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Abstract

In this note, we analyze a sequentially rationalizable choice model with a transi-

tive rationale and a standard preference. The model in this note is more restrictive

than the Rational Shortlist Method (RSM) model which is proposed in Manzini and

Mariotti (2007) to capture cyclic behavior. Yet, a decision maker in our model exhibits

cyclic behavior in general. We prove that the cyclicity of an indirectly revealed pref-

erence is exactly what distinguishes the RSM framework (a sequential choice model

with a non-standard preference) from our transitive-RSM framework (a sequential

choice model with a standard preference). We also provide a partial identification

result on the representation.

JEL Codes: D01.
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There is a growing literature that models behavioral anomalies resulting from in-

ternal conflict. In a seminal paper, Manzini and Mariotti (2007) propose a sequentially
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rationalizable choice model that accommodates cyclic choice behavior, which is common

anomaly observed in experiments.1) The objective of this note is to analyze the gap that

exists between standard choice theory and the sequential choice model in Manzini and

Mariotti (2007), which they term the rational shortlist method (RSM) model.

A decision maker (DM) in the RSM framework has two rationales. She departs from

the standard theory in the following respects: (i) the DM uses her first rationale to form

a shortlist, from which she makes her final choice using the second rationale; (ii.a) the

DM’s first rationale may be intransitive; and (ii.b) the DM’s second rationale may be

cyclic.2) The RSM model encompasses at least two interpretations: a) the first rationale

can be interpreted as the DM’s (potentially incomplete) underlying strict preference, and

the second as the “tie-breaking rule,” and b) the first rationale can be interpreted as some

selection criterion that the DM deems important; and the second rationale as the DM’s

underlying preference. Hence, an RSM choice function is observationally equivalent to

the standard choice function if the first rationale is a complete strict preference (under

interpretation a)), or if the first rationale is empty and the second rationale is a complete

strict preference (under interpretation b)). Whichever interpretation is employed, a

non-standard preference is permitted in the RSM framework. Therefore, behavioral

anomalies that are identified in the RSM framework may be the result of the procedure

by which a shortlist is created before the final decision is made, or a non-standard

preference, or a combination of the two.

In this note, we employ interpretation b). In our model, which we call a transitive-

RSM model, while (i) the DM still forms a shortlist before making the final choice,

(ii.a’) her first rationale (her criterion) is transitive, and (ii.b’) her second rationale (her

preference) is complete and transitive. Therefore, our model departs from the standard

choice model only if the DM’s criterion is neither empty nor complete. Since a shortlist

1)For example, in the experiment conducted by Loomes et al. (1991), out of 200 subjects, 128 subjects

exhibited some form of cyclic choice. Also see Tversky (1972) and Starmer and Sugden (1998).
2)In general, there are multiple pairs of rationales that sequentially rationalize an RSM choice function.

However, some RSM choice functions can be sequentially rationalized only by a cyclic second rationale.
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is formed if and only if the criterion is nonempty, any behavioral anomalies in our model

must result from the presumption that the DM forms a shortlist.

Conditions (ii.a’) and (ii.b’) are imposed in order to keep the departure of our model

from the standard theory minimal. We find these are reasonable assumptions. The reason

for imposing condition (ii.a’) is the following. Transitivity of the criterion requires that if

y beats x, then x can never matter to any set containing y. In other words, the shortlists

from S and S\ {x} have to be identical whenever an alternative x is not in the shortlist

from a choice set S (that contains x and y). Condition (ii.b’) is equivalent to requiring

that the underlying preference is a standard (strict) preference.3)

Our representation theorem (Theorem 1) shows that an RSM model is behaviorally

different from a transitive-RSM model if and only if one axiom, which we call the

axiom of No Binary Chain Cycles (NBCC), is violated. Our second result (Theorem 2)

identifies the set of criterion-preference pairs that rationalize a given choice function. We

then identify the condition on the choice function under which the criterion-preference

representation is unique (Corollary 1).

Our note is closely related to Cherepanov et al. (2008). Like our note, the DM in their

paper forms a shortlist, and then makes a choice according to a standard preference over

alternatives. Unlike our note, however, the DM has multiple criteria, and the shortlist

consists of all alternatives that are maximal with respect to at least one of the criteria.

They introduce an axiom which imposes acyclicity on the revealed preference, and then

show that the axiom completely characterizes choice behavior that arises from their

model. The notion of the revealed preference in their paper is similar to but independent

from ours. As a result, their axiom is neither weaker nor stronger than our NBCC axiom.

Nevertheless, it can be easily verified that their axiom is implied by our NBCC axiom

and the Weak WARP introduced in Manzini and Mariotti (2007).

3)Another reason for studying a restrictive sequential choice model is that if we do not get a unique

representation, or comparative static result in this most restrictive class, we never get them in a more

general model.
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Other related papers include Aspesteguia and Ballester (2009), Garcı́a-Sanz and Al-

cantud (2010), and Manzini and Mariotti (2010). In contrast to our note, all these works

generalize the original model in Manzini and Mariotti (2007).

Aspesteguia and Ballester (2009) consider a sequential choice model with acyclic

rationales. They axiomatize the choice behavior of a DM who employs a sequence of

incomplete and acyclic rationales to eliminate alternatives from the choice set until she

reaches a unique element, which is her final choice. Their axiom is about the existence

of a binary selector (a function that selects a binary choice problem from an arbitrary

choice problem) that satisfies a consistency requirement. In contrast, our set of axioms is

directly imposed on the choice function, and therefore is easily comparable with axioms

in other papers.

Manzini and Mariotti (2010) analyze a choice model in which a choice is induced by

the sequential application of semiorders.4) They show that the model restricts choice

data the same way as the sequential choice model with an arbitrary number of acyclic

rationales on any finite domain. The transitive-RSM model proposed here can thus be

viewed as a special case of their model when the domain is finite. Finally, Garcı́a-Sanz

and Alcantud (2010) characterize choice correspondences that can be rationalized by the

sequential application of two relations.

1 Basic Definitions

Consider an arbitrary non-empty finite set X with |X| ≥ 3. The set of choice problems is

ΩX ≡ 2X\ {∅}. A choice function on X is defined as any function c : ΩX → X with c (S) ∈ S

for all S ∈ ΩX. The decision maker (DM) has an asymmetric, complete, and transitive

(strong) preference relation P2 ∈ X × X. We denote the P2-maximum element of S by

c2 (S; P2). A criterion is an asymmetric and transitive binary relation, P1 ⊂ X × X. We

call the set of P1-maximal elements of S, max (S; P1) ≡
{

x ∈ S : ∄y s.th. yP1x
}

, the shortlist

4)A semiorder is a transitive binary relation. See Luce (1956) for the definition.
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from S. For notational convenience, we denote c2 (max (S; P1) ; P2) by c(P1,P2) (S).

Definition 1 A choice function c is a transitive rational shortlist method (transitive-RSM)

if there exists a pair of criterion and preference (P1,P2) such that c (S) = c(P1,P2) (S) for all S ∈ ΩX.

The DM in our model makes a choice using the following procedure. First, she uses

the criterion P1 to eliminate all inferior alternatives and get a shortlist. (Formally, she

eliminates y ∈ S if and only if there exists an x ∈ S such that xP1y). Then she picks an

alternative from the shortlist using her preference P2.

To facilitate discussion, the following definitions and results from Manzini and Mar-

iotti (2007) are restated. In Manzini and Mariotti (2007), an asymmetric binary relation

on X × X is called a rationale.

Definition 2 (Manzini and Mariotti (2007)) A choice function c is a rational shortlist

method (RSM) if there exist two rationales P1 and P2 such that c (S) = c2 (max (S; P1) ; P2). The

pair (P1,P2) is said to sequentially rationalize c.

Manzini and Mariotti (2007) show that a choice function c is an RSM if and only if c

satisfies the following two axioms:

Weak WARP Suppose x = c
({

x, y
})

, and x = c (S) for some S ∋ x, y. Then for any T such

that
{

x, y
}

⊂ T ⊂ S, c (T) , y.

Expansion If x = c (S) = c (T), then x = c (S ∪ T).

While a transitive-RSM requires transitivity for both P1 and P2 (and completeness for

P2), an RSM requires transitivity for neither P1 nor P2. Therefore, a transitive-RSM choice

function is an RSM choice function, but not vice versa. Nevertheless, a transitive-RSM

choice function permits cyclic choice behavior, as shown by the following example.

Example 1 Suppose X =
{

x, y, z
}

, c (X) = x, c
({

x, y
})

= x, c
({

y, z
})

= y, and c ({x, z}) = z.

Then the following pair of (P1,P2) rationalizes the choice function c: P1 =
{(

y, z
)}

and P2 =

{

(z, x) ,
(

x, y
)

,

(

z, y
)}

. Therefore c is a transitive-RSM choice function.
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1.1 Revealed Preference

Suppose a DM in our model chooses x over y from
{

x, y
}

, i.e. x = c
({

x, y
})

. There are

three possible explanations for this choice: (i) x ranks above y in her criterion P1 and x

is preferred to y according to P2; (ii) x ranks above y in her criterion P1 but y is preferred

to x according to P2; and (iii) x neither dominates or is dominated by y in P1, but x is

preferred to y in P2.

If (i) or (ii) is the reason for x = c
({

x, y
})

, then the DM’s shortlists from choice sets

S ∋ x, y and S\
{

y
}

coincide. Therefore, S and S\
{

y
}

induce the same choice. On the other

hand, if (iii) is the explanation for x = c
({

x, y
})

, then the DM’s shortlists from S ∋ x, y and

S\
{

y
}

may be different. As a result, the choices from S and S\
{

y
}

may be different. Hence,

if we observe c (S) , c
(

S\
{

y
})

for some S ∋ x, y, we may conclude that the alternative x is

revealed as being preferred to y. The above discussion yields the following definitions.5)

Definition 3 We say x is directly revealed preferred to y, which is denoted as x ≻c
D y, if and

only if c
({

x, y
})

= x but c (S) , c
(

S\
{

y
})

for some S ∋ x, y.

Definition 4 A set S = {x1, ..., xn} is called a binary chain when xk ≻
c
D xk+1 for all k ≤ n − 1.

Definition 5 We say x1 is indirectly revealed preferred to xn, which is denoted as x1 ≻
c
I xn, if

and only if there exists {x2, ..., xn−1} such that {x1, ..., xn} is a binary chain.

Suppose {x1, ..., xn, x1} is a binary chain. Then x1 is indirectly revealed preferred to x1.

5)Our notion of the revealed preference is similar to the one in Masatlioglu et al. (2010). They consider

a choice model in which the DM is characterized by two unobservables: (i) her underlying preference,

and (ii) an attention filter which reduces every choice set to a subset called a consideration set to which

preferences are applied. The DM may select an alternative x in the presence of y even when the DM

prefers y because y is not in the consideration set. In their framework, the underlying preference and the

attention filter can be recovered if the following choice behavior is observed: c (S) = x for some S ∋ x, y

but c
(

S\
{

y
})

, c (S). This can happen only when her consideration set has changed, i.e., y must have been

considered in S (revealed attention). Also, the fact that x is chosen while y is also in the consideration set

implies that x should be revealed preferred to y (revealed preference).
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In other words, some cyclic choices can only be explained by cyclic preference relations.

To minimize the departure from the standard model, we impose the following axiom.6)

NBCC A choice function c satisfies No Binary Chain Cycles Axiom (NBCC) if there

does not exist any binary chain {x1, ..., xn} such that x1 = xn.

Note that NBCC does NOT rule out cyclic choice behavior. It only rules out choice

functions that reveal a cyclic preference relation. As the following example shows, It is

violated by some RSM. As we shall show below, NBCC is the axiom that distinguishes

a transitive-RSM choice function from an RSM choice function.

Example 2 Suppose X =
{

w, x, y, z
}

; and c−1 (w) =
{

{w, x} ,
{

w, x, y
}}

, c−1 (x) =
{{

x, y
}

,

{

x, y, z
}

,X
}

,

c−1
(

y
)

=
{{

y, z
}

,

{

w, y
}

,

{

w, y, z
}}

, and c−1 (z) = {{x, z} , {w, z} , {w, x, z}}. Then c is an RSM

choice function.7) We have x ≻c
D y because x = c

({

x, y
})

and c
({

x, y, z
})

= x , z = c ({x, z}).

Similarly, w ≻c
D x because w = c ({w, x}) and c

({

w, x, y
})

= w , y = c
({

w, y
})

. Also, y ≻c
D w

because y = c
({

w, y
})

and c
({

w, x, y
})

= w , x = c
({

x, y
})

. Therefore, the directly revealed

preference exhibits a cycle, thus violating NBCC.

2 Main Results

Now we are ready to state our first main result:

Theorem 1 An RSM choice function c is a transitive-RSM choice function if and only if c

satisfies NBCC.

Proof. In Appendix.

The ”if” part of the proof to 1 is constructive. Given an RSM choice function c that

satisfies NBCC, we define Pc
2 as a completion of ≻c

I , and Pc
1

as follows:

Pc
1 ≡
{(

x, y
)

: c (S) = c
(

S\
{

y
})

for any S ∋ x, y with x , y
}

. (2.1)

6)We think that the axiom is natural because under our interpretation, the second rationale is a strict

preference relation. It is therefore reasonable to impose acyclicity on it.
7)c is sequentially rationalized by P1 =

{(

x, y
)

,

(

y, z
)

, (z,w)
}

and P2 =
{(

y,w
)

, (w, x) , (z, x)
}

.
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Then, it is not difficult to see that both Pc
1

and Pc
2 are asymmetric and transitive. The

key part of the proof is to show that the pair
(

Pc
1
,Pc

2

)

represents the choice function c, i.e.,

c(Pc
1
,Pc

2)
(S) = c (S) for all S.

Remark 1 It can be shown that Pc
1

in (2.1) satisfies Pc
1
= {
(

x, y
)

: c
({

w, x, y, z
})

= c ({w, x, z})

for any w, z ∈ X, AND x , y}. Therefore, the criterion can be constructed by observing all choice

behavior from choice sets of size 4 or less. Recall that in Manzini and Mariotti (2007), the first

rationale was constructed as follows: xPc
1
y if and only if y , c (S) for all S ∋ x, y. Therefore, we

need much less information to construct Pc
1
.

Next, we discuss the identification problem of our representation. A few definitions

are required. For a transitive-RSM choice function c, we denote Pc
1

defined in (2.1) by P
c

1.

In addition, defineP (c) ≡
{

(P1,P2) : c(P1,P2) (S) = c (S)
}

,Pi (c) ≡
{

Pi : (P1,P2) ∈ P (c) for some P j , Pi

}

,

and P2 (P1; c) ≡ {P2 : (P1,P2) ∈ P (c)}.

Theorem 2 Let c be a transitive-RSM choice function. Define Pc
1 ≡
{

(

x, y
)

∈ P
c

1 : y ≻c
I x
}

. We

have (i) Pc
1,P

c

1 ∈ P1 (c); (ii) for all Pc
1
∈ P1 (c), (ii.a) Pc

1 ⊂ Pc
1
⊂ P

c

1, and (ii.b) P2

(

Pc
1; c
)

⊂

P2

(

Pc
1
, c
)

⊂ P2

(

P
c

1, c
)

and
∣

∣

∣

∣

P2

(

Pc
1; c
)

∣

∣

∣

∣

= 1.

Proof. In Appendix.

Parts (i) and (ii.a) of Theorem 2 identify the tight upper and lower bounds for the

criterion Pc
1
. The upper bound tells us when a particular alternative makes some other

alternatives irrelevant to the choice. To be precise, whenever c (S) = c
(

S\
{

y
})

for all

S ∋ x, y, we have xP
c

1y.

The lower bound captures the “conflict” between the upper bound and the indirectly

revealed preference.8) Even if y is irrelevant to the final choice whenever x is in the choice

set (i.e., xP
c

1y), y may be indirectly revealed preferred to x (i.e., y ≻c
I x). Whenever this is

the case, we have xPc
1y.

Part (ii.b) says that a less complete Pc
1

imposes more restrictions on Pc
2 in the task of

rationalizing the choice function. In particular, when the tight lower bound Pc
1 is used,

8)When a choice function c satisfies WARP, Pc
1 = ∅, while P

c

1 is a linear order.
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there is a unique preference that rationalizes the choice function. An immediate corollary

of Theorem 2 is the following.

Corollary 1 The preference is point-identified if and only if the criterion is point-identified, i.e.,

|P2 (c)| = 1 if and only if Pc
1 = P

c

1. Therefore, a transitive-RSM choice function c has a unique

criterion-preference representation if and only if c (S) = c
(

S\
{

y
})

for all S ∋ x, y implies y ≻c
I x.

Remark 2 (Behavioral Comparative) Suppose there are two transitive-RSM choice func-

tions, ci and c j, and they are uniquely represented by
(

Pci

1
,Pci

2

)

and
(

Pc j

1
,Pc j

2

)

respectively. Suppose

further that Pci

1
⊂ Pc j

1
and Pci

2 = Pc j

2 . In other words, c j exhibits more “conflicts” between the

criterion and the preference. Given that an RSM choice function violates WARP if and only if it

exhibits cycles (Theorem 2 in Manzini and Mariotti (2007)), one may expect c j to exhibit “more

cyclic behaviors” than ci. However, as the following example shows, this conjecture turns out to

be false.

Example 3 Suppose that X =
{

w, x, y, z
}

and DM-i and DM-j have the following pair of

criteria and preferences: Pci

1
: xPi

1
z, yPi

1
w, yPi

1
z; Pci

2 : zPi
2wPi

2xPi
2y; Pc j

1
: xP

j

1
z, yP

j

1
w; and

Pc j

2 : zPi
2wPi

2xPi
2y. Consider ci = c(

Pci

1
,Pci

2

), and c j = c(
Pcj

1
,Pcj

2

). Then Pci

1 = P
ci

1 ! Pc j

1 = P
c j

1 , and

Pci

2 = Pc j

2 . Nevertheless, both ci and c j exhibit two cycles of length 3, and one cycle of length 4.

Moreover, the cycles of length 4 by ci and c j are different.

3 Conclusion

The contribution of this note is twofold. First, we show that even with a standard

preference, the DM in general exhibits cyclic behavior if she uses the shortlist method

to make her decision. We prove that the cyclicity of indirectly revealed preference is

exactly what distinguishes the RSM framework (a sequential choice model with a non-

standard preference), from the transitive-RSM framework (a sequential choice model

with a standard preference) that is proposed here.
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Second, we provide a partial identification result on the representation. In general,

there are multiple pairs of criteria and preferences that rationalize a transitive-RSM choice

function. Our partial identification result provides the tight bounds of the criterion and

the preference representations, as well as the necessary and sufficient condition on the

choice function for a unique criterion-preference representation.

4 Appendix

4.1 Proof of Theorem 1

We say that a choice function c satisfies Weak-IIA if the following condition is met.

Weak-IIA Let
{

x, y
}

⊂ T ⊂ S. If x = c (S) and y = c (T), then there exists a z ∈ S\T such

that c (U) = c
(

U\
{

y
})

for all U ∋ y, z.9)

As an intermediate step, we prove the following lemma. By following lemma, The-

orem 1 follows if we show that a choice function c is a transitive-RSM if and only if c

satisfies Weak-IIA and NBCC.

Lemma 1 Suppose a choice function c satisfies NBCC. Then c satisfies Weak-IIA if and only if

c is an RSM.

Proof. (The “only if” part) We show that Weak-IIA implies Weak WARP. Suppose

x = c
({

x, y
})

= c (S) for S ∋ x, y, and c (T) = y for some T such that
{

x, y
}

⊂ T ⊂ S. Given

that x = c
({

x, y
})

and y = c (T), there exists a z ∈ T\
{

x, y
}

such that c (U) = c (U\ {x}) for

all U ∋ x, z. This contradicts c (S) = x, because x, z ∈ S.

9)Weak-IIA says the following. Suppose x and y are available in two choice sets S and T, where T ⊂ S.

In addition, suppose the DM chooses x from S, but switches to y when she faces T. Then in a sequential

choice framework, a natural interpretation is that there is an alternative z which is in S but not T, and

such a z leads the DM not to consider y. When the DM faces T, such a z is not present, and therefore she

considers y. If this is the case, the alternative y should be irrelevant to the DM whenever z is available.
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Next, we show that Weak-IIA implies Expansion. Assume that x = c (S) = c (T) but

y = c (S ∪ T) , x, by contradiction. Then by Weak-IIA, and x = c (S) , c (S ∪ T) = y,

we know that there exists a z ∈ T such that c (U) = c (U\ {x}) for all U ∋ x, z. This is a

contradiction because x, z ∈ T and therefore c (T) = x , c (T\ {x}).

(The “if” part) To show the “if” part, we define the following notion first. A choice

function c is said to satisfy Reduction Axiom if the following property is satisfied: when

x = c (S) and y = c (T) for S and T such that
{

x, y
}

⊂ T ⊂ S: there exists a z ∈ S\T such that

c
({

x, y, z
})

= x, c ({x, z}) = x, c
({

y, z
})

= z, and c
({

x, y
})

= y.

Claim 1 Weak WARP, Expansion, and NBCC together imply Reduction.

Proof. Suppose there are S and T such that x = c (S), y = c (T) and
{

x, y
}

⊂ T ⊂ S. We first define

the following sets: T′ ≡ T∪
{

z ∈ S : c
({

y, z
})

= y
}

, S′ ≡ T′∪
{

z ∈ S : c ({x, z}) = z or c
({

x, y, z
})

= x
}

.

Note that T ⊂ T′ ⊂ S′ ⊂ S by construction. Furthermore, define Z ≡ S′\T′ and Z′ ≡

{z ∈ Z : c ({x, z}) = x} ⊂ Z.

We make the following observations: (i) c
({

x, y
})

= y and y ≻c
D x; (ii) y = c (T′); and (iii)

x = c (S′).

To see (i), note that x = c (S) and y = c (T) together with Weak WARP imply c
({

x, y
})

= y.

Then c (S) = x implies y ≻c
D x. To see (ii), note that y = c (T), and c

({

y, z
})

= y for all

z ∈ T′\T. Therefore, y = c (T′) follows from Expansion. To see (iii), fix any z ∈ S\S′, we

have c
({

y, z
})

= z, c ({x, z}) = x and c
({

x, y, z
})

, x. By Weak WARP, c
({

x, y, z
})

, z because

c ({x, z}) = x and c (S) = x. Therefore, we have c
({

x, y, z
})

= y. Moreover, c
({

y, z
})

= z

and c ({x, z}) , c
({

x, y, z
})

implies that z ≻c
D y. Observation (i) and NBCC imply ¬

(

x ≻c
D z
)

.

However, we have c ({x, z}) = x. Therefore, for all U ∋ x, z, we have c (U) = c (U\z). This gives

x = c (S′).

Take any z ∈ Z′. By the definition of Z′, we have c ({x, z}) = x and c
({

x, y, z
})

= x. By

definitions of T′, and Z′, we have c
({

y, z
})

= z. By observation (i), we have c
({

x, y
})

= y.

Therefore, the proof is complete if we can show that Z′ is non-empty.

Suppose Z′ = ∅. Given that c satisfies Weak WARP and Expansion, c is sequentially
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rationalizable. Let
(

Pc
1
,Pc

2

)

be a pair of rationales that sequentially rationalizes the choice.10) For

all z ∈ Z, c ({x, z}) = z implies that either zPc
1
x or zPc

2x. Similarly, for all z ∈ Z, c
({

y, z
})

= z

implies that either zPc
1
y or zPc

2y. Therefore, we have c
({

x, y
}

∪ Z′′
)

, x, y for all Z
′′
⊂ Z.

Let Z0 = Z, and Zn+1 = Zn\ {zn}, where zn = c
({

x, y
}

∪ Zn

)

. Note that zn , x, y for all n.

Then observation (iii) implies that there is a w ∈ T′ such that wPc
1
z0. Therefore, c (T′ ∪ {z0}) =

c (T′). Define Tn+1 = Tn ∪ {zn} with T0 = T′. Then a similar argument yields c (Tn+1) =

c (Tn) = c (T′). Given that S′ is finite, we have c (S′) = c
(

T|Z|−1

)

= c (T′). This contradicts with

observations (ii) and (iii) above.

Claim 2 Reduction and NBCC imply Weak-IIA.

Proof. Suppose there is a set x = c (S) and y = c (T) for some S,T such that
{

x, y
}

⊂ T ⊂ S. Note

that by Reduction, there exists a z ∈ S\T such that c
({

x, y, z
})

= x, c ({x, z}) = x, c
({

y, z
})

= z,

and c
({

x, y
})

= y. Hence, we have y ≻c
D x ≻c

D z. If there exists a U such that c (U) , c
(

U\
{

y
})

and y, z ∈ U, then z ≻c
D y, which violates NBCC.

By Lemma 1, we are done if we show that a choice function c is a transitive-RSM if

and only if c satisfies Weak-IIA and NBCC.

(The “if” part) The proof is constructive. The criterion is the following: let Pc
1
≡

{(

x, y
)

: c (S) = c
(

S\
{

y
})

for all S ∋ x, y and x , y
}

. Next, we define Pc
2 as a completion of

≻c
I . Note that by Szpilrajn’s Theorem, such a completion exists. Below, we show that

both Pc
1

and Pc
2 are asymmetric and transitive. Then, we show that c(Pc

1
,Pc

2)
(S) = c (S).

First, we argue that the binary relation Pc
1

is asymmetric and transitive. That Pc
1

is

asymmetric follows from the definition of Pc
1

together with the single valuedness of c

and the assumption of full domain. To see that Pc
1

is transitive, assume xPc
1
y and yPc

1
z.

The proof is complete if we show c (S) = (S\ {z}) for all S ∋ x, z. Take an arbitrary set

10)The existence of such
(

Pc
1
,Pc

2

)

is guaranteed because c satisfies Weak WARP and Expansion (Theorem

1 in Manzini and Mariotti (2007)).
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S ∋ x, z. First, suppose that y ∈ S. Then by yPc
1
z, we have c (S) = c (S\ {z}). Next, suppose

y < S. We know that c
(

S ∪
{

y
}

\ {z}
)

= c
(

S ∪
{

y
})

by yPc
1
z, and c

(

S ∪
{

y
})

= c (S) by xPc
1
y.

In addition, xPc
1
y implies c

(

S ∪
{

y
}

\ {z}
)

= c (S\ {z}). Hence, we have c (S) = c (S\ {z}).

Next, we show that the binary relation Pc
2 is asymmetric and transitive. This is

straightforward due to the fact that ≻c
I is asymmetric by NBCC, so is Pc

2.

Lastly, we show c (S) = c(Pc
1
,Pc

2)
(S) for all S. Suppose x = c (S). First, we show that

x ∈ max
(

S; Pc
1

)

. If not, then there is a y such that yPc
1
x, and therefore c (S) = c (S\ {x}),

which is a contradiction. Next, we show that x ≻c
I y for all y ∈ max

(

S; Pc
1

)

. If not, then

for some y ∈ max
(

S; Pc
1

)

, we have y = c
({

x, y
})

. Then weak-IIA implies that z ∈ S\
{

x, y
}

such that zPc
1
y, which contradicts y ∈ max

(

S; Pc
1

)

.

(The “only if” part) Suppose c is a transitive-RSM, and c (S) = c(Pc
1
,Pc

2)
(S) for some

(

Pc
1
,Pc

2

)

. If x ≻c
D y, then xPc

2y. Therefore, the completeness and the transitivity of Pc
2 imply

NBCC. Next, suppose x = c (S) and y = c (T) for
{

x, y
}

⊂ T ⊂ S. It is straightforward to

check x ∈ max
(

S; Pc
1

)

, y < max
(

S; Pc
1

)

, and x, y ∈ c
(

T; Pc
1

)

.

Therefore, there exists z ∈ S\T such that zPc
1
y and xPc

2z. By transitivity of Pc
1
, we have

zPc
1
w for all w such that yPc

1
w. Hence, c (U) = c

(

U\
{

y
})

for all U ∋ y, z. Q.E.D.

4.2 Proof of Theorem 2

Proof of (i): P
c

1 ∈ P1 (c) follows immediately from Theorem 1. To show Pc
1 ∈ P1 (c), we

show that the transitive closure P̃c
2 of ≻c

D ∪P
c

1\P
c
1 is asymmetric.

First, we define a P̃c
2-cycle of length n as a sequence {xi}

n
i=0 that satisfies the following:

(i) for all i, xi ≻
c
D xi+1, or xc

i
P̃c

1
xi+1, where P̃c

1
≡ P

c

1\P
c
1; (ii) xi , x j for all i, j , 0,n with i , j;

and (iii) xn = x0. Because of NBCC, we can assume x0P̃c
1
x1, and x1 ≻

c
D x2 without loss of

generality. To complete the proof, we only need to show that P̃c
2-cycles do not exist for

all n ≥ 3. We proceed by induction.

Suppose n = 3. Because x0P̃c
1
x1, we must have x2 ≻

c
D x0. Otherwise, x2 = c ({x0, x2})

implies x2P
c

1x0, and then x2P
c

1x1, a contradiction. Then together with x1 ≻
c
D x2, we have

13



x1 ≻
c
I x0, which contradicts x0P̃c

1
x1. Therefore, P̃c

2-cycles of length 3 do not exist.

Next, assume that there do not exist any P̃c
2-cycles of length shorter than m. We need

to show that P̃c
2-cycle of length m does not exist.

Observe first that x0 = c ({x0, x2}) because of an argument similar to the case n = 3.

There are three possibilities: (i) x0 ≻
c
D x2; (ii) x0P̃c

1
x2; or (iii) x0Pc

1x2. If either (i) or (ii)

holds, then {x0, x2, · · · , xm} is a P̃c
2-cycle of length m − 1. This contradicts the induction

hypothesis. Suppose (iii) holds. Then, by definition of Pc
1, we have x2 ≻

c
I x0. Together

with x1 ≻
c
D x2, we have x1 ≻

c
I x0, by the definition of ≻c

I . But x1 ≻
c
I x0 contradicts x0P̃c

1
x1.

Let P̃c′
2 be a completion of P̃c

2, which exists by Szpilrajn’s Theorem. Since Pc
1 is transitive

by construction, it is straightforward to see
(

Pc
1, P̃

c′
2

)

∈ P (c).

Proof of (ii): Let
(

Pc
1
,Pc

2

)

∈ P (c).

(ii.a) Recall that xP
c

1y if and only if c (S) = c
(

S\
{

y
})

for all S ∋ x, y and x , y. Therefore,

Pc
1
⊂ P

c

1.

Now we show Pc
1 ⊂ Pc

1
. First note that ≻c

D⊂ Pc
2. This is because x ≻c

D y if and only if

x = c
({

x, y
})

, and c (S) , c
(

S\
{

y
})

for some S ∋ x, y. If xPc
1
y, then c (S) = c

(

S\
{

y
})

for all

S ∋ x, y, and hence, x ≻c
D y implies xPc

2y, i.e., ≻c
D⊂ Pc

2.

Suppose xP1y but ¬
(

xPc
1
y
)

. Note xP1y if and only if x = c
({

x, y
})

and there exists a

sequence {zi}
n
i=1 such that y ≻c

D z1 ≻
c
D · · · ≻

c
D zn ≻

c
D x. Therefore, xP1y implies yPc

2x for any

Pc
2 ∈ P2 (c). However, ¬

(

xPc
1
y
)

and x = c
({

x, y
})

imply xPc
2y, a contradiction.

(ii.b) Suppose Pc
1
⊂ Pc′

1
, and Pc

1
,Pc′

1
∈ P1 (c). The proof is complete if we show

P2

(

Pc
1
, c
)

⊂ P2

(

Pc′
1
, c
)

.

Pick some Pc
2 ∈ P2

(

Pc
1
, c
)

. It suffices to show that
(

Pc′
1
,Pc

2

)

∈ P (c). Fix a choice set S and

let x = c (S). Then x ∈ max
(

S; Pc′
1

)

⊂ max
(

S; Pc
1

)

. Given that xPc
2y for all y ∈ max

(

S; Pc
1

)

,

we have xPc
2y for all y ∈ max

(

S; Pc′
1

)

. This implies x = c(Pc′
1
,Pc

2)
(S).

∣

∣

∣

∣

P2

(

Pc
1; c
)

∣

∣

∣

∣

= 1 follows from the construction of P1. Q.E.D.
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