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ABSTRACT: Extending to infinite state spaces that are compact metric spaces a result
previously attained by Dov Samet solely in the context of finite state spaces, a necessary
and sufficient condition for the existence of a common prior for several players is given
in terms of the players’ present beliefs only. A common prior exists iff for each random
variable it is common knowledge that all its iterated expectations with respect to any
permutation converge to the same value; this value is its expectation with respect to the
common prior. It is further shown that the restriction to compact metric spaces is
‘natural’ when semantic type spaces are derived from syntactic models, and that
compactness is a necessary condition. Many of the results are based on theorems from the

general theory of Markov chains.
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1. INTRODUCTION

The common prior assumption, ever since it was introduced into the study of games
with incomplete information by Harsanyi (1967-1968), posits that all women and men are
‘created equal’ with respect to probability assessments in the absence of information —
hence the term common prior — and all differences in probabilities should, in principle, be



traced to asymmetries in information received over time. The idea has become very
pervasive, and in most applications of type spaces to economics it is assumed that
players’ beliefs can indeed be derived from a common prior by Bayesian updating.

A prior can be interpreted as the beliefs of a player in a previous period. In many
models, however, any previous period is either fictional or irrelevant to the matter being
studied. It is also clear that there are many plausible models of type spaces in which it is
impossible for the players to have arrived at their current beliefs via updating from a
common prior. This leads naturally to the question of whether a criterion can be
identified by which one can tell, through the current beliefs of the players, that they have
a common prior.

Aumann (1976), in his celebrated agreeing-to-disagree theorem, presented a
necessary condition for the existence of a common prior in terms of present beliefs: if
there is a common prior, then it is impossible to have common knowledge of difference
in the beliefs of any given event. For many years, sufficiency remained an open question.

In the 1990s, several authors, by extending the notion of disagreement to differences
in the expectation of a general random variable, were able to show that the impossibility
of there being common knowledge of disagreement is also a sufficient condition for the
existence of a common prior. Morris (1995) proved this result, in the context of a finite
state space, by considering how the absence of common priors can affect the willingness
to conduct trade in various trading environments. Feinberg (2000), utilising techniques
closer to pure game theory, showed that both in the context of finite state spaces andof
infinite but compact state spaces, a lack of common priors implies the existence of at
least one common bet for which each player will subjectively assess that he or she has
positive expectation — and showed that compactness is necessary for that result. Samet
(1998b) proved the same result, with a finite state space, using separating hyperplane
techniques. Finally, the extension of this result to compact spaces with a separating
hyperplane argument — and appeal to the Riesz representation theorem — was attained in
Heifetz (2001).

As Samet (1998a) pointed out, this criterion, based on disagreements, satisfactorily
solves the question of how one can tell when players have a common prior, but it fails to
express the common prior in a meaningful way; the fact that a disagreement cannot be
common knowledge may guarantee the existence of a common prior, but it tells us
nothing about this common prior. He then proceeded, in that same paper, to present a
very different necessary and sufficient condition for the existence of a common prior that
not only identifies the common prior when it exists, but also provides an epistemically
meaningful interpretation to it.

This condition is expressed intuitively in Samet (1998a) in a colourful story. Imagine
that Adam and Eve — who have both excelled in their studies at the same school of
economics — are asked what return they expect on IBM stock. Having been exposed to
different sources of information, we oughtn’t be surprised if the two provide different
answers. But we can then go on to ask Eve what she thinks Adam’s answer was. Being a



good Bayesian, she can compute the expectation of various answers and come up with
Adam’s expected answer. Likewise, Adam can provide us with what he expects was
Eve’s answer to that question. This process can continue, moving back and forth between
Eve and Adam, theoretically forever. There are, in this example, two possible infinite
sequences of alternating expectations, one that starts with Eve and one that starts with
Adam.

Samet calls this process ‘obtaining an iterated expectation’, and shows that, when the
relevant state space is finite, there exists a common prior if and only if both of these
sequences converge to the same limit.

He achieves this result by representing Adam’s beliefs' by a type matrix M , and
Eve’s beliefs by type matrix M,. These then form two ‘permutation matrices’,
M, =M,M,, which is intended to be used for the process of obtaining iterated

expectations starting with Adam, and M, =M M,, which does the same for the iterated

expectations starting with Eve. It then turns out to be the case that both M and M are

ergodic Markov matrices, and hence by standard results in Markov chain theory, each of
them has a unique invariant probability measure, which may be labelled respectively p,

and p,. It is then shown that if p, # p,, Adam and Eve cannot share a common prior. On
the other hand, if p, = p,, then not only is there a common prior, it has positively been
identified — it is precisely p:=p, = p,.

This is a remarkable result, made all the more remarkable by the fact that it applies
results developed in Markov theory for the study of stochastic processes to answer a
question that seems not to be even remotely related. Samet (1998a), however, proves it
only in the context of finite state spaces. Given the results in Feinberg (2000) and Heifetz
(2001), which extend the other major criterion for a common prior to compact state
spaces, it is natural to wonder whether the Samet characterisation can also be shown to
hold in compact state spaces.

It is the goal of this paper to show that there is an affirmative answer to that question,
and that, just as in Feinberg (2000), the compactness is necessary. The significance of
such a result is clear, given that there are many models of interest which involve infinite
state spaces and cannot be reduced to a finite space — we therefore extend the application
of the Samet criterion to many models to which it previously could not be applied. The
compactness limitation will also be shown not to be as constricting as it might appear at
first glance, by appealing to an idea appearing in Feinberg (2000) in order to show that all
‘natural’ type-space models, in a sense that is made rigorous in the body of the paper, are
compact.

! For the sake of simplicity here, we will make the mild technical assumption that the entire relevant state
space is the meet of the Adam and Eve type space.



It should also be noted that the Samet criterion is significant because it provides, in
principle, a way of calculating practically a common prior given a type space. In the
finite state space context, one can form the type matrices and apply numerical solutions
for calculating invariant probability measures in Markov chains — a subject of active
research — in order to ascertain whether or not there is a common prior and if one exists,
to identify it. Similarly, with the extension here of the Samet criterion to the more general
compact spaces, it now becomes possible, given knowledge of the players’ type spaces,
in principle to estimate the expected values of random variables by use of numerical
solutions, such as those appearing in e.g. Herndndez-Lerma and Lasserre (2003).

The following rough correspondences exist between results in this paper and those
that appear in Samet (1998a), save for the fact that the results in that paper are strictly
limited to finite state spaces, whereas that restriction is lifted here:

Proposition 1 here is (roughly) an infinite state space version of Proposition 4 of
Samet (1998a); Proposition 2 here corresponds to Proposition 5 of Samet (1998a); and
similarly Proposition 3 corresponds to Proposition 2’ and Proposition 4 to Theorem 1°.

OUTLINE OF THE PAPER

Definitions relating to type spaces and priors in general appear in section 2.1. Section
2.2 lists the major definitions and results from Markov chain theory that will be used in
the sequel. The connection between Markov chain theory and type spaces is made
explicit in section 3, which also introduces our definition of an ‘admissible’ type space.
The main results of the paper are in sections 4 and 5. Section 6 relates to the idea of a
‘natural’ topology induced by syntactically modelling type spaces as opposed to semantic
modelling, as discussed in Feinberg (2000), and shows that the results of this paper apply
to all type space models induced from syntactic considerations. Section 7 shows that
compactness is necessary for our results.

The paper concludes with some pointers to possible future avenues of research related
to the subject matter covered here.

2. PRELIMINARY DEFINITIONS AND RESULTS

2.1 TYPE SPACES

A type space for a set of players is a tuple <1 ,Q,S,(K,.,t,.)iel>. The set of players is

denoted by I ={l,...,n}, where n>2. Q is a measurable space of arbitrary cardinality,



whose elements are called states. The knowledge function x;on Q is defined so that
k,(w) denotes player i’s knowledge when the true state of the world is @. The symbol

§ represents a o -field of measurable events (subsets of ), and the beliefs — or
probability measure — of each player at each state of the world is denoted by #,(-| @) .

The knowledge functions «; generate partitions I1, of Q, by
I, (0) = {o'| k(o) = k, (@)}

The meet of (I1,),_, is the partition IT of € which is the finest among all partitions
that are coarser than Il, for each i. For each weQ, Il(w) denotes the element of the

meet containing @ . A somewhat more constructive way to define the elements of the
meet utilises the concept of ‘reachability’. A state @' is reachable from @ if there exists
a sequence @ = @,,®,,®,,...,o, =" such that for each k €{0,1,...,m—1}, there exists a

player i, such that I, (w,)=1II, (®,,). It is well-known that &' ell(®w) iff @ is

reachable from @, so that the relation of reachability can be used to define the partition
IT.

Denote by K, the o -field generated by II,. This o -field will be required to satisfy
the property that for all players

K. c§
so that the atoms of the knowledge partitions of each agent are § -measurable.

The probability distributions ¢,(-|@) are required to satisfy three important
properties:

1.  t(-|w) 1s § -measurable, for each player and each state
.  t,(II,(w)| @) =1, for each player and each state
iii.  For every event 4e§ the function ¢,(A4]|-) is K,-measurable for each
player

Property i1) can be described in words as saying that each player ascribes probability
one to what he or she knows. Property iii) has the further important implication that each
agent knows his or her own distribution, i.e. if the player has two different distributions in
two states then he or she can distinguish between these states, so that for each
@ €T (), 1,(A] &) =1,(4] ).

A random variable is a real-valued function on (). For a probability measure vand a
random variable f on Q, the expectation of f with respect to v is vf == IQ f(ow)v(dw) .



For each player i and random variable f, i’s expectation of f; denoted E,f is the random
variable

(ES)@)=] f(@)dt(a@]|w)

Given a type space, one can ask whether the space might have come to exist, in its
current state, from a space with no information at all, by the players acquiring new
information over time and updating their beliefs in a Bayesian manner. Each player’s
possible initial belief on the no-information primeval space is called a prior. In general,
given player i’s current type, there will not be a single prior from which the player could
have arrived at the current state from the (hypothetical) primeval past — there will be a set
of possible priors. A main question is then whether or not the agents have a common
prior, meaning a possible initial identical belief that implies the differences in probability
assessments currently seen amongst the players can be attributed solely to asymmetric
information received over time.

More formally, an§ -measurable probability distribution x# over Q is a prior for
player i if for every measurable event 4 € §

u(A)= [ (4| 0)dp(w)

In words, w is a prior for player i if i’s types ¢,(w) are the posteriors of x conditional on
i’s information function ¢,. A probability measure P < A(QQ) is a common prior if it is a
prior for each of the players i e /.

As usual, y, 1s the indicator function of an event 4 € § taking the value 1 in 4 and 0
otherwise.
2.2 MARKOV CHAINS

A stochastic kernel or transition probability function on (€,F) is a function P such
that

1.  P(-|w) is a probability measure for each fixed @w e Q
1.  P(E|-) is an § -measurable function on Q for each fixed event E € §

Given a transition probability function P, a Markov chain over (Q,J) is a discrete-
time homogenous dynamical system that evolves in time in accordance with the n-step
probability function P"(E | @) defined recursively by

P'(E|®)= jQ P"(E|@)dP(@ | ®) = jQ P(E | @)dP" (& | »)



forall Ee§ and we Q.

Fix for the rest of this section a Markov chain M over (€,F) with transition
probability function P.

Let A(Q) denote the space of probability measures on €2, with this space naturally

outfitted with the induced weak™® topology. It is possible to regard P as a function from
A(Q) to A(Q), as follows. For each v e A(QQ), let

(0P)E) = [ P(E | 0)dv(w)

Then P acts on A(QQ) by way of v vP. We will interchangeably write oM to

stand for the same thing as vP, accepting the mild notational abuse of identifying M with
its transition probability function. Using this notation, a probability measure v is
invariant with respect to the Markov chain M if v =ovM . If such a measure exists, M is
said to admit an invariant probability measure.

The transition probability function P can also be considered as operating on bounded
functions in the following way. For each bounded integrable function f from Q to R, let

(PN @)= [(@)dP(@|o)

Then Pf is a well-defined bounded function. Again, we will permit ourselves to write
Mf to mean Pf .

If v is an invariant probability measure with respect to the Markov chain M, then P
can also be considered to be a linear operator on L (v):= L,(Q,§,v) into itself. We can

then define, for any kand f € L (v)
P'f (@)= dP"(@|0)f (@)
We have in addition the concept of the Cesaro mean, defined as
1 n—1
PO f(@)=—3 P f(0)
1 =0

If O has a topology 7, denote the class of bounded continuous functions with respect
to 7 from Q to R by C(Q). Then the chain M satisfies the weak Feller property if P

maps C(QQ) to C(Q).



Let ¢ be a non-trivial o -finite measure for the space Q2. A Markov chain M is ¢-
irreducible if

> P (E|lo)>0
for all @ € Q whenever p(E)>0 for E€5.

We will make use of the following important theorems from the theory of Markov
chains. These three theorems appear, in Hernandez-Lerma and Lasserre (2003),
respectively as Theorem 7.2.3, Proposition 4.2.2, and an amalgam of Theorem 2.3.4,
Proposition 2.4.2 and Proposition 2.4.3:

THEOREM (Existence of invariant probability measure). Let QO be a compact metric
space, and let M be a Markov chain on Q. Then M admits an invariant probability
measure.

THEOREM (Uniqueness of invariant probability measure). Let M be a ¢ -irreducible

Markov chain and suppose that P admits an invariant probability measure v. Then v is
the unique invariant probability measure for P.

THEOREM (Birkhoff’s ergodic theorem for Markov chains). Let M be a Markov chain
and suppose that P admits an invariant probability measure v. For every f € L (v) there

is a function 1~ e L (v) such that

P f — f* v-almost everywhere

and
jf”du=jfdu

In addition, if v is the unique invariant probability measure of M, then f~ is constant

v -almost everywhere, and f~ = I fdv, v-almost everywhere, so that

the time-average lim,  P" f = the space-average I fdv, v-ae.

3. TYPE SPACES WITHIN THE MARKOV FRAMEWORK
3.1 RELATING TYPE SPACES TO MARKOV CHAINS

In this section, we relate the concepts of type spaces and Markov chains.



First, note that by definition, the probability measure ¢ (-|-) of each player i satisfies

the conditions for being a transition probability function, hence we can associate with
each player a Markov chain based that probability measure, and label it M, .

In general, given any two probability measures £ and P,, one can further define a
new probability measure PP, (E|®) by

PR(E|®) = P(E|@)dP(@|o)

This obviously can be iterated any number of times. In particular, given a measure
P, we recapitulate the definition of the infinite sequence of measures {P"(-| w)}

nxl *

In our specific context, given any two players i and j and a measurable event E, the
probability distribution #7,(E | @) based on #,and ¢, is similarly defined by

tt,(E| o) = jQ t(E|@)dt (@ | o)

In particular, given an element o in Sym([), the set of all permutations of the
elements of /, define

t =t

o o)’

.t

a(n)

iteratively, by using the above to define ¢, ¢, , then 7, , (¢, t,.,), and so forth.
The Markov chain based on ¢, will be labelled M .

We can now re-interpret various notions relating to a type space within the Markov
framework.

First, note that for any function f on the state space, M, f is precisely the expectation

of fin player i’s estimation. This is ‘the primal case’ (cf. Samet (1998a)), in the sense that
the expectation is what is usually considered of economic significance and importance, as
players choose their actions by comparing the relative expectations of functions.

Second, dual to this is, an invariant probability measure v with respect to the Markov
chain M, is precisely a prior of player i. A common prior is a probability measure that is

simultaneously invariant with respect to all {M ; }ie ;-

A sequence s = (i,,i,,...) of elements of / is called an /-sequence if for each player i,
i =i, for infinitely many ks. The iterated expectation of a random variable f with respect

to the /-sequence s is the sequence of random variables {M, ..M, [}, .



Given the identification of E, f with M, f, we can write, given a permutation o of /,

M, =E, =t = Ea(l)"'Ea(n) :Ma(l)"'Ma(n) =l 0t

a(n)

The iterated expectation of f with respect to o is defined by the sequence {E* f}7,.

The iterated expectation of f with respect to o is, of course, the iterated expectation of f
with respect to the /-sequence

o(),...,o(n),c(),...,o(n),...

as defined above.

3.2 ADMISSIBLE TYPE SPACES

A type space (1,Q,5,(x,,t,),.,) with a topology 7 over Q will be termed admissible
if it satisfies the conditions:

i.  Each state w € Q is contained in an event 4(w) such that ¢,(4(®)|w) >0

for all i.
ii.  The correspondence @ ¢ (-|®) is continuous with respect to the

topology 7 and the weak* topology of A(Q)

These may seem to be artificial requirements, but they are ‘natural’ in a sense that
will be explained in the section on syntactic models of type spaces.

Note that from previous definitions, it immediately follows that an admissible type
space satisfies the properties that #,(4| @) >0 for every event 4 of non-zero measure and

non-zero intersection with I1 (@), and that

[/ (@)di,(@| )
is continuous in @ for every f e C(Q).

If in addition to the above conditions (£2,7) is compact metric space, the type space
(1,Q,3.(x,,t,),.,,7) will be called a compact admissible space in short. Nearly all the

results in this paper will henceforth assume a compact admissible type space. For
notational ease, <I ,Q,S,(Ki,ti)ie,,r> will frequently be written simply as (), 7).

10



4. COMMON PRIORS AND COMPACT ADMISSIBLE TYPE SPACES

Given any Q €11, the restriction of M, to Q , for any player i, will be written as
MP . Given a permutation o in Sym(I), the restriction of M_ to Q is similarly denoted
byM?.

LEMMA 1. Given a type space Q satisfying property (i) of admissible type spaces, for
any permutation o of / and player i, for any arbitrary pair of states o, @ €ll, (@),

t (A@)|w)>0.

PROOF. Let w, @ €11, (w). By property (i) of admissible type spaces, there exist
events A(w) and A(@) such that, for i<j<n, ¢, (A(@)|®)>0; for 1<k<i,
lyw(A(@)|@)>0; and because 7, (A(@)|@)>0 and ¢, (4d(@)|w)=t,,(A(@)|o)
(a8 o, well,, (), it follows that 7 ,(A(@)|w)>0. Unravelling the recursive

definition of ¢, ---7,,, , these facts taken together imply that 7, (A(@)| @) > 0.

PROPOSITION 1. For any permutation ¢ of /, and for any element Q of the meet of a
compact admissible type space (©,7), M? has a unique invariant probability measure
0

o

T

PROOF. By the assumed properties of an admissible type space, the Markov matrix
Me

o(i)?

for any i, satisfies the weak Feller property. The weak Feller property of the
permutation matrix M2, follows readily by its concatenation formation via
MQ(I)"'MQ( )

of at least one invariant probability measure for M?, 72, by application of a theorem

The compactness of the metric topology 7 then guarantees the existence

quoted above.

Next, select an arbitrary event E < Q such that z¢(E)>0. By definition of a prior,
we can readily select a state '€ E such that ¢, (E[T1, (@) >0 (otherwise there

would be a contradiction to the assumption that z¢(E) > 0).

Let weQ be selected arbitrarily. Due to the fact that @ and @' share the same
element of the meet, @' is reachable from @. This means that there exists a sequence
{o=0,,0,0,,...,0,=ac"} such that for each ke {0,,..,m—1}, there exists a player
i, such that IT, (@,) =11, (@;.,)-

11



We can now define the following iterative process: by definition, there is a player i,
such that IT, (w,) =TI, (). At step 0 of the iterative process, we conclude from the
lemma that 7, (A(®,)|®,) > 0. At step 1, there is a player i such that I1, (&) =11, (@,),
hence (again by applying the lemma) from ¢_(A(w,)|®,) >0 and step 0, we arrive (from
the definition of ¢2) at ¢2(A(®,)| @) >0.

At step j, there is a player i, such that I, (a)j):H,.j (w,,,), hence from

j+1
t,(Aw,,))|®)>0 and step j-1, we arrive (from the definition of t/) at

11 (A, @) > 0.

At the end of the process, the conclusion is ¢ (A4(w, )| ®,) > 0. Finally, by a slight
tweaking of the proof of lemma 1, from the fact that ¢, (E|®'=®,)>0 and that for

kel,t,, (A®,)]®,)>0,we can show that #,(E|®') >0, so that "' (E|w,)>0. We

thus conclude that M2 is 7«

SRS

-irreducible, hence from the uniqueness of invariant

SIS

probability measure theorem, 7¢ is unique. [l

PROPOSITION 2. For a compact admissible type space €, the following conditions are
equivalent.

1. 7 isacommon prior on Q
il. 7 is an invariant probability measure of the Markov chain M, for each
iel
iii. 7z is an invariant probability measure of the Markov chain M for each
permutation o

PRrOOF. This is the compact-space equivalent to Proposition 5 of Samet (1998a), and
the proof is nearly identical.

Almost immediately from the definitions, 1) and ii) are equivalent. That ii) implies iii)
is quite easy — if m =x for each player, then one can successively calculate

Tty o) =Tty lyn) = - = Ay, = 7 for any permutation o .

It remains to show that iii) implies ii). Suppose iii) and let 7 be the invariant
probability measure. Thus

w(tt,-t)=rm

Multiplying from the right by ¢, gives

12



m(tt,y-1,1y) = 7,

So m,is an invariant probability measure of ¢,---¢,¢. But by iii), 7 is an invariant
probability measure of the Markov chain M, ---M M,, and by the previous proposition
M,---M M, has a unique invariant probability measure. Thus, 7zM, =7 and similarly
oM, =z foralli. [

COROLLARY. For each Q €11 there exists at most one common prior on Q. [I

5. PERMUTATIONS, ITERATED EXPECTATIONS AND COMMON PRIORS

PROPOSITION 3. Given a compact admissible type space Q, for each random variable

fon Q and permutation o, lim EG(") f exists, and on each element Q in II is

n—>0

constant and is equal to 72 f, 72 -almost everywhere,.

PROOF. This follows from the previous propositions and Birkhoftf’s ergodic theorem,
quoted above. [I

PROPOSITION 4. Given a compact admissible type space Q, with IT={Q}, a common
prior exists iff for each random variable f, the elements of {lim, EG(") floeSym(I)}
converge r_-almost everywhere to the same limit. Moreover, if 7 is the common prior,
then this limit is 7f", 7 -almost everywhere.

PROOF. As above, lim,_ E_ " fis constantly 7z, f, x_-almost everywhere, where
7_1s the unique invariant probability measure of M_ on Q. Thus, for each f, the limits
for all o are respectively 7z_-a.e. equal to each other iff for each f, 7 _fare r_-a.e.
constantly equal to one and the same value for all o .

Clearly, if there is a probability measure 7 such that z_ = for all o, then 7_f are
all equal to each other. In the other direction, if in particular for each 4§, 7_y, are all
equal then there is a probability measure 7 such that 7_ =7z for all o. This amounts,
given previous claims, to saying that 7 is a common prior. [I

We can summarise these results as follows:

THEOREM. Given a compact admissible type space Q such that IT={Q}, for each

random variable f and permutation o of the players, the iterated expectation of f with
respect to o converges and the value of its limit is common knowledge. Moreover, there

13



exists a common prior if and only if for each random variable it is common knowledge
that all its iterated expectations with respect to all permutations converge to the same
value.

6. THE SYNTACTIC MODEL AND THE NATURAL TOPOLOGY

6.1 THE SYNTACTIC FOUNDATION OF TYPE SPACES

The syntactic construction of type spaces is developed and explored fully in Aumann
(1999) and Feinberg (2000). Only a brief survey, sufficient for the needs of this paper, is
presented here.

The syntactic construction begins with a list of letters in an alphabet. Each letter can
be regarded as representing a natural occurrence, e.g. the letter x might represent the
occurrence of ‘the pound will rise against the dollar next month’ or y might stand for ‘the
share price will fall at least by 3 and 1/4 next week’. The syntax is then generated by the
letters and the players’ beliefs and knowledge. It contains all possible formulae that
correspond to statements about the occurrences, the knowledge of the players, their
knowledge about the beliefs of others, and so forth.

More formally, a non-empty finite set of letters « constitutes an alphabet. A formula
is a finite string of symbols obtained by applying the following four rules finitely often:

i.  Every letter is a formula
ii.  Iffand g are formulae thensois fv g

iii.  Iffis a formula then so are —(f)and k,(f) forall ie/

iv.  Iffis a formula then so are p/(f) for all i e I and every rational number
0<A<1

The intended semantic interpretation of these symbols is that fv g stands for ‘f or
g’, —(f) stands for ‘not £, k,(f) means ‘player i knows £, and p/(f) is ‘agent i
believes f'with probability at least 4 °.

A closed list L of formulae is a set of formulae which satisfy
(fel)A(f=>gel) implies gelL
A list L is epistemically closed if it satisfies

(f e L) implies k, f € L for all players i

14



A strongly closed list is a list which is both closed and epistemically closed. Every
formula that is in the strong closure of the list of formulae state in the appendix to this
paper is a tautology.

A state of the world @ is a closed list that contains all tautologies and such that for
every formula f it satisfies —f ¢ iff few. A state of the world is thus a full

description of formulae that hold and are coherent in the sense of containing no
contradictions.

A pairing of alphabet « and list of players / is called a context, and the set of all
formulae generated by a context is called its synfax. The set of all states of the world
defined in a syntax is denoted by Q, and is called a universal space.

6.2 THE SEMANTICS OF SYNTAX

Given a context and syntax, the set of states of the world can be assigned a natural
semantic structure, so that we recapitulate the semantics of a type space. In order to do

this, we need to define the full tuple ([ ,Q 1,5, (Kl.,tl.)l.61> , to go along with the set of

players / and the universal space with which we are given.

The knowledge functions x; assign to each state of the world @ the set of all
formulae in @ that begin with the symbol k, Le.
K, (w)={f e w| f =k,g for some formula g} . This is sufficient to generate the partitions
by way of

I, (w) = ﬂfe;(,-(a}) Ek,f
For each formula f, £, denotes the event that f obtains, meaning
E, ={weQ|fewn}

The o -field generated by all the events £, then forms § . The probability measures
t.(-|T1,(w)) are set by

H(E, [T (@) =sup{2[0<2<1,1€Q, p/ [ € w}
and defining ¢,(-|I1,(®)) in general as the extension of this to all of § .

6.3 THE NATURAL TOPOLOGY

Given a universal space Q generated by a syntactic context, the sub-basis for the
natural topology on Q) is the set of all events E, where [ is a formula.
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With this basic definition to hand, we can prove a series of claims showing that a
semantic type space generated by a syntactic context, with the natural topology, fulfils
the assumptions needed for the main propositions proved in this paper. We hope thus to
justify the supposition of those assumptions, in the sense that we can expect that ‘most’
of the type spaces of interest in applications will be generated from syntactic contexts.

CLAIM 1. Each state w € Q is contained in an event A(w) such that 7,(4A(w)| @) >0
for all i.

PROOF. First, we show that for each player i there is a formula g, and an event £
such that w € E, and #,(E, |®)>0. To show this, assume that it is not true. Then, listing
the denumerable formulae contained in @ as {f,, f,,...}, t,(E P | ) =0 for each j, so that
P! f, €e® and —p! f; €@ forall 1€Q.But the tautologies (see the appendix) imply that
pf,=kp!f, and kp!f, = p!/(p]f;), which means that p;(pf;) €, and we have

reached a contradiction. Hence there is a formula g, such that 7,(E, |®)>0 and w € E, .

Next, now that we have to hand the formulae {g,,g,.,....g,}, because ¢ (E, |®)>0

we have a corresponding list {4,,4,,...,4,} such that 4 >0 for all i, and p/'g cw.
Starting from player 1 in the list, from the tautologies g, = g, v g,,50 k(g, = g, Vv &,),
and hence p/(g, =g Vveg,), thus pig = pl(g,veg,). This means that
(g, v g,) e, hence t(E, ., |®@)>0 . Similar reasoning leads to #,(E, ,, |@)>0.
Continuing this line of reasoning in an iterative manner, we can eventually set
h=g vg,v..vg,, and conclude p/(h)ew, hence t,(E,|®)>0 simultaneously for

all i. Writing 4(w) = E, , the proof is concluded. [I

CLAIM 2. The correspondence @ ¢,(:| @) is continuous with respect to the topology
7 and the weak* topology of A(Q).

PROOF. This is proved in the proof of Theorem 6 of Feinberg (2000).

CLAIM 3. Q) is compact in the natural topology.

PROOF. This is proved in Lemma 1 of Feinberg (2000). [I

CLAIM 4. The natural topology is Hausdorff.

16



PROOF. The sub-basis for the natural topology on Q is the set of all events E, where
S is a formula. Hence each event E, is an open set. Since for every two states there is a

formula that holds in one state while its negation holds in the other state, the Hausdorff
property follows immediately. [

CLAIM 5. The natural topology is regular.

PROOF. By standard results, a compact Hausdorff space is normal, which is a stronger
property than regularity. [

CLAIM 6. The natural topology is second countable.

PROOF. This follows immediately from the fact that the sub-basis of the natural
topology is countable, given the countable number of formulae. [l

PROPOSITION 5. Every universal space QQ generated by a syntactic context, with the
natural topology, is a compact admissible type space.

PROOF. Claims 1 and 2 establish that Q satisfies the conditions of admissibility.
Claim 3 shows the natural topology to be compact. Claims 4 through 6 together are the
conditions for Urysohn’s Metrization Theorem (see Munkres (1975)), so that we can
conclude that Q with the natural topology is a compact metric space. [

7. THE NECESSITY OF COMPACTNESS

In this section we demonstrate that the above results do not hold when the assumption
of compactness is relaxed. This is accomplished by presenting a simple semantic model,
with two players, in which consideration of a permutation does not lead to the existence
of an invariant probability.

Consider two individuals, Anna and Ben, and a denumerable state space
Q={23,..}. Anna’s partitions is {{1},{2,3},{4,5},...} and Ben’s partition is
{{1,2},{3,4},{5,6},...}. The meet in this case is all of Q2.

Ben’s beliefs are always equal probabilities to the two states in each of his partition
members. Anna’s beliefs are also equal probabilities to the two states in her partition
members, save for the probability 1 which is necessary for the one state partition
member.

We can depict the beliefs of each of the two players in the form of infinite matrices:
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and note that it forms the following pattern: letting O stand for the set of positive odd
integers, and regarding A _ as a mapping on the domain NxN, we start with

M_(L1)=1/2, M_(2]1)=1/2, and for each jeO, 1/4=M_(j,j+])=
M, (G+Lj+D)=M,(j+2,j+D) =M, (j+3,j+)=M,(j,j+2)= M, (j+1,j+2) =
M_(j+2,j+2)=M_(j+3,j+2). For all other values of kand /, M _(k,/)=0.

Suppose now that there is an invariant probability distribution 7z with respect to M _ .
Let 7z(1) = . Then by the definition of invariant probability, it must also be the case that
7(2)=a , because 7(1)=0.5(x(1)+ 7 (2)). Similar reasoning leads to the conclusion that
7)=a, 7@ =a, ..., 7(k)=a, ...

Now, «a €[0.,1], so that either Z:Zlﬂ(k)=0 or Z:ler(k)zom In either case, 7

cannot be a normalised probability.

8. CONCLUSION

As stated in the introduction, in this paper we have extended most of the results of
Samet (1998a) to compact metric spaces, shown that compactness is necessary for the
results, and exhibited that never the less the results apply quite broadly to ‘nearly all’
models of interest by showing that every universal space generated by a syntactic context,
with the natural topology, is a compact admissible type space.

It should be noted here that the results here do not extend all the results of Samet
(1998a) to compact metric spaces. To be precise, the theorems of that paper, in the finite
type space context, show that the existence of a common prior implies that for each
random variable f it is common knowledge in each state that all the iterated expectations
of f, with respect to all /-sequences s, converge to the same limit. The theorems of this
paper show that, in the context of a compact admissible type space, the existence of a
common prior implies that for each random variable f it is common knowledge in each
state that the iterated expectations of f with respect to each permutation converge to the
same limit. Whether our results on compact admissible type spaces apply to all iterated
expectations with respect to all /-sequences remains an open question.

Finally, we note that Aviad Heifetz has expressed the following conjecture: first
define an improper prior p, for player i to be a o -finite § -measurable measure over a

type space Q which satisfies the main condition of a prior, i.e. for every measurable
event Ae§

pi(A) = 1,(4] @)dp,(w)

19



Thus, an improper prior does not allow us to talk about the ‘probabilities’ that player i
assigns to events at the ex-ante stage, but it still allows us to discuss the relative
likelihood that he or she ascribes to pairs of events.

Then Heifetz has conjectured that a (not necessarily compact) type space admits a
(possibly improper) common prior if and only if the Morris-Feinberg criterion holds. In
analogy, one might similarly conjecture that a (not necessarily compact) type space
admits a (possibly improper) common prior if and only if the Samet criterion holds.
Whether or not either of these conjectures is true remains a subject for future research.

9. APPENDIX

LoGicAL TAUTOLOGIES

fvhH=f
f=vg)
(fve)=(gv))
(f=9=>hv f)=(hvy)

KNOWLEDGE TAUTOLOGIES

kif=f
(k(f = &)= ((kf) = (kg))
(ki.f)= (kk.f)
(—kif) = (k—k.f)

PROBABILITY TAUTOLOGIES

294
(k)= (p.f)
(p /)= (k.p f)

(! )= (pf) A>6
pIADAP (fA=g)=p["f A+6<]
—pl(fA APl (frmg)= p!°f A+5<1
plf=-v~f A+6>1
pi(f=8 = f=re)
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