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Abstract

Acyclicity of individual preferences is a minimal assumption in so-
cial choice theory. We replace that assumption by the direct assump-
tion that preferences have maximal elements on a fixed agenda. We
show that the core of a simple game is nonempty for all profiles of such
preferences if and only if the number of alternatives in the agenda is
less than the Nakamura number of the game. The same is true if we
replace the core by the core without majority dissatisfaction, obtained
by deleting from the agenda all the alternatives that are non-maximal
for all players in a winning coalition. Unlike the core, the core without
majority dissatisfaction depends only on the players’ sets of maximal
elements and is included in the union of such sets. A result for an
extended framework gives another sense in which the core without
majority dissatisfaction behaves better than the core.
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1 Introduction

1.1 Preference aggregation theory for acyclic individual pref-
erences

Preference aggregation theory is concerned with aggregating individual pref-
erences into a (collective) social preference, which is then maximized to yield
a set of best alternatives. The theory investigates the extent to which so-
cial preferences inherit desirable properties from individual preferences. We
typically restrict (strict) individual and social preferences to those asym-
metric relations > on a set X of alternatives that are either (i) acyclic or
(ii) transitive or (iii) negatively transitiveﬂ

Of the properties (i), (ii), and (iii) for asymmetric preferences, negative
transitivity is the most demanding. Arrow’s Theorem (1963)) points out the
difficulty of aggregating preferences for more than two alternatives while
preserving asymmetry and negative transitivityﬂ

Acyclicity is the least demanding of the properties; it is necessary and
sufficient for the existence of a maximal element on every finite subset of
alternatives. The Nakamura number plays a critical role in the study of pref-
erence aggregation rules with acyclic social preferencesﬁ Consider a simple
game (voting game) W, a collection of “winning” coalitions in a set N of
players. Combining the game with a set X of alternatives and a profile
p = (>7)ien of individual preferences, one obtains a simple game with
preferences (W, X, p), for which one can define the social preference h‘j\,
(dominance relation) and the core C(WW, X, p) (the set of maximal alterna-
tives with respect to -}))). Nakamura’s theorem (1979) gives a restriction
on the number of alternatives that the set of players can deal with rationally
(Theorem : the core of a simple game with preferences is always (i.e., for
all profiles of acyclic preferences) nonempty if and only if the number of al-
ternatives is finite and below a certain number, called the Nakamura number
of the simple game. The theorem thus gives a condition (Corollary (1)) for
the social preferences to inherit acyclicity from individual preferences.

'Define the weak preference >= by = = y < y ¥ x. > is asymmetric iff > is complete
(reflexive and total). (i) > is acyclic if for any finite set {x1,z2,...,2m} C X, whenever
T1 > T2, ..., Tm—1 > Tm, We have x, ¥ x1. If > is acyclic, it is asymmetric and
irreflexive. (ii) > is transitive if x > y and y > z imply « > z. When > is transitive, we
say = is quasi-transitive. (iii) > is negatively transitive if x ¥ y and y ¥ z imply x ¥ z.
> is negatively transitive iff > is transitive.

2The restriction to two alternatives disappears when there are infinitely many individ-
uals (Fishburn) [1970), but such a resolution relies on highly nonconstructive mathematical
objects (Mihara, {1997} 1999).

3Banks| (1995)), [Truchon| (1995)), [Andjiga and Mbih| (2000), and [Kumabe and Mihara,
(2008a)) are recent contributions to the literature. Earlier papers on acyclic rules can
be found in [Truchon| (1995)) and |Austen-Smith and Banks| (1999)). [Kumabe and Mihara
(2008b)) comprehensively study the restrictions that various properties for a simple game
impose on its Nakamura number.



To deal with an empty core (or cycles in social preferences), several
authors have investigated solutions different from the core. We pick two
examples for which there have been recent developments. First, |[Duggan
(2007)) proposes a procedure in which one deletes particular instances of
preferences until the resulting subrelation is acyclic (alternatively, transi-
tive or negatively transitive), and collects the maximal elements of all such
(maximal acyclic) subrelationsﬁ Second, taking voters’ foresight into con-
sideration, Rubinstein| (1980) proposes the stability set, a superset of the
coreE| All these investigations focus on treating cyclic social preferences,
assuming that individual preferences satisfy a rationality property at least
as strong as acyclicity.

1.2 Preference aggregation theory without acyclicity

In this paper, we propose a preference aggregation theory without acyclicity.
In contrast to the authors cited in the preceding paragraph, we do not
attempt to remove cycles in (social and even individual) preferences.

We retain the usual framework (e.g., Arrow, [1963| Section I1.2) in which
a set X of underlying alternatives is distinguished from an agenda (oppor-
tunity set) B C X with which a group N of players are confronted. In
particular, fixing a simple game W and a set X, we focus on the aggrega-
tion methods that assign the core C(W, B, p) or the core without majority
dissatisfaction CT (W, B, p) (introduced later)ﬁ to each (W, B, p) satisfying
a certain assumption. The assumption, which is actually a condition con-
cerning a pair (B, p), is that every player’s preference >f has a maximal
element in B: the mazimal set maxp >} (the set of maximal elements of
the preference) is nonempty for each zm This is a rather direct assumption
at the individual level, which is to be inherited to the requirement at the
social level that there is a chosen alternative for the given pair.

The assumption is distinctive in that it involves an agenda B as well as
a profile p. For this reason, it does not fit the following Standard Scenario

4 A related procedure is to collect the maximal elements of all maximal chains (subsets
of alternatives on which the majority preference is a linear order), which yields the Banks
set (Banks) [1985; [Pennl [2006)); the set consists of the sophisticated voting outcomes of
some binary agenda.

3Le Breton and Salles| (1990)) provide a sufficient condition for the general nonemptyness
of the stability set in terms of the Nakamura number. Using more complex characteristic
numbers, Martin and Merlin| (2006) propose a weaker sufficient condition and [Andjiga
and Moyouwou] (2006) a necessary and sufficient condition for the general nonemptyness
of the stability set.

5 As the notation suggests, we define the core (without majority dissatisfaction) relative
to an agenda B.

7 Acyclicity of a preference is independent of the property of having a maximal element.
There is a cyclic preference that has a maximal element on X. When X is infinite, there is
an acyclic preference that has no maximal element on X. Similarly, the property of having
a maximal element on B is independent of the property of having a maximal element on X.



in social choice theory (Arrow} 1963, page 12) very well: before knowing
an agenda, the players discover and report their own preferences (on X) to
the planner; having obtained a choice rule that assigns a nonempty subset
to every agenda, the planner applies the rule to a particular agenda B.
Since the planner does not generally know whether a pair (B, p) satisfies
the assumption until she faces the agenda B, what she obtains immediately
after learning the profile p of preferences is only a partial choice rule, which
might assign an empty set to some agendaﬁ

An Alternative Scenario that the assumption fits well is the following:
the planner first presents an agenda B to the players, who then discover and
report their own preferences (for alternatives in B at least) to the planner;
the planner then makes a choice. This is perhaps a closer description of
actual collective decisions. While failing to produce a choice rule at an
intermediate stage, the scenario has some advantages over the Standard
Scenario.

First, the Alternative Scenario can deal with context-dependent choices
based on multiple rationales (preferences belonging to the same individual)
more easily, where the context is given by an agenda (Kalai et al., 2002;
Ambrus and Rozen, 2008). The problem with the Standard Scenario is that
a player is supposed to report a single preference for the whole set X, when
she might actually have an irreducible set of multiple rationales.

Second, as |Arrow| (1963, page 110) writes, “ideally, one could observe
all preferences among the available alternatives, but there would be no way
to observe preferences among alternatives not feasible for society,” even if
each player has a single preference. This argument justifies the Alternative
Scenario either directly or via Arrow’s ITA (Independence of Irrelevant Al-
ternatives), which requires that social choice from an agenda depends only
on the individual preferences restricted to the agenda. Both the core and
the core without majority dissatisfaction satisfy Arrow’s IIAE”E

8This is not to say that partial rules are uninteresting as an object of study. Com-
putability theory (e.g., |Odifreddi, [1992), for example, is powerful precisely because it
includes partial functions in its scope.

9To be precise, whenever =P N(B x B) = >f, N(B x B) for all i, we have C(W, B, p) =
C(W,B,p’) and CT(W, B,p) = CT(W, B,p’). The assertion for C" is a corollary of
Lemma The reader should not confuse Arrow’s ITA with the ITA (sometimes called
property «) for choice rules, discussed by [Kalai et al.| (2002)), for example.

10Because of Arrow’s ITA, it does not really matter whether we define preferences on X
or on B. If a preference were defined on an agenda, however, a more straightforward
formulation would be to remove the symbol B from the framework and call that agenda X.
Doing so, however, would make the connection between the Alternative Scenario and the
framework much less clear. For this reason, we formally define preferences on X instead
of on B.



1.3 The core without majority dissatisfaction

The core without majority dissatisfaction (Deﬁnition is obtained by delet-
ing from an agenda all the alternatives that are non-maximal for all individ-
ual players in a large (winning) coalition. It is (Lemma [5)) a strengthening or
subset of the core, obtained by deleting from the agenda all the alternatives
that are non-maximal for a large (winning) coalition of players collectively.
Consequently, it only chooses Pareto efficient alternatives from an agenda,
unlike other solutions such as the stability set (Rubinstein, 1980} page 153).

The core without majority dissatisfaction is a simple solution concept
that treats the maximal sets maxp >P of the players in a better-behaved
way than the core does. (It is reasonable to pay attention to such sets, since
they are the very objects that we assume to be nonempty.) First, unlike the
core, the core without majority dissatisfaction depends only on the players’
maximal sets (Lemma E Second, each alternative in the core without
majority dissatisfaction belongs to someone’s maximal set (Lemma @ The
same is not true for the core (Examples [1] and [2)).

1.4 Overview of the results

The main results of the paper are similar to Nakamura’s theorem (1979), ex-
cept that they consider profiles for an agenda B—profiles of (not necessarily
acyclic) preferences that have maximal elements on the agenda.

The first main result, Theorem [2] is about the original Nakamura num-
ber for simple games W defined on an algebra of coalitions. It asserts that
the following statements are equivalent: (i) the number of alternatives in the
agenda B is less than the Nakamura number v(W); (ii) the core C™ (W, B, p)
without majority dissatisfaction is nonempty for all profiles p for the agenda;
(iii) the core C(W, B, p) is nonempty for all profiles p for the agenda. Re-
gardless of which choice rule is used, the Nakamura number therefore mea-
sures the extent (the size of an agenda) to which simple games will assuredly
choose some alternative from the agenda, whether individual preferences are
assumed to be acyclic or to have maximal elements.

Theorem [2]is remarkable for the following reasons: First, it demonstrates
that one can obtain a significant result without assuming acyclic preferences.
Though neglected in the literature, a preference aggregation theory without
acyclicity has potential. Second, the general nonemptyness of the core im-
plies the general nonemptyness of the strengthening of the core. The core
without majority dissatisfaction is as satisfactory as the core according to
this criterion. Third, restricting preferences to those with maximal elements
allows us to drop the awkward condition that the agenda is finite. Unlike
Theorem [1I} Theorem [2| gives a condition for the general nonemptyness of

1This property is sometimes called “tops-only”; it is investigated in an abstract social
choice framework by |[Mihara| (2000), for example.



the core for infinite, as well as finite, agenda. Fourth, it fits the Alternative
Scenario. It gives a condition for the planner to be assured of the existence
of a chosen alternative as soon as she presents an agenda to the players
(i.e., before she learns their preferences, supposing that they have maximal
elements). Fifth, our framework is very general. Like Nakamura (1979)), we
impose no conditions such as monotonicity or properness on simple games.
Unlike Nakamura (1979), we consider arbitrary sets of players and arbitrary
algebras of coalitionsE

The second main result, Theorem 3| is about the kappa number (Defi-
nition , an extension of the Nakamura number to the even more general
framework that distinguishes the collection B’ of the sets of players for which
one can assign winning/losing status from the algebra B of (identifiable)
coalitions. The kappa number k(W) is defined for a collection W C B’ of
winning sets. The result asserts that the following two statements are equiv-
alent: (i) the number of alternatives in the agenda B is less than the kappa
number £(W'); (ii) the core CT (W', B, p) without majority dissatisfaction
is nonempty for all profiles p for the agenda. It also asserts that the above
two statements imply, but are not implied by: (iii) the core C(W', B, p) is
nonempty for all profiles p for the agenda.

Theorem (3| gives another sense in which the core without majority dis-
satisfaction behaves better than the core. Computing the kappa number
is not an easy task in general. So, in applying the theorem, Lemma [9] is
useful; it estimates the kappa number from above and below in terms of the
Nakamura numbers.

2 Preliminaries

2.1 Some facts about ordinal numbers

The notion of ordinal numbers (or ordinals) generalizes that of natural num-
bers. This section presents some facts about ordinalsﬂ Consult a textbook
for axiomatic set theory (e.g.,[Hrbacek and Jech (1984)) for more systematic
treatment.

We start by introducing the first “few” ordinals. The natural numbers
are constructed from ) as follows: 0 = (), 1 = 0U {0} = {0} = {0}, 2 =
1U{1} ={0,1} ={0,{0}}, 3=2U{2} ={0,1,2},4 =3U{3} ={0,1,2,3},

etc. The first ordinal number that is not a natural number is the set w =

12Most works in this literature consider finite sets of players. [Nakamural (1979) considers
arbitrary (possibly infinite) sets of players and the algebra of all subsets of players.

13The paper does not require much knowledge of the theory of ordinal numbers. Un-
derstanding a few notions (such as limit ordinals and cardinal numbers) and facts will
suffice to understand details of the paper (mostly in footnotes). A deeper application to
economic theory can be found in |Lipman| (1991)), who uses this theory to find a fixed point
of an “infinite regress” that a modeler faces.



{0,1,2,3,...} of natural numbers. We can continue the process to obtain
w+l=wU{w}={0,1,2,...,w}w+2=(w+1)+1=(w+1)U{w+1} =
{0,1,2,...,w,w+ 1}, etc. We then have w-2=w+w ={0,1,2,...,w,w+
Lw+2,..,w-2+1, ..., w-3, ..., w-w=10,1,2,...;w,w+1,...,w-
2w-241,...,w-3,...,w-4,...}.

For a given ordinal «, its successor a+1 = aU{a} always exists and is
an ordinal. For a given ordinal a;, « — 1 does not necessarily exist: if there is
an ordinal 8 such that o = 8+ 1, then « is a successor ordinal; otherwise,
it is a limit ordinal. Every natural number except 0 is a successor ordinal.
Both w and w + w are limit ordinals. But w + 1, w + 2, etc. are successor
ordinals.

Define o < g if and only if a € 5. < has all the properties of a linear
order. Every set A of ordinal numbers are well-ordered by <, that is, every
nonempty subset of A has a <-least element.

Each ordinal a has the property that

a={f: [ is an ordinal and 8 < a}.

If «v is a successor ordinal, say S+ 1, then as a set, it has a greatest element,
namely 5. If « is a limit ordinal, then it does not have a greatest element,
and a = sup{f : 8 < a}.

A function whose domain is an ordinal « is called a (transfinite) sequence
of length a.

Two sets Y and Y’ are equipotent if there is a bijection (one-to-one and
onto function) from Y to Y’. An ordinal number « is an initial ordinal if it
is not equipotent to any 8 < «. For example, w is an initial ordinal, because
it is not equipotent to any natural number. w + 1 not initial, because it is
equipotent to w. Similarly, none of countable ordinals w + 2, w + 3, w + w,
w-w, wY, ...is initial.

The cardinal number of a set Y, denoted #Y, is the unique initial ordinal
equipotent to Y. In particular, if Y is countable, then #Y = w. There
are arbitrarily large cardinal numbers. Infinite cardinal numbers form a
transfinite sequence of alephs N, with « ranging over all ordinal numbers.
We have X, + Ng = R, - Ng = max{R,, Ng}. Appendix gives a proof of
the following:

Lemma 1 An infinite cardinal number is a limit ordinal.

Without defining the ordinal sum and the cardinal sum here, let us just
mention the following useful lemma (proved in Appendix [A.2)):

Lemma 2 #(a + ) = #a + #08, where the sum on the left side is the
ordinal sum and the sum on the right is the cardinal sum.



2.2 Framework

Let N be an arbitrary nonempty set of players and B C 2V an arbitrary
Boolean algebra of subsets of N (so B includes N and is closed under union,
intersection, and complementation). The elements of B are called coali-
tions. Intuitively, they are the observable or identifiable or describable
subsets of players. A (B)-simple game W is a subcollection of B such that
0 ¢ W and W # (. The elements of W are said to be winning, and the
other elements in 3 are losing. A simple game )V is weak if the intersection
AW = NgewS of the winning coalitions is nonempty.

Let X be a (finite or infinite) set of alternatives, with cardinal number
#X > 2. In this paper, a (strict) preference is an asymmetric relation
= on X: if x = y (“x is preferred to y”), then y % x. A relation > is total
if x # y implies > y or ¥ > x. An asymmetric relation is a linear order
if it is transitive and total. A binary relation > on X is acyclic if for any
finite set {z1,z2,..., 2y} C X, whenever x1 > xa, ..., Typ—1 > Ty, we have
Tm ¥ x1. Acyclic relations are preferences since they are asymmetric (and
irreflexive). Let A be the set of acyclic preferences on X.

A profile is a list p = (>} );en of individual preferences »P. Intuitively,
z > y means that player i prefers z to y at profile p. A profile p is (B)-
measurable if {i:z =Py} € B for all z, y € X. Denote by A% the set of
all measurable profiles of acyclic preferences.

An agenda (or “budget set” or “opportunity set”) B is a subset of
X. Note that a preference, when restricted to the elements in B, defines
an asymmetric relation on B. Let B C X be an agenda. An alternative
x € B is said to be a maximal element of B with respect to a binary
relation > (written € maxp > though B is often dropped) if there does
not exist an alternative y € B such that y = x. Let M(DB) be the set of
preferences for B, i.e., asymmetric relations > on X that has a mazximal
element of B Let M(B)Y be the set of profiles for B, i.e., measurable
profiles p = (=P);en € M(B)Y of preferences =¥ for B.

A (B)-simple game with (ordinal) preferences is a list (W, B, p)
of a B-simple game W C B, a subset B of alternatives, and a profile
p = (>7)ien. Given the simple game with preferences, we define the
(not necessarily asymmetric) dominance relation >$V on X by x >$V Y
if and only if there is a winning coalition S € W such that = >} y for all
i €S F_EI The core C(W, B, p) of the simple game with preferences is the

14We define a preference for B on X, despite the fact that the set of maximal elements
of B with respect to > depends only on the restricted relation > N(B x B).

'5In this definition, {i : =P y} need not be winning since we do not assume W is
monotonic. |[Andjiga and Mbih| (2000) study Nakamura’s theorem, adopting the notion
of dominance that requires the above coalition to be winning. Their dominance relation
distinguishes the game from its monotonic cover, while the classical dominance >}, does
not. The two notions are equivalent if and only if the game is monotonic.



set maxp >—$v of undominated alternatives:
CW,B,p) = {x € B: Ay € B such that y >}, «}.

An alternative z € B is Pareto in B if there exists no y € B such that
{i:y =P 2} = N.Itis easy to prove that any alternative in C(W, B,p) or
in |J; max >P is Pareto in B.

A (preference) aggregation rule is a map >:p — >P from profiles p
of preferences to binary relations (social preferences) =P on the set X of
alternatives. For example, the mapping >y from profiles p € Ag of acyclic
preferences to dominance relations >—$v is an aggregation rule.

2.3 Nakamura’s theorem for acyclic preferences

Nakamura (1979) gives a condition for a 2¥-simple game with preferences
to have a nonempty core for any profile p of acyclic preferences. To state
Nakamura’s theorem, we define the Nakamura number (W) of a B-simple
game W to be the size of the smallest collection of winning coalitions having
empty intersectioﬂ

v(W) = min{#W : W CW and W' = 0}

if AW = Ngew S = 0 (ie., if W is nonweak); otherwise, set v(W) =
400, which is understood to be greater than any cardinal number. By the
assumption that () ¢ W and W # (), we have v(W) > 2. It is easy to prove
the following lemma{|

Lemma 3 If W is a nonweak B-simple game, then 2 < v(W) < min{#5 :
SeW}l+1 and v(W) < #N.

The following theorem extends Nakamura’s result (Nakamural [1979)) for
B=2N:

Theorem 1 (Kumabe and Miharal (2008al)) Let W C B be a simple
game and B C X an agenda. Then the core C(W, B, p) is nonempty for all

measurable profiles p € Ag of acyclic preferences if and only if B is finite
and #B < v(W).

Since >}), is acyclic if and only if the set C(W, B, p) of maximal elements
of B with respect to >1I,’V is nonempty for every finite subset B of X, we have:

Corollary 1 The dominance relation -3, is acyclic for all p € .Ag if and
only if #B < v(W) for all finite B C X.

1The minimum of the following set of cardinal numbers exists since every set of ordinal
numbers has a <-least element.
'"This result can be found in Nakamural (1979 Lemma 2.1 and Corollary 2.2).



3 Two notions of the core

In this section, we first introduce the notion of the core without magjority dis-
satisfaction, a strengthening of the core. We then compare the two notions
of the core, focusing on how they treat the maximal elements of individual
preferences.

We consider B-simple games (W, B, p) with preferences, given for each
profile p (not necessarily in M(B)¥). An alternative € B is not in the
core C(W, B, p) if x is not maximal with respect to the dominance relation
>$V: there are y € B and a winning coalition S € W such that for all ¢ € S,
yi =y and y; >7 x. (That is, € B is not in C(W, B, p) if for some y € B,
the set {i : y =P x} contains a winning coalition.) So, an alternative z (e.g.,
d in Examples [1| and [2| below) can be in the core even if there is a winning
coalition contained in the set of players i that prefer some y; to x, as long
as y; is different among the players. To exclude such an x from the core, we
modify the definition:

Definition 1 An alternative x € B is in the core C* (W, B,p) without
majority dissatisfaction if there is no winning coalition S € W such that
for all i € S, there exists some y; € B satisfying y; >¥ J:H In other words,
z € Bisin CT(W,B,p) if the set {i : z ¢ maxp =P} = {i : y =P 2 for
some y € B} of players for whom z is non-maximal (players “dissatisfied
with 2”) contains no winning coalitionm

Remark 1 The word “core” usually refers to the set of maximal alter-
natives with respect to some relation. We adopt the word since the core
without majority dissatisfaction is indeed the set of maximal elements with
respect to the following extended dominance relation >$V, which relates a
subset Y of alternatives to an alternative mm First, we extend ¢’s prefer-

18T belong to CT (W, B, p), an alternative must be a maximal element for at least one
individual in each S € W. So we can rewrite C* (W, B, p) = Ngeyy U;c s maxs =P,

19The core without majority dissatisfaction consists of those alternatives not rejected by
the following scheme (when the players behave sincerely): After proposing an agenda B,
for each alternative x € B, the planner does the following: (i) she proposes z to the players;
(ii) she asks each player ¢ whether i is “dissatisfied” with x (which, by definition, means
whether 4 finds some alternative in B better than z), without asking what alternative y;
is better; (iii) if a winning coalition of players are “dissatisfied” with z, then the planner
rejects . Under this scheme, the planner elicits individual preferences in a very incomplete
manner (as is usual with real-world decisions). Also, the members of the winning coalition
are only united in their opposition to x: they do not have to agree on an alternative y that
should replace z; they do not even have to know what alternatives y; the other members
7 prefer. See Remark [2| for further discussion.

20The extended dominance >~Y, can be seen as a dominance relation of a game in
constitutional form (Andjiga and Moulen, [1989), which associates a simple game with
each pair of subsets of alternatives. Note, however, that the dominance relations (e.g.,
i-domination) they actually analyze, unlike ours, require each player in a locally winning
coalition to prefer all the alternatives in Y to x.

10



ence >—ZI-’§ X x X to a relation >—ZP§ 2X x X (where 2X is the power set of
X): Y »P x if and only if there is y € Y such that y >7 xﬂ Next, we
extend the dominance relation >-5V§ X x X to a relation >—5\,§ 2X % X:
Y >$V z if and only if there is S € W such that for alli € S, Y =P 2. Then,
xz € CT(W, B,p) if and only if there is no Y C B such that Y >},  (if and
only if B #}, x).

Remark 2 The core without majority dissatisfaction rejects any alterna-
tive (“status quo”) z dominated by some set Y of alternatives with respect to
the extended dominance relation in Remark|l} According to this dominance
relation, a coalition can block x without having to agree on a replacement
alternative. Admittedly, this notion of dominance may lack strong support,
especially if one sticks to the usual interpretation of alternatives as complete
descriptions of social states. However, when the standard solution (the core)
selects too many alternatives, deleting some of them on a relatively weak
ground could normatively be desirable@ The point of the main results is
that they provide a condition (Nakamura’s inequality) ensuring that some-
thing remains even after alternatives are rejected on weak grounds.

Having said that, we give an example where blocking behavior without
agreeing on a single alternative y is plausible. One such example is a pop-
ularity contest among certain goods. Consider the problem of selecting the
“best” articles published in economic journals in 2010, for instance. For
simplicity, assume that N = {1,2,3}—the opinions (preferences) of only
three experts are elicited. Since one wants to compare different articles, a
natural candidate for an alternative is an article, which is not a social state.
Then the idea in Remark [I] of a set ¥ dominating an article « should be
intuitive enough, since it can be restated as follows: there are a majority, say
the coalition {1,2}, of experts i and a feasible social state (y,y2, ) € Y3
that dominates the feasible social state (x,z,z) in the conventional sense:
each i € {1,2} prefers (y1,y2,x) to (z,z,x); that is, 1 prefers y; to x and 2
prefers 72 to z. When one can assume that each allocation (y1,y2,%3) € Y3
is feasible, this restatement makes a perfect senseﬁ Anyone accepting the

21'We are following the consequentialist approach of extending preferences on X to ones
on its power set—the set of opportunity sets. Unless one is concerned with preferences
for flexibility (e.g., Kreps, [1979) or freedom of choice, this approach is standard.

22 After all, the dominance relation that defines the core has relatively weak support in
view of the stability set proposed by Rubinstein, for example: a coalition rejects alterna-
tives without taking into consideration that the dominating alternative may further be
rejected.

2If each y € Y is a disposable private good that is available in sufficient quantity, the
assumption is satisfied. Note that we require a majority despite dealing with a private
good, since we are considering a popularity contest. If each y € Y is a public good,
(y1,y2,y3) generally describes an infeasible, imaginary social state in which each 7 con-
sumes the public good y;. The restatement loses some validity because of the lack of
feasibility. Nevertheless, it does not lose all the validity in our view, since preferences are
often elicited in a very incomplete manner in the real world, as footnote @ suggests.
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conventional dominance relation defining the core would be ready to accept
the extended dominance relation.

The following two lemmas are immediate from the definition. The first
one says that the core without majority dissatisfaction depends only on the
set of maximal elements of each player.

Lemma 4 Let p, p' be two profiles satisfying maxp == maxp >f’, for
alli. Then CT(W, B,p) = CT(W, B,p’).

Lemma 5 For each profile p, we have CT (W, B,p) € C(W, B,p). The
inclusion C s strict for some profile.

Each of Examples|l|and below@ shows that the inclusion is sometimes
strict. Example [I] also shows that an alternative can be in the core even if
it is not maximal with respect to anyone’s preference:

Example 1 Let N = {1,2,3} and let W consist of the coalitions having a
majority (i.e., having at least two players). Let X = {a,b,c,d,e}. Define
a profile by =1= {(a,d), (e,b), (e,¢)}, =2= {(b,d), (e,a), (e,c)}, and 3=
{(c,d), (e,a), (e,b)}. Then the sets max >; of maximal elements of X with
respect to >; are given by max 1= {a, e}, max =o= {b, e}, and max >3=
{c, e}. But the core C'is {d, e}. So, the core is neither a subset nor a superset
of |J; max ;= {a,b, c,e}. The core CT without majority dissatisfaction is
{e}, which is a subset of | J, max >;.

Example [2| also shows that the core, even if it is nonempty, does not
necessarily intersect the union of the mazximal elements of individual prefer-
ences:

Example 2 We modify the simplest voting paradox (a cycle involving three
alternatives and three players) by adding an alternative d. Let N = {1, 2,3}
and let W consist of the coalitions having a majority. Let X = {a,b,c, d}.
Define a profile by =1= {(a,b), (b,c), (a,d)}, =2= {(b,¢), (c,a), (b,d)}, and
=3= {(c,a),(a,b),(c,d)}. Then the core C is {d}. So it does not inter-
sect |J; max =;= {a,b,c}. The core C" without majority dissatisfaction is
empty.

Unlike the core, the core without majority dissatisfaction is always in-

cluded in the union of the maximal elements of individual preferences:

Lemma 6 For each profile p, we have CT(W, B,p) C C(W, B, p)N(J, maxp =P

)

248ee Appendix for graph representations of the profiles in these examples.
25Appendix shows that the inclusion is strict for some profile.
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Proof. By Lemma it suffices to show that C'* is a subset of | J; maxp >P.
Suppose z € B but x ¢ |J; maxp >P. Then, x ¢ maxp >P for any i € N.
This implies that {i : © ¢ maxp »P} = N D S for any winning coalition
S € W. (Such an S exists since W # (0.) By the definition of C", we have
z¢ Ct. 1

4 Preferences with Maximal Alternatives

We consider in the rest of the paper profiles for a set B of alternatives, that
is, measurable profiles consisting of preferences that have a mazximal element

of B.

4.1 The results for the core of a simple game

We now give a version of Nakamura’s theorem for profiles for a set B of
alternatives:

Theorem 2 Let W C B be a simple game and B C X an agenda. Let
M(B)g be the set of measurable profiles of preferences having a maximal
element of B. Then the following statements are equiwlent{g_gl

(i) #B < v(V);

(ii) the core C*(W, B,p) without majority dissatisfaction is nonempty for
all p € M(B)%;

(iil) the core C(W, B,p) is nonempty for all p € M(B)%.

Proof. (i)=(ii). Suppose C*(W, B,p) = () for some profile p for B. By
Definition [1} for each = € B, there is a winning coalition S, € W such that
Sy C{i: o ¢ max >P}. We claim that (),cpS» = 0. (Otherwise, there is
an ¢ who is in S, for all z € B. It follows that »? has no maximal element
of B.) The claim shows that v(W) < #B.

(ii)=-(iii). Immediate from Lemma

(iii)=(i). Suppose #B > v(W). We construct a profile p for B such
that COW, B,p) = 0. Let v = v(W) > 2.

Step 1, Case (a): v is finite. We construct a profile p such that the
dominance relation >-$V has a cycle consisting of v alternatives (and the
cycle contains an alternative x( greater than any alternative y not belonging
to the cycle).

By the definition of the Nakamura number, there is a collection W' =
{Lo,...,Ly_1} of winning coalitions such that W' = ,Zj Lx = 0.

26 The implication (iii)=(ii) is not the same as the following statement (Example :
for each p € M(B)Y, if COW, B, p) # 0, then CT(W, B, p) # 0.
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Choose a subset B’ = {xg,z1,...,2,-1} C B and write x, = zy. Fix a
cycle (noting that (z,y) € = means x > y)

>_:{((L-k+1,xk):]{;6{0,...,1/—1}}

and a relation ='= {(zg,y) : y ¢ B'}. Now, go to Step 2.

Step 1, Case (b): v is infinite. We construct a profile p such that the
dominance relation >$V defines an increasing transfinite sequence of length
v (and the sequence contains an alternative z( greater than any alternative
y not belonging to the sequence).

Recall that if v is an ordinal, then v = {& : @ is an ordinal and o < v}.
By the definition of the Nakamura number, there is a collection| W' =
{La : @ € v} of winning coalitions L, such that \W' = (,.,, Lo = 0.

Choose a subset B’ = {z, : @ € v} C B. Fix a relation

== {(zat+1,%a) : @ € V},

which defines an increasing transfinite sequence of alternatives@ and an-
other relation ='= {(zo,y) : y ¢ B'}.

Step 2. We define a profile p = (>F);en by specifying, for each pair
(z,y) € X2, the set {i:x =P y} of players that prefer x to y. Note that >
N >='= (. (In the following, the letter o denotes an ordinal number, including
a natural number denoted k in Case (a) above.) If (z,y) = (za+1,Ta) € -,
let {i:ax>Py} =Lo If(z,y) e let {i:a>Py} =N 1If (z,y) ¢~
U, let {i:z =Py} =0. The profile p is measurable since L,, N, () € B.

The profile p is for B (i.e., p € M(B)%), since we can show that each i’s
preference >f has a maximal element of B. For example, if ¢ € LoN L3N Ls,
but i ¢ Ly for k ¢ {2,3,5}, then every alternative in B’ except x2, x3, x5
is a maximal element of =P. (More formally, the set of maximal elements
of =P is {#o, € B’ : i ¢ Lo}, which is nonempty since |JL = N, where
L& =N\ Ly.)

The dominance relation >—$V is clearly = U >/, since L, is winning,
N contains a winning coalition, and ) is losing. It follows that the core
C(W, B,p) is empty. 1

Remark 3 It is instructive to compare the proof of the “<” direction of
Theorem |1| with a direct proof of (i)=-(iii), which can be given in a way
similar to that of (i)=-(ii) above. These proofs go as follows: Suppose
Ct(W,B,p) = 0 for some profile p. For “<” of Theorem I, p € AY

2TSince W' is a (well-orderable) set whose cardinal number is v, there is a bijection that
maps each o € v into an element L, of W’. So we can write W' = {Lo:a € u}.

2The sequence (o )ac, does not end: if o € v, then a4+ 1 € v. This is because v,
being a Nakamura number, is a cardinal number and any infinite cardinal number is a
limit ordinal by Lemma
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is a profile of acyclic preferences; for (i)=-(iii), p € M(B)¥ is a profile of
preferences having a maximal element (of B). Then,

(a) for each x € B, there are y € B and a winning coalition S; € W such
that S, C {i: y >P 2} (hence y -, x).

Note that « is not a maximal element for the players in S;. The desired
conclusion v(W) < #B follows if we show (1,5 Sz = 0. So suppose there
is an ¢ who is in .S, for all z € B.

e To show “«<” of Theorem [l assume B is finite. By repeated applica-
tion of (a), we find the dominance <}), contains an infinitely ascending
sequence: g < x1 < Ty < x3 < ---. Since B is finite, the sequence
contains a cycle such as r9 < 3 < x4 < x2 < x3 < ---. It follows that
1’s preference contains the same cycle, which violates the assumption.

e For (i)=(iii) of Theorem 2| a contradiction is immediate: let x € B
be a maximal element for >—§); then ¢ € S, is violated. We do not even
need the assumption that B is finite. We remark that the possibility
remains that i € S, if x € B is not a maximal element for i. So i’s
preference may contain a cycle without contradiction; it consists only
of non-maximal elements for her.

The following example is an application of Theorem [2| It gives a condi-
tion for an infinite set of alternatives to have an element in the core, that
is, a maximal element with respect to the dominance relation >$\,.

Example 3 Let N = [0, 1] be the unit interval on the set of real numbers
and let B consist of all subsets of N. Define a simple game W by S €
W if and only if S is countable. Then, it is easy to show that v(W)
is uncountable. Let X be a countable set of alternatives (e.g., the set of
rational numbers in [0, 1]). Suppose that for each i, her preference =¥ has
a maximal alternative (e.g., a utility function representing > has finitely
many “peaks,” all corresponding to rational numbers). Then, Theorem
implies that CT(W, X, p) and C(W, X, p) both contain alternatives.

The profiles constructed in the proof of (iii)=-(i) of Theorem [2| consist
of individual preferences that may have more than one maximal alterna-
tive. However, we can modify the proof in such a way that each individual
preference has exactly one maximal alternative. That gives the following
proposition:

Proposition 1 Let W C B be a simple game and B C X an agenda. Then
the three equivalent statements (i), (ii), and (iii) in Theorem[d are equivalent
to the following statements:

(ii.a) The core CT (W, B, p) without majority dissatisfaction is nonempty for
all measurable profiles p of preferences having exactly one mazimal element
of B.
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(ii.b) The core CT(W, B, p) without majority dissatisfaction is nonempty for
all measurable profiles p of linear orders having a maximal element of B.
(iii.a) The core C(W, B,p) is nonempty for all measurable profiles p of
preferences having exactly one mazimal element of B.

(iii.b) The core C(W, B,p) is nonempty for all measurable profiles p of
linear orders having a mazimal element of B.

Proof. (ii)=(ii.a)=-(ii.b) and (iii)=-(iii.a)=-(iii.b) are obvious. (ii.b)=-(iii.b)
is immediate from Lemma [l

(iii.b)=(i). Suppose #B > v(W). We construct a profile p satisfying
the condition such that C(W, B,p) = (. Let v = v(W) > 2. In Step 1 of
the proof of Theorem [2] replace the relation =’ by an arbitrary asymmetric
subrelation =" C X x (X \ B’) that is linear on X \ B’ and satisfies = >" y
whenever x € B’ and y € X \ B’. We replace Step 2 of the proof by the
following argument.

Case: v is finite. Define L_1 = N and for all k € {0,...,v — 1},

Dk:(L_lﬂL()ﬂ”'ﬁLk_l)\Lk.

Then {Dy,...,D,_1} is a family of (possibly empty) pairwise disjoint coali-
tions in B such that Ly, C DS := N\ Dy, for all k and J_ Dy = N (i € N
is in the first Dy such that i ¢ Ly).

Define p as follows: for each k, all players ¢ in Dy have the same linearly
ordered preference >f with maximal element xj, obtained by taking the
transitive closure of = \{(zxi1,zr)}U ='. Obviously, p is measurable since
for each z, y € X, {i: 2 > y} is a finite union of Dy’s. Also, >$V includes
= U= (If (z,y) = (zg41,2%) €=, we have {i:z =Py} =D{ D Ly e W'
If (z,y) €', then {i: 2 =Py} = N.) It follows that C(W, X, p) = 0.

Case: v is infinite. Note that (B’ x B')N ='= (). Define p as follows:
If (z,y) €~', then {i : =Py} = N. If (z,y) ¢ (B' x B')U >/, then
{i:x>Py} =0 If (z,y) = (za,23) € B' x B, x4 >} x3 if and only if
eithex]

e i€ LgNLjand o <f;or
e ic L;NLgand a# j3; or

e icLyNLgand o> f.

For each i, {xa 11 € LS} # 0 is i's preferred class of alternatives in B’ and {4 : i €
L.} is her less-preferred class. Her preference =¥ is linear on B’ satisfying the following
conditions: (a) if two alternatives belong to her preferred class, then 7 prefers the one with
the smaller index; (b) ¢ prefers each alternative in her preferred class to any in her less-
preferred class; (c) if two alternatives belong to her less-preferred class, then i prefers the
one with the greater index. For example, if i € Ly N L3 N Ls, but ¢ ¢ L, for « ¢ {2, 3,5},
then ¢ ranks the alternatives in the following order: xzo, =1, x4, x¢, 7, ..., T5, T3, T2.
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This is equivalent to saying that m

LS ifa<p,
{ica-Pyt={i:za=Pagt =< Lg ifa>p,
0 ifa=p4.

The profile p is measurable since N, 0, LS, Lg € B.

Clearly, each i’s preference >§) is a linear order on X that has a unique
maximal element of B, namely the alternative in her preferred class {z, :
i € LS} # () with the smallest index.

The dominance relation >3, clearly includes > U >/, since {i : x5 >7
xg} = Lg € W for each f € v, for example. It follows that C(W, X,p) =
0. n

Remark 4 The argument for the finite v case of the proof does not go
through for the infinite case, since Dy does not necessarily belong to B
when k is infinite. The argument for the infinite case causes difficulty when
applied to the finite case. For example, suppose v = 4 and 7 € Lo N Ls.
Since ¢ € L3z and 4 > 3, we have x4 hp x3 by the definition of p. Since
i € Lo and 3 > 0, we have x3 >f’ To. Since xg = x4, >f is not asymmetric.

4.2 The results for the core of a collection of winning sets
4.2.1 Extended framework

We extend the framework by introducing a collection B’, consisting of subsets
of the set N of players. Recall that B consists of the coalitions—intuitively,
they are the observable or identifiable sets of players. In contrast, B’ consists
of the sets for which one can assign winning/losing status—sometimes they
are the sets whose size is well-defined (Example [4]); other times they are the
sets that are half-identifiable or listable (Example [5). We assume B C 5/,
which means that one can assign such a status for any coalition.

A collection W of winning sets is a subcollection of B’ satisfying
0 ¢ W and W # (. Given W', the most natural simple game one can
define is the following: the B-simple game ¥V induced by W’ consists of
the winning coalitions (winning sets that are also coalitions), that is, W =
W'NB. We can define the core and the core without majority dissatisfaction
as before, with W replaced by W/. Lemma [5 and W C W imply the
following.

Lemma 7 Let W C B and W = W' N B. Then the following statements
are true:

0zq =P xg iff either (1) a < Band i € (L, N L) U (L, NLg)=L,N (LU Lg) =L
or (2) a > B and i€ (Lg N Lg)U (Lo NLg) = Lg. Note that the first two cases can be
restated: if @ < 8, then {i: zg =P xa} = Lo and {i: 2o ¥ 23} = L.
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(i) C*(W',B,p) € C*(W,B,p)

C C(W,B,p).
(ii) C*W', B,p) C C(W',B,p) C

C
C(W, B,p).

Since we had better be able to identify who prefers a given alternative
to another, we leave the definitions of measurable profiles and profiles for

an agenda unaltered.

4.2.2 Justification for the extended framework

We have assumed B’ = B in the previous sections, but there are reasons
for distinguishing the collection B’ from the Boolean algebra B of coalitions.
We illustrate that by two examples in this section. We also give an example
of a decision-making situation where the framework makes sense.

The following example gives some, though limited, justification for the
extended framework:

Example 4 Let N = [0,1] be the unit interval on the set of real numbers,
B the o-algebra of Borel sets (i.e., B is the smallest o-algebra containing
all open sets in [0, 1]), B’ the o-algebra of Lebesgue measurable sets, and p
Lebesgue measure. Let W C B’ be any collection of winning sets defined
in terms of the measure alone. (For example, W' consists of the sets S €
B’ satisfying u(S) > 1/2. Alternatively, W' consists of the sets S € B’
satisfying p(S) > 2/3.) We do have B’ 2 B, though this fact is not often
exploited@ Observe that for each S’ € B’ there is S € B such that S C 5’

and u(S) = (8" [

The last observation in Example [] explains why it fails to give a com-
pelling justification for the extended framework, because of the following
lemma. The lemma suggests that under a certain condition, it is not very
meaningful to introduce a collection W C B’, even when it makes sense to
extend B to B'. The proof is straightforward.

Lemma 8 Let W C B’ and W = W' N B. Suppose that for each winning
set S" € W', there exists a winning coalition S € W satisfying S C S’. Then
C(W,B,p) = COW', B,p) and C*(W,B,p) = C*(W', B,p).

Now we give a more compelling justification for the framework in which
B’ and W are introduced:

31For example, Dasgupta and Maskin| (2008) adopt this framework to formalize the
concept that an axiom is satisfied for almost all profiles. However, their focus is measurable
profiles, which means they are mainly interested in certain coalitions in 5. |Banks et al.
(2006)), when restricted to our framework, focus on simple games YW C B, rather than on
W CB.

32Let 8’ € B'. Let E' = §° € B'. Apply the following proposition (Royden) [1988|
page 293) and let S = E°: If E’ C [0,1] is any set, then there is a Borel set E € B such
that E' C E and p*(E') = u(E), where p* is Lebesgue outer measure.

18



Example 5 Let N = {0,1,2,...} be the set of natural numbers. A natural
and faithful way to model identifiable or half-identifiable sets of players is
to let B be the algebra of recursive sets (coalitions) and B’ the lattice of r.e.
sets 7]

The first reason for introducing B’ O B in our framework is that we
cannot let B be the lattice of r.e. sets, since the lattice is not a Boolean
algebra.

The second reason is that the natural system (W,).cn for indexing r.e.
sets is easier to handle than the system (¢¢)cen that can be used for indexing
recursive sets (where ¢, is the eth partial recursive function and W, its
domain). For example, while ¢, corresponds to (i.e., is the characteristic
function of) no recursive set for some e € N (and there is no algorithm to
decide whether a given e corresponds to some recursive set), W, corresponds
to (i.e., is) an r.e. set for any e € N. One can therefore write any class of r.e.
sets as {W, : e € I'} for some (not necessarily r.e.) set I of indices, without
worrying that some W, might correspond to no r.e. set. |Odifreddi (1992,
page 226) gives more reasons for preferring (We)een t0 (Ye)een-

We now give a reason for introducing W C B’ into our framework. We
exhibit W, W = W' N B, and p for which CT(W, X,p) # CT(W', X, p).

A set is cofinite if it is the complement of a finite set; otherwise, it is
coinfinite. A coinfinite r.e. set T is maximal coinﬁnitﬂ if it has only
trivial supersets: if S is a coinfinite r.e. set satisfying S O T, then S\ T is
finite.

Let W be the collection of all maximal coinfinite sets. Since maximal
coinfinite sets are nonrecursive, we have Wy = W N B = (), which is not
a simple game according to our definition. We can nevertheless conclude
Wy # W], and define the core, obtaining C(Wy, X,p) = Ct Wy, X,p) = X
for any profile p. Let X = {a,b,c} and define a profile p by =P= {(a,b)}
for all i € N. Then, COW}, X,p) = CT(W{, X,p) = {a,c} # X.

Let Wi = {S" € B’ : §' DT for some maximal coinfinite T'}. Then we
can easily show that Wi = W] N B consists of all cofinite sets; therefore,
Wi # Wj. Let X = {x_1,20,21,22,...} be a countable set. Let T € B’
be a maximal coinfinite set. Define a profile p as follows: =P= {(z;,2_1)}
if i € T; =P= 0 otherwise. Then, {i:z > y}is {i}if o =ax; fori e T

33 According to Church’s thesis (Odifreddi, 1992), a set of players (natural numbers) is
recursive if there is an algorithm that, given any player, will decide whether she is in the
set. A set of players is r.e. (recursively enumerable) if there is an algorithm that lists, in
some order, the members of the set; the condition in general does not mean that there is
an algorithm to decide whether a given player belongs to it. A set A C N is recursive if
and only if A and A° are both r.e. |Odifreddi| (1992) gives detailed discussion of recursion
theory (computability theory). The papers by Mihara, (1997} 1999) contain short reviews
of recursion theory.

3"What we call mazimal coinfinite sets are known as mazimal sets in recursion theory
(Odifreddi, 1992, page 288). |Friedberg| (1958) constructively proves the existence of such
sets.
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and y = x_q; it is () otherwise. So p is measurable and each player has
a maximal alternative. We have C(Wy, X,p) = C(W}, X,p) = X. Also,
{i 12 ¢ max =P} is T if x = z_q; it is 0 otherwise. So, CT(Wy, X,p) = X
but CT(Wy, X,p) = X \ {z_1}.

We finally give an example of a decision-making setting to which the
framework and Example [5| can be applied. Our example is one of medical
treatment, but it also represents other examples of multi-criterion decision
making such as court rulings and facility location problems.

Consider a decision support system that helps medical professionals by
selecting a reasonable set of alternatives from which they can choose. Such
a system can be regarded as a solution (like the core) which assigns a set of
alternatives to each profile of preferences.

Here, an alternative describes, for instance, what and how much medicine
to prescribe to the patient and when and what operation to perform on her.
We assume that there are countably many alternatives. This is a natural
assumption if the system is implemented on a digital computer.

A player in the framework is understood to be a criterion such as sex,
age, temperature, blood pressure, or the result of a medical examination. A
criterion may be a combination of some of these. We assume that there are
countably many criteria. The infinite criterion model is appropriate if one
cannot tell in advance how many criteria one needs to evaluate to reach a
decision. To formalize the idea that coalitions are identifiable, we assume
that each coalition is recursive; that is, there is an algorithm to decide
whether each criterion belongs to the coalition.

When i is a criterion, its preference is a provisional judgment interpreted
as follows: z =P y if and only if “alternative x is better than y in terms
of criterion i for the patient in question.” So, whether z =P y is true
is determined only after a patient is given. We assume that a profile is
recursive: there is an algorithm for deciding (for all z, y, and i) whether
z >P y. (It follows that profiles are measurable.) This formalizes the idea
that the system should give an answer at least for those profiles that it can
grasp.

We want the decision support system to eliminate the alternatives that
are, for “almost all criteria,” worse than some other alternatives in an
agenda B. In other words, we want to eliminate alternatives x such that
the set {i : 2 ¢ maxp >!} contains “almost all criteria.”

As a suitable solution for that purpose, we can adopt the core without
majority dissatisfaction. We also formalize the intuition that a set S’ C N
contains “almost all criteria” as follows: S’ O T for some maximal
coinfinite set T (defined in Example . According to this formalization,
if S contains “almost all criteria,” then (it does not necessarily mean that
it contains all but finitely many criteria, but) one cannot algorithmically
generate infinitely many criteria not belonging to this set (Appendix .
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Suppose, for the time being, that one can assign winning/losing status
only to (recursive) coalitions. One can naturally define that a coalition S is
winning if it contains “almost all criteria”; that is, S O T for some maximal
coinfinite T. A problem is that the set {i : © ¢ maxpg =P} may (i) contain
“almost all criteria” without (ii) containing a winning coalition. That is,
we want to eliminate x, but the definition (Deﬁm’tion of the core without
magjority dissatisfaction does not allow us to eliminate it. Indeed, Example[5]
shows that when the set itself is maximal coinfinite, it contains no winning
coalition.

To rectify this problem, we assign winning/losing status to every r.e.
set of criteria. (An r.e. set is half-identifiable in the sense that there is
an algorithm that enumerates its elements.) We define that an r.e. set
is winning if it contains “almost all criteria” as above. We then have
the equivalence of the following for r.e. sets S”: (i) S’ contains “almost all
criteria”; (ii) S’ contains a winning r.e. set; (iii) S’ is winning. Fortunately,
when Bisr.e., the set {i : ¢ maxp =P} is alsor.e., since it can be rewritten
as {i: Jyly € BAy =P z]}. So to determine whether to reject = here, we
only need to check whether this set is winning.

4.2.3 The results for the extended framework

Before stating the main result for the extended framework, we need to extend
the notion of the Nakamura number.

Let B’ 2 B be a collection that includes B, the Boolean algebra of coali-
tions. Let W' C B’ be a collection of winning sets. A nonempty collection
Z C Bisa (B)-cover of 8" € B'if | Z := gz S 2 5. If Z is a finite cover,
then | J Z € B, since B is a Boolean algebra. So, we can assume without loss
of generality that #Z is either 1 or infinite. Let M (W') be the collection of
pairs (), Z) such that
(a) Y €W and
(b) Z2:Y —— B is a correspondence that maps each winning set W € Y to
a B-cover Z(W) of W and that satisfies ¢y, U Z(W) = 0.

Definition 2 The kappa number x(W') of a collection W' of winning
sets relative to B is +o0o (greater than any cardinal number) if M(W') = 0);
otherwise, it is the cardinal number given byi3_3|

k(W) = (y,z])ﬂelij\l}(lfv') max{#Y,sup{#Z(W): W € V}}.

35The right-hand side is well-defined, since every set of ordinals has a supremum
(Hrbacek and Jechl [1984, page 141) as well as the least element. (The same is not true for
classes that are not sets, like the class of all cardinal numbers.) To see the supremum is a
cardinal number, let sup,, a, = «, where each a is a cardinal number. It suffices to show
that « is an initial ordinal. Suppose 8 < a. Then, by the definition of the supremum,
B < a., for some . Since ., is a cardinal, #8 < ay. But ay < « implies that « is not
equipotent to [.
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There is another, obvious extension v/ (defined for collections of winning
sets) of the Nakamura number v (defined for simple games). Let v/(W') be
defined exactly as before, with W replaced by W'.

Lemma 9 2 < /(W) < s(W') <v(W) for W=W'nNB.

Proof. 2 < V/(W') is a consequence of the assumptions @ ¢ W' and
W £ ),

We show /(W) < k(W) next. If k := k(W) = +oo, the result is
obvious. So, suppose otherwise. By Definition [2] there exists (), Z) €
M(W') satisfying (a) and (b) in the definition of M (W’) such that

k= max{#Y,sup{#Z(W): W € V}} > #).

Since W C JZ(W) forall W € Y C W', we have ey W C ey UZ(W) =
(. Tt follows from the definition of v/(W') that v/ (W') < #Y < k.

We show k(W') < v(W) finally. Suppose v := v(W) # +oo as above.
Then, by the definition of v, there is a collection J C W such that #) =
v >2and Ny W = 0. For each W € Y, let Z(W) = {W} C B. We
claim that (Y, 2) € M(W'). ((a) Y CW CW'. (b) Z(W) is a cover of W
since |J Z(W) = W. Also, ey UZ(W) = Nyyey W = 0.) Tt follows from
Definition [2] that k(W') < max{#Y,sup{#Z(W): W € Y}} =#Y =v. &

The inequalities in Lemma [J] are sometimes strict. In the following ex-
ample, we have v/ (W') < s(W') <v(W).

Example 6 Consider N = [0, 1], the unit interval on the set of real num-
bers. Let B’ be the collection of all subsets of N. Let W’ be the collection
of all dense subsets D of N, that is, between any two distinct points in N,
there is an element of D. For example, both W = {r € N : r is rational}
and W' = {/2 +r € N : r is rational} belong to W'. We have v/(W') = 2,
since WNW' = (. Let B be the collection of all finite or cofinite sets S C N.
Let W be the collection of all cofinite sets S C N.

We prove that W =W' NB C W'. (C): Suppose S € W. Then, S € B.
Since S¢ is finite, S is a dense subset of N. (2): Suppose S € W' NB. Since
S € B, either S is finite or cofinite. If S is finite, it is not dense in N. So
S must be cofinite.

We prove that (W) = 2¥, the cardinality of the continuum. By Lemmal3]
it suffices to show that (,., Sa = 0 for a collection {S, € W : a < v}
implies » > 2. Taking the complement, 2* = #N = #(U,, S5 <
v - sup{#5S¢ : a < v} (Hrbacek and Jech| 1984, Theorem 1.3, page 188).
Since the supremum is at most w (because S¢ is finite), we have v > 2%,

Finally, we prove that kx(W') = w.

We first show that k(W) < w. Let Y = {W, W'}, where W, W' €
W' are the winning sets given above. Let Z(W) = {{r} : r € W} C B
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and Z(W') = {{r'} : " € W'} C B. It is straightforward to show that
(V,2) e M(W'). Since #)Y = 2 and sup{#Z(W),#Z(W')} = w, we have
kW) <w.

We next show that x(W’) is not finite. Suppose it is finite. Then, there
exists (Y, Z) € M(W') such that Y is finite and Z(W) C B is finite for each
W € Y. Since B is a Boolean algebra, this implies that | J Z(WW) € B, which
in turn implies that |J Z(W) is either finite or cofinite. Suppose |J Z(W) is
finite for some W € Y C W'. Then |JZ(W) D W implies that W € W' is
finite, a contradiction. Hence |J Z(W) is cofinite for all W € ). Being a
finite intersection of cofinite sets, (y,cy J Z(W) is nonempty, contrary to
assumption.

Lemma 10 k is an extension of v. That is, if W C B C B/, then k(W') =
v(W').

Proof. Suppose W' C B. Then, W = W' N B = W'. Lemma [9] implies
VW) < k(W) < v(W'). Since v/ extends v and W' is a simple game in
this case, we have v/(W') = v(W’), from which the conclusion follows. §

We now give the main result for the extended framework.

Theorem 3 Let W' C B’ be a collection of winning sets and B C X an
agenda. Let M(B)g be the set of measurable profiles of preferences having
a mazimal element of B. Then the following two statements are equivalent:
(i) #B < kOV');

(ii) the core CT (W', B, p) without majority dissatisfaction is nonempty for
all p € M(B)g .

Moreover, these equivalent statements imply, but are not implied by

(iii) the core C(W', B,p) is nonempty for all p € M(B)¥.

Pmofm (i)=(ii). Suppose Ct*(W', B,p) = ) for some profile p €
M(B)H. We show that #B > k(W').

By the definition (Deﬁnition of C, for each x € B, there is a winning
set W, € W' such that W, C {i: 2 ¢ maxp >~} }. We claim that (),cp{:
z ¢ maxp 1 } = (0. (Otherwise, there is a player ¢ whose preference has no
maximal element of B.)

Let Y = {W, :x € B} CW'. We have #Y < #B. For each W, € ),
let

ZWy)={{i:y>=Pz}:ye B}

We have #Z(W,) < #B.

We claim that (), Z) € M(W'). (Details. We verify (b) of the definition
of M(W'). First, Z(W,) C B since p measurable implies {i:y > z} € B.
Second, Z(W,) is a cover of W, since U Z(Wy) = Uyepli:y =7 v} ={i:

36Lemmas E and |§| are not useful for proving Theorem [3|from Theorem and vice versa.
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x ¢ maxp =y } 2 W,. Third, Ny ey UZ(We) = Nyepli s« ¢ maxp =}
} = 0 by the claim above.)
By the definition (Definition [2) of x, we get

k(W) < max{#),sup{#Z(W,) : x € B}} < #B.

(ii)=(1). Suppose #B > k := k(W'). We construct a profile p €
M(B)H such that CT (W', B,p) = 0. By the definition (Definition [2) of
#(+), there exists (¥, Z) € M(W') such that"|
(a) Y ={Lq: a < &'} CW, where &' := #Y:
(b) Z maps each Lo € Y to Z(La) = {L5 : B < B(a)}
Bla) == #2(La)) satisfying L!, = UZ(La) = Uppa) Lo
and (N, cy UZ(La) = Nacw Lo = 0;
(¢) k = max{r',sup{f(a) : « < K'}} < #B.

Write B = {zq : o« < #B} and let B’ = {z, : a < K'}.

B (where
Lo e W

U 1N

Case: k is finite. We construct a profile p such that the dominance
relation -, has a cycle consisting of « alternatives. Since 8(a) < & is finite
for all @ < &/ in this case, L, = | 3 Lg is a finite union of elements of the
Boolean algebra B. So we can assume L], € B and S(«) = 1 without loss
of generality. By (c), we have k' = k. Write 2, = z¢ and fix a relation

='={(z0,y) :y ¢ B'}. Let
}f): {(xa+17$a) . L/a > l} U >‘/

for all i« € N. The profile p is the same as that in the proof of Theorem [2]
except that L, is replaced by L/ € B. The rest of the proof runs as before.

Cuase: k isinfinite. We construct a profile p such that for each alternative
Tq € B, there is a winning set of players ¢ who prefer another alternative
Tatp, € B to xaﬂ Since preferences involving alternatives outside B are
irrelevant, we construct the profile in such a way that it satisfies =PC B x B
for all 7.

We define p by specifying {i : z =P y } for each pair (z,y) = (2o, 2a) €
B x B satisfying o/ > a. (If (z,y) does not satisfy the conditions concerning
the indices, then {7 : z =Py} = 0.) Note that each such pair can be
uniquely written as (x,y) = (Zq48,%a) for some § > Om Let L, = 0
if () = 1; otherwise, we can assume [(«) is infinite. Define p by the

3TWe can write ) and Z(Ls) in the form below (footnote .

38Though not required in our setting, we construct the profile so that individual pref-
erences will be acyclic. This is achieved by the following: no player prefers an alternative
T € B with smaller index to zo (if @’ < a, then x4 #F a).

398 is the unique ordinal isomorphic to {y:a < v < o'}
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following, which immediately establishes that p is measurable@
IOULLeB ifa<k and B =1,

. Ll en ifa <k and 1< B < f(a)

: =P = o ’

{i: %atg = 7a} NeB if ¥ <a<#Band 8 =1,
0eB otherwise.

For each 2, € B, we have {i : 2o ¢ maxp =)} = Ugli : Tayp ~7
Za}, which equals g g4 LS = I, (if @ < ¥'; the equality holds whether
B(a) is 1 or infinite) or N (otherwise). In either case, the set contains a
winning set L, € W'. Therefore, z, ¢ C* (W', B,p). This establishes that
ctW', B,p) = 0.

To establish that p € M(B)%, we need to show that each i’s pref-
erence >; has a maximal element of B. Since (., L, = 0, we have
Uaer (Li)¢ = N. So, for each i € N, there is an o < " such that ¢ ¢ L,.
Since i ¢ L for any 8 < B(«), we have z, € maxp > by the definition
of p.

(ii)=-(iii). Immediate from Lemma

(iii)#(i). Consider Example [f| We first prove that C(W', B,p) =
C(W, B,p) for all p € M(B)% and all B C X. By Lemma it suffices to
show that C(W, B,p) C C(W', B,p). Suppose z € B is not in C(W', B, p).
Then, there are y € B and S € W’ such that S C {i:y =P z}. Since p is
measurable, {i:y =P z} € B is either finite or cofinite. If it is finite, then
S € W' is finite, a contradiction. It follows that {i : y =P 2} is cofinite,
hence it belongs to W. So = ¢ C(W, B, p).

Choose an agenda B satisfying #B = w. (i) is violated since #B = w £
w = k(W'). On the other hand, since #B = w < 2* = v(W), Theorem
implies that C(W, B, p) # () for all p € M(B)#. Then (iii) is satisfied since
C(W,7 B, p) = C(Wa B, p)' |
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A Appendix: Supplementary Material

This is supplementary material for “Preference aggregation theory without
acyclicity: The core without majority dissatisfaction” by Masahiro Kumabe
and H. Reiju Mihara.

A.1 Proof of Lemma (1]

We show that an infinite cardinal number is a limit ordinal.

Suppose « is an infinite cardinal number that is not a limit ordinal.
Then, being a successor ordinal, « = 4+ 1 = g U {f} for some ordinal f.
Clearly, § < «a. Since « is initial, there is no bijection between o = 5 U {3}
and 3. But we can construct such a bijection f as follows: f(v) =0if v = 3;

f)=y+1lifyew; f(v)=vify€Bbut v ¢ w.

A.2 Proof of Lemma [2

We show that #(a + 8) = #a + #/3, where the sum on the left side is the
ordinal sum and the sum on the right is the cardinal sum.

Pick disjoint well-ordered sets (A, <4) and (B, <p) isomorphic to ordi-
nals o and S, respectively. Then, we have #(a + ) = #(A U B) (Hrbacek
and Jech, (1984, Theorem 5.5, page 152). This is equal to #a + # by the
definition of the cardinal sum.

A.3 The inclusion of Lemma [6] is strict for some profile

We show that there is a profile p such that there is an alternative not in
C*T(W, B,p) but in COW, B,p) N (U, maxp -7).

We “replicate” sufficiently many times an example for which C* is a
proper subset of C, and then add an “insignificant” player whose maximal
alternative contains an alternative belonging to the difference C'\ C*t. We
build on Example (1| here. Let N = {1,1’,2,2/,3,3’,4} and let W consist
of the coalitions having a majority. Let X = {a,b,c,d,e}. Define a profile
by =1=>=1={(a,d), (e,b), (e,c)}, =2=>2= {(b,d), (e,a),(e,c)}, =3=>3=
{(¢,d), (e,a), (e,b)}, and 4= 0 (or any preference such that d is a maximal).
Then, as before, the core C is {d,e} and the core C without majority
dissatisfaction is {e}. So CT is a proper subset of C'N (|, max >;) = {d, e}.

A.4 The complement of a maximal coinfinite set contains no
infinite r.e. sets

Let T be a maximal coinfinite set. We show that T contains no infinite r.e.
subsets.

Let S’ C T€ be an infinite r.e. set. Then S = S’ UT is an r.e. set
containing T'. By the definition of maximal coinfinite sets, either S \ T is



finite or S is cofinite. But the first case cannot occur since S\ T = S’ is
infinite. Since S is cofinite, we have S = S’ UT = F¢ for some finite F. It
follows that T¢ = S’ U F. So T¢ is r.e., implying that T is recursive. This
contradicts the fact that 7" is maximal coinfinite.

A.5 Figures
A.5.1 Example []]

A.5.2 Example




A.5.3 Profile for the proof (ii)=-(i) of Theorem |3, when & is infi-
nite

L(0,0) L(1,0) L2,0)
0 )k @A L(L.1) /X(_Z)\‘ e 0N <N_

L(0,2)

For each «, f < #B, x(«) denotes z4, L(a, 3) denotes Lg, and k’ denotes «'.
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