
of a permutation randomly and independently selected in S5, except for the public-record pair (x, y) of Step
e, which however is guaranteed to be (0, 1) with probability 1/2, and (1, 0) with probability 1/2. Thus,
whenever the initial 5 envelopes contain the S5 encoding of a bit b, the distribution over the final sequence
of public records is independent of b, as demanded for a bit-checker.

Theorem 3. For every n-k realistic normal-form mechanismM there is a n-k realistic ballot-box mechanism
M′ perfectly implementing M.

Proof. The proof mimics that of Theorem 2, after properly incorporating a bit-checker into the verifiable
ballot mediator ofM′. Let g be the outcome function ofM, g̃ a Boolean circuit for g of length at most c, and
M′ the n-k realistic ballot-box mechanism with the following verifiable ballot mediator B′ and interpretation
function I ′:

B′ : Given a sequence Ei of 5k envelops for each player i, the verifiable ballot mediator of M′ works as
follows. First, conceptually, it subdivides each Ei into k contiguous (sub)sequences of 5 envelopes each,
Ei

1, . . . , E
i
k. Then, it executes the bit-checker BC on each Ei

j to produce a sequence of public records Ri
j

and a 5-long sequence of final envelopes F i
j .

21

If the predicate P of BC evaluated on some Ri
j indicates that the corresponding envelope sequence

Ei
j was not the S5 encoding of a bit, then the remaining operations of B′ consist of a suitable number of

“do-nothing” operations followed by number of “destroy-ballot” operations so that no unopened ballot
is left while the required total number of operations is reached.

Else, the remaining operations of B′ consist of executing on the obtained sequences F 1
1 , . . . , F

n
k a

verifiable ballot computer G for g constructed, as in our proof of Theorem 1, using g̃ as the underlying
Boolean circuit for g; and finally a verifiable ballot mediator that opens all the envelopes left unopened
by G.

I ′ : If, for some player i there exists at least one (bit-position) j such that P(Ri
j) = 0, then, letting S be the

subset of all such players i, I ′ returns (abort, S). Else, letting R′ be the subsequence consisting of the
last 5nk public records produced by B′, I ′ returns the S5 decoding of R′.

To see that strategy equivalence holds, for each player i and each xi ∈ {1, . . . , 5}5k \ {0, 1}k, define ψxi
i as

follows: ψxi
i (mi) = mi if mi ∈ {0, 1}k, and ψxi

i (mi) = xi if mi = abort.
To see that privacy equivalence holds, notice that, for each player i and each xi ∈ {1, . . . , 5}5k \

{0, 1}k, the total information available to a subset S of the players in M′ under the strategy profile
(ψx1

1 (m1), . . . , ψxn
n (mn)) consists of the information available to the players in S in M under (m1, . . . ,mn)

plus some “random noise.”
To see that complexity equivalence holds, notice that the total number of ballot operations ofM consists

of the sum of the ballot operations of G, (which is at most 309c) and the total number of ballot operations
of BC, which is at most 151nk, since BC is 151-operation and is executed is executed nk times, that is for
each strategy bit the players have in M.

4 From Normal-Form to Arbitrary Mechanisms

In a very recent conference paper, Izmalkov, Lepinski and Micali (2008), we generalize the present verifiable-
mediator results in a variety of ways. To begin with, we show how to perfectly simulate a richer form of normal-
form mechanisms, where, after each player i simultaneously with the others submits a report xi, not only
there is a (public) outcome function g that determines the publicly announced outcome y = g(x1, . . . , xn), but
also a private outcome function f that determines the profile of private outcomes (y1, . . . , yn) = f(x1, . . . , xn),
and each player i learns (in addition to y) just his own yi. In particular, this result enables one to perfectly
simulate, with ballots and without trusting anyone, a more private version of the second-price mechanism in
which (in addition to the seller, if so desired) only the winner learns that she has won and the price she has
to pay, while all other players learn only that they did not win.

More importantly, after changing some of our ballot operations with other ones just as intuitive, we show
that it is possible to perfectly simulate a general “interactive mechanism.” Such a mechanism proceeds in a
sequence of stages. The jth stage is played as follows:

• Each player i, simultaneously with the others, submits a private message xj
i ; and the mechanism has

available a private message zj
0 (z1

0 is typically the empty string).
• An outcome function F j is privately evaluated on the sequence of all stage-j messages to compute a

public outcome yj , a profile of private outcomes (yj
1, . . . , y

j
n), and a mechanism private message zj+1

0 .

• Outcome yj is publicly announced, message zj+1
0 is kept private by the mechanism, and each player i

privately receives outcome yi
j .

(Essentially, such a general mechanism can be conceptualized as a sequence of enriched normal-form
mechanisms, passing prescribed private information not only to the players, but to each other.11)

11For instance, in implementing two auctions one after the other, the first mechanism may announce the winner and the second
highest bid, but privately pass on to the second mechanism some aggregate information of all bids —e.g., the average of all bids,
which may be used to set the reserve price of the second auction.

22

The ballot-box remains a crucial ingredient in perfectly implementing such an M, but it becomes more
tricky to use. In fact, in simulating normal-form mechanisms, we were not concerned that the execution of
a ballot-box mechanism made a random string (i.e., the sequence of public records) common knowledge. Of
course, the availability of a public random string can affect the play of a mechanism.12 But such a random
string cannot cause any strategic effect when the players seeing it have no further play ahead of them, as it is
the case in a ballot-box mechanism implementing a normal-form one. By contrast, an interactive mechanism
essentially envisages a sequence of interrelated plays, and to enable a ballot-box mechanism to simulate it
perfectly such a sequence, we must make sure that the generated sequence of public records contains no
randomness at all (else, strategic equivalence could not hold in its purest form).

Ensuring that this additional condition is the main technical contribution of our latest construction.

5 Final Remarks

Equating Subjects and Objects. As for other constructions in logic and computation, the universality
of ours ultimately arises from “equating data and programs.” In our case, this is achieved by a very simple
idea: namely encoding a 5-element permutation p by the string of integers p(1)p(2)p(3)p(4)p(4)p(5), and
then putting p(j) into envelope j, so as to have a 5-envelope representation of p. The convenience of this
simple representation is that such a sequence of envelopes is both a piece of (really physical!) data, as
well as an algorithm, which via the ballot box is capable of operating on other data. Indeed the crucial
subroutine of our construction (because it is the one that “brings together” different permutations, and thus,
ultimately, different bits) is a procedure that, given two sequences of 5 envelopes —the first sequence standing
a permutation p and the second for a permutation q— interprets the first sequence as the program “multiply
by p” and returns (without revealing any information about p or q) a sequence of 5 envelopes encoding the
product permutation pq, that is, the permutation mapping each i between 1 and 5 to p(q(i)).

It should be noted that other classical ways to represent permutations —such as the “cycle representation”
that encodes the permutation encoded by us as “35412” with “(1,3,4)(2,5)”— although very convenient for
other purposes, do not seem to amenable to equating subjects and objects, at least in a straightforward way,
in our ballot context.

Complementing Mechanism Design. As remarkable as they may be, the solutions offered by mechanism
design are, most of the time, abstract normal-form mechanisms, which may not retain their properties when
straightforwardly played by players who value privacy or do not trust anyone.13 Thus, while we do not help a
designer in engineering new mechanisms, by perfectly implementing whatever abstract mechanisms he finds,
we do enable him to ignore issues of privacy and trust in his work.

Meaningfulness and Abstraction. Abstractions are certainly powerful. But the meaningfulness of an
abstraction ultimately depends on whether concrete implementations that adequately approximate it exist.
In a sense, therefore, our contributions guarantee the practical meaningfulness of the very notion of a normal-
form mechanism: no matter how “delicate,” its theoretical properties will continue to hold intact for at least
one concrete implementation (i.e., its ballot-box implementation).

12In particular, it enables the players of a normal-form game now achieve, without additional external help, the payoffs of the
“convex closure” of the initial set of Nash equilibria.

13Sjöström and Maskin (2002) provide a comprehensive survey of mechanism design and implementation theory literature.
Normal-form mechanisms are also extensively used in more applied fields, such as auction theory and contract theory, see
Krishna (2002), Bolton and Dewatripont (2005). Often the problems of privacy and trust are by-passed by explicit additional
assumptions. For instance, it is typically assumed that the seller (and similarly the principal) can fully commit to the mechanism
she offers to the buyers (and similarly to the agents)—and, since buyers know that, their rationality dictates they must trust the
seller.

23

A Fact, a Prediction, and a Wish. People care about privacy. And to develop more accurate models,
privacy should intrinsically inform any general study of human interactions. In particular, we believe and
hope that a rigorous and comprehensive treatment of privacy will become an integral part of game theory.

New Economic School, Nakhimovsky prosp. 47, room 17-21 Moscow, Russia, 117418; sizmalkov@gmail.com;
BBN Technologies, 10 Moulton Street, Cambridge, MA 02138; mlepinski@bbn.com;

and

Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, 32 Vassar Street, Room G644, Cambridge, MA 02139;
silvio@csail.mit.edu.

References

Aumann, R. J. and Hart, S.: 2003, Long cheap talk, Econometrica 71(6), 1619–1660.

Bárány, I.: 1992, Fair distribution protocols or how the players replace Fortune, Mathematics of Operations
Research 17, 329–340.

Barrington, D. A.: 1986, Bounded-width polynomial-size branching programs recognize exactly those lan-
guages in NC1, Proceedings of the 18th Symposium on Theory of Computing, ACM, pp. 1–5.

Ben-Or, M., Goldwasser, S. and Wigderson, A.: 1988, Completeness theorems for fault-tolerant distributed
computing, Proceedings of the 20th Symposium on Theory of Computing, ACM, pp. 1–10.

Ben-Porath, E.: 1998, Correlation without mediation: Expanding the set of equilibrium outcomes by cheap
pre-play procedures, Journal of Economic Theory 80, 108–122.

Ben-Porath, E.: 2003, Cheap talk in games with incomplete information, Journal of Economic Theory
108(1), 45–71.

Bolton, P. and Dewatripont, M.: 2005, Contract Theory, MIT Press, Cambridge, Massachusetts.

Brandt, F. and Sandholm, T.: 2004, (Im)possibility of unconditionally privacy-preserving auctions, Pro-
ceedings of the 3rd International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), IEEE, pp. 810–817.

Dodis, Y., Halevi, S. and Rabin, T.: 2000, A cryptographic solution to a game theoretic problem, Advances
in Cryptology — CRYPTO 2000, LNCS, Vol. 1880, Springer-Verlag, pp. 112–130.

Forges, F. M.: 1986, An approach to communication equilibria, Econometrica 54(6), 1375–85.

Forges, F. M.: 1990, Universal mechanisms, Econometrica 58, 1341–1364.

Gerardi, D.: 2004, Unmediated communication in games with complete and incomplete information, Journal
of Economic Theory 114(1), 104–131.

Gerardi, D. and Myerson, R. B.: 2007, Sequential equilibria in bayesian games with communication, Games
and Economic Behavior 60(1), 104–134.

Goldreich, O. 2008, Computational Complexity, Cambrdige University Press.

Goldreich, O., Micali, S. and Wigderson, A.: 1987, How to play any mental game, Proceedings of the 19th
Symposium on Theory of Computing, ACM, pp. 218–229.

24

Goldwasser, S., Micali, S. and Rackoff, C.: 1985, The knowledge complexity of interactive proof-systems,
Proceedings of the 17th Symposium on Theory of Computing, ACM, pp. 291–304. Final version in SIAM
Journal on Computing, 1989, 186–208.

Izmalkov, S., Lepinski, M. and Micali, S.: 2005, Rational secure computation and ideal mechanism design,
Proceedings of the 46th Symposium on Foundations of Computer Science, IEEE, pp. 585–594.

Izmalkov, S., Lepinski, M. and Micali, S.: 2005, Verifiably Secure Devices, Proceedings of the 5th Theory of
Cryptography Conference, Springer, pp. 273-301.

Krishna, R. V.: 2006, Communication in games of incomplete information: Two players, Journal of Economic
Theory . forthcoming.

Krishna, V.: 2002, Auction Theory, Academic Press, San Diego, California.

Lepinski, M., Micali, S., Peikert, C. and Shelat, A.: 2004, Completely fair sfe and coalition-safe cheap talk,
Proceedings of the 23rd annual Symposium on Principles of distributed computing, ACM, pp. 1–10.

Lindell, Y. and B. Pinkas: 2004, A Proof of Yao’s Protocol for Secure Two-Party Computation, available at:
http://www.cs.biu.ac.il/~lindell/abstracts/yao_abs.html.

Myerson, R. B.: 1982, Optimal coordination mechanisms in generalized principal-agent problems, Journal of
Mathematical Economics 10(1), 67–81.

Naor, M., Pinkas, B. and Sumner, R.: 1999, Privacy preserving auctions and mechanism design, Proceedings
of the 1st conference on Electronic Commerce, ACM.

Osborne, M. J. and Rubinstein, A.: 1997, Game Theory, MIT Press, Cambridge, Massachusetts.

Rothkopf, M. H., Teisberg, T. J. and Kahn, E. P.: 1990, Why are Vickrey auctions rare?, Journal of Political
Economy 98, 94–109.

Sjöström, T. and Maskin, E.: 2002, Handbook of Social Choice and Welfare, Vol. 1, North-Holland, chapter
Implementation Theory, pp. 237–288.

Urbano, A. and Vila, J. E.: 2002, Computational complexity and communication: Coordination in two-player
games, Econometrica 70(5), 1893–1927.

Wilson, R.: 1987, Game-theoretic analyses of trading processes, in T. F. Bewley (ed.), Advances in Economic
Theory, Fifth World Congress, Cambridge University Press, Cambridge, UK, pp. 33–70.

Yao, A.: 1986, Protocol for secure two-party computation, never published. The result is presented in Lindell
and Pinkas (2004).

25

http://www.cs.biu.ac.il/~lindell/abstracts/yao_abs.html

	Introduction
	The Goal of Maximum Privacy (and Minimum Trust)
	The Goal of Strategic Equivalence
	The Goal of Efficiency Preservation
	The (Informal) Notion of a Perfect Implementation
	A Macroscopic View of Our Construction
	A Microscopic View of Our Construction
	Pros and Cons of the Ballot Box
	Relation to Prior Work

	Verifiable Ballot Computation
	Working with Physical Ballots
	Verifiable Ballot Mediators and Verifiable Ballot Computers
	Verifiable Ballot Computers for Three Special Functions
	Verifiable Ballot Computers for (the Encodings of) Four Basic Binary Functions
	Verifiable Ballot Computers for (the S5 Encoding of) Any Binary Finite Functions

	Perfect Ballot Implementations of Normal-Form Mechanisms
	The Idealized Setting
	The Realistic Case
	Formalization
	Solution

	From Normal-Form to Arbitrary Mechanisms
	Final Remarks

